LiteralSupport.cpp revision 208600
1//===--- LiteralSupport.cpp - Code to parse and process literals ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the NumericLiteralParser, CharLiteralParser, and
11// StringLiteralParser interfaces.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Lex/LiteralSupport.h"
16#include "clang/Lex/Preprocessor.h"
17#include "clang/Lex/LexDiagnostic.h"
18#include "clang/Basic/TargetInfo.h"
19#include "llvm/ADT/StringRef.h"
20#include "llvm/ADT/StringExtras.h"
21using namespace clang;
22
23/// HexDigitValue - Return the value of the specified hex digit, or -1 if it's
24/// not valid.
25static int HexDigitValue(char C) {
26  if (C >= '0' && C <= '9') return C-'0';
27  if (C >= 'a' && C <= 'f') return C-'a'+10;
28  if (C >= 'A' && C <= 'F') return C-'A'+10;
29  return -1;
30}
31
32/// ProcessCharEscape - Parse a standard C escape sequence, which can occur in
33/// either a character or a string literal.
34static unsigned ProcessCharEscape(const char *&ThisTokBuf,
35                                  const char *ThisTokEnd, bool &HadError,
36                                  SourceLocation Loc, bool IsWide,
37                                  Preprocessor &PP, bool Complain) {
38  // Skip the '\' char.
39  ++ThisTokBuf;
40
41  // We know that this character can't be off the end of the buffer, because
42  // that would have been \", which would not have been the end of string.
43  unsigned ResultChar = *ThisTokBuf++;
44  switch (ResultChar) {
45  // These map to themselves.
46  case '\\': case '\'': case '"': case '?': break;
47
48    // These have fixed mappings.
49  case 'a':
50    // TODO: K&R: the meaning of '\\a' is different in traditional C
51    ResultChar = 7;
52    break;
53  case 'b':
54    ResultChar = 8;
55    break;
56  case 'e':
57    if (Complain)
58      PP.Diag(Loc, diag::ext_nonstandard_escape) << "e";
59    ResultChar = 27;
60    break;
61  case 'E':
62    if (Complain)
63      PP.Diag(Loc, diag::ext_nonstandard_escape) << "E";
64    ResultChar = 27;
65    break;
66  case 'f':
67    ResultChar = 12;
68    break;
69  case 'n':
70    ResultChar = 10;
71    break;
72  case 'r':
73    ResultChar = 13;
74    break;
75  case 't':
76    ResultChar = 9;
77    break;
78  case 'v':
79    ResultChar = 11;
80    break;
81  case 'x': { // Hex escape.
82    ResultChar = 0;
83    if (ThisTokBuf == ThisTokEnd || !isxdigit(*ThisTokBuf)) {
84      if (Complain)
85        PP.Diag(Loc, diag::err_hex_escape_no_digits);
86      HadError = 1;
87      break;
88    }
89
90    // Hex escapes are a maximal series of hex digits.
91    bool Overflow = false;
92    for (; ThisTokBuf != ThisTokEnd; ++ThisTokBuf) {
93      int CharVal = HexDigitValue(ThisTokBuf[0]);
94      if (CharVal == -1) break;
95      // About to shift out a digit?
96      Overflow |= (ResultChar & 0xF0000000) ? true : false;
97      ResultChar <<= 4;
98      ResultChar |= CharVal;
99    }
100
101    // See if any bits will be truncated when evaluated as a character.
102    unsigned CharWidth = IsWide
103                       ? PP.getTargetInfo().getWCharWidth()
104                       : PP.getTargetInfo().getCharWidth();
105
106    if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
107      Overflow = true;
108      ResultChar &= ~0U >> (32-CharWidth);
109    }
110
111    // Check for overflow.
112    if (Overflow && Complain)   // Too many digits to fit in
113      PP.Diag(Loc, diag::warn_hex_escape_too_large);
114    break;
115  }
116  case '0': case '1': case '2': case '3':
117  case '4': case '5': case '6': case '7': {
118    // Octal escapes.
119    --ThisTokBuf;
120    ResultChar = 0;
121
122    // Octal escapes are a series of octal digits with maximum length 3.
123    // "\0123" is a two digit sequence equal to "\012" "3".
124    unsigned NumDigits = 0;
125    do {
126      ResultChar <<= 3;
127      ResultChar |= *ThisTokBuf++ - '0';
128      ++NumDigits;
129    } while (ThisTokBuf != ThisTokEnd && NumDigits < 3 &&
130             ThisTokBuf[0] >= '0' && ThisTokBuf[0] <= '7');
131
132    // Check for overflow.  Reject '\777', but not L'\777'.
133    unsigned CharWidth = IsWide
134                       ? PP.getTargetInfo().getWCharWidth()
135                       : PP.getTargetInfo().getCharWidth();
136
137    if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
138      if (Complain)
139        PP.Diag(Loc, diag::warn_octal_escape_too_large);
140      ResultChar &= ~0U >> (32-CharWidth);
141    }
142    break;
143  }
144
145    // Otherwise, these are not valid escapes.
146  case '(': case '{': case '[': case '%':
147    // GCC accepts these as extensions.  We warn about them as such though.
148    if (Complain)
149      PP.Diag(Loc, diag::ext_nonstandard_escape)
150        << std::string()+(char)ResultChar;
151    break;
152  default:
153    if (!Complain)
154      break;
155
156    if (isgraph(ThisTokBuf[0]))
157      PP.Diag(Loc, diag::ext_unknown_escape) << std::string()+(char)ResultChar;
158    else
159      PP.Diag(Loc, diag::ext_unknown_escape) << "x"+llvm::utohexstr(ResultChar);
160    break;
161  }
162
163  return ResultChar;
164}
165
166/// ProcessUCNEscape - Read the Universal Character Name, check constraints and
167/// convert the UTF32 to UTF8. This is a subroutine of StringLiteralParser.
168/// When we decide to implement UCN's for character constants and identifiers,
169/// we will likely rework our support for UCN's.
170static void ProcessUCNEscape(const char *&ThisTokBuf, const char *ThisTokEnd,
171                             char *&ResultBuf, bool &HadError,
172                             SourceLocation Loc, bool IsWide, Preprocessor &PP,
173                             bool Complain)
174{
175  // FIXME: Add a warning - UCN's are only valid in C++ & C99.
176  // FIXME: Handle wide strings.
177
178  // Save the beginning of the string (for error diagnostics).
179  const char *ThisTokBegin = ThisTokBuf;
180
181  // Skip the '\u' char's.
182  ThisTokBuf += 2;
183
184  if (ThisTokBuf == ThisTokEnd || !isxdigit(*ThisTokBuf)) {
185    if (Complain)
186      PP.Diag(Loc, diag::err_ucn_escape_no_digits);
187    HadError = 1;
188    return;
189  }
190  typedef uint32_t UTF32;
191
192  UTF32 UcnVal = 0;
193  unsigned short UcnLen = (ThisTokBuf[-1] == 'u' ? 4 : 8);
194  for (; ThisTokBuf != ThisTokEnd && UcnLen; ++ThisTokBuf, UcnLen--) {
195    int CharVal = HexDigitValue(ThisTokBuf[0]);
196    if (CharVal == -1) break;
197    UcnVal <<= 4;
198    UcnVal |= CharVal;
199  }
200  // If we didn't consume the proper number of digits, there is a problem.
201  if (UcnLen) {
202    if (Complain)
203      PP.Diag(PP.AdvanceToTokenCharacter(Loc, ThisTokBuf-ThisTokBegin),
204              diag::err_ucn_escape_incomplete);
205    HadError = 1;
206    return;
207  }
208  // Check UCN constraints (C99 6.4.3p2).
209  if ((UcnVal < 0xa0 &&
210      (UcnVal != 0x24 && UcnVal != 0x40 && UcnVal != 0x60 )) // $, @, `
211      || (UcnVal >= 0xD800 && UcnVal <= 0xDFFF)
212      || (UcnVal > 0x10FFFF)) /* the maximum legal UTF32 value */ {
213    if (Complain)
214      PP.Diag(Loc, diag::err_ucn_escape_invalid);
215    HadError = 1;
216    return;
217  }
218  // Now that we've parsed/checked the UCN, we convert from UTF32->UTF8.
219  // The conversion below was inspired by:
220  //   http://www.unicode.org/Public/PROGRAMS/CVTUTF/ConvertUTF.c
221  // First, we determine how many bytes the result will require.
222  typedef uint8_t UTF8;
223
224  unsigned short bytesToWrite = 0;
225  if (UcnVal < (UTF32)0x80)
226    bytesToWrite = 1;
227  else if (UcnVal < (UTF32)0x800)
228    bytesToWrite = 2;
229  else if (UcnVal < (UTF32)0x10000)
230    bytesToWrite = 3;
231  else
232    bytesToWrite = 4;
233
234  const unsigned byteMask = 0xBF;
235  const unsigned byteMark = 0x80;
236
237  // Once the bits are split out into bytes of UTF8, this is a mask OR-ed
238  // into the first byte, depending on how many bytes follow.
239  static const UTF8 firstByteMark[5] = {
240    0x00, 0x00, 0xC0, 0xE0, 0xF0
241  };
242  // Finally, we write the bytes into ResultBuf.
243  ResultBuf += bytesToWrite;
244  switch (bytesToWrite) { // note: everything falls through.
245    case 4: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
246    case 3: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
247    case 2: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
248    case 1: *--ResultBuf = (UTF8) (UcnVal | firstByteMark[bytesToWrite]);
249  }
250  // Update the buffer.
251  ResultBuf += bytesToWrite;
252}
253
254
255///       integer-constant: [C99 6.4.4.1]
256///         decimal-constant integer-suffix
257///         octal-constant integer-suffix
258///         hexadecimal-constant integer-suffix
259///       decimal-constant:
260///         nonzero-digit
261///         decimal-constant digit
262///       octal-constant:
263///         0
264///         octal-constant octal-digit
265///       hexadecimal-constant:
266///         hexadecimal-prefix hexadecimal-digit
267///         hexadecimal-constant hexadecimal-digit
268///       hexadecimal-prefix: one of
269///         0x 0X
270///       integer-suffix:
271///         unsigned-suffix [long-suffix]
272///         unsigned-suffix [long-long-suffix]
273///         long-suffix [unsigned-suffix]
274///         long-long-suffix [unsigned-sufix]
275///       nonzero-digit:
276///         1 2 3 4 5 6 7 8 9
277///       octal-digit:
278///         0 1 2 3 4 5 6 7
279///       hexadecimal-digit:
280///         0 1 2 3 4 5 6 7 8 9
281///         a b c d e f
282///         A B C D E F
283///       unsigned-suffix: one of
284///         u U
285///       long-suffix: one of
286///         l L
287///       long-long-suffix: one of
288///         ll LL
289///
290///       floating-constant: [C99 6.4.4.2]
291///         TODO: add rules...
292///
293NumericLiteralParser::
294NumericLiteralParser(const char *begin, const char *end,
295                     SourceLocation TokLoc, Preprocessor &pp)
296  : PP(pp), ThisTokBegin(begin), ThisTokEnd(end) {
297
298  // This routine assumes that the range begin/end matches the regex for integer
299  // and FP constants (specifically, the 'pp-number' regex), and assumes that
300  // the byte at "*end" is both valid and not part of the regex.  Because of
301  // this, it doesn't have to check for 'overscan' in various places.
302  assert(!isalnum(*end) && *end != '.' && *end != '_' &&
303         "Lexer didn't maximally munch?");
304
305  s = DigitsBegin = begin;
306  saw_exponent = false;
307  saw_period = false;
308  isLong = false;
309  isUnsigned = false;
310  isLongLong = false;
311  isFloat = false;
312  isImaginary = false;
313  isMicrosoftInteger = false;
314  hadError = false;
315
316  if (*s == '0') { // parse radix
317    ParseNumberStartingWithZero(TokLoc);
318    if (hadError)
319      return;
320  } else { // the first digit is non-zero
321    radix = 10;
322    s = SkipDigits(s);
323    if (s == ThisTokEnd) {
324      // Done.
325    } else if (isxdigit(*s) && !(*s == 'e' || *s == 'E')) {
326      PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-begin),
327              diag::err_invalid_decimal_digit) << std::string(s, s+1);
328      hadError = true;
329      return;
330    } else if (*s == '.') {
331      s++;
332      saw_period = true;
333      s = SkipDigits(s);
334    }
335    if ((*s == 'e' || *s == 'E')) { // exponent
336      const char *Exponent = s;
337      s++;
338      saw_exponent = true;
339      if (*s == '+' || *s == '-')  s++; // sign
340      const char *first_non_digit = SkipDigits(s);
341      if (first_non_digit != s) {
342        s = first_non_digit;
343      } else {
344        PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-begin),
345                diag::err_exponent_has_no_digits);
346        hadError = true;
347        return;
348      }
349    }
350  }
351
352  SuffixBegin = s;
353
354  // Parse the suffix.  At this point we can classify whether we have an FP or
355  // integer constant.
356  bool isFPConstant = isFloatingLiteral();
357
358  // Loop over all of the characters of the suffix.  If we see something bad,
359  // we break out of the loop.
360  for (; s != ThisTokEnd; ++s) {
361    switch (*s) {
362    case 'f':      // FP Suffix for "float"
363    case 'F':
364      if (!isFPConstant) break;  // Error for integer constant.
365      if (isFloat || isLong) break; // FF, LF invalid.
366      isFloat = true;
367      continue;  // Success.
368    case 'u':
369    case 'U':
370      if (isFPConstant) break;  // Error for floating constant.
371      if (isUnsigned) break;    // Cannot be repeated.
372      isUnsigned = true;
373      continue;  // Success.
374    case 'l':
375    case 'L':
376      if (isLong || isLongLong) break;  // Cannot be repeated.
377      if (isFloat) break;               // LF invalid.
378
379      // Check for long long.  The L's need to be adjacent and the same case.
380      if (s+1 != ThisTokEnd && s[1] == s[0]) {
381        if (isFPConstant) break;        // long long invalid for floats.
382        isLongLong = true;
383        ++s;  // Eat both of them.
384      } else {
385        isLong = true;
386      }
387      continue;  // Success.
388    case 'i':
389      if (PP.getLangOptions().Microsoft) {
390        if (isFPConstant || isLong || isLongLong) break;
391
392        // Allow i8, i16, i32, i64, and i128.
393        if (s + 1 != ThisTokEnd) {
394          switch (s[1]) {
395            case '8':
396              s += 2; // i8 suffix
397              isMicrosoftInteger = true;
398              break;
399            case '1':
400              if (s + 2 == ThisTokEnd) break;
401              if (s[2] == '6') s += 3; // i16 suffix
402              else if (s[2] == '2') {
403                if (s + 3 == ThisTokEnd) break;
404                if (s[3] == '8') s += 4; // i128 suffix
405              }
406              isMicrosoftInteger = true;
407              break;
408            case '3':
409              if (s + 2 == ThisTokEnd) break;
410              if (s[2] == '2') s += 3; // i32 suffix
411              isMicrosoftInteger = true;
412              break;
413            case '6':
414              if (s + 2 == ThisTokEnd) break;
415              if (s[2] == '4') s += 3; // i64 suffix
416              isMicrosoftInteger = true;
417              break;
418            default:
419              break;
420          }
421          break;
422        }
423      }
424      // fall through.
425    case 'I':
426    case 'j':
427    case 'J':
428      if (isImaginary) break;   // Cannot be repeated.
429      PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-begin),
430              diag::ext_imaginary_constant);
431      isImaginary = true;
432      continue;  // Success.
433    }
434    // If we reached here, there was an error.
435    break;
436  }
437
438  // Report an error if there are any.
439  if (s != ThisTokEnd) {
440    PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-begin),
441            isFPConstant ? diag::err_invalid_suffix_float_constant :
442                           diag::err_invalid_suffix_integer_constant)
443      << std::string(SuffixBegin, ThisTokEnd);
444    hadError = true;
445    return;
446  }
447}
448
449/// ParseNumberStartingWithZero - This method is called when the first character
450/// of the number is found to be a zero.  This means it is either an octal
451/// number (like '04') or a hex number ('0x123a') a binary number ('0b1010') or
452/// a floating point number (01239.123e4).  Eat the prefix, determining the
453/// radix etc.
454void NumericLiteralParser::ParseNumberStartingWithZero(SourceLocation TokLoc) {
455  assert(s[0] == '0' && "Invalid method call");
456  s++;
457
458  // Handle a hex number like 0x1234.
459  if ((*s == 'x' || *s == 'X') && (isxdigit(s[1]) || s[1] == '.')) {
460    s++;
461    radix = 16;
462    DigitsBegin = s;
463    s = SkipHexDigits(s);
464    if (s == ThisTokEnd) {
465      // Done.
466    } else if (*s == '.') {
467      s++;
468      saw_period = true;
469      s = SkipHexDigits(s);
470    }
471    // A binary exponent can appear with or with a '.'. If dotted, the
472    // binary exponent is required.
473    if ((*s == 'p' || *s == 'P') && !PP.getLangOptions().CPlusPlus0x) {
474      const char *Exponent = s;
475      s++;
476      saw_exponent = true;
477      if (*s == '+' || *s == '-')  s++; // sign
478      const char *first_non_digit = SkipDigits(s);
479      if (first_non_digit == s) {
480        PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-ThisTokBegin),
481                diag::err_exponent_has_no_digits);
482        hadError = true;
483        return;
484      }
485      s = first_non_digit;
486
487      // In C++0x, we cannot support hexadecmial floating literals because
488      // they conflict with user-defined literals, so we warn in previous
489      // versions of C++ by default.
490      if (PP.getLangOptions().CPlusPlus)
491        PP.Diag(TokLoc, diag::ext_hexconstant_cplusplus);
492      else if (!PP.getLangOptions().HexFloats)
493        PP.Diag(TokLoc, diag::ext_hexconstant_invalid);
494    } else if (saw_period) {
495      PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
496              diag::err_hexconstant_requires_exponent);
497      hadError = true;
498    }
499    return;
500  }
501
502  // Handle simple binary numbers 0b01010
503  if (*s == 'b' || *s == 'B') {
504    // 0b101010 is a GCC extension.
505    PP.Diag(TokLoc, diag::ext_binary_literal);
506    ++s;
507    radix = 2;
508    DigitsBegin = s;
509    s = SkipBinaryDigits(s);
510    if (s == ThisTokEnd) {
511      // Done.
512    } else if (isxdigit(*s)) {
513      PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
514              diag::err_invalid_binary_digit) << std::string(s, s+1);
515      hadError = true;
516    }
517    // Other suffixes will be diagnosed by the caller.
518    return;
519  }
520
521  // For now, the radix is set to 8. If we discover that we have a
522  // floating point constant, the radix will change to 10. Octal floating
523  // point constants are not permitted (only decimal and hexadecimal).
524  radix = 8;
525  DigitsBegin = s;
526  s = SkipOctalDigits(s);
527  if (s == ThisTokEnd)
528    return; // Done, simple octal number like 01234
529
530  // If we have some other non-octal digit that *is* a decimal digit, see if
531  // this is part of a floating point number like 094.123 or 09e1.
532  if (isdigit(*s)) {
533    const char *EndDecimal = SkipDigits(s);
534    if (EndDecimal[0] == '.' || EndDecimal[0] == 'e' || EndDecimal[0] == 'E') {
535      s = EndDecimal;
536      radix = 10;
537    }
538  }
539
540  // If we have a hex digit other than 'e' (which denotes a FP exponent) then
541  // the code is using an incorrect base.
542  if (isxdigit(*s) && *s != 'e' && *s != 'E') {
543    PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
544            diag::err_invalid_octal_digit) << std::string(s, s+1);
545    hadError = true;
546    return;
547  }
548
549  if (*s == '.') {
550    s++;
551    radix = 10;
552    saw_period = true;
553    s = SkipDigits(s); // Skip suffix.
554  }
555  if (*s == 'e' || *s == 'E') { // exponent
556    const char *Exponent = s;
557    s++;
558    radix = 10;
559    saw_exponent = true;
560    if (*s == '+' || *s == '-')  s++; // sign
561    const char *first_non_digit = SkipDigits(s);
562    if (first_non_digit != s) {
563      s = first_non_digit;
564    } else {
565      PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-ThisTokBegin),
566              diag::err_exponent_has_no_digits);
567      hadError = true;
568      return;
569    }
570  }
571}
572
573
574/// GetIntegerValue - Convert this numeric literal value to an APInt that
575/// matches Val's input width.  If there is an overflow, set Val to the low bits
576/// of the result and return true.  Otherwise, return false.
577bool NumericLiteralParser::GetIntegerValue(llvm::APInt &Val) {
578  // Fast path: Compute a conservative bound on the maximum number of
579  // bits per digit in this radix. If we can't possibly overflow a
580  // uint64 based on that bound then do the simple conversion to
581  // integer. This avoids the expensive overflow checking below, and
582  // handles the common cases that matter (small decimal integers and
583  // hex/octal values which don't overflow).
584  unsigned MaxBitsPerDigit = 1;
585  while ((1U << MaxBitsPerDigit) < radix)
586    MaxBitsPerDigit += 1;
587  if ((SuffixBegin - DigitsBegin) * MaxBitsPerDigit <= 64) {
588    uint64_t N = 0;
589    for (s = DigitsBegin; s != SuffixBegin; ++s)
590      N = N*radix + HexDigitValue(*s);
591
592    // This will truncate the value to Val's input width. Simply check
593    // for overflow by comparing.
594    Val = N;
595    return Val.getZExtValue() != N;
596  }
597
598  Val = 0;
599  s = DigitsBegin;
600
601  llvm::APInt RadixVal(Val.getBitWidth(), radix);
602  llvm::APInt CharVal(Val.getBitWidth(), 0);
603  llvm::APInt OldVal = Val;
604
605  bool OverflowOccurred = false;
606  while (s < SuffixBegin) {
607    unsigned C = HexDigitValue(*s++);
608
609    // If this letter is out of bound for this radix, reject it.
610    assert(C < radix && "NumericLiteralParser ctor should have rejected this");
611
612    CharVal = C;
613
614    // Add the digit to the value in the appropriate radix.  If adding in digits
615    // made the value smaller, then this overflowed.
616    OldVal = Val;
617
618    // Multiply by radix, did overflow occur on the multiply?
619    Val *= RadixVal;
620    OverflowOccurred |= Val.udiv(RadixVal) != OldVal;
621
622    // Add value, did overflow occur on the value?
623    //   (a + b) ult b  <=> overflow
624    Val += CharVal;
625    OverflowOccurred |= Val.ult(CharVal);
626  }
627  return OverflowOccurred;
628}
629
630llvm::APFloat::opStatus
631NumericLiteralParser::GetFloatValue(llvm::APFloat &Result) {
632  using llvm::APFloat;
633  using llvm::StringRef;
634
635  unsigned n = std::min(SuffixBegin - ThisTokBegin, ThisTokEnd - ThisTokBegin);
636  return Result.convertFromString(StringRef(ThisTokBegin, n),
637                                  APFloat::rmNearestTiesToEven);
638}
639
640
641CharLiteralParser::CharLiteralParser(const char *begin, const char *end,
642                                     SourceLocation Loc, Preprocessor &PP) {
643  // At this point we know that the character matches the regex "L?'.*'".
644  HadError = false;
645
646  // Determine if this is a wide character.
647  IsWide = begin[0] == 'L';
648  if (IsWide) ++begin;
649
650  // Skip over the entry quote.
651  assert(begin[0] == '\'' && "Invalid token lexed");
652  ++begin;
653
654  // FIXME: The "Value" is an uint64_t so we can handle char literals of
655  // upto 64-bits.
656  // FIXME: This extensively assumes that 'char' is 8-bits.
657  assert(PP.getTargetInfo().getCharWidth() == 8 &&
658         "Assumes char is 8 bits");
659  assert(PP.getTargetInfo().getIntWidth() <= 64 &&
660         (PP.getTargetInfo().getIntWidth() & 7) == 0 &&
661         "Assumes sizeof(int) on target is <= 64 and a multiple of char");
662  assert(PP.getTargetInfo().getWCharWidth() <= 64 &&
663         "Assumes sizeof(wchar) on target is <= 64");
664
665  // This is what we will use for overflow detection
666  llvm::APInt LitVal(PP.getTargetInfo().getIntWidth(), 0);
667
668  unsigned NumCharsSoFar = 0;
669  bool Warned = false;
670  while (begin[0] != '\'') {
671    uint64_t ResultChar;
672    if (begin[0] != '\\')     // If this is a normal character, consume it.
673      ResultChar = *begin++;
674    else                      // Otherwise, this is an escape character.
675      ResultChar = ProcessCharEscape(begin, end, HadError, Loc, IsWide, PP,
676                                     /*Complain=*/true);
677
678    // If this is a multi-character constant (e.g. 'abc'), handle it.  These are
679    // implementation defined (C99 6.4.4.4p10).
680    if (NumCharsSoFar) {
681      if (IsWide) {
682        // Emulate GCC's (unintentional?) behavior: L'ab' -> L'b'.
683        LitVal = 0;
684      } else {
685        // Narrow character literals act as though their value is concatenated
686        // in this implementation, but warn on overflow.
687        if (LitVal.countLeadingZeros() < 8 && !Warned) {
688          PP.Diag(Loc, diag::warn_char_constant_too_large);
689          Warned = true;
690        }
691        LitVal <<= 8;
692      }
693    }
694
695    LitVal = LitVal + ResultChar;
696    ++NumCharsSoFar;
697  }
698
699  // If this is the second character being processed, do special handling.
700  if (NumCharsSoFar > 1) {
701    // Warn about discarding the top bits for multi-char wide-character
702    // constants (L'abcd').
703    if (IsWide)
704      PP.Diag(Loc, diag::warn_extraneous_wide_char_constant);
705    else if (NumCharsSoFar != 4)
706      PP.Diag(Loc, diag::ext_multichar_character_literal);
707    else
708      PP.Diag(Loc, diag::ext_four_char_character_literal);
709    IsMultiChar = true;
710  } else
711    IsMultiChar = false;
712
713  // Transfer the value from APInt to uint64_t
714  Value = LitVal.getZExtValue();
715
716  // If this is a single narrow character, sign extend it (e.g. '\xFF' is "-1")
717  // if 'char' is signed for this target (C99 6.4.4.4p10).  Note that multiple
718  // character constants are not sign extended in the this implementation:
719  // '\xFF\xFF' = 65536 and '\x0\xFF' = 255, which matches GCC.
720  if (!IsWide && NumCharsSoFar == 1 && (Value & 128) &&
721      PP.getLangOptions().CharIsSigned)
722    Value = (signed char)Value;
723}
724
725
726///       string-literal: [C99 6.4.5]
727///          " [s-char-sequence] "
728///         L" [s-char-sequence] "
729///       s-char-sequence:
730///         s-char
731///         s-char-sequence s-char
732///       s-char:
733///         any source character except the double quote ",
734///           backslash \, or newline character
735///         escape-character
736///         universal-character-name
737///       escape-character: [C99 6.4.4.4]
738///         \ escape-code
739///         universal-character-name
740///       escape-code:
741///         character-escape-code
742///         octal-escape-code
743///         hex-escape-code
744///       character-escape-code: one of
745///         n t b r f v a
746///         \ ' " ?
747///       octal-escape-code:
748///         octal-digit
749///         octal-digit octal-digit
750///         octal-digit octal-digit octal-digit
751///       hex-escape-code:
752///         x hex-digit
753///         hex-escape-code hex-digit
754///       universal-character-name:
755///         \u hex-quad
756///         \U hex-quad hex-quad
757///       hex-quad:
758///         hex-digit hex-digit hex-digit hex-digit
759///
760StringLiteralParser::
761StringLiteralParser(const Token *StringToks, unsigned NumStringToks,
762                    Preprocessor &pp, bool Complain) : PP(pp) {
763  // Scan all of the string portions, remember the max individual token length,
764  // computing a bound on the concatenated string length, and see whether any
765  // piece is a wide-string.  If any of the string portions is a wide-string
766  // literal, the result is a wide-string literal [C99 6.4.5p4].
767  MaxTokenLength = StringToks[0].getLength();
768  SizeBound = StringToks[0].getLength()-2;  // -2 for "".
769  AnyWide = StringToks[0].is(tok::wide_string_literal);
770
771  hadError = false;
772
773  // Implement Translation Phase #6: concatenation of string literals
774  /// (C99 5.1.1.2p1).  The common case is only one string fragment.
775  for (unsigned i = 1; i != NumStringToks; ++i) {
776    // The string could be shorter than this if it needs cleaning, but this is a
777    // reasonable bound, which is all we need.
778    SizeBound += StringToks[i].getLength()-2;  // -2 for "".
779
780    // Remember maximum string piece length.
781    if (StringToks[i].getLength() > MaxTokenLength)
782      MaxTokenLength = StringToks[i].getLength();
783
784    // Remember if we see any wide strings.
785    AnyWide |= StringToks[i].is(tok::wide_string_literal);
786  }
787
788  // Include space for the null terminator.
789  ++SizeBound;
790
791  // TODO: K&R warning: "traditional C rejects string constant concatenation"
792
793  // Get the width in bytes of wchar_t.  If no wchar_t strings are used, do not
794  // query the target.  As such, wchar_tByteWidth is only valid if AnyWide=true.
795  wchar_tByteWidth = ~0U;
796  if (AnyWide) {
797    wchar_tByteWidth = PP.getTargetInfo().getWCharWidth();
798    assert((wchar_tByteWidth & 7) == 0 && "Assumes wchar_t is byte multiple!");
799    wchar_tByteWidth /= 8;
800  }
801
802  // The output buffer size needs to be large enough to hold wide characters.
803  // This is a worst-case assumption which basically corresponds to L"" "long".
804  if (AnyWide)
805    SizeBound *= wchar_tByteWidth;
806
807  // Size the temporary buffer to hold the result string data.
808  ResultBuf.resize(SizeBound);
809
810  // Likewise, but for each string piece.
811  llvm::SmallString<512> TokenBuf;
812  TokenBuf.resize(MaxTokenLength);
813
814  // Loop over all the strings, getting their spelling, and expanding them to
815  // wide strings as appropriate.
816  ResultPtr = &ResultBuf[0];   // Next byte to fill in.
817
818  Pascal = false;
819
820  for (unsigned i = 0, e = NumStringToks; i != e; ++i) {
821    const char *ThisTokBuf = &TokenBuf[0];
822    // Get the spelling of the token, which eliminates trigraphs, etc.  We know
823    // that ThisTokBuf points to a buffer that is big enough for the whole token
824    // and 'spelled' tokens can only shrink.
825    bool StringInvalid = false;
826    unsigned ThisTokLen = PP.getSpelling(StringToks[i], ThisTokBuf,
827                                         &StringInvalid);
828    if (StringInvalid) {
829      hadError = 1;
830      continue;
831    }
832
833    const char *ThisTokEnd = ThisTokBuf+ThisTokLen-1;  // Skip end quote.
834
835    // TODO: Input character set mapping support.
836
837    // Skip L marker for wide strings.
838    bool ThisIsWide = false;
839    if (ThisTokBuf[0] == 'L') {
840      ++ThisTokBuf;
841      ThisIsWide = true;
842    }
843
844    assert(ThisTokBuf[0] == '"' && "Expected quote, lexer broken?");
845    ++ThisTokBuf;
846
847    // Check if this is a pascal string
848    if (pp.getLangOptions().PascalStrings && ThisTokBuf + 1 != ThisTokEnd &&
849        ThisTokBuf[0] == '\\' && ThisTokBuf[1] == 'p') {
850
851      // If the \p sequence is found in the first token, we have a pascal string
852      // Otherwise, if we already have a pascal string, ignore the first \p
853      if (i == 0) {
854        ++ThisTokBuf;
855        Pascal = true;
856      } else if (Pascal)
857        ThisTokBuf += 2;
858    }
859
860    while (ThisTokBuf != ThisTokEnd) {
861      // Is this a span of non-escape characters?
862      if (ThisTokBuf[0] != '\\') {
863        const char *InStart = ThisTokBuf;
864        do {
865          ++ThisTokBuf;
866        } while (ThisTokBuf != ThisTokEnd && ThisTokBuf[0] != '\\');
867
868        // Copy the character span over.
869        unsigned Len = ThisTokBuf-InStart;
870        if (!AnyWide) {
871          memcpy(ResultPtr, InStart, Len);
872          ResultPtr += Len;
873        } else {
874          // Note: our internal rep of wide char tokens is always little-endian.
875          for (; Len; --Len, ++InStart) {
876            *ResultPtr++ = InStart[0];
877            // Add zeros at the end.
878            for (unsigned i = 1, e = wchar_tByteWidth; i != e; ++i)
879              *ResultPtr++ = 0;
880          }
881        }
882        continue;
883      }
884      // Is this a Universal Character Name escape?
885      if (ThisTokBuf[1] == 'u' || ThisTokBuf[1] == 'U') {
886        ProcessUCNEscape(ThisTokBuf, ThisTokEnd, ResultPtr,
887                         hadError, StringToks[i].getLocation(), ThisIsWide, PP,
888                         Complain);
889        continue;
890      }
891      // Otherwise, this is a non-UCN escape character.  Process it.
892      unsigned ResultChar = ProcessCharEscape(ThisTokBuf, ThisTokEnd, hadError,
893                                              StringToks[i].getLocation(),
894                                              ThisIsWide, PP, Complain);
895
896      // Note: our internal rep of wide char tokens is always little-endian.
897      *ResultPtr++ = ResultChar & 0xFF;
898
899      if (AnyWide) {
900        for (unsigned i = 1, e = wchar_tByteWidth; i != e; ++i)
901          *ResultPtr++ = ResultChar >> i*8;
902      }
903    }
904  }
905
906  if (Pascal) {
907    ResultBuf[0] = ResultPtr-&ResultBuf[0]-1;
908
909    // Verify that pascal strings aren't too large.
910    if (GetStringLength() > 256 && Complain) {
911      PP.Diag(StringToks[0].getLocation(), diag::err_pascal_string_too_long)
912        << SourceRange(StringToks[0].getLocation(),
913                       StringToks[NumStringToks-1].getLocation());
914      hadError = 1;
915      return;
916    }
917  }
918}
919
920
921/// getOffsetOfStringByte - This function returns the offset of the
922/// specified byte of the string data represented by Token.  This handles
923/// advancing over escape sequences in the string.
924unsigned StringLiteralParser::getOffsetOfStringByte(const Token &Tok,
925                                                    unsigned ByteNo,
926                                                    Preprocessor &PP,
927                                                    bool Complain) {
928  // Get the spelling of the token.
929  llvm::SmallString<16> SpellingBuffer;
930  SpellingBuffer.resize(Tok.getLength());
931
932  bool StringInvalid = false;
933  const char *SpellingPtr = &SpellingBuffer[0];
934  unsigned TokLen = PP.getSpelling(Tok, SpellingPtr, &StringInvalid);
935  if (StringInvalid) {
936    return 0;
937  }
938
939  assert(SpellingPtr[0] != 'L' && "Doesn't handle wide strings yet");
940
941
942  const char *SpellingStart = SpellingPtr;
943  const char *SpellingEnd = SpellingPtr+TokLen;
944
945  // Skip over the leading quote.
946  assert(SpellingPtr[0] == '"' && "Should be a string literal!");
947  ++SpellingPtr;
948
949  // Skip over bytes until we find the offset we're looking for.
950  while (ByteNo) {
951    assert(SpellingPtr < SpellingEnd && "Didn't find byte offset!");
952
953    // Step over non-escapes simply.
954    if (*SpellingPtr != '\\') {
955      ++SpellingPtr;
956      --ByteNo;
957      continue;
958    }
959
960    // Otherwise, this is an escape character.  Advance over it.
961    bool HadError = false;
962    ProcessCharEscape(SpellingPtr, SpellingEnd, HadError,
963                      Tok.getLocation(), false, PP, Complain);
964    assert(!HadError && "This method isn't valid on erroneous strings");
965    --ByteNo;
966  }
967
968  return SpellingPtr-SpellingStart;
969}
970