LiteralSupport.cpp revision 223017
1//===--- LiteralSupport.cpp - Code to parse and process literals ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the NumericLiteralParser, CharLiteralParser, and
11// StringLiteralParser interfaces.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Lex/LiteralSupport.h"
16#include "clang/Lex/Preprocessor.h"
17#include "clang/Lex/LexDiagnostic.h"
18#include "clang/Basic/TargetInfo.h"
19#include "llvm/ADT/StringRef.h"
20#include "llvm/ADT/StringExtras.h"
21using namespace clang;
22
23/// HexDigitValue - Return the value of the specified hex digit, or -1 if it's
24/// not valid.
25static int HexDigitValue(char C) {
26  if (C >= '0' && C <= '9') return C-'0';
27  if (C >= 'a' && C <= 'f') return C-'a'+10;
28  if (C >= 'A' && C <= 'F') return C-'A'+10;
29  return -1;
30}
31
32/// ProcessCharEscape - Parse a standard C escape sequence, which can occur in
33/// either a character or a string literal.
34static unsigned ProcessCharEscape(const char *&ThisTokBuf,
35                                  const char *ThisTokEnd, bool &HadError,
36                                  FullSourceLoc Loc, bool IsWide,
37                                  Diagnostic *Diags, const TargetInfo &Target) {
38  // Skip the '\' char.
39  ++ThisTokBuf;
40
41  // We know that this character can't be off the end of the buffer, because
42  // that would have been \", which would not have been the end of string.
43  unsigned ResultChar = *ThisTokBuf++;
44  switch (ResultChar) {
45  // These map to themselves.
46  case '\\': case '\'': case '"': case '?': break;
47
48    // These have fixed mappings.
49  case 'a':
50    // TODO: K&R: the meaning of '\\a' is different in traditional C
51    ResultChar = 7;
52    break;
53  case 'b':
54    ResultChar = 8;
55    break;
56  case 'e':
57    if (Diags)
58      Diags->Report(Loc, diag::ext_nonstandard_escape) << "e";
59    ResultChar = 27;
60    break;
61  case 'E':
62    if (Diags)
63      Diags->Report(Loc, diag::ext_nonstandard_escape) << "E";
64    ResultChar = 27;
65    break;
66  case 'f':
67    ResultChar = 12;
68    break;
69  case 'n':
70    ResultChar = 10;
71    break;
72  case 'r':
73    ResultChar = 13;
74    break;
75  case 't':
76    ResultChar = 9;
77    break;
78  case 'v':
79    ResultChar = 11;
80    break;
81  case 'x': { // Hex escape.
82    ResultChar = 0;
83    if (ThisTokBuf == ThisTokEnd || !isxdigit(*ThisTokBuf)) {
84      if (Diags)
85        Diags->Report(Loc, diag::err_hex_escape_no_digits);
86      HadError = 1;
87      break;
88    }
89
90    // Hex escapes are a maximal series of hex digits.
91    bool Overflow = false;
92    for (; ThisTokBuf != ThisTokEnd; ++ThisTokBuf) {
93      int CharVal = HexDigitValue(ThisTokBuf[0]);
94      if (CharVal == -1) break;
95      // About to shift out a digit?
96      Overflow |= (ResultChar & 0xF0000000) ? true : false;
97      ResultChar <<= 4;
98      ResultChar |= CharVal;
99    }
100
101    // See if any bits will be truncated when evaluated as a character.
102    unsigned CharWidth =
103      IsWide ? Target.getWCharWidth() : Target.getCharWidth();
104
105    if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
106      Overflow = true;
107      ResultChar &= ~0U >> (32-CharWidth);
108    }
109
110    // Check for overflow.
111    if (Overflow && Diags)   // Too many digits to fit in
112      Diags->Report(Loc, diag::warn_hex_escape_too_large);
113    break;
114  }
115  case '0': case '1': case '2': case '3':
116  case '4': case '5': case '6': case '7': {
117    // Octal escapes.
118    --ThisTokBuf;
119    ResultChar = 0;
120
121    // Octal escapes are a series of octal digits with maximum length 3.
122    // "\0123" is a two digit sequence equal to "\012" "3".
123    unsigned NumDigits = 0;
124    do {
125      ResultChar <<= 3;
126      ResultChar |= *ThisTokBuf++ - '0';
127      ++NumDigits;
128    } while (ThisTokBuf != ThisTokEnd && NumDigits < 3 &&
129             ThisTokBuf[0] >= '0' && ThisTokBuf[0] <= '7');
130
131    // Check for overflow.  Reject '\777', but not L'\777'.
132    unsigned CharWidth =
133      IsWide ? Target.getWCharWidth() : Target.getCharWidth();
134
135    if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
136      if (Diags)
137        Diags->Report(Loc, diag::warn_octal_escape_too_large);
138      ResultChar &= ~0U >> (32-CharWidth);
139    }
140    break;
141  }
142
143    // Otherwise, these are not valid escapes.
144  case '(': case '{': case '[': case '%':
145    // GCC accepts these as extensions.  We warn about them as such though.
146    if (Diags)
147      Diags->Report(Loc, diag::ext_nonstandard_escape)
148        << std::string()+(char)ResultChar;
149    break;
150  default:
151    if (Diags == 0)
152      break;
153
154    if (isgraph(ResultChar))
155      Diags->Report(Loc, diag::ext_unknown_escape)
156        << std::string()+(char)ResultChar;
157    else
158      Diags->Report(Loc, diag::ext_unknown_escape)
159        << "x"+llvm::utohexstr(ResultChar);
160    break;
161  }
162
163  return ResultChar;
164}
165
166/// ProcessUCNEscape - Read the Universal Character Name, check constraints and
167/// return the UTF32.
168static bool ProcessUCNEscape(const char *&ThisTokBuf, const char *ThisTokEnd,
169                             uint32_t &UcnVal, unsigned short &UcnLen,
170                             FullSourceLoc Loc, Diagnostic *Diags,
171                             const LangOptions &Features) {
172  if (!Features.CPlusPlus && !Features.C99 && Diags)
173    Diags->Report(Loc, diag::warn_ucn_not_valid_in_c89);
174
175  // Save the beginning of the string (for error diagnostics).
176  const char *ThisTokBegin = ThisTokBuf;
177
178  // Skip the '\u' char's.
179  ThisTokBuf += 2;
180
181  if (ThisTokBuf == ThisTokEnd || !isxdigit(*ThisTokBuf)) {
182    if (Diags)
183      Diags->Report(Loc, diag::err_ucn_escape_no_digits);
184    return false;
185  }
186  UcnLen = (ThisTokBuf[-1] == 'u' ? 4 : 8);
187  unsigned short UcnLenSave = UcnLen;
188  for (; ThisTokBuf != ThisTokEnd && UcnLenSave; ++ThisTokBuf, UcnLenSave--) {
189    int CharVal = HexDigitValue(ThisTokBuf[0]);
190    if (CharVal == -1) break;
191    UcnVal <<= 4;
192    UcnVal |= CharVal;
193  }
194  // If we didn't consume the proper number of digits, there is a problem.
195  if (UcnLenSave) {
196    if (Diags) {
197      SourceLocation L =
198        Lexer::AdvanceToTokenCharacter(Loc, ThisTokBuf-ThisTokBegin,
199                                       Loc.getManager(), Features);
200      Diags->Report(FullSourceLoc(L, Loc.getManager()),
201                    diag::err_ucn_escape_incomplete);
202    }
203    return false;
204  }
205  // Check UCN constraints (C99 6.4.3p2).
206  if ((UcnVal < 0xa0 &&
207      (UcnVal != 0x24 && UcnVal != 0x40 && UcnVal != 0x60 )) // $, @, `
208      || (UcnVal >= 0xD800 && UcnVal <= 0xDFFF)
209      || (UcnVal > 0x10FFFF)) /* the maximum legal UTF32 value */ {
210    if (Diags)
211      Diags->Report(Loc, diag::err_ucn_escape_invalid);
212    return false;
213  }
214  return true;
215}
216
217/// EncodeUCNEscape - Read the Universal Character Name, check constraints and
218/// convert the UTF32 to UTF8 or UTF16. This is a subroutine of
219/// StringLiteralParser. When we decide to implement UCN's for identifiers,
220/// we will likely rework our support for UCN's.
221static void EncodeUCNEscape(const char *&ThisTokBuf, const char *ThisTokEnd,
222                            char *&ResultBuf, bool &HadError,
223                            FullSourceLoc Loc, bool wide, Diagnostic *Diags,
224                            const LangOptions &Features) {
225  typedef uint32_t UTF32;
226  UTF32 UcnVal = 0;
227  unsigned short UcnLen = 0;
228  if (!ProcessUCNEscape(ThisTokBuf, ThisTokEnd, UcnVal, UcnLen, Loc, Diags,
229                        Features)) {
230    HadError = 1;
231    return;
232  }
233
234  if (wide) {
235    (void)UcnLen;
236    assert((UcnLen== 4 || UcnLen== 8) && "only ucn length of 4 or 8 supported");
237
238    if (!Features.ShortWChar) {
239      // Note: our internal rep of wide char tokens is always little-endian.
240      *ResultBuf++ = (UcnVal & 0x000000FF);
241      *ResultBuf++ = (UcnVal & 0x0000FF00) >> 8;
242      *ResultBuf++ = (UcnVal & 0x00FF0000) >> 16;
243      *ResultBuf++ = (UcnVal & 0xFF000000) >> 24;
244      return;
245    }
246
247    // Convert to UTF16.
248    if (UcnVal < (UTF32)0xFFFF) {
249      *ResultBuf++ = (UcnVal & 0x000000FF);
250      *ResultBuf++ = (UcnVal & 0x0000FF00) >> 8;
251      return;
252    }
253    if (Diags) Diags->Report(Loc, diag::warn_ucn_escape_too_large);
254
255    typedef uint16_t UTF16;
256    UcnVal -= 0x10000;
257    UTF16 surrogate1 = 0xD800 + (UcnVal >> 10);
258    UTF16 surrogate2 = 0xDC00 + (UcnVal & 0x3FF);
259    *ResultBuf++ = (surrogate1 & 0x000000FF);
260    *ResultBuf++ = (surrogate1 & 0x0000FF00) >> 8;
261    *ResultBuf++ = (surrogate2 & 0x000000FF);
262    *ResultBuf++ = (surrogate2 & 0x0000FF00) >> 8;
263    return;
264  }
265  // Now that we've parsed/checked the UCN, we convert from UTF32->UTF8.
266  // The conversion below was inspired by:
267  //   http://www.unicode.org/Public/PROGRAMS/CVTUTF/ConvertUTF.c
268  // First, we determine how many bytes the result will require.
269  typedef uint8_t UTF8;
270
271  unsigned short bytesToWrite = 0;
272  if (UcnVal < (UTF32)0x80)
273    bytesToWrite = 1;
274  else if (UcnVal < (UTF32)0x800)
275    bytesToWrite = 2;
276  else if (UcnVal < (UTF32)0x10000)
277    bytesToWrite = 3;
278  else
279    bytesToWrite = 4;
280
281  const unsigned byteMask = 0xBF;
282  const unsigned byteMark = 0x80;
283
284  // Once the bits are split out into bytes of UTF8, this is a mask OR-ed
285  // into the first byte, depending on how many bytes follow.
286  static const UTF8 firstByteMark[5] = {
287    0x00, 0x00, 0xC0, 0xE0, 0xF0
288  };
289  // Finally, we write the bytes into ResultBuf.
290  ResultBuf += bytesToWrite;
291  switch (bytesToWrite) { // note: everything falls through.
292    case 4: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
293    case 3: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
294    case 2: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
295    case 1: *--ResultBuf = (UTF8) (UcnVal | firstByteMark[bytesToWrite]);
296  }
297  // Update the buffer.
298  ResultBuf += bytesToWrite;
299}
300
301
302///       integer-constant: [C99 6.4.4.1]
303///         decimal-constant integer-suffix
304///         octal-constant integer-suffix
305///         hexadecimal-constant integer-suffix
306///       decimal-constant:
307///         nonzero-digit
308///         decimal-constant digit
309///       octal-constant:
310///         0
311///         octal-constant octal-digit
312///       hexadecimal-constant:
313///         hexadecimal-prefix hexadecimal-digit
314///         hexadecimal-constant hexadecimal-digit
315///       hexadecimal-prefix: one of
316///         0x 0X
317///       integer-suffix:
318///         unsigned-suffix [long-suffix]
319///         unsigned-suffix [long-long-suffix]
320///         long-suffix [unsigned-suffix]
321///         long-long-suffix [unsigned-sufix]
322///       nonzero-digit:
323///         1 2 3 4 5 6 7 8 9
324///       octal-digit:
325///         0 1 2 3 4 5 6 7
326///       hexadecimal-digit:
327///         0 1 2 3 4 5 6 7 8 9
328///         a b c d e f
329///         A B C D E F
330///       unsigned-suffix: one of
331///         u U
332///       long-suffix: one of
333///         l L
334///       long-long-suffix: one of
335///         ll LL
336///
337///       floating-constant: [C99 6.4.4.2]
338///         TODO: add rules...
339///
340NumericLiteralParser::
341NumericLiteralParser(const char *begin, const char *end,
342                     SourceLocation TokLoc, Preprocessor &pp)
343  : PP(pp), ThisTokBegin(begin), ThisTokEnd(end) {
344
345  // This routine assumes that the range begin/end matches the regex for integer
346  // and FP constants (specifically, the 'pp-number' regex), and assumes that
347  // the byte at "*end" is both valid and not part of the regex.  Because of
348  // this, it doesn't have to check for 'overscan' in various places.
349  assert(!isalnum(*end) && *end != '.' && *end != '_' &&
350         "Lexer didn't maximally munch?");
351
352  s = DigitsBegin = begin;
353  saw_exponent = false;
354  saw_period = false;
355  isLong = false;
356  isUnsigned = false;
357  isLongLong = false;
358  isFloat = false;
359  isImaginary = false;
360  isMicrosoftInteger = false;
361  hadError = false;
362
363  if (*s == '0') { // parse radix
364    ParseNumberStartingWithZero(TokLoc);
365    if (hadError)
366      return;
367  } else { // the first digit is non-zero
368    radix = 10;
369    s = SkipDigits(s);
370    if (s == ThisTokEnd) {
371      // Done.
372    } else if (isxdigit(*s) && !(*s == 'e' || *s == 'E')) {
373      PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-begin),
374              diag::err_invalid_decimal_digit) << llvm::StringRef(s, 1);
375      hadError = true;
376      return;
377    } else if (*s == '.') {
378      s++;
379      saw_period = true;
380      s = SkipDigits(s);
381    }
382    if ((*s == 'e' || *s == 'E')) { // exponent
383      const char *Exponent = s;
384      s++;
385      saw_exponent = true;
386      if (*s == '+' || *s == '-')  s++; // sign
387      const char *first_non_digit = SkipDigits(s);
388      if (first_non_digit != s) {
389        s = first_non_digit;
390      } else {
391        PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-begin),
392                diag::err_exponent_has_no_digits);
393        hadError = true;
394        return;
395      }
396    }
397  }
398
399  SuffixBegin = s;
400
401  // Parse the suffix.  At this point we can classify whether we have an FP or
402  // integer constant.
403  bool isFPConstant = isFloatingLiteral();
404
405  // Loop over all of the characters of the suffix.  If we see something bad,
406  // we break out of the loop.
407  for (; s != ThisTokEnd; ++s) {
408    switch (*s) {
409    case 'f':      // FP Suffix for "float"
410    case 'F':
411      if (!isFPConstant) break;  // Error for integer constant.
412      if (isFloat || isLong) break; // FF, LF invalid.
413      isFloat = true;
414      continue;  // Success.
415    case 'u':
416    case 'U':
417      if (isFPConstant) break;  // Error for floating constant.
418      if (isUnsigned) break;    // Cannot be repeated.
419      isUnsigned = true;
420      continue;  // Success.
421    case 'l':
422    case 'L':
423      if (isLong || isLongLong) break;  // Cannot be repeated.
424      if (isFloat) break;               // LF invalid.
425
426      // Check for long long.  The L's need to be adjacent and the same case.
427      if (s+1 != ThisTokEnd && s[1] == s[0]) {
428        if (isFPConstant) break;        // long long invalid for floats.
429        isLongLong = true;
430        ++s;  // Eat both of them.
431      } else {
432        isLong = true;
433      }
434      continue;  // Success.
435    case 'i':
436    case 'I':
437      if (PP.getLangOptions().Microsoft) {
438        if (isFPConstant || isLong || isLongLong) break;
439
440        // Allow i8, i16, i32, i64, and i128.
441        if (s + 1 != ThisTokEnd) {
442          switch (s[1]) {
443            case '8':
444              s += 2; // i8 suffix
445              isMicrosoftInteger = true;
446              break;
447            case '1':
448              if (s + 2 == ThisTokEnd) break;
449              if (s[2] == '6') {
450                s += 3; // i16 suffix
451                isMicrosoftInteger = true;
452              }
453              else if (s[2] == '2') {
454                if (s + 3 == ThisTokEnd) break;
455                if (s[3] == '8') {
456                  s += 4; // i128 suffix
457                  isMicrosoftInteger = true;
458                }
459              }
460              break;
461            case '3':
462              if (s + 2 == ThisTokEnd) break;
463              if (s[2] == '2') {
464                s += 3; // i32 suffix
465                isLong = true;
466                isMicrosoftInteger = true;
467              }
468              break;
469            case '6':
470              if (s + 2 == ThisTokEnd) break;
471              if (s[2] == '4') {
472                s += 3; // i64 suffix
473                isLongLong = true;
474                isMicrosoftInteger = true;
475              }
476              break;
477            default:
478              break;
479          }
480          break;
481        }
482      }
483      // fall through.
484    case 'j':
485    case 'J':
486      if (isImaginary) break;   // Cannot be repeated.
487      PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-begin),
488              diag::ext_imaginary_constant);
489      isImaginary = true;
490      continue;  // Success.
491    }
492    // If we reached here, there was an error.
493    break;
494  }
495
496  // Report an error if there are any.
497  if (s != ThisTokEnd) {
498    PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-begin),
499            isFPConstant ? diag::err_invalid_suffix_float_constant :
500                           diag::err_invalid_suffix_integer_constant)
501      << llvm::StringRef(SuffixBegin, ThisTokEnd-SuffixBegin);
502    hadError = true;
503    return;
504  }
505}
506
507/// ParseNumberStartingWithZero - This method is called when the first character
508/// of the number is found to be a zero.  This means it is either an octal
509/// number (like '04') or a hex number ('0x123a') a binary number ('0b1010') or
510/// a floating point number (01239.123e4).  Eat the prefix, determining the
511/// radix etc.
512void NumericLiteralParser::ParseNumberStartingWithZero(SourceLocation TokLoc) {
513  assert(s[0] == '0' && "Invalid method call");
514  s++;
515
516  // Handle a hex number like 0x1234.
517  if ((*s == 'x' || *s == 'X') && (isxdigit(s[1]) || s[1] == '.')) {
518    s++;
519    radix = 16;
520    DigitsBegin = s;
521    s = SkipHexDigits(s);
522    if (s == ThisTokEnd) {
523      // Done.
524    } else if (*s == '.') {
525      s++;
526      saw_period = true;
527      s = SkipHexDigits(s);
528    }
529    // A binary exponent can appear with or with a '.'. If dotted, the
530    // binary exponent is required.
531    if ((*s == 'p' || *s == 'P') && !PP.getLangOptions().CPlusPlus0x) {
532      const char *Exponent = s;
533      s++;
534      saw_exponent = true;
535      if (*s == '+' || *s == '-')  s++; // sign
536      const char *first_non_digit = SkipDigits(s);
537      if (first_non_digit == s) {
538        PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-ThisTokBegin),
539                diag::err_exponent_has_no_digits);
540        hadError = true;
541        return;
542      }
543      s = first_non_digit;
544
545      // In C++0x, we cannot support hexadecmial floating literals because
546      // they conflict with user-defined literals, so we warn in previous
547      // versions of C++ by default.
548      if (PP.getLangOptions().CPlusPlus)
549        PP.Diag(TokLoc, diag::ext_hexconstant_cplusplus);
550      else if (!PP.getLangOptions().HexFloats)
551        PP.Diag(TokLoc, diag::ext_hexconstant_invalid);
552    } else if (saw_period) {
553      PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
554              diag::err_hexconstant_requires_exponent);
555      hadError = true;
556    }
557    return;
558  }
559
560  // Handle simple binary numbers 0b01010
561  if (*s == 'b' || *s == 'B') {
562    // 0b101010 is a GCC extension.
563    PP.Diag(TokLoc, diag::ext_binary_literal);
564    ++s;
565    radix = 2;
566    DigitsBegin = s;
567    s = SkipBinaryDigits(s);
568    if (s == ThisTokEnd) {
569      // Done.
570    } else if (isxdigit(*s)) {
571      PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
572              diag::err_invalid_binary_digit) << llvm::StringRef(s, 1);
573      hadError = true;
574    }
575    // Other suffixes will be diagnosed by the caller.
576    return;
577  }
578
579  // For now, the radix is set to 8. If we discover that we have a
580  // floating point constant, the radix will change to 10. Octal floating
581  // point constants are not permitted (only decimal and hexadecimal).
582  radix = 8;
583  DigitsBegin = s;
584  s = SkipOctalDigits(s);
585  if (s == ThisTokEnd)
586    return; // Done, simple octal number like 01234
587
588  // If we have some other non-octal digit that *is* a decimal digit, see if
589  // this is part of a floating point number like 094.123 or 09e1.
590  if (isdigit(*s)) {
591    const char *EndDecimal = SkipDigits(s);
592    if (EndDecimal[0] == '.' || EndDecimal[0] == 'e' || EndDecimal[0] == 'E') {
593      s = EndDecimal;
594      radix = 10;
595    }
596  }
597
598  // If we have a hex digit other than 'e' (which denotes a FP exponent) then
599  // the code is using an incorrect base.
600  if (isxdigit(*s) && *s != 'e' && *s != 'E') {
601    PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
602            diag::err_invalid_octal_digit) << llvm::StringRef(s, 1);
603    hadError = true;
604    return;
605  }
606
607  if (*s == '.') {
608    s++;
609    radix = 10;
610    saw_period = true;
611    s = SkipDigits(s); // Skip suffix.
612  }
613  if (*s == 'e' || *s == 'E') { // exponent
614    const char *Exponent = s;
615    s++;
616    radix = 10;
617    saw_exponent = true;
618    if (*s == '+' || *s == '-')  s++; // sign
619    const char *first_non_digit = SkipDigits(s);
620    if (first_non_digit != s) {
621      s = first_non_digit;
622    } else {
623      PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-ThisTokBegin),
624              diag::err_exponent_has_no_digits);
625      hadError = true;
626      return;
627    }
628  }
629}
630
631
632/// GetIntegerValue - Convert this numeric literal value to an APInt that
633/// matches Val's input width.  If there is an overflow, set Val to the low bits
634/// of the result and return true.  Otherwise, return false.
635bool NumericLiteralParser::GetIntegerValue(llvm::APInt &Val) {
636  // Fast path: Compute a conservative bound on the maximum number of
637  // bits per digit in this radix. If we can't possibly overflow a
638  // uint64 based on that bound then do the simple conversion to
639  // integer. This avoids the expensive overflow checking below, and
640  // handles the common cases that matter (small decimal integers and
641  // hex/octal values which don't overflow).
642  unsigned MaxBitsPerDigit = 1;
643  while ((1U << MaxBitsPerDigit) < radix)
644    MaxBitsPerDigit += 1;
645  if ((SuffixBegin - DigitsBegin) * MaxBitsPerDigit <= 64) {
646    uint64_t N = 0;
647    for (s = DigitsBegin; s != SuffixBegin; ++s)
648      N = N*radix + HexDigitValue(*s);
649
650    // This will truncate the value to Val's input width. Simply check
651    // for overflow by comparing.
652    Val = N;
653    return Val.getZExtValue() != N;
654  }
655
656  Val = 0;
657  s = DigitsBegin;
658
659  llvm::APInt RadixVal(Val.getBitWidth(), radix);
660  llvm::APInt CharVal(Val.getBitWidth(), 0);
661  llvm::APInt OldVal = Val;
662
663  bool OverflowOccurred = false;
664  while (s < SuffixBegin) {
665    unsigned C = HexDigitValue(*s++);
666
667    // If this letter is out of bound for this radix, reject it.
668    assert(C < radix && "NumericLiteralParser ctor should have rejected this");
669
670    CharVal = C;
671
672    // Add the digit to the value in the appropriate radix.  If adding in digits
673    // made the value smaller, then this overflowed.
674    OldVal = Val;
675
676    // Multiply by radix, did overflow occur on the multiply?
677    Val *= RadixVal;
678    OverflowOccurred |= Val.udiv(RadixVal) != OldVal;
679
680    // Add value, did overflow occur on the value?
681    //   (a + b) ult b  <=> overflow
682    Val += CharVal;
683    OverflowOccurred |= Val.ult(CharVal);
684  }
685  return OverflowOccurred;
686}
687
688llvm::APFloat::opStatus
689NumericLiteralParser::GetFloatValue(llvm::APFloat &Result) {
690  using llvm::APFloat;
691  using llvm::StringRef;
692
693  unsigned n = std::min(SuffixBegin - ThisTokBegin, ThisTokEnd - ThisTokBegin);
694  return Result.convertFromString(StringRef(ThisTokBegin, n),
695                                  APFloat::rmNearestTiesToEven);
696}
697
698
699CharLiteralParser::CharLiteralParser(const char *begin, const char *end,
700                                     SourceLocation Loc, Preprocessor &PP) {
701  // At this point we know that the character matches the regex "L?'.*'".
702  HadError = false;
703
704  // Determine if this is a wide character.
705  IsWide = begin[0] == 'L';
706  if (IsWide) ++begin;
707
708  // Skip over the entry quote.
709  assert(begin[0] == '\'' && "Invalid token lexed");
710  ++begin;
711
712  // FIXME: The "Value" is an uint64_t so we can handle char literals of
713  // up to 64-bits.
714  // FIXME: This extensively assumes that 'char' is 8-bits.
715  assert(PP.getTargetInfo().getCharWidth() == 8 &&
716         "Assumes char is 8 bits");
717  assert(PP.getTargetInfo().getIntWidth() <= 64 &&
718         (PP.getTargetInfo().getIntWidth() & 7) == 0 &&
719         "Assumes sizeof(int) on target is <= 64 and a multiple of char");
720  assert(PP.getTargetInfo().getWCharWidth() <= 64 &&
721         "Assumes sizeof(wchar) on target is <= 64");
722
723  // This is what we will use for overflow detection
724  llvm::APInt LitVal(PP.getTargetInfo().getIntWidth(), 0);
725
726  unsigned NumCharsSoFar = 0;
727  bool Warned = false;
728  while (begin[0] != '\'') {
729    uint64_t ResultChar;
730
731      // Is this a Universal Character Name escape?
732    if (begin[0] != '\\')     // If this is a normal character, consume it.
733      ResultChar = *begin++;
734    else {                    // Otherwise, this is an escape character.
735      // Check for UCN.
736      if (begin[1] == 'u' || begin[1] == 'U') {
737        uint32_t utf32 = 0;
738        unsigned short UcnLen = 0;
739        if (!ProcessUCNEscape(begin, end, utf32, UcnLen,
740                              FullSourceLoc(Loc, PP.getSourceManager()),
741                              &PP.getDiagnostics(), PP.getLangOptions())) {
742          HadError = 1;
743        }
744        ResultChar = utf32;
745      } else {
746        // Otherwise, this is a non-UCN escape character.  Process it.
747        ResultChar = ProcessCharEscape(begin, end, HadError,
748                                       FullSourceLoc(Loc,PP.getSourceManager()),
749                                       IsWide,
750                                       &PP.getDiagnostics(), PP.getTargetInfo());
751      }
752    }
753
754    // If this is a multi-character constant (e.g. 'abc'), handle it.  These are
755    // implementation defined (C99 6.4.4.4p10).
756    if (NumCharsSoFar) {
757      if (IsWide) {
758        // Emulate GCC's (unintentional?) behavior: L'ab' -> L'b'.
759        LitVal = 0;
760      } else {
761        // Narrow character literals act as though their value is concatenated
762        // in this implementation, but warn on overflow.
763        if (LitVal.countLeadingZeros() < 8 && !Warned) {
764          PP.Diag(Loc, diag::warn_char_constant_too_large);
765          Warned = true;
766        }
767        LitVal <<= 8;
768      }
769    }
770
771    LitVal = LitVal + ResultChar;
772    ++NumCharsSoFar;
773  }
774
775  // If this is the second character being processed, do special handling.
776  if (NumCharsSoFar > 1) {
777    // Warn about discarding the top bits for multi-char wide-character
778    // constants (L'abcd').
779    if (IsWide)
780      PP.Diag(Loc, diag::warn_extraneous_wide_char_constant);
781    else if (NumCharsSoFar != 4)
782      PP.Diag(Loc, diag::ext_multichar_character_literal);
783    else
784      PP.Diag(Loc, diag::ext_four_char_character_literal);
785    IsMultiChar = true;
786  } else
787    IsMultiChar = false;
788
789  // Transfer the value from APInt to uint64_t
790  Value = LitVal.getZExtValue();
791
792  if (IsWide && PP.getLangOptions().ShortWChar && Value > 0xFFFF)
793    PP.Diag(Loc, diag::warn_ucn_escape_too_large);
794
795  // If this is a single narrow character, sign extend it (e.g. '\xFF' is "-1")
796  // if 'char' is signed for this target (C99 6.4.4.4p10).  Note that multiple
797  // character constants are not sign extended in the this implementation:
798  // '\xFF\xFF' = 65536 and '\x0\xFF' = 255, which matches GCC.
799  if (!IsWide && NumCharsSoFar == 1 && (Value & 128) &&
800      PP.getLangOptions().CharIsSigned)
801    Value = (signed char)Value;
802}
803
804
805///       string-literal: [C99 6.4.5]
806///          " [s-char-sequence] "
807///         L" [s-char-sequence] "
808///       s-char-sequence:
809///         s-char
810///         s-char-sequence s-char
811///       s-char:
812///         any source character except the double quote ",
813///           backslash \, or newline character
814///         escape-character
815///         universal-character-name
816///       escape-character: [C99 6.4.4.4]
817///         \ escape-code
818///         universal-character-name
819///       escape-code:
820///         character-escape-code
821///         octal-escape-code
822///         hex-escape-code
823///       character-escape-code: one of
824///         n t b r f v a
825///         \ ' " ?
826///       octal-escape-code:
827///         octal-digit
828///         octal-digit octal-digit
829///         octal-digit octal-digit octal-digit
830///       hex-escape-code:
831///         x hex-digit
832///         hex-escape-code hex-digit
833///       universal-character-name:
834///         \u hex-quad
835///         \U hex-quad hex-quad
836///       hex-quad:
837///         hex-digit hex-digit hex-digit hex-digit
838///
839StringLiteralParser::
840StringLiteralParser(const Token *StringToks, unsigned NumStringToks,
841                    Preprocessor &PP, bool Complain)
842  : SM(PP.getSourceManager()), Features(PP.getLangOptions()),
843    Target(PP.getTargetInfo()), Diags(Complain ? &PP.getDiagnostics() : 0),
844    MaxTokenLength(0), SizeBound(0), wchar_tByteWidth(0),
845    ResultPtr(ResultBuf.data()), hadError(false), AnyWide(false), Pascal(false) {
846  init(StringToks, NumStringToks);
847}
848
849void StringLiteralParser::init(const Token *StringToks, unsigned NumStringToks){
850  // The literal token may have come from an invalid source location (e.g. due
851  // to a PCH error), in which case the token length will be 0.
852  if (NumStringToks == 0 || StringToks[0].getLength() < 2) {
853    hadError = true;
854    return;
855  }
856
857  // Scan all of the string portions, remember the max individual token length,
858  // computing a bound on the concatenated string length, and see whether any
859  // piece is a wide-string.  If any of the string portions is a wide-string
860  // literal, the result is a wide-string literal [C99 6.4.5p4].
861  assert(NumStringToks && "expected at least one token");
862  MaxTokenLength = StringToks[0].getLength();
863  assert(StringToks[0].getLength() >= 2 && "literal token is invalid!");
864  SizeBound = StringToks[0].getLength()-2;  // -2 for "".
865  AnyWide = StringToks[0].is(tok::wide_string_literal);
866
867  hadError = false;
868
869  // Implement Translation Phase #6: concatenation of string literals
870  /// (C99 5.1.1.2p1).  The common case is only one string fragment.
871  for (unsigned i = 1; i != NumStringToks; ++i) {
872    if (StringToks[i].getLength() < 2) {
873      hadError = true;
874      return;
875    }
876
877    // The string could be shorter than this if it needs cleaning, but this is a
878    // reasonable bound, which is all we need.
879    assert(StringToks[i].getLength() >= 2 && "literal token is invalid!");
880    SizeBound += StringToks[i].getLength()-2;  // -2 for "".
881
882    // Remember maximum string piece length.
883    if (StringToks[i].getLength() > MaxTokenLength)
884      MaxTokenLength = StringToks[i].getLength();
885
886    // Remember if we see any wide strings.
887    AnyWide |= StringToks[i].is(tok::wide_string_literal);
888  }
889
890  // Include space for the null terminator.
891  ++SizeBound;
892
893  // TODO: K&R warning: "traditional C rejects string constant concatenation"
894
895  // Get the width in bytes of wchar_t.  If no wchar_t strings are used, do not
896  // query the target.  As such, wchar_tByteWidth is only valid if AnyWide=true.
897  wchar_tByteWidth = ~0U;
898  if (AnyWide) {
899    wchar_tByteWidth = Target.getWCharWidth();
900    assert((wchar_tByteWidth & 7) == 0 && "Assumes wchar_t is byte multiple!");
901    wchar_tByteWidth /= 8;
902  }
903
904  // The output buffer size needs to be large enough to hold wide characters.
905  // This is a worst-case assumption which basically corresponds to L"" "long".
906  if (AnyWide)
907    SizeBound *= wchar_tByteWidth;
908
909  // Size the temporary buffer to hold the result string data.
910  ResultBuf.resize(SizeBound);
911
912  // Likewise, but for each string piece.
913  llvm::SmallString<512> TokenBuf;
914  TokenBuf.resize(MaxTokenLength);
915
916  // Loop over all the strings, getting their spelling, and expanding them to
917  // wide strings as appropriate.
918  ResultPtr = &ResultBuf[0];   // Next byte to fill in.
919
920  Pascal = false;
921
922  for (unsigned i = 0, e = NumStringToks; i != e; ++i) {
923    const char *ThisTokBuf = &TokenBuf[0];
924    // Get the spelling of the token, which eliminates trigraphs, etc.  We know
925    // that ThisTokBuf points to a buffer that is big enough for the whole token
926    // and 'spelled' tokens can only shrink.
927    bool StringInvalid = false;
928    unsigned ThisTokLen =
929      Lexer::getSpelling(StringToks[i], ThisTokBuf, SM, Features,
930                         &StringInvalid);
931    if (StringInvalid) {
932      hadError = 1;
933      continue;
934    }
935
936    const char *ThisTokEnd = ThisTokBuf+ThisTokLen-1;  // Skip end quote.
937    bool wide = false;
938    // TODO: Input character set mapping support.
939
940    // Skip L marker for wide strings.
941    if (ThisTokBuf[0] == 'L') {
942      wide = true;
943      ++ThisTokBuf;
944    }
945
946    assert(ThisTokBuf[0] == '"' && "Expected quote, lexer broken?");
947    ++ThisTokBuf;
948
949    // Check if this is a pascal string
950    if (Features.PascalStrings && ThisTokBuf + 1 != ThisTokEnd &&
951        ThisTokBuf[0] == '\\' && ThisTokBuf[1] == 'p') {
952
953      // If the \p sequence is found in the first token, we have a pascal string
954      // Otherwise, if we already have a pascal string, ignore the first \p
955      if (i == 0) {
956        ++ThisTokBuf;
957        Pascal = true;
958      } else if (Pascal)
959        ThisTokBuf += 2;
960    }
961
962    while (ThisTokBuf != ThisTokEnd) {
963      // Is this a span of non-escape characters?
964      if (ThisTokBuf[0] != '\\') {
965        const char *InStart = ThisTokBuf;
966        do {
967          ++ThisTokBuf;
968        } while (ThisTokBuf != ThisTokEnd && ThisTokBuf[0] != '\\');
969
970        // Copy the character span over.
971        unsigned Len = ThisTokBuf-InStart;
972        if (!AnyWide) {
973          memcpy(ResultPtr, InStart, Len);
974          ResultPtr += Len;
975        } else {
976          // Note: our internal rep of wide char tokens is always little-endian.
977          for (; Len; --Len, ++InStart) {
978            *ResultPtr++ = InStart[0];
979            // Add zeros at the end.
980            for (unsigned i = 1, e = wchar_tByteWidth; i != e; ++i)
981              *ResultPtr++ = 0;
982          }
983        }
984        continue;
985      }
986      // Is this a Universal Character Name escape?
987      if (ThisTokBuf[1] == 'u' || ThisTokBuf[1] == 'U') {
988        EncodeUCNEscape(ThisTokBuf, ThisTokEnd, ResultPtr,
989                        hadError, FullSourceLoc(StringToks[i].getLocation(),SM),
990                        wide, Diags, Features);
991        continue;
992      }
993      // Otherwise, this is a non-UCN escape character.  Process it.
994      unsigned ResultChar =
995        ProcessCharEscape(ThisTokBuf, ThisTokEnd, hadError,
996                          FullSourceLoc(StringToks[i].getLocation(), SM),
997                          AnyWide, Diags, Target);
998
999      // Note: our internal rep of wide char tokens is always little-endian.
1000      *ResultPtr++ = ResultChar & 0xFF;
1001
1002      if (AnyWide) {
1003        for (unsigned i = 1, e = wchar_tByteWidth; i != e; ++i)
1004          *ResultPtr++ = ResultChar >> i*8;
1005      }
1006    }
1007  }
1008
1009  if (Pascal) {
1010    ResultBuf[0] = ResultPtr-&ResultBuf[0]-1;
1011    if (AnyWide)
1012      ResultBuf[0] /= wchar_tByteWidth;
1013
1014    // Verify that pascal strings aren't too large.
1015    if (GetStringLength() > 256) {
1016      if (Diags)
1017        Diags->Report(FullSourceLoc(StringToks[0].getLocation(), SM),
1018                      diag::err_pascal_string_too_long)
1019          << SourceRange(StringToks[0].getLocation(),
1020                         StringToks[NumStringToks-1].getLocation());
1021      hadError = 1;
1022      return;
1023    }
1024  } else if (Diags) {
1025    // Complain if this string literal has too many characters.
1026    unsigned MaxChars = Features.CPlusPlus? 65536 : Features.C99 ? 4095 : 509;
1027
1028    if (GetNumStringChars() > MaxChars)
1029      Diags->Report(FullSourceLoc(StringToks[0].getLocation(), SM),
1030                    diag::ext_string_too_long)
1031        << GetNumStringChars() << MaxChars
1032        << (Features.CPlusPlus ? 2 : Features.C99 ? 1 : 0)
1033        << SourceRange(StringToks[0].getLocation(),
1034                       StringToks[NumStringToks-1].getLocation());
1035  }
1036}
1037
1038
1039/// getOffsetOfStringByte - This function returns the offset of the
1040/// specified byte of the string data represented by Token.  This handles
1041/// advancing over escape sequences in the string.
1042unsigned StringLiteralParser::getOffsetOfStringByte(const Token &Tok,
1043                                                    unsigned ByteNo) const {
1044  // Get the spelling of the token.
1045  llvm::SmallString<32> SpellingBuffer;
1046  SpellingBuffer.resize(Tok.getLength());
1047
1048  bool StringInvalid = false;
1049  const char *SpellingPtr = &SpellingBuffer[0];
1050  unsigned TokLen = Lexer::getSpelling(Tok, SpellingPtr, SM, Features,
1051                                       &StringInvalid);
1052  if (StringInvalid)
1053    return 0;
1054
1055  assert(SpellingPtr[0] != 'L' && "Doesn't handle wide strings yet");
1056
1057
1058  const char *SpellingStart = SpellingPtr;
1059  const char *SpellingEnd = SpellingPtr+TokLen;
1060
1061  // Skip over the leading quote.
1062  assert(SpellingPtr[0] == '"' && "Should be a string literal!");
1063  ++SpellingPtr;
1064
1065  // Skip over bytes until we find the offset we're looking for.
1066  while (ByteNo) {
1067    assert(SpellingPtr < SpellingEnd && "Didn't find byte offset!");
1068
1069    // Step over non-escapes simply.
1070    if (*SpellingPtr != '\\') {
1071      ++SpellingPtr;
1072      --ByteNo;
1073      continue;
1074    }
1075
1076    // Otherwise, this is an escape character.  Advance over it.
1077    bool HadError = false;
1078    ProcessCharEscape(SpellingPtr, SpellingEnd, HadError,
1079                      FullSourceLoc(Tok.getLocation(), SM),
1080                      false, Diags, Target);
1081    assert(!HadError && "This method isn't valid on erroneous strings");
1082    --ByteNo;
1083  }
1084
1085  return SpellingPtr-SpellingStart;
1086}
1087