LiteralSupport.cpp revision 201361
1//===--- LiteralSupport.cpp - Code to parse and process literals ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the NumericLiteralParser, CharLiteralParser, and
11// StringLiteralParser interfaces.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Lex/LiteralSupport.h"
16#include "clang/Lex/Preprocessor.h"
17#include "clang/Lex/LexDiagnostic.h"
18#include "clang/Basic/TargetInfo.h"
19#include "llvm/ADT/StringRef.h"
20#include "llvm/ADT/StringExtras.h"
21using namespace clang;
22
23/// HexDigitValue - Return the value of the specified hex digit, or -1 if it's
24/// not valid.
25static int HexDigitValue(char C) {
26  if (C >= '0' && C <= '9') return C-'0';
27  if (C >= 'a' && C <= 'f') return C-'a'+10;
28  if (C >= 'A' && C <= 'F') return C-'A'+10;
29  return -1;
30}
31
32/// ProcessCharEscape - Parse a standard C escape sequence, which can occur in
33/// either a character or a string literal.
34static unsigned ProcessCharEscape(const char *&ThisTokBuf,
35                                  const char *ThisTokEnd, bool &HadError,
36                                  SourceLocation Loc, bool IsWide,
37                                  Preprocessor &PP) {
38  // Skip the '\' char.
39  ++ThisTokBuf;
40
41  // We know that this character can't be off the end of the buffer, because
42  // that would have been \", which would not have been the end of string.
43  unsigned ResultChar = *ThisTokBuf++;
44  switch (ResultChar) {
45  // These map to themselves.
46  case '\\': case '\'': case '"': case '?': break;
47
48    // These have fixed mappings.
49  case 'a':
50    // TODO: K&R: the meaning of '\\a' is different in traditional C
51    ResultChar = 7;
52    break;
53  case 'b':
54    ResultChar = 8;
55    break;
56  case 'e':
57    PP.Diag(Loc, diag::ext_nonstandard_escape) << "e";
58    ResultChar = 27;
59    break;
60  case 'E':
61    PP.Diag(Loc, diag::ext_nonstandard_escape) << "E";
62    ResultChar = 27;
63    break;
64  case 'f':
65    ResultChar = 12;
66    break;
67  case 'n':
68    ResultChar = 10;
69    break;
70  case 'r':
71    ResultChar = 13;
72    break;
73  case 't':
74    ResultChar = 9;
75    break;
76  case 'v':
77    ResultChar = 11;
78    break;
79  case 'x': { // Hex escape.
80    ResultChar = 0;
81    if (ThisTokBuf == ThisTokEnd || !isxdigit(*ThisTokBuf)) {
82      PP.Diag(Loc, diag::err_hex_escape_no_digits);
83      HadError = 1;
84      break;
85    }
86
87    // Hex escapes are a maximal series of hex digits.
88    bool Overflow = false;
89    for (; ThisTokBuf != ThisTokEnd; ++ThisTokBuf) {
90      int CharVal = HexDigitValue(ThisTokBuf[0]);
91      if (CharVal == -1) break;
92      // About to shift out a digit?
93      Overflow |= (ResultChar & 0xF0000000) ? true : false;
94      ResultChar <<= 4;
95      ResultChar |= CharVal;
96    }
97
98    // See if any bits will be truncated when evaluated as a character.
99    unsigned CharWidth = IsWide
100                       ? PP.getTargetInfo().getWCharWidth()
101                       : PP.getTargetInfo().getCharWidth();
102
103    if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
104      Overflow = true;
105      ResultChar &= ~0U >> (32-CharWidth);
106    }
107
108    // Check for overflow.
109    if (Overflow)   // Too many digits to fit in
110      PP.Diag(Loc, diag::warn_hex_escape_too_large);
111    break;
112  }
113  case '0': case '1': case '2': case '3':
114  case '4': case '5': case '6': case '7': {
115    // Octal escapes.
116    --ThisTokBuf;
117    ResultChar = 0;
118
119    // Octal escapes are a series of octal digits with maximum length 3.
120    // "\0123" is a two digit sequence equal to "\012" "3".
121    unsigned NumDigits = 0;
122    do {
123      ResultChar <<= 3;
124      ResultChar |= *ThisTokBuf++ - '0';
125      ++NumDigits;
126    } while (ThisTokBuf != ThisTokEnd && NumDigits < 3 &&
127             ThisTokBuf[0] >= '0' && ThisTokBuf[0] <= '7');
128
129    // Check for overflow.  Reject '\777', but not L'\777'.
130    unsigned CharWidth = IsWide
131                       ? PP.getTargetInfo().getWCharWidth()
132                       : PP.getTargetInfo().getCharWidth();
133
134    if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
135      PP.Diag(Loc, diag::warn_octal_escape_too_large);
136      ResultChar &= ~0U >> (32-CharWidth);
137    }
138    break;
139  }
140
141    // Otherwise, these are not valid escapes.
142  case '(': case '{': case '[': case '%':
143    // GCC accepts these as extensions.  We warn about them as such though.
144    PP.Diag(Loc, diag::ext_nonstandard_escape)
145      << std::string()+(char)ResultChar;
146    break;
147  default:
148    if (isgraph(ThisTokBuf[0]))
149      PP.Diag(Loc, diag::ext_unknown_escape) << std::string()+(char)ResultChar;
150    else
151      PP.Diag(Loc, diag::ext_unknown_escape) << "x"+llvm::utohexstr(ResultChar);
152    break;
153  }
154
155  return ResultChar;
156}
157
158/// ProcessUCNEscape - Read the Universal Character Name, check constraints and
159/// convert the UTF32 to UTF8. This is a subroutine of StringLiteralParser.
160/// When we decide to implement UCN's for character constants and identifiers,
161/// we will likely rework our support for UCN's.
162static void ProcessUCNEscape(const char *&ThisTokBuf, const char *ThisTokEnd,
163                             char *&ResultBuf, bool &HadError,
164                             SourceLocation Loc, bool IsWide, Preprocessor &PP)
165{
166  // FIXME: Add a warning - UCN's are only valid in C++ & C99.
167  // FIXME: Handle wide strings.
168
169  // Save the beginning of the string (for error diagnostics).
170  const char *ThisTokBegin = ThisTokBuf;
171
172  // Skip the '\u' char's.
173  ThisTokBuf += 2;
174
175  if (ThisTokBuf == ThisTokEnd || !isxdigit(*ThisTokBuf)) {
176    PP.Diag(Loc, diag::err_ucn_escape_no_digits);
177    HadError = 1;
178    return;
179  }
180  typedef uint32_t UTF32;
181
182  UTF32 UcnVal = 0;
183  unsigned short UcnLen = (ThisTokBuf[-1] == 'u' ? 4 : 8);
184  for (; ThisTokBuf != ThisTokEnd && UcnLen; ++ThisTokBuf, UcnLen--) {
185    int CharVal = HexDigitValue(ThisTokBuf[0]);
186    if (CharVal == -1) break;
187    UcnVal <<= 4;
188    UcnVal |= CharVal;
189  }
190  // If we didn't consume the proper number of digits, there is a problem.
191  if (UcnLen) {
192    PP.Diag(PP.AdvanceToTokenCharacter(Loc, ThisTokBuf-ThisTokBegin),
193            diag::err_ucn_escape_incomplete);
194    HadError = 1;
195    return;
196  }
197  // Check UCN constraints (C99 6.4.3p2).
198  if ((UcnVal < 0xa0 &&
199      (UcnVal != 0x24 && UcnVal != 0x40 && UcnVal != 0x60 )) // $, @, `
200      || (UcnVal >= 0xD800 && UcnVal <= 0xDFFF)
201      || (UcnVal > 0x10FFFF)) /* the maximum legal UTF32 value */ {
202    PP.Diag(Loc, diag::err_ucn_escape_invalid);
203    HadError = 1;
204    return;
205  }
206  // Now that we've parsed/checked the UCN, we convert from UTF32->UTF8.
207  // The conversion below was inspired by:
208  //   http://www.unicode.org/Public/PROGRAMS/CVTUTF/ConvertUTF.c
209  // First, we determine how many bytes the result will require.
210  typedef uint8_t UTF8;
211
212  unsigned short bytesToWrite = 0;
213  if (UcnVal < (UTF32)0x80)
214    bytesToWrite = 1;
215  else if (UcnVal < (UTF32)0x800)
216    bytesToWrite = 2;
217  else if (UcnVal < (UTF32)0x10000)
218    bytesToWrite = 3;
219  else
220    bytesToWrite = 4;
221
222  const unsigned byteMask = 0xBF;
223  const unsigned byteMark = 0x80;
224
225  // Once the bits are split out into bytes of UTF8, this is a mask OR-ed
226  // into the first byte, depending on how many bytes follow.
227  static const UTF8 firstByteMark[5] = {
228    0x00, 0x00, 0xC0, 0xE0, 0xF0
229  };
230  // Finally, we write the bytes into ResultBuf.
231  ResultBuf += bytesToWrite;
232  switch (bytesToWrite) { // note: everything falls through.
233    case 4: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
234    case 3: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
235    case 2: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
236    case 1: *--ResultBuf = (UTF8) (UcnVal | firstByteMark[bytesToWrite]);
237  }
238  // Update the buffer.
239  ResultBuf += bytesToWrite;
240}
241
242
243///       integer-constant: [C99 6.4.4.1]
244///         decimal-constant integer-suffix
245///         octal-constant integer-suffix
246///         hexadecimal-constant integer-suffix
247///       decimal-constant:
248///         nonzero-digit
249///         decimal-constant digit
250///       octal-constant:
251///         0
252///         octal-constant octal-digit
253///       hexadecimal-constant:
254///         hexadecimal-prefix hexadecimal-digit
255///         hexadecimal-constant hexadecimal-digit
256///       hexadecimal-prefix: one of
257///         0x 0X
258///       integer-suffix:
259///         unsigned-suffix [long-suffix]
260///         unsigned-suffix [long-long-suffix]
261///         long-suffix [unsigned-suffix]
262///         long-long-suffix [unsigned-sufix]
263///       nonzero-digit:
264///         1 2 3 4 5 6 7 8 9
265///       octal-digit:
266///         0 1 2 3 4 5 6 7
267///       hexadecimal-digit:
268///         0 1 2 3 4 5 6 7 8 9
269///         a b c d e f
270///         A B C D E F
271///       unsigned-suffix: one of
272///         u U
273///       long-suffix: one of
274///         l L
275///       long-long-suffix: one of
276///         ll LL
277///
278///       floating-constant: [C99 6.4.4.2]
279///         TODO: add rules...
280///
281NumericLiteralParser::
282NumericLiteralParser(const char *begin, const char *end,
283                     SourceLocation TokLoc, Preprocessor &pp)
284  : PP(pp), ThisTokBegin(begin), ThisTokEnd(end) {
285
286  // This routine assumes that the range begin/end matches the regex for integer
287  // and FP constants (specifically, the 'pp-number' regex), and assumes that
288  // the byte at "*end" is both valid and not part of the regex.  Because of
289  // this, it doesn't have to check for 'overscan' in various places.
290  assert(!isalnum(*end) && *end != '.' && *end != '_' &&
291         "Lexer didn't maximally munch?");
292
293  s = DigitsBegin = begin;
294  saw_exponent = false;
295  saw_period = false;
296  isLong = false;
297  isUnsigned = false;
298  isLongLong = false;
299  isFloat = false;
300  isImaginary = false;
301  isMicrosoftInteger = false;
302  hadError = false;
303
304  if (*s == '0') { // parse radix
305    ParseNumberStartingWithZero(TokLoc);
306    if (hadError)
307      return;
308  } else { // the first digit is non-zero
309    radix = 10;
310    s = SkipDigits(s);
311    if (s == ThisTokEnd) {
312      // Done.
313    } else if (isxdigit(*s) && !(*s == 'e' || *s == 'E')) {
314      PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-begin),
315              diag::err_invalid_decimal_digit) << std::string(s, s+1);
316      hadError = true;
317      return;
318    } else if (*s == '.') {
319      s++;
320      saw_period = true;
321      s = SkipDigits(s);
322    }
323    if ((*s == 'e' || *s == 'E')) { // exponent
324      const char *Exponent = s;
325      s++;
326      saw_exponent = true;
327      if (*s == '+' || *s == '-')  s++; // sign
328      const char *first_non_digit = SkipDigits(s);
329      if (first_non_digit != s) {
330        s = first_non_digit;
331      } else {
332        PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-begin),
333                diag::err_exponent_has_no_digits);
334        hadError = true;
335        return;
336      }
337    }
338  }
339
340  SuffixBegin = s;
341
342  // Parse the suffix.  At this point we can classify whether we have an FP or
343  // integer constant.
344  bool isFPConstant = isFloatingLiteral();
345
346  // Loop over all of the characters of the suffix.  If we see something bad,
347  // we break out of the loop.
348  for (; s != ThisTokEnd; ++s) {
349    switch (*s) {
350    case 'f':      // FP Suffix for "float"
351    case 'F':
352      if (!isFPConstant) break;  // Error for integer constant.
353      if (isFloat || isLong) break; // FF, LF invalid.
354      isFloat = true;
355      continue;  // Success.
356    case 'u':
357    case 'U':
358      if (isFPConstant) break;  // Error for floating constant.
359      if (isUnsigned) break;    // Cannot be repeated.
360      isUnsigned = true;
361      continue;  // Success.
362    case 'l':
363    case 'L':
364      if (isLong || isLongLong) break;  // Cannot be repeated.
365      if (isFloat) break;               // LF invalid.
366
367      // Check for long long.  The L's need to be adjacent and the same case.
368      if (s+1 != ThisTokEnd && s[1] == s[0]) {
369        if (isFPConstant) break;        // long long invalid for floats.
370        isLongLong = true;
371        ++s;  // Eat both of them.
372      } else {
373        isLong = true;
374      }
375      continue;  // Success.
376    case 'i':
377      if (PP.getLangOptions().Microsoft) {
378        if (isFPConstant || isUnsigned || isLong || isLongLong) break;
379
380        // Allow i8, i16, i32, i64, and i128.
381        if (s + 1 != ThisTokEnd) {
382          switch (s[1]) {
383            case '8':
384              s += 2; // i8 suffix
385              isMicrosoftInteger = true;
386              break;
387            case '1':
388              if (s + 2 == ThisTokEnd) break;
389              if (s[2] == '6') s += 3; // i16 suffix
390              else if (s[2] == '2') {
391                if (s + 3 == ThisTokEnd) break;
392                if (s[3] == '8') s += 4; // i128 suffix
393              }
394              isMicrosoftInteger = true;
395              break;
396            case '3':
397              if (s + 2 == ThisTokEnd) break;
398              if (s[2] == '2') s += 3; // i32 suffix
399              isMicrosoftInteger = true;
400              break;
401            case '6':
402              if (s + 2 == ThisTokEnd) break;
403              if (s[2] == '4') s += 3; // i64 suffix
404              isMicrosoftInteger = true;
405              break;
406            default:
407              break;
408          }
409          break;
410        }
411      }
412      // fall through.
413    case 'I':
414    case 'j':
415    case 'J':
416      if (isImaginary) break;   // Cannot be repeated.
417      PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-begin),
418              diag::ext_imaginary_constant);
419      isImaginary = true;
420      continue;  // Success.
421    }
422    // If we reached here, there was an error.
423    break;
424  }
425
426  // Report an error if there are any.
427  if (s != ThisTokEnd) {
428    PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-begin),
429            isFPConstant ? diag::err_invalid_suffix_float_constant :
430                           diag::err_invalid_suffix_integer_constant)
431      << std::string(SuffixBegin, ThisTokEnd);
432    hadError = true;
433    return;
434  }
435}
436
437/// ParseNumberStartingWithZero - This method is called when the first character
438/// of the number is found to be a zero.  This means it is either an octal
439/// number (like '04') or a hex number ('0x123a') a binary number ('0b1010') or
440/// a floating point number (01239.123e4).  Eat the prefix, determining the
441/// radix etc.
442void NumericLiteralParser::ParseNumberStartingWithZero(SourceLocation TokLoc) {
443  assert(s[0] == '0' && "Invalid method call");
444  s++;
445
446  // Handle a hex number like 0x1234.
447  if ((*s == 'x' || *s == 'X') && (isxdigit(s[1]) || s[1] == '.')) {
448    s++;
449    radix = 16;
450    DigitsBegin = s;
451    s = SkipHexDigits(s);
452    if (s == ThisTokEnd) {
453      // Done.
454    } else if (*s == '.') {
455      s++;
456      saw_period = true;
457      s = SkipHexDigits(s);
458    }
459    // A binary exponent can appear with or with a '.'. If dotted, the
460    // binary exponent is required.
461    if (*s == 'p' || *s == 'P') {
462      const char *Exponent = s;
463      s++;
464      saw_exponent = true;
465      if (*s == '+' || *s == '-')  s++; // sign
466      const char *first_non_digit = SkipDigits(s);
467      if (first_non_digit == s) {
468        PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-ThisTokBegin),
469                diag::err_exponent_has_no_digits);
470        hadError = true;
471        return;
472      }
473      s = first_non_digit;
474
475      if (!PP.getLangOptions().HexFloats)
476        PP.Diag(TokLoc, diag::ext_hexconstant_invalid);
477    } else if (saw_period) {
478      PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
479              diag::err_hexconstant_requires_exponent);
480      hadError = true;
481    }
482    return;
483  }
484
485  // Handle simple binary numbers 0b01010
486  if (*s == 'b' || *s == 'B') {
487    // 0b101010 is a GCC extension.
488    PP.Diag(TokLoc, diag::ext_binary_literal);
489    ++s;
490    radix = 2;
491    DigitsBegin = s;
492    s = SkipBinaryDigits(s);
493    if (s == ThisTokEnd) {
494      // Done.
495    } else if (isxdigit(*s)) {
496      PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
497              diag::err_invalid_binary_digit) << std::string(s, s+1);
498      hadError = true;
499    }
500    // Other suffixes will be diagnosed by the caller.
501    return;
502  }
503
504  // For now, the radix is set to 8. If we discover that we have a
505  // floating point constant, the radix will change to 10. Octal floating
506  // point constants are not permitted (only decimal and hexadecimal).
507  radix = 8;
508  DigitsBegin = s;
509  s = SkipOctalDigits(s);
510  if (s == ThisTokEnd)
511    return; // Done, simple octal number like 01234
512
513  // If we have some other non-octal digit that *is* a decimal digit, see if
514  // this is part of a floating point number like 094.123 or 09e1.
515  if (isdigit(*s)) {
516    const char *EndDecimal = SkipDigits(s);
517    if (EndDecimal[0] == '.' || EndDecimal[0] == 'e' || EndDecimal[0] == 'E') {
518      s = EndDecimal;
519      radix = 10;
520    }
521  }
522
523  // If we have a hex digit other than 'e' (which denotes a FP exponent) then
524  // the code is using an incorrect base.
525  if (isxdigit(*s) && *s != 'e' && *s != 'E') {
526    PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
527            diag::err_invalid_octal_digit) << std::string(s, s+1);
528    hadError = true;
529    return;
530  }
531
532  if (*s == '.') {
533    s++;
534    radix = 10;
535    saw_period = true;
536    s = SkipDigits(s); // Skip suffix.
537  }
538  if (*s == 'e' || *s == 'E') { // exponent
539    const char *Exponent = s;
540    s++;
541    radix = 10;
542    saw_exponent = true;
543    if (*s == '+' || *s == '-')  s++; // sign
544    const char *first_non_digit = SkipDigits(s);
545    if (first_non_digit != s) {
546      s = first_non_digit;
547    } else {
548      PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-ThisTokBegin),
549              diag::err_exponent_has_no_digits);
550      hadError = true;
551      return;
552    }
553  }
554}
555
556
557/// GetIntegerValue - Convert this numeric literal value to an APInt that
558/// matches Val's input width.  If there is an overflow, set Val to the low bits
559/// of the result and return true.  Otherwise, return false.
560bool NumericLiteralParser::GetIntegerValue(llvm::APInt &Val) {
561  // Fast path: Compute a conservative bound on the maximum number of
562  // bits per digit in this radix. If we can't possibly overflow a
563  // uint64 based on that bound then do the simple conversion to
564  // integer. This avoids the expensive overflow checking below, and
565  // handles the common cases that matter (small decimal integers and
566  // hex/octal values which don't overflow).
567  unsigned MaxBitsPerDigit = 1;
568  while ((1U << MaxBitsPerDigit) < radix)
569    MaxBitsPerDigit += 1;
570  if ((SuffixBegin - DigitsBegin) * MaxBitsPerDigit <= 64) {
571    uint64_t N = 0;
572    for (s = DigitsBegin; s != SuffixBegin; ++s)
573      N = N*radix + HexDigitValue(*s);
574
575    // This will truncate the value to Val's input width. Simply check
576    // for overflow by comparing.
577    Val = N;
578    return Val.getZExtValue() != N;
579  }
580
581  Val = 0;
582  s = DigitsBegin;
583
584  llvm::APInt RadixVal(Val.getBitWidth(), radix);
585  llvm::APInt CharVal(Val.getBitWidth(), 0);
586  llvm::APInt OldVal = Val;
587
588  bool OverflowOccurred = false;
589  while (s < SuffixBegin) {
590    unsigned C = HexDigitValue(*s++);
591
592    // If this letter is out of bound for this radix, reject it.
593    assert(C < radix && "NumericLiteralParser ctor should have rejected this");
594
595    CharVal = C;
596
597    // Add the digit to the value in the appropriate radix.  If adding in digits
598    // made the value smaller, then this overflowed.
599    OldVal = Val;
600
601    // Multiply by radix, did overflow occur on the multiply?
602    Val *= RadixVal;
603    OverflowOccurred |= Val.udiv(RadixVal) != OldVal;
604
605    // Add value, did overflow occur on the value?
606    //   (a + b) ult b  <=> overflow
607    Val += CharVal;
608    OverflowOccurred |= Val.ult(CharVal);
609  }
610  return OverflowOccurred;
611}
612
613llvm::APFloat::opStatus
614NumericLiteralParser::GetFloatValue(llvm::APFloat &Result) {
615  using llvm::APFloat;
616  using llvm::StringRef;
617
618  unsigned n = std::min(SuffixBegin - ThisTokBegin, ThisTokEnd - ThisTokBegin);
619  return Result.convertFromString(StringRef(ThisTokBegin, n),
620                                  APFloat::rmNearestTiesToEven);
621}
622
623
624CharLiteralParser::CharLiteralParser(const char *begin, const char *end,
625                                     SourceLocation Loc, Preprocessor &PP) {
626  // At this point we know that the character matches the regex "L?'.*'".
627  HadError = false;
628
629  // Determine if this is a wide character.
630  IsWide = begin[0] == 'L';
631  if (IsWide) ++begin;
632
633  // Skip over the entry quote.
634  assert(begin[0] == '\'' && "Invalid token lexed");
635  ++begin;
636
637  // FIXME: The "Value" is an uint64_t so we can handle char literals of
638  // upto 64-bits.
639  // FIXME: This extensively assumes that 'char' is 8-bits.
640  assert(PP.getTargetInfo().getCharWidth() == 8 &&
641         "Assumes char is 8 bits");
642  assert(PP.getTargetInfo().getIntWidth() <= 64 &&
643         (PP.getTargetInfo().getIntWidth() & 7) == 0 &&
644         "Assumes sizeof(int) on target is <= 64 and a multiple of char");
645  assert(PP.getTargetInfo().getWCharWidth() <= 64 &&
646         "Assumes sizeof(wchar) on target is <= 64");
647
648  // This is what we will use for overflow detection
649  llvm::APInt LitVal(PP.getTargetInfo().getIntWidth(), 0);
650
651  unsigned NumCharsSoFar = 0;
652  while (begin[0] != '\'') {
653    uint64_t ResultChar;
654    if (begin[0] != '\\')     // If this is a normal character, consume it.
655      ResultChar = *begin++;
656    else                      // Otherwise, this is an escape character.
657      ResultChar = ProcessCharEscape(begin, end, HadError, Loc, IsWide, PP);
658
659    // If this is a multi-character constant (e.g. 'abc'), handle it.  These are
660    // implementation defined (C99 6.4.4.4p10).
661    if (NumCharsSoFar) {
662      if (IsWide) {
663        // Emulate GCC's (unintentional?) behavior: L'ab' -> L'b'.
664        LitVal = 0;
665      } else {
666        // Narrow character literals act as though their value is concatenated
667        // in this implementation, but warn on overflow.
668        if (LitVal.countLeadingZeros() < 8)
669          PP.Diag(Loc, diag::warn_char_constant_too_large);
670        LitVal <<= 8;
671      }
672    }
673
674    LitVal = LitVal + ResultChar;
675    ++NumCharsSoFar;
676  }
677
678  // If this is the second character being processed, do special handling.
679  if (NumCharsSoFar > 1) {
680    // Warn about discarding the top bits for multi-char wide-character
681    // constants (L'abcd').
682    if (IsWide)
683      PP.Diag(Loc, diag::warn_extraneous_wide_char_constant);
684    else if (NumCharsSoFar != 4)
685      PP.Diag(Loc, diag::ext_multichar_character_literal);
686    else
687      PP.Diag(Loc, diag::ext_four_char_character_literal);
688    IsMultiChar = true;
689  } else
690    IsMultiChar = false;
691
692  // Transfer the value from APInt to uint64_t
693  Value = LitVal.getZExtValue();
694
695  // If this is a single narrow character, sign extend it (e.g. '\xFF' is "-1")
696  // if 'char' is signed for this target (C99 6.4.4.4p10).  Note that multiple
697  // character constants are not sign extended in the this implementation:
698  // '\xFF\xFF' = 65536 and '\x0\xFF' = 255, which matches GCC.
699  if (!IsWide && NumCharsSoFar == 1 && (Value & 128) &&
700      PP.getLangOptions().CharIsSigned)
701    Value = (signed char)Value;
702}
703
704
705///       string-literal: [C99 6.4.5]
706///          " [s-char-sequence] "
707///         L" [s-char-sequence] "
708///       s-char-sequence:
709///         s-char
710///         s-char-sequence s-char
711///       s-char:
712///         any source character except the double quote ",
713///           backslash \, or newline character
714///         escape-character
715///         universal-character-name
716///       escape-character: [C99 6.4.4.4]
717///         \ escape-code
718///         universal-character-name
719///       escape-code:
720///         character-escape-code
721///         octal-escape-code
722///         hex-escape-code
723///       character-escape-code: one of
724///         n t b r f v a
725///         \ ' " ?
726///       octal-escape-code:
727///         octal-digit
728///         octal-digit octal-digit
729///         octal-digit octal-digit octal-digit
730///       hex-escape-code:
731///         x hex-digit
732///         hex-escape-code hex-digit
733///       universal-character-name:
734///         \u hex-quad
735///         \U hex-quad hex-quad
736///       hex-quad:
737///         hex-digit hex-digit hex-digit hex-digit
738///
739StringLiteralParser::
740StringLiteralParser(const Token *StringToks, unsigned NumStringToks,
741                    Preprocessor &pp) : PP(pp) {
742  // Scan all of the string portions, remember the max individual token length,
743  // computing a bound on the concatenated string length, and see whether any
744  // piece is a wide-string.  If any of the string portions is a wide-string
745  // literal, the result is a wide-string literal [C99 6.4.5p4].
746  MaxTokenLength = StringToks[0].getLength();
747  SizeBound = StringToks[0].getLength()-2;  // -2 for "".
748  AnyWide = StringToks[0].is(tok::wide_string_literal);
749
750  hadError = false;
751
752  // Implement Translation Phase #6: concatenation of string literals
753  /// (C99 5.1.1.2p1).  The common case is only one string fragment.
754  for (unsigned i = 1; i != NumStringToks; ++i) {
755    // The string could be shorter than this if it needs cleaning, but this is a
756    // reasonable bound, which is all we need.
757    SizeBound += StringToks[i].getLength()-2;  // -2 for "".
758
759    // Remember maximum string piece length.
760    if (StringToks[i].getLength() > MaxTokenLength)
761      MaxTokenLength = StringToks[i].getLength();
762
763    // Remember if we see any wide strings.
764    AnyWide |= StringToks[i].is(tok::wide_string_literal);
765  }
766
767  // Include space for the null terminator.
768  ++SizeBound;
769
770  // TODO: K&R warning: "traditional C rejects string constant concatenation"
771
772  // Get the width in bytes of wchar_t.  If no wchar_t strings are used, do not
773  // query the target.  As such, wchar_tByteWidth is only valid if AnyWide=true.
774  wchar_tByteWidth = ~0U;
775  if (AnyWide) {
776    wchar_tByteWidth = PP.getTargetInfo().getWCharWidth();
777    assert((wchar_tByteWidth & 7) == 0 && "Assumes wchar_t is byte multiple!");
778    wchar_tByteWidth /= 8;
779  }
780
781  // The output buffer size needs to be large enough to hold wide characters.
782  // This is a worst-case assumption which basically corresponds to L"" "long".
783  if (AnyWide)
784    SizeBound *= wchar_tByteWidth;
785
786  // Size the temporary buffer to hold the result string data.
787  ResultBuf.resize(SizeBound);
788
789  // Likewise, but for each string piece.
790  llvm::SmallString<512> TokenBuf;
791  TokenBuf.resize(MaxTokenLength);
792
793  // Loop over all the strings, getting their spelling, and expanding them to
794  // wide strings as appropriate.
795  ResultPtr = &ResultBuf[0];   // Next byte to fill in.
796
797  Pascal = false;
798
799  for (unsigned i = 0, e = NumStringToks; i != e; ++i) {
800    const char *ThisTokBuf = &TokenBuf[0];
801    // Get the spelling of the token, which eliminates trigraphs, etc.  We know
802    // that ThisTokBuf points to a buffer that is big enough for the whole token
803    // and 'spelled' tokens can only shrink.
804    unsigned ThisTokLen = PP.getSpelling(StringToks[i], ThisTokBuf);
805    const char *ThisTokEnd = ThisTokBuf+ThisTokLen-1;  // Skip end quote.
806
807    // TODO: Input character set mapping support.
808
809    // Skip L marker for wide strings.
810    bool ThisIsWide = false;
811    if (ThisTokBuf[0] == 'L') {
812      ++ThisTokBuf;
813      ThisIsWide = true;
814    }
815
816    assert(ThisTokBuf[0] == '"' && "Expected quote, lexer broken?");
817    ++ThisTokBuf;
818
819    // Check if this is a pascal string
820    if (pp.getLangOptions().PascalStrings && ThisTokBuf + 1 != ThisTokEnd &&
821        ThisTokBuf[0] == '\\' && ThisTokBuf[1] == 'p') {
822
823      // If the \p sequence is found in the first token, we have a pascal string
824      // Otherwise, if we already have a pascal string, ignore the first \p
825      if (i == 0) {
826        ++ThisTokBuf;
827        Pascal = true;
828      } else if (Pascal)
829        ThisTokBuf += 2;
830    }
831
832    while (ThisTokBuf != ThisTokEnd) {
833      // Is this a span of non-escape characters?
834      if (ThisTokBuf[0] != '\\') {
835        const char *InStart = ThisTokBuf;
836        do {
837          ++ThisTokBuf;
838        } while (ThisTokBuf != ThisTokEnd && ThisTokBuf[0] != '\\');
839
840        // Copy the character span over.
841        unsigned Len = ThisTokBuf-InStart;
842        if (!AnyWide) {
843          memcpy(ResultPtr, InStart, Len);
844          ResultPtr += Len;
845        } else {
846          // Note: our internal rep of wide char tokens is always little-endian.
847          for (; Len; --Len, ++InStart) {
848            *ResultPtr++ = InStart[0];
849            // Add zeros at the end.
850            for (unsigned i = 1, e = wchar_tByteWidth; i != e; ++i)
851              *ResultPtr++ = 0;
852          }
853        }
854        continue;
855      }
856      // Is this a Universal Character Name escape?
857      if (ThisTokBuf[1] == 'u' || ThisTokBuf[1] == 'U') {
858        ProcessUCNEscape(ThisTokBuf, ThisTokEnd, ResultPtr,
859                         hadError, StringToks[i].getLocation(), ThisIsWide, PP);
860        continue;
861      }
862      // Otherwise, this is a non-UCN escape character.  Process it.
863      unsigned ResultChar = ProcessCharEscape(ThisTokBuf, ThisTokEnd, hadError,
864                                              StringToks[i].getLocation(),
865                                              ThisIsWide, PP);
866
867      // Note: our internal rep of wide char tokens is always little-endian.
868      *ResultPtr++ = ResultChar & 0xFF;
869
870      if (AnyWide) {
871        for (unsigned i = 1, e = wchar_tByteWidth; i != e; ++i)
872          *ResultPtr++ = ResultChar >> i*8;
873      }
874    }
875  }
876
877  if (Pascal) {
878    ResultBuf[0] = ResultPtr-&ResultBuf[0]-1;
879
880    // Verify that pascal strings aren't too large.
881    if (GetStringLength() > 256) {
882      PP.Diag(StringToks[0].getLocation(), diag::err_pascal_string_too_long)
883        << SourceRange(StringToks[0].getLocation(),
884                       StringToks[NumStringToks-1].getLocation());
885      hadError = 1;
886      return;
887    }
888  }
889}
890
891
892/// getOffsetOfStringByte - This function returns the offset of the
893/// specified byte of the string data represented by Token.  This handles
894/// advancing over escape sequences in the string.
895unsigned StringLiteralParser::getOffsetOfStringByte(const Token &Tok,
896                                                    unsigned ByteNo,
897                                                    Preprocessor &PP) {
898  // Get the spelling of the token.
899  llvm::SmallString<16> SpellingBuffer;
900  SpellingBuffer.resize(Tok.getLength());
901
902  const char *SpellingPtr = &SpellingBuffer[0];
903  unsigned TokLen = PP.getSpelling(Tok, SpellingPtr);
904
905  assert(SpellingPtr[0] != 'L' && "Doesn't handle wide strings yet");
906
907
908  const char *SpellingStart = SpellingPtr;
909  const char *SpellingEnd = SpellingPtr+TokLen;
910
911  // Skip over the leading quote.
912  assert(SpellingPtr[0] == '"' && "Should be a string literal!");
913  ++SpellingPtr;
914
915  // Skip over bytes until we find the offset we're looking for.
916  while (ByteNo) {
917    assert(SpellingPtr < SpellingEnd && "Didn't find byte offset!");
918
919    // Step over non-escapes simply.
920    if (*SpellingPtr != '\\') {
921      ++SpellingPtr;
922      --ByteNo;
923      continue;
924    }
925
926    // Otherwise, this is an escape character.  Advance over it.
927    bool HadError = false;
928    ProcessCharEscape(SpellingPtr, SpellingEnd, HadError,
929                      Tok.getLocation(), false, PP);
930    assert(!HadError && "This method isn't valid on erroneous strings");
931    --ByteNo;
932  }
933
934  return SpellingPtr-SpellingStart;
935}
936