1//===--- RewriteRope.cpp - Rope specialized for rewriter --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the RewriteRope class, which is a powerful string.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Rewrite/Core/RewriteRope.h"
15#include "clang/Basic/LLVM.h"
16#include <algorithm>
17using namespace clang;
18
19/// RewriteRope is a "strong" string class, designed to make insertions and
20/// deletions in the middle of the string nearly constant time (really, they are
21/// O(log N), but with a very low constant factor).
22///
23/// The implementation of this datastructure is a conceptual linear sequence of
24/// RopePiece elements.  Each RopePiece represents a view on a separately
25/// allocated and reference counted string.  This means that splitting a very
26/// long string can be done in constant time by splitting a RopePiece that
27/// references the whole string into two rope pieces that reference each half.
28/// Once split, another string can be inserted in between the two halves by
29/// inserting a RopePiece in between the two others.  All of this is very
30/// inexpensive: it takes time proportional to the number of RopePieces, not the
31/// length of the strings they represent.
32///
33/// While a linear sequences of RopePieces is the conceptual model, the actual
34/// implementation captures them in an adapted B+ Tree.  Using a B+ tree (which
35/// is a tree that keeps the values in the leaves and has where each node
36/// contains a reasonable number of pointers to children/values) allows us to
37/// maintain efficient operation when the RewriteRope contains a *huge* number
38/// of RopePieces.  The basic idea of the B+ Tree is that it allows us to find
39/// the RopePiece corresponding to some offset very efficiently, and it
40/// automatically balances itself on insertions of RopePieces (which can happen
41/// for both insertions and erases of string ranges).
42///
43/// The one wrinkle on the theory is that we don't attempt to keep the tree
44/// properly balanced when erases happen.  Erases of string data can both insert
45/// new RopePieces (e.g. when the middle of some other rope piece is deleted,
46/// which results in two rope pieces, which is just like an insert) or it can
47/// reduce the number of RopePieces maintained by the B+Tree.  In the case when
48/// the number of RopePieces is reduced, we don't attempt to maintain the
49/// standard 'invariant' that each node in the tree contains at least
50/// 'WidthFactor' children/values.  For our use cases, this doesn't seem to
51/// matter.
52///
53/// The implementation below is primarily implemented in terms of three classes:
54///   RopePieceBTreeNode - Common base class for:
55///
56///     RopePieceBTreeLeaf - Directly manages up to '2*WidthFactor' RopePiece
57///          nodes.  This directly represents a chunk of the string with those
58///          RopePieces contatenated.
59///     RopePieceBTreeInterior - An interior node in the B+ Tree, which manages
60///          up to '2*WidthFactor' other nodes in the tree.
61
62
63//===----------------------------------------------------------------------===//
64// RopePieceBTreeNode Class
65//===----------------------------------------------------------------------===//
66
67namespace {
68  /// RopePieceBTreeNode - Common base class of RopePieceBTreeLeaf and
69  /// RopePieceBTreeInterior.  This provides some 'virtual' dispatching methods
70  /// and a flag that determines which subclass the instance is.  Also
71  /// important, this node knows the full extend of the node, including any
72  /// children that it has.  This allows efficient skipping over entire subtrees
73  /// when looking for an offset in the BTree.
74  class RopePieceBTreeNode {
75  protected:
76    /// WidthFactor - This controls the number of K/V slots held in the BTree:
77    /// how wide it is.  Each level of the BTree is guaranteed to have at least
78    /// 'WidthFactor' elements in it (either ropepieces or children), (except
79    /// the root, which may have less) and may have at most 2*WidthFactor
80    /// elements.
81    enum { WidthFactor = 8 };
82
83    /// Size - This is the number of bytes of file this node (including any
84    /// potential children) covers.
85    unsigned Size;
86
87    /// IsLeaf - True if this is an instance of RopePieceBTreeLeaf, false if it
88    /// is an instance of RopePieceBTreeInterior.
89    bool IsLeaf;
90
91    RopePieceBTreeNode(bool isLeaf) : Size(0), IsLeaf(isLeaf) {}
92    ~RopePieceBTreeNode() {}
93  public:
94
95    bool isLeaf() const { return IsLeaf; }
96    unsigned size() const { return Size; }
97
98    void Destroy();
99
100    /// split - Split the range containing the specified offset so that we are
101    /// guaranteed that there is a place to do an insertion at the specified
102    /// offset.  The offset is relative, so "0" is the start of the node.
103    ///
104    /// If there is no space in this subtree for the extra piece, the extra tree
105    /// node is returned and must be inserted into a parent.
106    RopePieceBTreeNode *split(unsigned Offset);
107
108    /// insert - Insert the specified ropepiece into this tree node at the
109    /// specified offset.  The offset is relative, so "0" is the start of the
110    /// node.
111    ///
112    /// If there is no space in this subtree for the extra piece, the extra tree
113    /// node is returned and must be inserted into a parent.
114    RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);
115
116    /// erase - Remove NumBytes from this node at the specified offset.  We are
117    /// guaranteed that there is a split at Offset.
118    void erase(unsigned Offset, unsigned NumBytes);
119
120  };
121} // end anonymous namespace
122
123//===----------------------------------------------------------------------===//
124// RopePieceBTreeLeaf Class
125//===----------------------------------------------------------------------===//
126
127namespace {
128  /// RopePieceBTreeLeaf - Directly manages up to '2*WidthFactor' RopePiece
129  /// nodes.  This directly represents a chunk of the string with those
130  /// RopePieces contatenated.  Since this is a B+Tree, all values (in this case
131  /// instances of RopePiece) are stored in leaves like this.  To make iteration
132  /// over the leaves efficient, they maintain a singly linked list through the
133  /// NextLeaf field.  This allows the B+Tree forward iterator to be constant
134  /// time for all increments.
135  class RopePieceBTreeLeaf : public RopePieceBTreeNode {
136    /// NumPieces - This holds the number of rope pieces currently active in the
137    /// Pieces array.
138    unsigned char NumPieces;
139
140    /// Pieces - This tracks the file chunks currently in this leaf.
141    ///
142    RopePiece Pieces[2*WidthFactor];
143
144    /// NextLeaf - This is a pointer to the next leaf in the tree, allowing
145    /// efficient in-order forward iteration of the tree without traversal.
146    RopePieceBTreeLeaf **PrevLeaf, *NextLeaf;
147  public:
148    RopePieceBTreeLeaf() : RopePieceBTreeNode(true), NumPieces(0),
149                           PrevLeaf(0), NextLeaf(0) {}
150    ~RopePieceBTreeLeaf() {
151      if (PrevLeaf || NextLeaf)
152        removeFromLeafInOrder();
153      clear();
154    }
155
156    bool isFull() const { return NumPieces == 2*WidthFactor; }
157
158    /// clear - Remove all rope pieces from this leaf.
159    void clear() {
160      while (NumPieces)
161        Pieces[--NumPieces] = RopePiece();
162      Size = 0;
163    }
164
165    unsigned getNumPieces() const { return NumPieces; }
166
167    const RopePiece &getPiece(unsigned i) const {
168      assert(i < getNumPieces() && "Invalid piece ID");
169      return Pieces[i];
170    }
171
172    const RopePieceBTreeLeaf *getNextLeafInOrder() const { return NextLeaf; }
173    void insertAfterLeafInOrder(RopePieceBTreeLeaf *Node) {
174      assert(PrevLeaf == 0 && NextLeaf == 0 && "Already in ordering");
175
176      NextLeaf = Node->NextLeaf;
177      if (NextLeaf)
178        NextLeaf->PrevLeaf = &NextLeaf;
179      PrevLeaf = &Node->NextLeaf;
180      Node->NextLeaf = this;
181    }
182
183    void removeFromLeafInOrder() {
184      if (PrevLeaf) {
185        *PrevLeaf = NextLeaf;
186        if (NextLeaf)
187          NextLeaf->PrevLeaf = PrevLeaf;
188      } else if (NextLeaf) {
189        NextLeaf->PrevLeaf = 0;
190      }
191    }
192
193    /// FullRecomputeSizeLocally - This method recomputes the 'Size' field by
194    /// summing the size of all RopePieces.
195    void FullRecomputeSizeLocally() {
196      Size = 0;
197      for (unsigned i = 0, e = getNumPieces(); i != e; ++i)
198        Size += getPiece(i).size();
199    }
200
201    /// split - Split the range containing the specified offset so that we are
202    /// guaranteed that there is a place to do an insertion at the specified
203    /// offset.  The offset is relative, so "0" is the start of the node.
204    ///
205    /// If there is no space in this subtree for the extra piece, the extra tree
206    /// node is returned and must be inserted into a parent.
207    RopePieceBTreeNode *split(unsigned Offset);
208
209    /// insert - Insert the specified ropepiece into this tree node at the
210    /// specified offset.  The offset is relative, so "0" is the start of the
211    /// node.
212    ///
213    /// If there is no space in this subtree for the extra piece, the extra tree
214    /// node is returned and must be inserted into a parent.
215    RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);
216
217
218    /// erase - Remove NumBytes from this node at the specified offset.  We are
219    /// guaranteed that there is a split at Offset.
220    void erase(unsigned Offset, unsigned NumBytes);
221
222    static inline bool classof(const RopePieceBTreeNode *N) {
223      return N->isLeaf();
224    }
225  };
226} // end anonymous namespace
227
228/// split - Split the range containing the specified offset so that we are
229/// guaranteed that there is a place to do an insertion at the specified
230/// offset.  The offset is relative, so "0" is the start of the node.
231///
232/// If there is no space in this subtree for the extra piece, the extra tree
233/// node is returned and must be inserted into a parent.
234RopePieceBTreeNode *RopePieceBTreeLeaf::split(unsigned Offset) {
235  // Find the insertion point.  We are guaranteed that there is a split at the
236  // specified offset so find it.
237  if (Offset == 0 || Offset == size()) {
238    // Fastpath for a common case.  There is already a splitpoint at the end.
239    return 0;
240  }
241
242  // Find the piece that this offset lands in.
243  unsigned PieceOffs = 0;
244  unsigned i = 0;
245  while (Offset >= PieceOffs+Pieces[i].size()) {
246    PieceOffs += Pieces[i].size();
247    ++i;
248  }
249
250  // If there is already a split point at the specified offset, just return
251  // success.
252  if (PieceOffs == Offset)
253    return 0;
254
255  // Otherwise, we need to split piece 'i' at Offset-PieceOffs.  Convert Offset
256  // to being Piece relative.
257  unsigned IntraPieceOffset = Offset-PieceOffs;
258
259  // We do this by shrinking the RopePiece and then doing an insert of the tail.
260  RopePiece Tail(Pieces[i].StrData, Pieces[i].StartOffs+IntraPieceOffset,
261                 Pieces[i].EndOffs);
262  Size -= Pieces[i].size();
263  Pieces[i].EndOffs = Pieces[i].StartOffs+IntraPieceOffset;
264  Size += Pieces[i].size();
265
266  return insert(Offset, Tail);
267}
268
269
270/// insert - Insert the specified RopePiece into this tree node at the
271/// specified offset.  The offset is relative, so "0" is the start of the node.
272///
273/// If there is no space in this subtree for the extra piece, the extra tree
274/// node is returned and must be inserted into a parent.
275RopePieceBTreeNode *RopePieceBTreeLeaf::insert(unsigned Offset,
276                                               const RopePiece &R) {
277  // If this node is not full, insert the piece.
278  if (!isFull()) {
279    // Find the insertion point.  We are guaranteed that there is a split at the
280    // specified offset so find it.
281    unsigned i = 0, e = getNumPieces();
282    if (Offset == size()) {
283      // Fastpath for a common case.
284      i = e;
285    } else {
286      unsigned SlotOffs = 0;
287      for (; Offset > SlotOffs; ++i)
288        SlotOffs += getPiece(i).size();
289      assert(SlotOffs == Offset && "Split didn't occur before insertion!");
290    }
291
292    // For an insertion into a non-full leaf node, just insert the value in
293    // its sorted position.  This requires moving later values over.
294    for (; i != e; --e)
295      Pieces[e] = Pieces[e-1];
296    Pieces[i] = R;
297    ++NumPieces;
298    Size += R.size();
299    return 0;
300  }
301
302  // Otherwise, if this is leaf is full, split it in two halves.  Since this
303  // node is full, it contains 2*WidthFactor values.  We move the first
304  // 'WidthFactor' values to the LHS child (which we leave in this node) and
305  // move the last 'WidthFactor' values into the RHS child.
306
307  // Create the new node.
308  RopePieceBTreeLeaf *NewNode = new RopePieceBTreeLeaf();
309
310  // Move over the last 'WidthFactor' values from here to NewNode.
311  std::copy(&Pieces[WidthFactor], &Pieces[2*WidthFactor],
312            &NewNode->Pieces[0]);
313  // Replace old pieces with null RopePieces to drop refcounts.
314  std::fill(&Pieces[WidthFactor], &Pieces[2*WidthFactor], RopePiece());
315
316  // Decrease the number of values in the two nodes.
317  NewNode->NumPieces = NumPieces = WidthFactor;
318
319  // Recompute the two nodes' size.
320  NewNode->FullRecomputeSizeLocally();
321  FullRecomputeSizeLocally();
322
323  // Update the list of leaves.
324  NewNode->insertAfterLeafInOrder(this);
325
326  // These insertions can't fail.
327  if (this->size() >= Offset)
328    this->insert(Offset, R);
329  else
330    NewNode->insert(Offset - this->size(), R);
331  return NewNode;
332}
333
334/// erase - Remove NumBytes from this node at the specified offset.  We are
335/// guaranteed that there is a split at Offset.
336void RopePieceBTreeLeaf::erase(unsigned Offset, unsigned NumBytes) {
337  // Since we are guaranteed that there is a split at Offset, we start by
338  // finding the Piece that starts there.
339  unsigned PieceOffs = 0;
340  unsigned i = 0;
341  for (; Offset > PieceOffs; ++i)
342    PieceOffs += getPiece(i).size();
343  assert(PieceOffs == Offset && "Split didn't occur before erase!");
344
345  unsigned StartPiece = i;
346
347  // Figure out how many pieces completely cover 'NumBytes'.  We want to remove
348  // all of them.
349  for (; Offset+NumBytes > PieceOffs+getPiece(i).size(); ++i)
350    PieceOffs += getPiece(i).size();
351
352  // If we exactly include the last one, include it in the region to delete.
353  if (Offset+NumBytes == PieceOffs+getPiece(i).size())
354    PieceOffs += getPiece(i).size(), ++i;
355
356  // If we completely cover some RopePieces, erase them now.
357  if (i != StartPiece) {
358    unsigned NumDeleted = i-StartPiece;
359    for (; i != getNumPieces(); ++i)
360      Pieces[i-NumDeleted] = Pieces[i];
361
362    // Drop references to dead rope pieces.
363    std::fill(&Pieces[getNumPieces()-NumDeleted], &Pieces[getNumPieces()],
364              RopePiece());
365    NumPieces -= NumDeleted;
366
367    unsigned CoverBytes = PieceOffs-Offset;
368    NumBytes -= CoverBytes;
369    Size -= CoverBytes;
370  }
371
372  // If we completely removed some stuff, we could be done.
373  if (NumBytes == 0) return;
374
375  // Okay, now might be erasing part of some Piece.  If this is the case, then
376  // move the start point of the piece.
377  assert(getPiece(StartPiece).size() > NumBytes);
378  Pieces[StartPiece].StartOffs += NumBytes;
379
380  // The size of this node just shrunk by NumBytes.
381  Size -= NumBytes;
382}
383
384//===----------------------------------------------------------------------===//
385// RopePieceBTreeInterior Class
386//===----------------------------------------------------------------------===//
387
388namespace {
389  /// RopePieceBTreeInterior - This represents an interior node in the B+Tree,
390  /// which holds up to 2*WidthFactor pointers to child nodes.
391  class RopePieceBTreeInterior : public RopePieceBTreeNode {
392    /// NumChildren - This holds the number of children currently active in the
393    /// Children array.
394    unsigned char NumChildren;
395    RopePieceBTreeNode *Children[2*WidthFactor];
396  public:
397    RopePieceBTreeInterior() : RopePieceBTreeNode(false), NumChildren(0) {}
398
399    RopePieceBTreeInterior(RopePieceBTreeNode *LHS, RopePieceBTreeNode *RHS)
400    : RopePieceBTreeNode(false) {
401      Children[0] = LHS;
402      Children[1] = RHS;
403      NumChildren = 2;
404      Size = LHS->size() + RHS->size();
405    }
406
407    ~RopePieceBTreeInterior() {
408      for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
409        Children[i]->Destroy();
410    }
411
412    bool isFull() const { return NumChildren == 2*WidthFactor; }
413
414    unsigned getNumChildren() const { return NumChildren; }
415    const RopePieceBTreeNode *getChild(unsigned i) const {
416      assert(i < NumChildren && "invalid child #");
417      return Children[i];
418    }
419    RopePieceBTreeNode *getChild(unsigned i) {
420      assert(i < NumChildren && "invalid child #");
421      return Children[i];
422    }
423
424    /// FullRecomputeSizeLocally - Recompute the Size field of this node by
425    /// summing up the sizes of the child nodes.
426    void FullRecomputeSizeLocally() {
427      Size = 0;
428      for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
429        Size += getChild(i)->size();
430    }
431
432
433    /// split - Split the range containing the specified offset so that we are
434    /// guaranteed that there is a place to do an insertion at the specified
435    /// offset.  The offset is relative, so "0" is the start of the node.
436    ///
437    /// If there is no space in this subtree for the extra piece, the extra tree
438    /// node is returned and must be inserted into a parent.
439    RopePieceBTreeNode *split(unsigned Offset);
440
441
442    /// insert - Insert the specified ropepiece into this tree node at the
443    /// specified offset.  The offset is relative, so "0" is the start of the
444    /// node.
445    ///
446    /// If there is no space in this subtree for the extra piece, the extra tree
447    /// node is returned and must be inserted into a parent.
448    RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);
449
450    /// HandleChildPiece - A child propagated an insertion result up to us.
451    /// Insert the new child, and/or propagate the result further up the tree.
452    RopePieceBTreeNode *HandleChildPiece(unsigned i, RopePieceBTreeNode *RHS);
453
454    /// erase - Remove NumBytes from this node at the specified offset.  We are
455    /// guaranteed that there is a split at Offset.
456    void erase(unsigned Offset, unsigned NumBytes);
457
458    static inline bool classof(const RopePieceBTreeNode *N) {
459      return !N->isLeaf();
460    }
461  };
462} // end anonymous namespace
463
464/// split - Split the range containing the specified offset so that we are
465/// guaranteed that there is a place to do an insertion at the specified
466/// offset.  The offset is relative, so "0" is the start of the node.
467///
468/// If there is no space in this subtree for the extra piece, the extra tree
469/// node is returned and must be inserted into a parent.
470RopePieceBTreeNode *RopePieceBTreeInterior::split(unsigned Offset) {
471  // Figure out which child to split.
472  if (Offset == 0 || Offset == size())
473    return 0;  // If we have an exact offset, we're already split.
474
475  unsigned ChildOffset = 0;
476  unsigned i = 0;
477  for (; Offset >= ChildOffset+getChild(i)->size(); ++i)
478    ChildOffset += getChild(i)->size();
479
480  // If already split there, we're done.
481  if (ChildOffset == Offset)
482    return 0;
483
484  // Otherwise, recursively split the child.
485  if (RopePieceBTreeNode *RHS = getChild(i)->split(Offset-ChildOffset))
486    return HandleChildPiece(i, RHS);
487  return 0;  // Done!
488}
489
490/// insert - Insert the specified ropepiece into this tree node at the
491/// specified offset.  The offset is relative, so "0" is the start of the
492/// node.
493///
494/// If there is no space in this subtree for the extra piece, the extra tree
495/// node is returned and must be inserted into a parent.
496RopePieceBTreeNode *RopePieceBTreeInterior::insert(unsigned Offset,
497                                                   const RopePiece &R) {
498  // Find the insertion point.  We are guaranteed that there is a split at the
499  // specified offset so find it.
500  unsigned i = 0, e = getNumChildren();
501
502  unsigned ChildOffs = 0;
503  if (Offset == size()) {
504    // Fastpath for a common case.  Insert at end of last child.
505    i = e-1;
506    ChildOffs = size()-getChild(i)->size();
507  } else {
508    for (; Offset > ChildOffs+getChild(i)->size(); ++i)
509      ChildOffs += getChild(i)->size();
510  }
511
512  Size += R.size();
513
514  // Insert at the end of this child.
515  if (RopePieceBTreeNode *RHS = getChild(i)->insert(Offset-ChildOffs, R))
516    return HandleChildPiece(i, RHS);
517
518  return 0;
519}
520
521/// HandleChildPiece - A child propagated an insertion result up to us.
522/// Insert the new child, and/or propagate the result further up the tree.
523RopePieceBTreeNode *
524RopePieceBTreeInterior::HandleChildPiece(unsigned i, RopePieceBTreeNode *RHS) {
525  // Otherwise the child propagated a subtree up to us as a new child.  See if
526  // we have space for it here.
527  if (!isFull()) {
528    // Insert RHS after child 'i'.
529    if (i + 1 != getNumChildren())
530      memmove(&Children[i+2], &Children[i+1],
531              (getNumChildren()-i-1)*sizeof(Children[0]));
532    Children[i+1] = RHS;
533    ++NumChildren;
534    return 0;
535  }
536
537  // Okay, this node is full.  Split it in half, moving WidthFactor children to
538  // a newly allocated interior node.
539
540  // Create the new node.
541  RopePieceBTreeInterior *NewNode = new RopePieceBTreeInterior();
542
543  // Move over the last 'WidthFactor' values from here to NewNode.
544  memcpy(&NewNode->Children[0], &Children[WidthFactor],
545         WidthFactor*sizeof(Children[0]));
546
547  // Decrease the number of values in the two nodes.
548  NewNode->NumChildren = NumChildren = WidthFactor;
549
550  // Finally, insert the two new children in the side the can (now) hold them.
551  // These insertions can't fail.
552  if (i < WidthFactor)
553    this->HandleChildPiece(i, RHS);
554  else
555    NewNode->HandleChildPiece(i-WidthFactor, RHS);
556
557  // Recompute the two nodes' size.
558  NewNode->FullRecomputeSizeLocally();
559  FullRecomputeSizeLocally();
560  return NewNode;
561}
562
563/// erase - Remove NumBytes from this node at the specified offset.  We are
564/// guaranteed that there is a split at Offset.
565void RopePieceBTreeInterior::erase(unsigned Offset, unsigned NumBytes) {
566  // This will shrink this node by NumBytes.
567  Size -= NumBytes;
568
569  // Find the first child that overlaps with Offset.
570  unsigned i = 0;
571  for (; Offset >= getChild(i)->size(); ++i)
572    Offset -= getChild(i)->size();
573
574  // Propagate the delete request into overlapping children, or completely
575  // delete the children as appropriate.
576  while (NumBytes) {
577    RopePieceBTreeNode *CurChild = getChild(i);
578
579    // If we are deleting something contained entirely in the child, pass on the
580    // request.
581    if (Offset+NumBytes < CurChild->size()) {
582      CurChild->erase(Offset, NumBytes);
583      return;
584    }
585
586    // If this deletion request starts somewhere in the middle of the child, it
587    // must be deleting to the end of the child.
588    if (Offset) {
589      unsigned BytesFromChild = CurChild->size()-Offset;
590      CurChild->erase(Offset, BytesFromChild);
591      NumBytes -= BytesFromChild;
592      // Start at the beginning of the next child.
593      Offset = 0;
594      ++i;
595      continue;
596    }
597
598    // If the deletion request completely covers the child, delete it and move
599    // the rest down.
600    NumBytes -= CurChild->size();
601    CurChild->Destroy();
602    --NumChildren;
603    if (i != getNumChildren())
604      memmove(&Children[i], &Children[i+1],
605              (getNumChildren()-i)*sizeof(Children[0]));
606  }
607}
608
609//===----------------------------------------------------------------------===//
610// RopePieceBTreeNode Implementation
611//===----------------------------------------------------------------------===//
612
613void RopePieceBTreeNode::Destroy() {
614  if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
615    delete Leaf;
616  else
617    delete cast<RopePieceBTreeInterior>(this);
618}
619
620/// split - Split the range containing the specified offset so that we are
621/// guaranteed that there is a place to do an insertion at the specified
622/// offset.  The offset is relative, so "0" is the start of the node.
623///
624/// If there is no space in this subtree for the extra piece, the extra tree
625/// node is returned and must be inserted into a parent.
626RopePieceBTreeNode *RopePieceBTreeNode::split(unsigned Offset) {
627  assert(Offset <= size() && "Invalid offset to split!");
628  if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
629    return Leaf->split(Offset);
630  return cast<RopePieceBTreeInterior>(this)->split(Offset);
631}
632
633/// insert - Insert the specified ropepiece into this tree node at the
634/// specified offset.  The offset is relative, so "0" is the start of the
635/// node.
636///
637/// If there is no space in this subtree for the extra piece, the extra tree
638/// node is returned and must be inserted into a parent.
639RopePieceBTreeNode *RopePieceBTreeNode::insert(unsigned Offset,
640                                               const RopePiece &R) {
641  assert(Offset <= size() && "Invalid offset to insert!");
642  if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
643    return Leaf->insert(Offset, R);
644  return cast<RopePieceBTreeInterior>(this)->insert(Offset, R);
645}
646
647/// erase - Remove NumBytes from this node at the specified offset.  We are
648/// guaranteed that there is a split at Offset.
649void RopePieceBTreeNode::erase(unsigned Offset, unsigned NumBytes) {
650  assert(Offset+NumBytes <= size() && "Invalid offset to erase!");
651  if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
652    return Leaf->erase(Offset, NumBytes);
653  return cast<RopePieceBTreeInterior>(this)->erase(Offset, NumBytes);
654}
655
656
657//===----------------------------------------------------------------------===//
658// RopePieceBTreeIterator Implementation
659//===----------------------------------------------------------------------===//
660
661static const RopePieceBTreeLeaf *getCN(const void *P) {
662  return static_cast<const RopePieceBTreeLeaf*>(P);
663}
664
665// begin iterator.
666RopePieceBTreeIterator::RopePieceBTreeIterator(const void *n) {
667  const RopePieceBTreeNode *N = static_cast<const RopePieceBTreeNode*>(n);
668
669  // Walk down the left side of the tree until we get to a leaf.
670  while (const RopePieceBTreeInterior *IN = dyn_cast<RopePieceBTreeInterior>(N))
671    N = IN->getChild(0);
672
673  // We must have at least one leaf.
674  CurNode = cast<RopePieceBTreeLeaf>(N);
675
676  // If we found a leaf that happens to be empty, skip over it until we get
677  // to something full.
678  while (CurNode && getCN(CurNode)->getNumPieces() == 0)
679    CurNode = getCN(CurNode)->getNextLeafInOrder();
680
681  if (CurNode != 0)
682    CurPiece = &getCN(CurNode)->getPiece(0);
683  else  // Empty tree, this is an end() iterator.
684    CurPiece = 0;
685  CurChar = 0;
686}
687
688void RopePieceBTreeIterator::MoveToNextPiece() {
689  if (CurPiece != &getCN(CurNode)->getPiece(getCN(CurNode)->getNumPieces()-1)) {
690    CurChar = 0;
691    ++CurPiece;
692    return;
693  }
694
695  // Find the next non-empty leaf node.
696  do
697    CurNode = getCN(CurNode)->getNextLeafInOrder();
698  while (CurNode && getCN(CurNode)->getNumPieces() == 0);
699
700  if (CurNode != 0)
701    CurPiece = &getCN(CurNode)->getPiece(0);
702  else // Hit end().
703    CurPiece = 0;
704  CurChar = 0;
705}
706
707//===----------------------------------------------------------------------===//
708// RopePieceBTree Implementation
709//===----------------------------------------------------------------------===//
710
711static RopePieceBTreeNode *getRoot(void *P) {
712  return static_cast<RopePieceBTreeNode*>(P);
713}
714
715RopePieceBTree::RopePieceBTree() {
716  Root = new RopePieceBTreeLeaf();
717}
718RopePieceBTree::RopePieceBTree(const RopePieceBTree &RHS) {
719  assert(RHS.empty() && "Can't copy non-empty tree yet");
720  Root = new RopePieceBTreeLeaf();
721}
722RopePieceBTree::~RopePieceBTree() {
723  getRoot(Root)->Destroy();
724}
725
726unsigned RopePieceBTree::size() const {
727  return getRoot(Root)->size();
728}
729
730void RopePieceBTree::clear() {
731  if (RopePieceBTreeLeaf *Leaf = dyn_cast<RopePieceBTreeLeaf>(getRoot(Root)))
732    Leaf->clear();
733  else {
734    getRoot(Root)->Destroy();
735    Root = new RopePieceBTreeLeaf();
736  }
737}
738
739void RopePieceBTree::insert(unsigned Offset, const RopePiece &R) {
740  // #1. Split at Offset.
741  if (RopePieceBTreeNode *RHS = getRoot(Root)->split(Offset))
742    Root = new RopePieceBTreeInterior(getRoot(Root), RHS);
743
744  // #2. Do the insertion.
745  if (RopePieceBTreeNode *RHS = getRoot(Root)->insert(Offset, R))
746    Root = new RopePieceBTreeInterior(getRoot(Root), RHS);
747}
748
749void RopePieceBTree::erase(unsigned Offset, unsigned NumBytes) {
750  // #1. Split at Offset.
751  if (RopePieceBTreeNode *RHS = getRoot(Root)->split(Offset))
752    Root = new RopePieceBTreeInterior(getRoot(Root), RHS);
753
754  // #2. Do the erasing.
755  getRoot(Root)->erase(Offset, NumBytes);
756}
757
758//===----------------------------------------------------------------------===//
759// RewriteRope Implementation
760//===----------------------------------------------------------------------===//
761
762/// MakeRopeString - This copies the specified byte range into some instance of
763/// RopeRefCountString, and return a RopePiece that represents it.  This uses
764/// the AllocBuffer object to aggregate requests for small strings into one
765/// allocation instead of doing tons of tiny allocations.
766RopePiece RewriteRope::MakeRopeString(const char *Start, const char *End) {
767  unsigned Len = End-Start;
768  assert(Len && "Zero length RopePiece is invalid!");
769
770  // If we have space for this string in the current alloc buffer, use it.
771  if (AllocOffs+Len <= AllocChunkSize) {
772    memcpy(AllocBuffer->Data+AllocOffs, Start, Len);
773    AllocOffs += Len;
774    return RopePiece(AllocBuffer, AllocOffs-Len, AllocOffs);
775  }
776
777  // If we don't have enough room because this specific allocation is huge,
778  // just allocate a new rope piece for it alone.
779  if (Len > AllocChunkSize) {
780    unsigned Size = End-Start+sizeof(RopeRefCountString)-1;
781    RopeRefCountString *Res =
782      reinterpret_cast<RopeRefCountString *>(new char[Size]);
783    Res->RefCount = 0;
784    memcpy(Res->Data, Start, End-Start);
785    return RopePiece(Res, 0, End-Start);
786  }
787
788  // Otherwise, this was a small request but we just don't have space for it
789  // Make a new chunk and share it with later allocations.
790
791  // If we had an old allocation, drop our reference to it.
792  if (AllocBuffer && --AllocBuffer->RefCount == 0)
793    delete [] (char*)AllocBuffer;
794
795  unsigned AllocSize = offsetof(RopeRefCountString, Data) + AllocChunkSize;
796  AllocBuffer = reinterpret_cast<RopeRefCountString *>(new char[AllocSize]);
797  AllocBuffer->RefCount = 0;
798  memcpy(AllocBuffer->Data, Start, Len);
799  AllocOffs = Len;
800
801  // Start out the new allocation with a refcount of 1, since we have an
802  // internal reference to it.
803  AllocBuffer->addRef();
804  return RopePiece(AllocBuffer, 0, Len);
805}
806
807
808