LiteralSupport.cpp revision 193576
1//===--- LiteralSupport.cpp - Code to parse and process literals ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the NumericLiteralParser, CharLiteralParser, and
11// StringLiteralParser interfaces.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Lex/LiteralSupport.h"
16#include "clang/Lex/Preprocessor.h"
17#include "clang/Lex/LexDiagnostic.h"
18#include "clang/Basic/TargetInfo.h"
19#include "llvm/ADT/StringExtras.h"
20using namespace clang;
21
22/// HexDigitValue - Return the value of the specified hex digit, or -1 if it's
23/// not valid.
24static int HexDigitValue(char C) {
25  if (C >= '0' && C <= '9') return C-'0';
26  if (C >= 'a' && C <= 'f') return C-'a'+10;
27  if (C >= 'A' && C <= 'F') return C-'A'+10;
28  return -1;
29}
30
31/// ProcessCharEscape - Parse a standard C escape sequence, which can occur in
32/// either a character or a string literal.
33static unsigned ProcessCharEscape(const char *&ThisTokBuf,
34                                  const char *ThisTokEnd, bool &HadError,
35                                  SourceLocation Loc, bool IsWide,
36                                  Preprocessor &PP) {
37  // Skip the '\' char.
38  ++ThisTokBuf;
39
40  // We know that this character can't be off the end of the buffer, because
41  // that would have been \", which would not have been the end of string.
42  unsigned ResultChar = *ThisTokBuf++;
43  switch (ResultChar) {
44  // These map to themselves.
45  case '\\': case '\'': case '"': case '?': break;
46
47    // These have fixed mappings.
48  case 'a':
49    // TODO: K&R: the meaning of '\\a' is different in traditional C
50    ResultChar = 7;
51    break;
52  case 'b':
53    ResultChar = 8;
54    break;
55  case 'e':
56    PP.Diag(Loc, diag::ext_nonstandard_escape) << "e";
57    ResultChar = 27;
58    break;
59  case 'f':
60    ResultChar = 12;
61    break;
62  case 'n':
63    ResultChar = 10;
64    break;
65  case 'r':
66    ResultChar = 13;
67    break;
68  case 't':
69    ResultChar = 9;
70    break;
71  case 'v':
72    ResultChar = 11;
73    break;
74  case 'x': { // Hex escape.
75    ResultChar = 0;
76    if (ThisTokBuf == ThisTokEnd || !isxdigit(*ThisTokBuf)) {
77      PP.Diag(Loc, diag::err_hex_escape_no_digits);
78      HadError = 1;
79      break;
80    }
81
82    // Hex escapes are a maximal series of hex digits.
83    bool Overflow = false;
84    for (; ThisTokBuf != ThisTokEnd; ++ThisTokBuf) {
85      int CharVal = HexDigitValue(ThisTokBuf[0]);
86      if (CharVal == -1) break;
87      // About to shift out a digit?
88      Overflow |= (ResultChar & 0xF0000000) ? true : false;
89      ResultChar <<= 4;
90      ResultChar |= CharVal;
91    }
92
93    // See if any bits will be truncated when evaluated as a character.
94    unsigned CharWidth = PP.getTargetInfo().getCharWidth(IsWide);
95
96    if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
97      Overflow = true;
98      ResultChar &= ~0U >> (32-CharWidth);
99    }
100
101    // Check for overflow.
102    if (Overflow)   // Too many digits to fit in
103      PP.Diag(Loc, diag::warn_hex_escape_too_large);
104    break;
105  }
106  case '0': case '1': case '2': case '3':
107  case '4': case '5': case '6': case '7': {
108    // Octal escapes.
109    --ThisTokBuf;
110    ResultChar = 0;
111
112    // Octal escapes are a series of octal digits with maximum length 3.
113    // "\0123" is a two digit sequence equal to "\012" "3".
114    unsigned NumDigits = 0;
115    do {
116      ResultChar <<= 3;
117      ResultChar |= *ThisTokBuf++ - '0';
118      ++NumDigits;
119    } while (ThisTokBuf != ThisTokEnd && NumDigits < 3 &&
120             ThisTokBuf[0] >= '0' && ThisTokBuf[0] <= '7');
121
122    // Check for overflow.  Reject '\777', but not L'\777'.
123    unsigned CharWidth = PP.getTargetInfo().getCharWidth(IsWide);
124
125    if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
126      PP.Diag(Loc, diag::warn_octal_escape_too_large);
127      ResultChar &= ~0U >> (32-CharWidth);
128    }
129    break;
130  }
131
132    // Otherwise, these are not valid escapes.
133  case '(': case '{': case '[': case '%':
134    // GCC accepts these as extensions.  We warn about them as such though.
135    PP.Diag(Loc, diag::ext_nonstandard_escape)
136      << std::string()+(char)ResultChar;
137    break;
138    // FALL THROUGH.
139  default:
140    if (isgraph(ThisTokBuf[0]))
141      PP.Diag(Loc, diag::ext_unknown_escape) << std::string()+(char)ResultChar;
142    else
143      PP.Diag(Loc, diag::ext_unknown_escape) << "x"+llvm::utohexstr(ResultChar);
144    break;
145  }
146
147  return ResultChar;
148}
149
150/// ProcessUCNEscape - Read the Universal Character Name, check constraints and
151/// convert the UTF32 to UTF8. This is a subroutine of StringLiteralParser.
152/// When we decide to implement UCN's for character constants and identifiers,
153/// we will likely rework our support for UCN's.
154static void ProcessUCNEscape(const char *&ThisTokBuf, const char *ThisTokEnd,
155                             char *&ResultBuf, bool &HadError,
156                             SourceLocation Loc, bool IsWide, Preprocessor &PP)
157{
158  // FIXME: Add a warning - UCN's are only valid in C++ & C99.
159  // FIXME: Handle wide strings.
160
161  // Save the beginning of the string (for error diagnostics).
162  const char *ThisTokBegin = ThisTokBuf;
163
164  // Skip the '\u' char's.
165  ThisTokBuf += 2;
166
167  if (ThisTokBuf == ThisTokEnd || !isxdigit(*ThisTokBuf)) {
168    PP.Diag(Loc, diag::err_ucn_escape_no_digits);
169    HadError = 1;
170    return;
171  }
172  typedef uint32_t UTF32;
173
174  UTF32 UcnVal = 0;
175  unsigned short UcnLen = (ThisTokBuf[-1] == 'u' ? 4 : 8);
176  for (; ThisTokBuf != ThisTokEnd && UcnLen; ++ThisTokBuf, UcnLen--) {
177    int CharVal = HexDigitValue(ThisTokBuf[0]);
178    if (CharVal == -1) break;
179    UcnVal <<= 4;
180    UcnVal |= CharVal;
181  }
182  // If we didn't consume the proper number of digits, there is a problem.
183  if (UcnLen) {
184    PP.Diag(PP.AdvanceToTokenCharacter(Loc, ThisTokBuf-ThisTokBegin),
185            diag::err_ucn_escape_incomplete);
186    HadError = 1;
187    return;
188  }
189  // Check UCN constraints (C99 6.4.3p2).
190  if ((UcnVal < 0xa0 &&
191      (UcnVal != 0x24 && UcnVal != 0x40 && UcnVal != 0x60 )) // $, @, `
192      || (UcnVal >= 0xD800 && UcnVal <= 0xDFFF)
193      || (UcnVal > 0x10FFFF)) /* the maximum legal UTF32 value */ {
194    PP.Diag(Loc, diag::err_ucn_escape_invalid);
195    HadError = 1;
196    return;
197  }
198  // Now that we've parsed/checked the UCN, we convert from UTF32->UTF8.
199  // The conversion below was inspired by:
200  //   http://www.unicode.org/Public/PROGRAMS/CVTUTF/ConvertUTF.c
201  // First, we determine how many bytes the result will require.
202  typedef uint8_t UTF8;
203
204  unsigned short bytesToWrite = 0;
205  if (UcnVal < (UTF32)0x80)
206    bytesToWrite = 1;
207  else if (UcnVal < (UTF32)0x800)
208    bytesToWrite = 2;
209  else if (UcnVal < (UTF32)0x10000)
210    bytesToWrite = 3;
211  else
212    bytesToWrite = 4;
213
214  const unsigned byteMask = 0xBF;
215  const unsigned byteMark = 0x80;
216
217  // Once the bits are split out into bytes of UTF8, this is a mask OR-ed
218  // into the first byte, depending on how many bytes follow.
219  static const UTF8 firstByteMark[5] = {
220    0x00, 0x00, 0xC0, 0xE0, 0xF0
221  };
222  // Finally, we write the bytes into ResultBuf.
223  ResultBuf += bytesToWrite;
224  switch (bytesToWrite) { // note: everything falls through.
225    case 4: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
226    case 3: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
227    case 2: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
228    case 1: *--ResultBuf = (UTF8) (UcnVal | firstByteMark[bytesToWrite]);
229  }
230  // Update the buffer.
231  ResultBuf += bytesToWrite;
232}
233
234
235///       integer-constant: [C99 6.4.4.1]
236///         decimal-constant integer-suffix
237///         octal-constant integer-suffix
238///         hexadecimal-constant integer-suffix
239///       decimal-constant:
240///         nonzero-digit
241///         decimal-constant digit
242///       octal-constant:
243///         0
244///         octal-constant octal-digit
245///       hexadecimal-constant:
246///         hexadecimal-prefix hexadecimal-digit
247///         hexadecimal-constant hexadecimal-digit
248///       hexadecimal-prefix: one of
249///         0x 0X
250///       integer-suffix:
251///         unsigned-suffix [long-suffix]
252///         unsigned-suffix [long-long-suffix]
253///         long-suffix [unsigned-suffix]
254///         long-long-suffix [unsigned-sufix]
255///       nonzero-digit:
256///         1 2 3 4 5 6 7 8 9
257///       octal-digit:
258///         0 1 2 3 4 5 6 7
259///       hexadecimal-digit:
260///         0 1 2 3 4 5 6 7 8 9
261///         a b c d e f
262///         A B C D E F
263///       unsigned-suffix: one of
264///         u U
265///       long-suffix: one of
266///         l L
267///       long-long-suffix: one of
268///         ll LL
269///
270///       floating-constant: [C99 6.4.4.2]
271///         TODO: add rules...
272///
273NumericLiteralParser::
274NumericLiteralParser(const char *begin, const char *end,
275                     SourceLocation TokLoc, Preprocessor &pp)
276  : PP(pp), ThisTokBegin(begin), ThisTokEnd(end) {
277
278  // This routine assumes that the range begin/end matches the regex for integer
279  // and FP constants (specifically, the 'pp-number' regex), and assumes that
280  // the byte at "*end" is both valid and not part of the regex.  Because of
281  // this, it doesn't have to check for 'overscan' in various places.
282  assert(!isalnum(*end) && *end != '.' && *end != '_' &&
283         "Lexer didn't maximally munch?");
284
285  s = DigitsBegin = begin;
286  saw_exponent = false;
287  saw_period = false;
288  isLong = false;
289  isUnsigned = false;
290  isLongLong = false;
291  isFloat = false;
292  isImaginary = false;
293  hadError = false;
294
295  if (*s == '0') { // parse radix
296    ParseNumberStartingWithZero(TokLoc);
297    if (hadError)
298      return;
299  } else { // the first digit is non-zero
300    radix = 10;
301    s = SkipDigits(s);
302    if (s == ThisTokEnd) {
303      // Done.
304    } else if (isxdigit(*s) && !(*s == 'e' || *s == 'E')) {
305      PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-begin),
306              diag::err_invalid_decimal_digit) << std::string(s, s+1);
307      hadError = true;
308      return;
309    } else if (*s == '.') {
310      s++;
311      saw_period = true;
312      s = SkipDigits(s);
313    }
314    if ((*s == 'e' || *s == 'E')) { // exponent
315      const char *Exponent = s;
316      s++;
317      saw_exponent = true;
318      if (*s == '+' || *s == '-')  s++; // sign
319      const char *first_non_digit = SkipDigits(s);
320      if (first_non_digit != s) {
321        s = first_non_digit;
322      } else {
323        PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-begin),
324                diag::err_exponent_has_no_digits);
325        hadError = true;
326        return;
327      }
328    }
329  }
330
331  SuffixBegin = s;
332
333  // Parse the suffix.  At this point we can classify whether we have an FP or
334  // integer constant.
335  bool isFPConstant = isFloatingLiteral();
336
337  // Loop over all of the characters of the suffix.  If we see something bad,
338  // we break out of the loop.
339  for (; s != ThisTokEnd; ++s) {
340    switch (*s) {
341    case 'f':      // FP Suffix for "float"
342    case 'F':
343      if (!isFPConstant) break;  // Error for integer constant.
344      if (isFloat || isLong) break; // FF, LF invalid.
345      isFloat = true;
346      continue;  // Success.
347    case 'u':
348    case 'U':
349      if (isFPConstant) break;  // Error for floating constant.
350      if (isUnsigned) break;    // Cannot be repeated.
351      isUnsigned = true;
352      continue;  // Success.
353    case 'l':
354    case 'L':
355      if (isLong || isLongLong) break;  // Cannot be repeated.
356      if (isFloat) break;               // LF invalid.
357
358      // Check for long long.  The L's need to be adjacent and the same case.
359      if (s+1 != ThisTokEnd && s[1] == s[0]) {
360        if (isFPConstant) break;        // long long invalid for floats.
361        isLongLong = true;
362        ++s;  // Eat both of them.
363      } else {
364        isLong = true;
365      }
366      continue;  // Success.
367    case 'i':
368      if (PP.getLangOptions().Microsoft) {
369        // Allow i8, i16, i32, i64, and i128.
370        if (++s == ThisTokEnd) break;
371        switch (*s) {
372          case '8':
373            s++; // i8 suffix
374            break;
375          case '1':
376            if (++s == ThisTokEnd) break;
377            if (*s == '6') s++; // i16 suffix
378            else if (*s == '2') {
379              if (++s == ThisTokEnd) break;
380              if (*s == '8') s++; // i128 suffix
381            }
382            break;
383          case '3':
384            if (++s == ThisTokEnd) break;
385            if (*s == '2') s++; // i32 suffix
386            break;
387          case '6':
388            if (++s == ThisTokEnd) break;
389            if (*s == '4') s++; // i64 suffix
390            break;
391          default:
392            break;
393        }
394        break;
395      }
396      // fall through.
397    case 'I':
398    case 'j':
399    case 'J':
400      if (isImaginary) break;   // Cannot be repeated.
401      PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-begin),
402              diag::ext_imaginary_constant);
403      isImaginary = true;
404      continue;  // Success.
405    }
406    // If we reached here, there was an error.
407    break;
408  }
409
410  // Report an error if there are any.
411  if (s != ThisTokEnd) {
412    PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-begin),
413            isFPConstant ? diag::err_invalid_suffix_float_constant :
414                           diag::err_invalid_suffix_integer_constant)
415      << std::string(SuffixBegin, ThisTokEnd);
416    hadError = true;
417    return;
418  }
419}
420
421/// ParseNumberStartingWithZero - This method is called when the first character
422/// of the number is found to be a zero.  This means it is either an octal
423/// number (like '04') or a hex number ('0x123a') a binary number ('0b1010') or
424/// a floating point number (01239.123e4).  Eat the prefix, determining the
425/// radix etc.
426void NumericLiteralParser::ParseNumberStartingWithZero(SourceLocation TokLoc) {
427  assert(s[0] == '0' && "Invalid method call");
428  s++;
429
430  // Handle a hex number like 0x1234.
431  if ((*s == 'x' || *s == 'X') && (isxdigit(s[1]) || s[1] == '.')) {
432    s++;
433    radix = 16;
434    DigitsBegin = s;
435    s = SkipHexDigits(s);
436    if (s == ThisTokEnd) {
437      // Done.
438    } else if (*s == '.') {
439      s++;
440      saw_period = true;
441      s = SkipHexDigits(s);
442    }
443    // A binary exponent can appear with or with a '.'. If dotted, the
444    // binary exponent is required.
445    if (*s == 'p' || *s == 'P') {
446      const char *Exponent = s;
447      s++;
448      saw_exponent = true;
449      if (*s == '+' || *s == '-')  s++; // sign
450      const char *first_non_digit = SkipDigits(s);
451      if (first_non_digit == s) {
452        PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-ThisTokBegin),
453                diag::err_exponent_has_no_digits);
454        hadError = true;
455        return;
456      }
457      s = first_non_digit;
458
459      if (!PP.getLangOptions().HexFloats)
460        PP.Diag(TokLoc, diag::ext_hexconstant_invalid);
461    } else if (saw_period) {
462      PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
463              diag::err_hexconstant_requires_exponent);
464      hadError = true;
465    }
466    return;
467  }
468
469  // Handle simple binary numbers 0b01010
470  if (*s == 'b' || *s == 'B') {
471    // 0b101010 is a GCC extension.
472    PP.Diag(TokLoc, diag::ext_binary_literal);
473    ++s;
474    radix = 2;
475    DigitsBegin = s;
476    s = SkipBinaryDigits(s);
477    if (s == ThisTokEnd) {
478      // Done.
479    } else if (isxdigit(*s)) {
480      PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
481              diag::err_invalid_binary_digit) << std::string(s, s+1);
482      hadError = true;
483    }
484    // Other suffixes will be diagnosed by the caller.
485    return;
486  }
487
488  // For now, the radix is set to 8. If we discover that we have a
489  // floating point constant, the radix will change to 10. Octal floating
490  // point constants are not permitted (only decimal and hexadecimal).
491  radix = 8;
492  DigitsBegin = s;
493  s = SkipOctalDigits(s);
494  if (s == ThisTokEnd)
495    return; // Done, simple octal number like 01234
496
497  // If we have some other non-octal digit that *is* a decimal digit, see if
498  // this is part of a floating point number like 094.123 or 09e1.
499  if (isdigit(*s)) {
500    const char *EndDecimal = SkipDigits(s);
501    if (EndDecimal[0] == '.' || EndDecimal[0] == 'e' || EndDecimal[0] == 'E') {
502      s = EndDecimal;
503      radix = 10;
504    }
505  }
506
507  // If we have a hex digit other than 'e' (which denotes a FP exponent) then
508  // the code is using an incorrect base.
509  if (isxdigit(*s) && *s != 'e' && *s != 'E') {
510    PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
511            diag::err_invalid_octal_digit) << std::string(s, s+1);
512    hadError = true;
513    return;
514  }
515
516  if (*s == '.') {
517    s++;
518    radix = 10;
519    saw_period = true;
520    s = SkipDigits(s); // Skip suffix.
521  }
522  if (*s == 'e' || *s == 'E') { // exponent
523    const char *Exponent = s;
524    s++;
525    radix = 10;
526    saw_exponent = true;
527    if (*s == '+' || *s == '-')  s++; // sign
528    const char *first_non_digit = SkipDigits(s);
529    if (first_non_digit != s) {
530      s = first_non_digit;
531    } else {
532      PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-ThisTokBegin),
533              diag::err_exponent_has_no_digits);
534      hadError = true;
535      return;
536    }
537  }
538}
539
540
541/// GetIntegerValue - Convert this numeric literal value to an APInt that
542/// matches Val's input width.  If there is an overflow, set Val to the low bits
543/// of the result and return true.  Otherwise, return false.
544bool NumericLiteralParser::GetIntegerValue(llvm::APInt &Val) {
545  // Fast path: Compute a conservative bound on the maximum number of
546  // bits per digit in this radix. If we can't possibly overflow a
547  // uint64 based on that bound then do the simple conversion to
548  // integer. This avoids the expensive overflow checking below, and
549  // handles the common cases that matter (small decimal integers and
550  // hex/octal values which don't overflow).
551  unsigned MaxBitsPerDigit = 1;
552  while ((1U << MaxBitsPerDigit) < radix)
553    MaxBitsPerDigit += 1;
554  if ((SuffixBegin - DigitsBegin) * MaxBitsPerDigit <= 64) {
555    uint64_t N = 0;
556    for (s = DigitsBegin; s != SuffixBegin; ++s)
557      N = N*radix + HexDigitValue(*s);
558
559    // This will truncate the value to Val's input width. Simply check
560    // for overflow by comparing.
561    Val = N;
562    return Val.getZExtValue() != N;
563  }
564
565  Val = 0;
566  s = DigitsBegin;
567
568  llvm::APInt RadixVal(Val.getBitWidth(), radix);
569  llvm::APInt CharVal(Val.getBitWidth(), 0);
570  llvm::APInt OldVal = Val;
571
572  bool OverflowOccurred = false;
573  while (s < SuffixBegin) {
574    unsigned C = HexDigitValue(*s++);
575
576    // If this letter is out of bound for this radix, reject it.
577    assert(C < radix && "NumericLiteralParser ctor should have rejected this");
578
579    CharVal = C;
580
581    // Add the digit to the value in the appropriate radix.  If adding in digits
582    // made the value smaller, then this overflowed.
583    OldVal = Val;
584
585    // Multiply by radix, did overflow occur on the multiply?
586    Val *= RadixVal;
587    OverflowOccurred |= Val.udiv(RadixVal) != OldVal;
588
589    // Add value, did overflow occur on the value?
590    //   (a + b) ult b  <=> overflow
591    Val += CharVal;
592    OverflowOccurred |= Val.ult(CharVal);
593  }
594  return OverflowOccurred;
595}
596
597llvm::APFloat NumericLiteralParser::
598GetFloatValue(const llvm::fltSemantics &Format, bool* isExact) {
599  using llvm::APFloat;
600
601  llvm::SmallVector<char,256> floatChars;
602  for (unsigned i = 0, n = ThisTokEnd-ThisTokBegin; i != n; ++i)
603    floatChars.push_back(ThisTokBegin[i]);
604
605  floatChars.push_back('\0');
606
607  APFloat V (Format, APFloat::fcZero, false);
608  APFloat::opStatus status;
609
610  status = V.convertFromString(&floatChars[0],APFloat::rmNearestTiesToEven);
611
612  if (isExact)
613    *isExact = status == APFloat::opOK;
614
615  return V;
616}
617
618
619CharLiteralParser::CharLiteralParser(const char *begin, const char *end,
620                                     SourceLocation Loc, Preprocessor &PP) {
621  // At this point we know that the character matches the regex "L?'.*'".
622  HadError = false;
623
624  // Determine if this is a wide character.
625  IsWide = begin[0] == 'L';
626  if (IsWide) ++begin;
627
628  // Skip over the entry quote.
629  assert(begin[0] == '\'' && "Invalid token lexed");
630  ++begin;
631
632  // FIXME: The "Value" is an uint64_t so we can handle char literals of
633  // upto 64-bits.
634  // FIXME: This extensively assumes that 'char' is 8-bits.
635  assert(PP.getTargetInfo().getCharWidth() == 8 &&
636         "Assumes char is 8 bits");
637  assert(PP.getTargetInfo().getIntWidth() <= 64 &&
638         (PP.getTargetInfo().getIntWidth() & 7) == 0 &&
639         "Assumes sizeof(int) on target is <= 64 and a multiple of char");
640  assert(PP.getTargetInfo().getWCharWidth() <= 64 &&
641         "Assumes sizeof(wchar) on target is <= 64");
642
643  // This is what we will use for overflow detection
644  llvm::APInt LitVal(PP.getTargetInfo().getIntWidth(), 0);
645
646  unsigned NumCharsSoFar = 0;
647  while (begin[0] != '\'') {
648    uint64_t ResultChar;
649    if (begin[0] != '\\')     // If this is a normal character, consume it.
650      ResultChar = *begin++;
651    else                      // Otherwise, this is an escape character.
652      ResultChar = ProcessCharEscape(begin, end, HadError, Loc, IsWide, PP);
653
654    // If this is a multi-character constant (e.g. 'abc'), handle it.  These are
655    // implementation defined (C99 6.4.4.4p10).
656    if (NumCharsSoFar) {
657      if (IsWide) {
658        // Emulate GCC's (unintentional?) behavior: L'ab' -> L'b'.
659        LitVal = 0;
660      } else {
661        // Narrow character literals act as though their value is concatenated
662        // in this implementation, but warn on overflow.
663        if (LitVal.countLeadingZeros() < 8)
664          PP.Diag(Loc, diag::warn_char_constant_too_large);
665        LitVal <<= 8;
666      }
667    }
668
669    LitVal = LitVal + ResultChar;
670    ++NumCharsSoFar;
671  }
672
673  // If this is the second character being processed, do special handling.
674  if (NumCharsSoFar > 1) {
675    // Warn about discarding the top bits for multi-char wide-character
676    // constants (L'abcd').
677    if (IsWide)
678      PP.Diag(Loc, diag::warn_extraneous_wide_char_constant);
679    else if (NumCharsSoFar != 4)
680      PP.Diag(Loc, diag::ext_multichar_character_literal);
681    else
682      PP.Diag(Loc, diag::ext_four_char_character_literal);
683    IsMultiChar = true;
684  }
685
686  // Transfer the value from APInt to uint64_t
687  Value = LitVal.getZExtValue();
688
689  // If this is a single narrow character, sign extend it (e.g. '\xFF' is "-1")
690  // if 'char' is signed for this target (C99 6.4.4.4p10).  Note that multiple
691  // character constants are not sign extended in the this implementation:
692  // '\xFF\xFF' = 65536 and '\x0\xFF' = 255, which matches GCC.
693  if (!IsWide && NumCharsSoFar == 1 && (Value & 128) &&
694      PP.getLangOptions().CharIsSigned)
695    Value = (signed char)Value;
696}
697
698
699///       string-literal: [C99 6.4.5]
700///          " [s-char-sequence] "
701///         L" [s-char-sequence] "
702///       s-char-sequence:
703///         s-char
704///         s-char-sequence s-char
705///       s-char:
706///         any source character except the double quote ",
707///           backslash \, or newline character
708///         escape-character
709///         universal-character-name
710///       escape-character: [C99 6.4.4.4]
711///         \ escape-code
712///         universal-character-name
713///       escape-code:
714///         character-escape-code
715///         octal-escape-code
716///         hex-escape-code
717///       character-escape-code: one of
718///         n t b r f v a
719///         \ ' " ?
720///       octal-escape-code:
721///         octal-digit
722///         octal-digit octal-digit
723///         octal-digit octal-digit octal-digit
724///       hex-escape-code:
725///         x hex-digit
726///         hex-escape-code hex-digit
727///       universal-character-name:
728///         \u hex-quad
729///         \U hex-quad hex-quad
730///       hex-quad:
731///         hex-digit hex-digit hex-digit hex-digit
732///
733StringLiteralParser::
734StringLiteralParser(const Token *StringToks, unsigned NumStringToks,
735                    Preprocessor &pp) : PP(pp) {
736  // Scan all of the string portions, remember the max individual token length,
737  // computing a bound on the concatenated string length, and see whether any
738  // piece is a wide-string.  If any of the string portions is a wide-string
739  // literal, the result is a wide-string literal [C99 6.4.5p4].
740  MaxTokenLength = StringToks[0].getLength();
741  SizeBound = StringToks[0].getLength()-2;  // -2 for "".
742  AnyWide = StringToks[0].is(tok::wide_string_literal);
743
744  hadError = false;
745
746  // Implement Translation Phase #6: concatenation of string literals
747  /// (C99 5.1.1.2p1).  The common case is only one string fragment.
748  for (unsigned i = 1; i != NumStringToks; ++i) {
749    // The string could be shorter than this if it needs cleaning, but this is a
750    // reasonable bound, which is all we need.
751    SizeBound += StringToks[i].getLength()-2;  // -2 for "".
752
753    // Remember maximum string piece length.
754    if (StringToks[i].getLength() > MaxTokenLength)
755      MaxTokenLength = StringToks[i].getLength();
756
757    // Remember if we see any wide strings.
758    AnyWide |= StringToks[i].is(tok::wide_string_literal);
759  }
760
761  // Include space for the null terminator.
762  ++SizeBound;
763
764  // TODO: K&R warning: "traditional C rejects string constant concatenation"
765
766  // Get the width in bytes of wchar_t.  If no wchar_t strings are used, do not
767  // query the target.  As such, wchar_tByteWidth is only valid if AnyWide=true.
768  wchar_tByteWidth = ~0U;
769  if (AnyWide) {
770    wchar_tByteWidth = PP.getTargetInfo().getWCharWidth();
771    assert((wchar_tByteWidth & 7) == 0 && "Assumes wchar_t is byte multiple!");
772    wchar_tByteWidth /= 8;
773  }
774
775  // The output buffer size needs to be large enough to hold wide characters.
776  // This is a worst-case assumption which basically corresponds to L"" "long".
777  if (AnyWide)
778    SizeBound *= wchar_tByteWidth;
779
780  // Size the temporary buffer to hold the result string data.
781  ResultBuf.resize(SizeBound);
782
783  // Likewise, but for each string piece.
784  llvm::SmallString<512> TokenBuf;
785  TokenBuf.resize(MaxTokenLength);
786
787  // Loop over all the strings, getting their spelling, and expanding them to
788  // wide strings as appropriate.
789  ResultPtr = &ResultBuf[0];   // Next byte to fill in.
790
791  Pascal = false;
792
793  for (unsigned i = 0, e = NumStringToks; i != e; ++i) {
794    const char *ThisTokBuf = &TokenBuf[0];
795    // Get the spelling of the token, which eliminates trigraphs, etc.  We know
796    // that ThisTokBuf points to a buffer that is big enough for the whole token
797    // and 'spelled' tokens can only shrink.
798    unsigned ThisTokLen = PP.getSpelling(StringToks[i], ThisTokBuf);
799    const char *ThisTokEnd = ThisTokBuf+ThisTokLen-1;  // Skip end quote.
800
801    // TODO: Input character set mapping support.
802
803    // Skip L marker for wide strings.
804    bool ThisIsWide = false;
805    if (ThisTokBuf[0] == 'L') {
806      ++ThisTokBuf;
807      ThisIsWide = true;
808    }
809
810    assert(ThisTokBuf[0] == '"' && "Expected quote, lexer broken?");
811    ++ThisTokBuf;
812
813    // Check if this is a pascal string
814    if (pp.getLangOptions().PascalStrings && ThisTokBuf + 1 != ThisTokEnd &&
815        ThisTokBuf[0] == '\\' && ThisTokBuf[1] == 'p') {
816
817      // If the \p sequence is found in the first token, we have a pascal string
818      // Otherwise, if we already have a pascal string, ignore the first \p
819      if (i == 0) {
820        ++ThisTokBuf;
821        Pascal = true;
822      } else if (Pascal)
823        ThisTokBuf += 2;
824    }
825
826    while (ThisTokBuf != ThisTokEnd) {
827      // Is this a span of non-escape characters?
828      if (ThisTokBuf[0] != '\\') {
829        const char *InStart = ThisTokBuf;
830        do {
831          ++ThisTokBuf;
832        } while (ThisTokBuf != ThisTokEnd && ThisTokBuf[0] != '\\');
833
834        // Copy the character span over.
835        unsigned Len = ThisTokBuf-InStart;
836        if (!AnyWide) {
837          memcpy(ResultPtr, InStart, Len);
838          ResultPtr += Len;
839        } else {
840          // Note: our internal rep of wide char tokens is always little-endian.
841          for (; Len; --Len, ++InStart) {
842            *ResultPtr++ = InStart[0];
843            // Add zeros at the end.
844            for (unsigned i = 1, e = wchar_tByteWidth; i != e; ++i)
845              *ResultPtr++ = 0;
846          }
847        }
848        continue;
849      }
850      // Is this a Universal Character Name escape?
851      if (ThisTokBuf[1] == 'u' || ThisTokBuf[1] == 'U') {
852        ProcessUCNEscape(ThisTokBuf, ThisTokEnd, ResultPtr,
853                         hadError, StringToks[i].getLocation(), ThisIsWide, PP);
854        continue;
855      }
856      // Otherwise, this is a non-UCN escape character.  Process it.
857      unsigned ResultChar = ProcessCharEscape(ThisTokBuf, ThisTokEnd, hadError,
858                                              StringToks[i].getLocation(),
859                                              ThisIsWide, PP);
860
861      // Note: our internal rep of wide char tokens is always little-endian.
862      *ResultPtr++ = ResultChar & 0xFF;
863
864      if (AnyWide) {
865        for (unsigned i = 1, e = wchar_tByteWidth; i != e; ++i)
866          *ResultPtr++ = ResultChar >> i*8;
867      }
868    }
869  }
870
871  if (Pascal) {
872    ResultBuf[0] = ResultPtr-&ResultBuf[0]-1;
873
874    // Verify that pascal strings aren't too large.
875    if (GetStringLength() > 256) {
876      PP.Diag(StringToks[0].getLocation(), diag::err_pascal_string_too_long)
877        << SourceRange(StringToks[0].getLocation(),
878                       StringToks[NumStringToks-1].getLocation());
879      hadError = 1;
880      return;
881    }
882  }
883}
884
885
886/// getOffsetOfStringByte - This function returns the offset of the
887/// specified byte of the string data represented by Token.  This handles
888/// advancing over escape sequences in the string.
889unsigned StringLiteralParser::getOffsetOfStringByte(const Token &Tok,
890                                                    unsigned ByteNo,
891                                                    Preprocessor &PP) {
892  // Get the spelling of the token.
893  llvm::SmallString<16> SpellingBuffer;
894  SpellingBuffer.resize(Tok.getLength());
895
896  const char *SpellingPtr = &SpellingBuffer[0];
897  unsigned TokLen = PP.getSpelling(Tok, SpellingPtr);
898
899  assert(SpellingPtr[0] != 'L' && "Doesn't handle wide strings yet");
900
901
902  const char *SpellingStart = SpellingPtr;
903  const char *SpellingEnd = SpellingPtr+TokLen;
904
905  // Skip over the leading quote.
906  assert(SpellingPtr[0] == '"' && "Should be a string literal!");
907  ++SpellingPtr;
908
909  // Skip over bytes until we find the offset we're looking for.
910  while (ByteNo) {
911    assert(SpellingPtr < SpellingEnd && "Didn't find byte offset!");
912
913    // Step over non-escapes simply.
914    if (*SpellingPtr != '\\') {
915      ++SpellingPtr;
916      --ByteNo;
917      continue;
918    }
919
920    // Otherwise, this is an escape character.  Advance over it.
921    bool HadError = false;
922    ProcessCharEscape(SpellingPtr, SpellingEnd, HadError,
923                      Tok.getLocation(), false, PP);
924    assert(!HadError && "This method isn't valid on erroneous strings");
925    --ByteNo;
926  }
927
928  return SpellingPtr-SpellingStart;
929}
930