CodeGenModule.cpp revision 195341
1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-module state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenModule.h"
15#include "CGDebugInfo.h"
16#include "CodeGenFunction.h"
17#include "CGCall.h"
18#include "CGObjCRuntime.h"
19#include "Mangle.h"
20#include "clang/Frontend/CompileOptions.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclCXX.h"
24#include "clang/Basic/Builtins.h"
25#include "clang/Basic/Diagnostic.h"
26#include "clang/Basic/SourceManager.h"
27#include "clang/Basic/TargetInfo.h"
28#include "clang/Basic/ConvertUTF.h"
29#include "llvm/CallingConv.h"
30#include "llvm/Module.h"
31#include "llvm/Intrinsics.h"
32#include "llvm/Target/TargetData.h"
33using namespace clang;
34using namespace CodeGen;
35
36
37CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts,
38                             llvm::Module &M, const llvm::TargetData &TD,
39                             Diagnostic &diags)
40  : BlockModule(C, M, TD, Types, *this), Context(C),
41    Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M),
42    TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0),
43    MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) {
44
45  if (!Features.ObjC1)
46    Runtime = 0;
47  else if (!Features.NeXTRuntime)
48    Runtime = CreateGNUObjCRuntime(*this);
49  else if (Features.ObjCNonFragileABI)
50    Runtime = CreateMacNonFragileABIObjCRuntime(*this);
51  else
52    Runtime = CreateMacObjCRuntime(*this);
53
54  // If debug info generation is enabled, create the CGDebugInfo object.
55  DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0;
56}
57
58CodeGenModule::~CodeGenModule() {
59  delete Runtime;
60  delete DebugInfo;
61}
62
63void CodeGenModule::Release() {
64  EmitDeferred();
65  if (Runtime)
66    if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
67      AddGlobalCtor(ObjCInitFunction);
68  EmitCtorList(GlobalCtors, "llvm.global_ctors");
69  EmitCtorList(GlobalDtors, "llvm.global_dtors");
70  EmitAnnotations();
71  EmitLLVMUsed();
72}
73
74/// ErrorUnsupported - Print out an error that codegen doesn't support the
75/// specified stmt yet.
76void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
77                                     bool OmitOnError) {
78  if (OmitOnError && getDiags().hasErrorOccurred())
79    return;
80  unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
81                                               "cannot compile this %0 yet");
82  std::string Msg = Type;
83  getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
84    << Msg << S->getSourceRange();
85}
86
87/// ErrorUnsupported - Print out an error that codegen doesn't support the
88/// specified decl yet.
89void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
90                                     bool OmitOnError) {
91  if (OmitOnError && getDiags().hasErrorOccurred())
92    return;
93  unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
94                                               "cannot compile this %0 yet");
95  std::string Msg = Type;
96  getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
97}
98
99LangOptions::VisibilityMode
100CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
101  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
102    if (VD->getStorageClass() == VarDecl::PrivateExtern)
103      return LangOptions::Hidden;
104
105  if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
106    switch (attr->getVisibility()) {
107    default: assert(0 && "Unknown visibility!");
108    case VisibilityAttr::DefaultVisibility:
109      return LangOptions::Default;
110    case VisibilityAttr::HiddenVisibility:
111      return LangOptions::Hidden;
112    case VisibilityAttr::ProtectedVisibility:
113      return LangOptions::Protected;
114    }
115  }
116
117  return getLangOptions().getVisibilityMode();
118}
119
120void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
121                                        const Decl *D) const {
122  // Internal definitions always have default visibility.
123  if (GV->hasLocalLinkage()) {
124    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
125    return;
126  }
127
128  switch (getDeclVisibilityMode(D)) {
129  default: assert(0 && "Unknown visibility!");
130  case LangOptions::Default:
131    return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
132  case LangOptions::Hidden:
133    return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
134  case LangOptions::Protected:
135    return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
136  }
137}
138
139const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
140  const NamedDecl *ND = GD.getDecl();
141
142  if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
143    return getMangledCXXCtorName(D, GD.getCtorType());
144  if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
145    return getMangledCXXDtorName(D, GD.getDtorType());
146
147  return getMangledName(ND);
148}
149
150/// \brief Retrieves the mangled name for the given declaration.
151///
152/// If the given declaration requires a mangled name, returns an
153/// const char* containing the mangled name.  Otherwise, returns
154/// the unmangled name.
155///
156const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
157  // In C, functions with no attributes never need to be mangled. Fastpath them.
158  if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
159    assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
160    return ND->getNameAsCString();
161  }
162
163  llvm::SmallString<256> Name;
164  llvm::raw_svector_ostream Out(Name);
165  if (!mangleName(ND, Context, Out)) {
166    assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
167    return ND->getNameAsCString();
168  }
169
170  Name += '\0';
171  return UniqueMangledName(Name.begin(), Name.end());
172}
173
174const char *CodeGenModule::UniqueMangledName(const char *NameStart,
175                                             const char *NameEnd) {
176  assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
177
178  return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
179}
180
181/// AddGlobalCtor - Add a function to the list that will be called before
182/// main() runs.
183void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
184  // FIXME: Type coercion of void()* types.
185  GlobalCtors.push_back(std::make_pair(Ctor, Priority));
186}
187
188/// AddGlobalDtor - Add a function to the list that will be called
189/// when the module is unloaded.
190void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
191  // FIXME: Type coercion of void()* types.
192  GlobalDtors.push_back(std::make_pair(Dtor, Priority));
193}
194
195void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
196  // Ctor function type is void()*.
197  llvm::FunctionType* CtorFTy =
198    llvm::FunctionType::get(llvm::Type::VoidTy,
199                            std::vector<const llvm::Type*>(),
200                            false);
201  llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
202
203  // Get the type of a ctor entry, { i32, void ()* }.
204  llvm::StructType* CtorStructTy =
205    llvm::StructType::get(llvm::Type::Int32Ty,
206                          llvm::PointerType::getUnqual(CtorFTy), NULL);
207
208  // Construct the constructor and destructor arrays.
209  std::vector<llvm::Constant*> Ctors;
210  for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
211    std::vector<llvm::Constant*> S;
212    S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false));
213    S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
214    Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
215  }
216
217  if (!Ctors.empty()) {
218    llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
219    new llvm::GlobalVariable(AT, false,
220                             llvm::GlobalValue::AppendingLinkage,
221                             llvm::ConstantArray::get(AT, Ctors),
222                             GlobalName,
223                             &TheModule);
224  }
225}
226
227void CodeGenModule::EmitAnnotations() {
228  if (Annotations.empty())
229    return;
230
231  // Create a new global variable for the ConstantStruct in the Module.
232  llvm::Constant *Array =
233  llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
234                                                Annotations.size()),
235                           Annotations);
236  llvm::GlobalValue *gv =
237  new llvm::GlobalVariable(Array->getType(), false,
238                           llvm::GlobalValue::AppendingLinkage, Array,
239                           "llvm.global.annotations", &TheModule);
240  gv->setSection("llvm.metadata");
241}
242
243static CodeGenModule::GVALinkage
244GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
245                      const LangOptions &Features) {
246  // The kind of external linkage this function will have, if it is not
247  // inline or static.
248  CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
249  if (Context.getLangOptions().CPlusPlus &&
250      (FD->getPrimaryTemplate() || FD->getInstantiatedFromMemberFunction()) &&
251      !FD->isExplicitSpecialization())
252    External = CodeGenModule::GVA_TemplateInstantiation;
253
254  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
255    // C++ member functions defined inside the class are always inline.
256    if (MD->isInline() || !MD->isOutOfLine())
257      return CodeGenModule::GVA_CXXInline;
258
259    return External;
260  }
261
262  // "static" functions get internal linkage.
263  if (FD->getStorageClass() == FunctionDecl::Static)
264    return CodeGenModule::GVA_Internal;
265
266  if (!FD->isInline())
267    return External;
268
269  // If the inline function explicitly has the GNU inline attribute on it, or if
270  // this is C89 mode, we use to GNU semantics.
271  if (!Features.C99 && !Features.CPlusPlus) {
272    // extern inline in GNU mode is like C99 inline.
273    if (FD->getStorageClass() == FunctionDecl::Extern)
274      return CodeGenModule::GVA_C99Inline;
275    // Normal inline is a strong symbol.
276    return CodeGenModule::GVA_StrongExternal;
277  } else if (FD->hasActiveGNUInlineAttribute(Context)) {
278    // GCC in C99 mode seems to use a different decision-making
279    // process for extern inline, which factors in previous
280    // declarations.
281    if (FD->isExternGNUInline(Context))
282      return CodeGenModule::GVA_C99Inline;
283    // Normal inline is a strong symbol.
284    return External;
285  }
286
287  // The definition of inline changes based on the language.  Note that we
288  // have already handled "static inline" above, with the GVA_Internal case.
289  if (Features.CPlusPlus)  // inline and extern inline.
290    return CodeGenModule::GVA_CXXInline;
291
292  assert(Features.C99 && "Must be in C99 mode if not in C89 or C++ mode");
293  if (FD->isC99InlineDefinition())
294    return CodeGenModule::GVA_C99Inline;
295
296  return CodeGenModule::GVA_StrongExternal;
297}
298
299/// SetFunctionDefinitionAttributes - Set attributes for a global.
300///
301/// FIXME: This is currently only done for aliases and functions, but not for
302/// variables (these details are set in EmitGlobalVarDefinition for variables).
303void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
304                                                    llvm::GlobalValue *GV) {
305  GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
306
307  if (Linkage == GVA_Internal) {
308    GV->setLinkage(llvm::Function::InternalLinkage);
309  } else if (D->hasAttr<DLLExportAttr>()) {
310    GV->setLinkage(llvm::Function::DLLExportLinkage);
311  } else if (D->hasAttr<WeakAttr>()) {
312    GV->setLinkage(llvm::Function::WeakAnyLinkage);
313  } else if (Linkage == GVA_C99Inline) {
314    // In C99 mode, 'inline' functions are guaranteed to have a strong
315    // definition somewhere else, so we can use available_externally linkage.
316    GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
317  } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
318    // In C++, the compiler has to emit a definition in every translation unit
319    // that references the function.  We should use linkonce_odr because
320    // a) if all references in this translation unit are optimized away, we
321    // don't need to codegen it.  b) if the function persists, it needs to be
322    // merged with other definitions. c) C++ has the ODR, so we know the
323    // definition is dependable.
324    GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
325  } else {
326    assert(Linkage == GVA_StrongExternal);
327    // Otherwise, we have strong external linkage.
328    GV->setLinkage(llvm::Function::ExternalLinkage);
329  }
330
331  SetCommonAttributes(D, GV);
332}
333
334void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
335                                              const CGFunctionInfo &Info,
336                                              llvm::Function *F) {
337  AttributeListType AttributeList;
338  ConstructAttributeList(Info, D, AttributeList);
339
340  F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
341                                        AttributeList.size()));
342
343  // Set the appropriate calling convention for the Function.
344  if (D->hasAttr<FastCallAttr>())
345    F->setCallingConv(llvm::CallingConv::X86_FastCall);
346
347  if (D->hasAttr<StdCallAttr>())
348    F->setCallingConv(llvm::CallingConv::X86_StdCall);
349}
350
351void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
352                                                           llvm::Function *F) {
353  if (!Features.Exceptions && !Features.ObjCNonFragileABI)
354    F->addFnAttr(llvm::Attribute::NoUnwind);
355
356  if (D->hasAttr<AlwaysInlineAttr>())
357    F->addFnAttr(llvm::Attribute::AlwaysInline);
358
359  if (D->hasAttr<NoinlineAttr>())
360    F->addFnAttr(llvm::Attribute::NoInline);
361}
362
363void CodeGenModule::SetCommonAttributes(const Decl *D,
364                                        llvm::GlobalValue *GV) {
365  setGlobalVisibility(GV, D);
366
367  if (D->hasAttr<UsedAttr>())
368    AddUsedGlobal(GV);
369
370  if (const SectionAttr *SA = D->getAttr<SectionAttr>())
371    GV->setSection(SA->getName());
372}
373
374void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
375                                                  llvm::Function *F,
376                                                  const CGFunctionInfo &FI) {
377  SetLLVMFunctionAttributes(D, FI, F);
378  SetLLVMFunctionAttributesForDefinition(D, F);
379
380  F->setLinkage(llvm::Function::InternalLinkage);
381
382  SetCommonAttributes(D, F);
383}
384
385void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
386                                          llvm::Function *F,
387                                          bool IsIncompleteFunction) {
388  if (!IsIncompleteFunction)
389    SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
390
391  // Only a few attributes are set on declarations; these may later be
392  // overridden by a definition.
393
394  if (FD->hasAttr<DLLImportAttr>()) {
395    F->setLinkage(llvm::Function::DLLImportLinkage);
396  } else if (FD->hasAttr<WeakAttr>() ||
397             FD->hasAttr<WeakImportAttr>()) {
398    // "extern_weak" is overloaded in LLVM; we probably should have
399    // separate linkage types for this.
400    F->setLinkage(llvm::Function::ExternalWeakLinkage);
401  } else {
402    F->setLinkage(llvm::Function::ExternalLinkage);
403  }
404
405  if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
406    F->setSection(SA->getName());
407}
408
409void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
410  assert(!GV->isDeclaration() &&
411         "Only globals with definition can force usage.");
412  LLVMUsed.push_back(GV);
413}
414
415void CodeGenModule::EmitLLVMUsed() {
416  // Don't create llvm.used if there is no need.
417  // FIXME. Runtime indicates that there might be more 'used' symbols; but not
418  // necessariy. So, this test is not accurate for emptiness.
419  if (LLVMUsed.empty() && !Runtime)
420    return;
421
422  llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
423
424  // Convert LLVMUsed to what ConstantArray needs.
425  std::vector<llvm::Constant*> UsedArray;
426  UsedArray.resize(LLVMUsed.size());
427  for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
428    UsedArray[i] =
429     llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), i8PTy);
430  }
431
432  if (Runtime)
433    Runtime->MergeMetadataGlobals(UsedArray);
434  if (UsedArray.empty())
435    return;
436  llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
437
438  llvm::GlobalVariable *GV =
439    new llvm::GlobalVariable(ATy, false,
440                             llvm::GlobalValue::AppendingLinkage,
441                             llvm::ConstantArray::get(ATy, UsedArray),
442                             "llvm.used", &getModule());
443
444  GV->setSection("llvm.metadata");
445}
446
447void CodeGenModule::EmitDeferred() {
448  // Emit code for any potentially referenced deferred decls.  Since a
449  // previously unused static decl may become used during the generation of code
450  // for a static function, iterate until no  changes are made.
451  while (!DeferredDeclsToEmit.empty()) {
452    GlobalDecl D = DeferredDeclsToEmit.back();
453    DeferredDeclsToEmit.pop_back();
454
455    // The mangled name for the decl must have been emitted in GlobalDeclMap.
456    // Look it up to see if it was defined with a stronger definition (e.g. an
457    // extern inline function with a strong function redefinition).  If so,
458    // just ignore the deferred decl.
459    llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
460    assert(CGRef && "Deferred decl wasn't referenced?");
461
462    if (!CGRef->isDeclaration())
463      continue;
464
465    // Otherwise, emit the definition and move on to the next one.
466    EmitGlobalDefinition(D);
467  }
468}
469
470/// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
471/// annotation information for a given GlobalValue.  The annotation struct is
472/// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
473/// GlobalValue being annotated.  The second field is the constant string
474/// created from the AnnotateAttr's annotation.  The third field is a constant
475/// string containing the name of the translation unit.  The fourth field is
476/// the line number in the file of the annotated value declaration.
477///
478/// FIXME: this does not unique the annotation string constants, as llvm-gcc
479///        appears to.
480///
481llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
482                                                const AnnotateAttr *AA,
483                                                unsigned LineNo) {
484  llvm::Module *M = &getModule();
485
486  // get [N x i8] constants for the annotation string, and the filename string
487  // which are the 2nd and 3rd elements of the global annotation structure.
488  const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
489  llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true);
490  llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(),
491                                                  true);
492
493  // Get the two global values corresponding to the ConstantArrays we just
494  // created to hold the bytes of the strings.
495  const char *StringPrefix = getContext().Target.getStringSymbolPrefix(true);
496  llvm::GlobalValue *annoGV =
497  new llvm::GlobalVariable(anno->getType(), false,
498                           llvm::GlobalValue::InternalLinkage, anno,
499                           GV->getName() + StringPrefix, M);
500  // translation unit name string, emitted into the llvm.metadata section.
501  llvm::GlobalValue *unitGV =
502  new llvm::GlobalVariable(unit->getType(), false,
503                           llvm::GlobalValue::InternalLinkage, unit,
504                           StringPrefix, M);
505
506  // Create the ConstantStruct for the global annotation.
507  llvm::Constant *Fields[4] = {
508    llvm::ConstantExpr::getBitCast(GV, SBP),
509    llvm::ConstantExpr::getBitCast(annoGV, SBP),
510    llvm::ConstantExpr::getBitCast(unitGV, SBP),
511    llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo)
512  };
513  return llvm::ConstantStruct::get(Fields, 4, false);
514}
515
516bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
517  // Never defer when EmitAllDecls is specified or the decl has
518  // attribute used.
519  if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
520    return false;
521
522  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
523    // Constructors and destructors should never be deferred.
524    if (FD->hasAttr<ConstructorAttr>() ||
525        FD->hasAttr<DestructorAttr>())
526      return false;
527
528    GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
529
530    // static, static inline, always_inline, and extern inline functions can
531    // always be deferred.  Normal inline functions can be deferred in C99/C++.
532    if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
533        Linkage == GVA_CXXInline)
534      return true;
535    return false;
536  }
537
538  const VarDecl *VD = cast<VarDecl>(Global);
539  assert(VD->isFileVarDecl() && "Invalid decl");
540
541  return VD->getStorageClass() == VarDecl::Static;
542}
543
544void CodeGenModule::EmitGlobal(GlobalDecl GD) {
545  const ValueDecl *Global = GD.getDecl();
546
547  // If this is an alias definition (which otherwise looks like a declaration)
548  // emit it now.
549  if (Global->hasAttr<AliasAttr>())
550    return EmitAliasDefinition(Global);
551
552  // Ignore declarations, they will be emitted on their first use.
553  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
554    // Forward declarations are emitted lazily on first use.
555    if (!FD->isThisDeclarationADefinition())
556      return;
557  } else {
558    const VarDecl *VD = cast<VarDecl>(Global);
559    assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
560
561    // In C++, if this is marked "extern", defer code generation.
562    if (getLangOptions().CPlusPlus && !VD->getInit() &&
563        (VD->getStorageClass() == VarDecl::Extern ||
564         VD->isExternC(getContext())))
565      return;
566
567    // In C, if this isn't a definition, defer code generation.
568    if (!getLangOptions().CPlusPlus && !VD->getInit())
569      return;
570  }
571
572  // Defer code generation when possible if this is a static definition, inline
573  // function etc.  These we only want to emit if they are used.
574  if (MayDeferGeneration(Global)) {
575    // If the value has already been used, add it directly to the
576    // DeferredDeclsToEmit list.
577    const char *MangledName = getMangledName(GD);
578    if (GlobalDeclMap.count(MangledName))
579      DeferredDeclsToEmit.push_back(GD);
580    else {
581      // Otherwise, remember that we saw a deferred decl with this name.  The
582      // first use of the mangled name will cause it to move into
583      // DeferredDeclsToEmit.
584      DeferredDecls[MangledName] = GD;
585    }
586    return;
587  }
588
589  // Otherwise emit the definition.
590  EmitGlobalDefinition(GD);
591}
592
593void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
594  const ValueDecl *D = GD.getDecl();
595
596  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
597    EmitCXXConstructor(CD, GD.getCtorType());
598  else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
599    EmitCXXDestructor(DD, GD.getDtorType());
600  else if (isa<FunctionDecl>(D))
601    EmitGlobalFunctionDefinition(GD);
602  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
603    EmitGlobalVarDefinition(VD);
604  else {
605    assert(0 && "Invalid argument to EmitGlobalDefinition()");
606  }
607}
608
609/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
610/// module, create and return an llvm Function with the specified type. If there
611/// is something in the module with the specified name, return it potentially
612/// bitcasted to the right type.
613///
614/// If D is non-null, it specifies a decl that correspond to this.  This is used
615/// to set the attributes on the function when it is first created.
616llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
617                                                       const llvm::Type *Ty,
618                                                       GlobalDecl D) {
619  // Lookup the entry, lazily creating it if necessary.
620  llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
621  if (Entry) {
622    if (Entry->getType()->getElementType() == Ty)
623      return Entry;
624
625    // Make sure the result is of the correct type.
626    const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
627    return llvm::ConstantExpr::getBitCast(Entry, PTy);
628  }
629
630  // This is the first use or definition of a mangled name.  If there is a
631  // deferred decl with this name, remember that we need to emit it at the end
632  // of the file.
633  llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
634    DeferredDecls.find(MangledName);
635  if (DDI != DeferredDecls.end()) {
636    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
637    // list, and remove it from DeferredDecls (since we don't need it anymore).
638    DeferredDeclsToEmit.push_back(DDI->second);
639    DeferredDecls.erase(DDI);
640  } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
641    // If this the first reference to a C++ inline function in a class, queue up
642    // the deferred function body for emission.  These are not seen as
643    // top-level declarations.
644    if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
645      DeferredDeclsToEmit.push_back(D);
646  }
647
648  // This function doesn't have a complete type (for example, the return
649  // type is an incomplete struct). Use a fake type instead, and make
650  // sure not to try to set attributes.
651  bool IsIncompleteFunction = false;
652  if (!isa<llvm::FunctionType>(Ty)) {
653    Ty = llvm::FunctionType::get(llvm::Type::VoidTy,
654                                 std::vector<const llvm::Type*>(), false);
655    IsIncompleteFunction = true;
656  }
657  llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
658                                             llvm::Function::ExternalLinkage,
659                                             "", &getModule());
660  F->setName(MangledName);
661  if (D.getDecl())
662    SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F,
663                          IsIncompleteFunction);
664  Entry = F;
665  return F;
666}
667
668/// GetAddrOfFunction - Return the address of the given function.  If Ty is
669/// non-null, then this function will use the specified type if it has to
670/// create it (this occurs when we see a definition of the function).
671llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
672                                                 const llvm::Type *Ty) {
673  // If there was no specific requested type, just convert it now.
674  if (!Ty)
675    Ty = getTypes().ConvertType(GD.getDecl()->getType());
676  return GetOrCreateLLVMFunction(getMangledName(GD.getDecl()), Ty, GD);
677}
678
679/// CreateRuntimeFunction - Create a new runtime function with the specified
680/// type and name.
681llvm::Constant *
682CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
683                                     const char *Name) {
684  // Convert Name to be a uniqued string from the IdentifierInfo table.
685  Name = getContext().Idents.get(Name).getName();
686  return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
687}
688
689/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
690/// create and return an llvm GlobalVariable with the specified type.  If there
691/// is something in the module with the specified name, return it potentially
692/// bitcasted to the right type.
693///
694/// If D is non-null, it specifies a decl that correspond to this.  This is used
695/// to set the attributes on the global when it is first created.
696llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
697                                                     const llvm::PointerType*Ty,
698                                                     const VarDecl *D) {
699  // Lookup the entry, lazily creating it if necessary.
700  llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
701  if (Entry) {
702    if (Entry->getType() == Ty)
703      return Entry;
704
705    // Make sure the result is of the correct type.
706    return llvm::ConstantExpr::getBitCast(Entry, Ty);
707  }
708
709  // This is the first use or definition of a mangled name.  If there is a
710  // deferred decl with this name, remember that we need to emit it at the end
711  // of the file.
712  llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
713    DeferredDecls.find(MangledName);
714  if (DDI != DeferredDecls.end()) {
715    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
716    // list, and remove it from DeferredDecls (since we don't need it anymore).
717    DeferredDeclsToEmit.push_back(DDI->second);
718    DeferredDecls.erase(DDI);
719  }
720
721  llvm::GlobalVariable *GV =
722    new llvm::GlobalVariable(Ty->getElementType(), false,
723                             llvm::GlobalValue::ExternalLinkage,
724                             0, "", &getModule(),
725                             false, Ty->getAddressSpace());
726  GV->setName(MangledName);
727
728  // Handle things which are present even on external declarations.
729  if (D) {
730    // FIXME: This code is overly simple and should be merged with other global
731    // handling.
732    GV->setConstant(D->getType().isConstant(Context));
733
734    // FIXME: Merge with other attribute handling code.
735    if (D->getStorageClass() == VarDecl::PrivateExtern)
736      GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
737
738    if (D->hasAttr<WeakAttr>() ||
739        D->hasAttr<WeakImportAttr>())
740      GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
741
742    GV->setThreadLocal(D->isThreadSpecified());
743  }
744
745  return Entry = GV;
746}
747
748
749/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
750/// given global variable.  If Ty is non-null and if the global doesn't exist,
751/// then it will be greated with the specified type instead of whatever the
752/// normal requested type would be.
753llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
754                                                  const llvm::Type *Ty) {
755  assert(D->hasGlobalStorage() && "Not a global variable");
756  QualType ASTTy = D->getType();
757  if (Ty == 0)
758    Ty = getTypes().ConvertTypeForMem(ASTTy);
759
760  const llvm::PointerType *PTy =
761    llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
762  return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
763}
764
765/// CreateRuntimeVariable - Create a new runtime global variable with the
766/// specified type and name.
767llvm::Constant *
768CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
769                                     const char *Name) {
770  // Convert Name to be a uniqued string from the IdentifierInfo table.
771  Name = getContext().Idents.get(Name).getName();
772  return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
773}
774
775void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
776  assert(!D->getInit() && "Cannot emit definite definitions here!");
777
778  if (MayDeferGeneration(D)) {
779    // If we have not seen a reference to this variable yet, place it
780    // into the deferred declarations table to be emitted if needed
781    // later.
782    const char *MangledName = getMangledName(D);
783    if (GlobalDeclMap.count(MangledName) == 0) {
784      DeferredDecls[MangledName] = GlobalDecl(D);
785      return;
786    }
787  }
788
789  // The tentative definition is the only definition.
790  EmitGlobalVarDefinition(D);
791}
792
793void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
794  llvm::Constant *Init = 0;
795  QualType ASTTy = D->getType();
796
797  if (D->getInit() == 0) {
798    // This is a tentative definition; tentative definitions are
799    // implicitly initialized with { 0 }.
800    //
801    // Note that tentative definitions are only emitted at the end of
802    // a translation unit, so they should never have incomplete
803    // type. In addition, EmitTentativeDefinition makes sure that we
804    // never attempt to emit a tentative definition if a real one
805    // exists. A use may still exists, however, so we still may need
806    // to do a RAUW.
807    assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
808    Init = llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(ASTTy));
809  } else {
810    Init = EmitConstantExpr(D->getInit(), D->getType());
811    if (!Init) {
812      ErrorUnsupported(D, "static initializer");
813      QualType T = D->getInit()->getType();
814      Init = llvm::UndefValue::get(getTypes().ConvertType(T));
815    }
816  }
817
818  const llvm::Type* InitType = Init->getType();
819  llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
820
821  // Strip off a bitcast if we got one back.
822  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
823    assert(CE->getOpcode() == llvm::Instruction::BitCast);
824    Entry = CE->getOperand(0);
825  }
826
827  // Entry is now either a Function or GlobalVariable.
828  llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
829
830  // We have a definition after a declaration with the wrong type.
831  // We must make a new GlobalVariable* and update everything that used OldGV
832  // (a declaration or tentative definition) with the new GlobalVariable*
833  // (which will be a definition).
834  //
835  // This happens if there is a prototype for a global (e.g.
836  // "extern int x[];") and then a definition of a different type (e.g.
837  // "int x[10];"). This also happens when an initializer has a different type
838  // from the type of the global (this happens with unions).
839  if (GV == 0 ||
840      GV->getType()->getElementType() != InitType ||
841      GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
842
843    // Remove the old entry from GlobalDeclMap so that we'll create a new one.
844    GlobalDeclMap.erase(getMangledName(D));
845
846    // Make a new global with the correct type, this is now guaranteed to work.
847    GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
848    GV->takeName(cast<llvm::GlobalValue>(Entry));
849
850    // Replace all uses of the old global with the new global
851    llvm::Constant *NewPtrForOldDecl =
852        llvm::ConstantExpr::getBitCast(GV, Entry->getType());
853    Entry->replaceAllUsesWith(NewPtrForOldDecl);
854
855    // Erase the old global, since it is no longer used.
856    cast<llvm::GlobalValue>(Entry)->eraseFromParent();
857  }
858
859  if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
860    SourceManager &SM = Context.getSourceManager();
861    AddAnnotation(EmitAnnotateAttr(GV, AA,
862                              SM.getInstantiationLineNumber(D->getLocation())));
863  }
864
865  GV->setInitializer(Init);
866  GV->setConstant(D->getType().isConstant(Context));
867  GV->setAlignment(getContext().getDeclAlignInBytes(D));
868
869  // Set the llvm linkage type as appropriate.
870  if (D->getStorageClass() == VarDecl::Static)
871    GV->setLinkage(llvm::Function::InternalLinkage);
872  else if (D->hasAttr<DLLImportAttr>())
873    GV->setLinkage(llvm::Function::DLLImportLinkage);
874  else if (D->hasAttr<DLLExportAttr>())
875    GV->setLinkage(llvm::Function::DLLExportLinkage);
876  else if (D->hasAttr<WeakAttr>())
877    GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
878  else if (!CompileOpts.NoCommon &&
879           (!D->hasExternalStorage() && !D->getInit()))
880    GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
881  else
882    GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
883
884  SetCommonAttributes(D, GV);
885
886  // Emit global variable debug information.
887  if (CGDebugInfo *DI = getDebugInfo()) {
888    DI->setLocation(D->getLocation());
889    DI->EmitGlobalVariable(GV, D);
890  }
891}
892
893/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
894/// implement a function with no prototype, e.g. "int foo() {}".  If there are
895/// existing call uses of the old function in the module, this adjusts them to
896/// call the new function directly.
897///
898/// This is not just a cleanup: the always_inline pass requires direct calls to
899/// functions to be able to inline them.  If there is a bitcast in the way, it
900/// won't inline them.  Instcombine normally deletes these calls, but it isn't
901/// run at -O0.
902static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
903                                                      llvm::Function *NewFn) {
904  // If we're redefining a global as a function, don't transform it.
905  llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
906  if (OldFn == 0) return;
907
908  const llvm::Type *NewRetTy = NewFn->getReturnType();
909  llvm::SmallVector<llvm::Value*, 4> ArgList;
910
911  for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
912       UI != E; ) {
913    // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
914    unsigned OpNo = UI.getOperandNo();
915    llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
916    if (!CI || OpNo != 0) continue;
917
918    // If the return types don't match exactly, and if the call isn't dead, then
919    // we can't transform this call.
920    if (CI->getType() != NewRetTy && !CI->use_empty())
921      continue;
922
923    // If the function was passed too few arguments, don't transform.  If extra
924    // arguments were passed, we silently drop them.  If any of the types
925    // mismatch, we don't transform.
926    unsigned ArgNo = 0;
927    bool DontTransform = false;
928    for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
929         E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
930      if (CI->getNumOperands()-1 == ArgNo ||
931          CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
932        DontTransform = true;
933        break;
934      }
935    }
936    if (DontTransform)
937      continue;
938
939    // Okay, we can transform this.  Create the new call instruction and copy
940    // over the required information.
941    ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
942    llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
943                                                     ArgList.end(), "", CI);
944    ArgList.clear();
945    if (NewCall->getType() != llvm::Type::VoidTy)
946      NewCall->takeName(CI);
947    NewCall->setCallingConv(CI->getCallingConv());
948    NewCall->setAttributes(CI->getAttributes());
949
950    // Finally, remove the old call, replacing any uses with the new one.
951    if (!CI->use_empty())
952      CI->replaceAllUsesWith(NewCall);
953    CI->eraseFromParent();
954  }
955}
956
957
958void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
959  const llvm::FunctionType *Ty;
960  const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
961
962  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
963    bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic();
964
965    Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
966  } else {
967    Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
968
969    // As a special case, make sure that definitions of K&R function
970    // "type foo()" aren't declared as varargs (which forces the backend
971    // to do unnecessary work).
972    if (D->getType()->isFunctionNoProtoType()) {
973      assert(Ty->isVarArg() && "Didn't lower type as expected");
974      // Due to stret, the lowered function could have arguments.
975      // Just create the same type as was lowered by ConvertType
976      // but strip off the varargs bit.
977      std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
978      Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
979    }
980  }
981
982  // Get or create the prototype for the function.
983  llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
984
985  // Strip off a bitcast if we got one back.
986  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
987    assert(CE->getOpcode() == llvm::Instruction::BitCast);
988    Entry = CE->getOperand(0);
989  }
990
991
992  if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
993    llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
994
995    // If the types mismatch then we have to rewrite the definition.
996    assert(OldFn->isDeclaration() &&
997           "Shouldn't replace non-declaration");
998
999    // F is the Function* for the one with the wrong type, we must make a new
1000    // Function* and update everything that used F (a declaration) with the new
1001    // Function* (which will be a definition).
1002    //
1003    // This happens if there is a prototype for a function
1004    // (e.g. "int f()") and then a definition of a different type
1005    // (e.g. "int f(int x)").  Start by making a new function of the
1006    // correct type, RAUW, then steal the name.
1007    GlobalDeclMap.erase(getMangledName(D));
1008    llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1009    NewFn->takeName(OldFn);
1010
1011    // If this is an implementation of a function without a prototype, try to
1012    // replace any existing uses of the function (which may be calls) with uses
1013    // of the new function
1014    if (D->getType()->isFunctionNoProtoType()) {
1015      ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1016      OldFn->removeDeadConstantUsers();
1017    }
1018
1019    // Replace uses of F with the Function we will endow with a body.
1020    if (!Entry->use_empty()) {
1021      llvm::Constant *NewPtrForOldDecl =
1022        llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1023      Entry->replaceAllUsesWith(NewPtrForOldDecl);
1024    }
1025
1026    // Ok, delete the old function now, which is dead.
1027    OldFn->eraseFromParent();
1028
1029    Entry = NewFn;
1030  }
1031
1032  llvm::Function *Fn = cast<llvm::Function>(Entry);
1033
1034  CodeGenFunction(*this).GenerateCode(D, Fn);
1035
1036  SetFunctionDefinitionAttributes(D, Fn);
1037  SetLLVMFunctionAttributesForDefinition(D, Fn);
1038
1039  if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1040    AddGlobalCtor(Fn, CA->getPriority());
1041  if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1042    AddGlobalDtor(Fn, DA->getPriority());
1043}
1044
1045void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1046  const AliasAttr *AA = D->getAttr<AliasAttr>();
1047  assert(AA && "Not an alias?");
1048
1049  const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1050
1051  // Unique the name through the identifier table.
1052  const char *AliaseeName = AA->getAliasee().c_str();
1053  AliaseeName = getContext().Idents.get(AliaseeName).getName();
1054
1055  // Create a reference to the named value.  This ensures that it is emitted
1056  // if a deferred decl.
1057  llvm::Constant *Aliasee;
1058  if (isa<llvm::FunctionType>(DeclTy))
1059    Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1060  else
1061    Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1062                                    llvm::PointerType::getUnqual(DeclTy), 0);
1063
1064  // Create the new alias itself, but don't set a name yet.
1065  llvm::GlobalValue *GA =
1066    new llvm::GlobalAlias(Aliasee->getType(),
1067                          llvm::Function::ExternalLinkage,
1068                          "", Aliasee, &getModule());
1069
1070  // See if there is already something with the alias' name in the module.
1071  const char *MangledName = getMangledName(D);
1072  llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1073
1074  if (Entry && !Entry->isDeclaration()) {
1075    // If there is a definition in the module, then it wins over the alias.
1076    // This is dubious, but allow it to be safe.  Just ignore the alias.
1077    GA->eraseFromParent();
1078    return;
1079  }
1080
1081  if (Entry) {
1082    // If there is a declaration in the module, then we had an extern followed
1083    // by the alias, as in:
1084    //   extern int test6();
1085    //   ...
1086    //   int test6() __attribute__((alias("test7")));
1087    //
1088    // Remove it and replace uses of it with the alias.
1089
1090    Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1091                                                          Entry->getType()));
1092    Entry->eraseFromParent();
1093  }
1094
1095  // Now we know that there is no conflict, set the name.
1096  Entry = GA;
1097  GA->setName(MangledName);
1098
1099  // Set attributes which are particular to an alias; this is a
1100  // specialization of the attributes which may be set on a global
1101  // variable/function.
1102  if (D->hasAttr<DLLExportAttr>()) {
1103    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1104      // The dllexport attribute is ignored for undefined symbols.
1105      if (FD->getBody())
1106        GA->setLinkage(llvm::Function::DLLExportLinkage);
1107    } else {
1108      GA->setLinkage(llvm::Function::DLLExportLinkage);
1109    }
1110  } else if (D->hasAttr<WeakAttr>() ||
1111             D->hasAttr<WeakImportAttr>()) {
1112    GA->setLinkage(llvm::Function::WeakAnyLinkage);
1113  }
1114
1115  SetCommonAttributes(D, GA);
1116}
1117
1118/// getBuiltinLibFunction - Given a builtin id for a function like
1119/// "__builtin_fabsf", return a Function* for "fabsf".
1120llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) {
1121  assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1122          Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1123         "isn't a lib fn");
1124
1125  // Get the name, skip over the __builtin_ prefix (if necessary).
1126  const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1127  if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1128    Name += 10;
1129
1130  // Get the type for the builtin.
1131  ASTContext::GetBuiltinTypeError Error;
1132  QualType Type = Context.GetBuiltinType(BuiltinID, Error);
1133  assert(Error == ASTContext::GE_None && "Can't get builtin type");
1134
1135  const llvm::FunctionType *Ty =
1136    cast<llvm::FunctionType>(getTypes().ConvertType(Type));
1137
1138  // Unique the name through the identifier table.
1139  Name = getContext().Idents.get(Name).getName();
1140  // FIXME: param attributes for sext/zext etc.
1141  return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl());
1142}
1143
1144llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1145                                            unsigned NumTys) {
1146  return llvm::Intrinsic::getDeclaration(&getModule(),
1147                                         (llvm::Intrinsic::ID)IID, Tys, NumTys);
1148}
1149
1150llvm::Function *CodeGenModule::getMemCpyFn() {
1151  if (MemCpyFn) return MemCpyFn;
1152  const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1153  return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1154}
1155
1156llvm::Function *CodeGenModule::getMemMoveFn() {
1157  if (MemMoveFn) return MemMoveFn;
1158  const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1159  return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1160}
1161
1162llvm::Function *CodeGenModule::getMemSetFn() {
1163  if (MemSetFn) return MemSetFn;
1164  const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1165  return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1166}
1167
1168static void appendFieldAndPadding(CodeGenModule &CGM,
1169                                  std::vector<llvm::Constant*>& Fields,
1170                                  FieldDecl *FieldD, FieldDecl *NextFieldD,
1171                                  llvm::Constant* Field,
1172                                  RecordDecl* RD, const llvm::StructType *STy) {
1173  // Append the field.
1174  Fields.push_back(Field);
1175
1176  int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD);
1177
1178  int NextStructFieldNo;
1179  if (!NextFieldD) {
1180    NextStructFieldNo = STy->getNumElements();
1181  } else {
1182    NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD);
1183  }
1184
1185  // Append padding
1186  for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) {
1187    llvm::Constant *C =
1188      llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1));
1189
1190    Fields.push_back(C);
1191  }
1192}
1193
1194llvm::Constant *CodeGenModule::
1195GetAddrOfConstantCFString(const StringLiteral *Literal) {
1196  std::string str;
1197  unsigned StringLength = 0;
1198
1199  bool isUTF16 = false;
1200  if (Literal->containsNonAsciiOrNull()) {
1201    // Convert from UTF-8 to UTF-16.
1202    llvm::SmallVector<UTF16, 128> ToBuf(Literal->getByteLength());
1203    const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1204    UTF16 *ToPtr = &ToBuf[0];
1205
1206    ConversionResult Result;
1207    Result = ConvertUTF8toUTF16(&FromPtr, FromPtr+Literal->getByteLength(),
1208                                &ToPtr, ToPtr+Literal->getByteLength(),
1209                                strictConversion);
1210    if (Result == conversionOK) {
1211      // FIXME: Storing UTF-16 in a C string is a hack to test Unicode strings
1212      // without doing more surgery to this routine. Since we aren't explicitly
1213      // checking for endianness here, it's also a bug (when generating code for
1214      // a target that doesn't match the host endianness). Modeling this as an
1215      // i16 array is likely the cleanest solution.
1216      StringLength = ToPtr-&ToBuf[0];
1217      str.assign((char *)&ToBuf[0], StringLength*2);// Twice as many UTF8 chars.
1218      isUTF16 = true;
1219    } else if (Result == sourceIllegal) {
1220      // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string.
1221      str.assign(Literal->getStrData(), Literal->getByteLength());
1222      StringLength = str.length();
1223    } else
1224      assert(Result == conversionOK && "UTF-8 to UTF-16 conversion failed");
1225
1226  } else {
1227    str.assign(Literal->getStrData(), Literal->getByteLength());
1228    StringLength = str.length();
1229  }
1230  llvm::StringMapEntry<llvm::Constant *> &Entry =
1231    CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1232
1233  if (llvm::Constant *C = Entry.getValue())
1234    return C;
1235
1236  llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
1237  llvm::Constant *Zeros[] = { Zero, Zero };
1238
1239  if (!CFConstantStringClassRef) {
1240    const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1241    Ty = llvm::ArrayType::get(Ty, 0);
1242
1243    // FIXME: This is fairly broken if __CFConstantStringClassReference is
1244    // already defined, in that it will get renamed and the user will most
1245    // likely see an opaque error message. This is a general issue with relying
1246    // on particular names.
1247    llvm::GlobalVariable *GV =
1248      new llvm::GlobalVariable(Ty, false,
1249                               llvm::GlobalVariable::ExternalLinkage, 0,
1250                               "__CFConstantStringClassReference",
1251                               &getModule());
1252
1253    // Decay array -> ptr
1254    CFConstantStringClassRef =
1255      llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1256  }
1257
1258  QualType CFTy = getContext().getCFConstantStringType();
1259  RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl();
1260
1261  const llvm::StructType *STy =
1262    cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1263
1264  std::vector<llvm::Constant*> Fields;
1265  RecordDecl::field_iterator Field = CFRD->field_begin();
1266
1267  // Class pointer.
1268  FieldDecl *CurField = *Field++;
1269  FieldDecl *NextField = *Field++;
1270  appendFieldAndPadding(*this, Fields, CurField, NextField,
1271                        CFConstantStringClassRef, CFRD, STy);
1272
1273  // Flags.
1274  CurField = NextField;
1275  NextField = *Field++;
1276  const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1277  appendFieldAndPadding(*this, Fields, CurField, NextField,
1278                        isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0)
1279                                : llvm::ConstantInt::get(Ty, 0x07C8),
1280                        CFRD, STy);
1281
1282  // String pointer.
1283  CurField = NextField;
1284  NextField = *Field++;
1285  llvm::Constant *C = llvm::ConstantArray::get(str);
1286
1287  const char *Sect, *Prefix;
1288  bool isConstant;
1289  if (isUTF16) {
1290    Prefix = getContext().Target.getUnicodeStringSymbolPrefix();
1291    Sect = getContext().Target.getUnicodeStringSection();
1292    // FIXME: Why does GCC not set constant here?
1293    isConstant = false;
1294  } else {
1295    Prefix = getContext().Target.getStringSymbolPrefix(true);
1296    Sect = getContext().Target.getCFStringDataSection();
1297    // FIXME: -fwritable-strings should probably affect this, but we
1298    // are following gcc here.
1299    isConstant = true;
1300  }
1301  llvm::GlobalVariable *GV =
1302    new llvm::GlobalVariable(C->getType(), isConstant,
1303                             llvm::GlobalValue::InternalLinkage,
1304                             C, Prefix, &getModule());
1305  if (Sect)
1306    GV->setSection(Sect);
1307  if (isUTF16) {
1308    unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1309    GV->setAlignment(Align);
1310  }
1311  appendFieldAndPadding(*this, Fields, CurField, NextField,
1312                        llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2),
1313                        CFRD, STy);
1314
1315  // String length.
1316  CurField = NextField;
1317  NextField = 0;
1318  Ty = getTypes().ConvertType(getContext().LongTy);
1319  appendFieldAndPadding(*this, Fields, CurField, NextField,
1320                        llvm::ConstantInt::get(Ty, StringLength), CFRD, STy);
1321
1322  // The struct.
1323  C = llvm::ConstantStruct::get(STy, Fields);
1324  GV = new llvm::GlobalVariable(C->getType(), true,
1325                                llvm::GlobalVariable::InternalLinkage, C,
1326                                getContext().Target.getCFStringSymbolPrefix(),
1327                                &getModule());
1328  if (const char *Sect = getContext().Target.getCFStringSection())
1329    GV->setSection(Sect);
1330  Entry.setValue(GV);
1331
1332  return GV;
1333}
1334
1335/// GetStringForStringLiteral - Return the appropriate bytes for a
1336/// string literal, properly padded to match the literal type.
1337std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1338  const char *StrData = E->getStrData();
1339  unsigned Len = E->getByteLength();
1340
1341  const ConstantArrayType *CAT =
1342    getContext().getAsConstantArrayType(E->getType());
1343  assert(CAT && "String isn't pointer or array!");
1344
1345  // Resize the string to the right size.
1346  std::string Str(StrData, StrData+Len);
1347  uint64_t RealLen = CAT->getSize().getZExtValue();
1348
1349  if (E->isWide())
1350    RealLen *= getContext().Target.getWCharWidth()/8;
1351
1352  Str.resize(RealLen, '\0');
1353
1354  return Str;
1355}
1356
1357/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1358/// constant array for the given string literal.
1359llvm::Constant *
1360CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1361  // FIXME: This can be more efficient.
1362  return GetAddrOfConstantString(GetStringForStringLiteral(S));
1363}
1364
1365/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1366/// array for the given ObjCEncodeExpr node.
1367llvm::Constant *
1368CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1369  std::string Str;
1370  getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1371
1372  return GetAddrOfConstantCString(Str);
1373}
1374
1375
1376/// GenerateWritableString -- Creates storage for a string literal.
1377static llvm::Constant *GenerateStringLiteral(const std::string &str,
1378                                             bool constant,
1379                                             CodeGenModule &CGM,
1380                                             const char *GlobalName) {
1381  // Create Constant for this string literal. Don't add a '\0'.
1382  llvm::Constant *C = llvm::ConstantArray::get(str, false);
1383
1384  // Create a global variable for this string
1385  return new llvm::GlobalVariable(C->getType(), constant,
1386                                  llvm::GlobalValue::InternalLinkage,
1387                                  C, GlobalName, &CGM.getModule());
1388}
1389
1390/// GetAddrOfConstantString - Returns a pointer to a character array
1391/// containing the literal. This contents are exactly that of the
1392/// given string, i.e. it will not be null terminated automatically;
1393/// see GetAddrOfConstantCString. Note that whether the result is
1394/// actually a pointer to an LLVM constant depends on
1395/// Feature.WriteableStrings.
1396///
1397/// The result has pointer to array type.
1398llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1399                                                       const char *GlobalName) {
1400  bool IsConstant = !Features.WritableStrings;
1401
1402  // Get the default prefix if a name wasn't specified.
1403  if (!GlobalName)
1404    GlobalName = getContext().Target.getStringSymbolPrefix(IsConstant);
1405
1406  // Don't share any string literals if strings aren't constant.
1407  if (!IsConstant)
1408    return GenerateStringLiteral(str, false, *this, GlobalName);
1409
1410  llvm::StringMapEntry<llvm::Constant *> &Entry =
1411  ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1412
1413  if (Entry.getValue())
1414    return Entry.getValue();
1415
1416  // Create a global variable for this.
1417  llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1418  Entry.setValue(C);
1419  return C;
1420}
1421
1422/// GetAddrOfConstantCString - Returns a pointer to a character
1423/// array containing the literal and a terminating '\-'
1424/// character. The result has pointer to array type.
1425llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1426                                                        const char *GlobalName){
1427  return GetAddrOfConstantString(str + '\0', GlobalName);
1428}
1429
1430/// EmitObjCPropertyImplementations - Emit information for synthesized
1431/// properties for an implementation.
1432void CodeGenModule::EmitObjCPropertyImplementations(const
1433                                                    ObjCImplementationDecl *D) {
1434  for (ObjCImplementationDecl::propimpl_iterator
1435         i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1436    ObjCPropertyImplDecl *PID = *i;
1437
1438    // Dynamic is just for type-checking.
1439    if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1440      ObjCPropertyDecl *PD = PID->getPropertyDecl();
1441
1442      // Determine which methods need to be implemented, some may have
1443      // been overridden. Note that ::isSynthesized is not the method
1444      // we want, that just indicates if the decl came from a
1445      // property. What we want to know is if the method is defined in
1446      // this implementation.
1447      if (!D->getInstanceMethod(PD->getGetterName()))
1448        CodeGenFunction(*this).GenerateObjCGetter(
1449                                 const_cast<ObjCImplementationDecl *>(D), PID);
1450      if (!PD->isReadOnly() &&
1451          !D->getInstanceMethod(PD->getSetterName()))
1452        CodeGenFunction(*this).GenerateObjCSetter(
1453                                 const_cast<ObjCImplementationDecl *>(D), PID);
1454    }
1455  }
1456}
1457
1458/// EmitNamespace - Emit all declarations in a namespace.
1459void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1460  for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1461       I != E; ++I)
1462    EmitTopLevelDecl(*I);
1463}
1464
1465// EmitLinkageSpec - Emit all declarations in a linkage spec.
1466void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1467  if (LSD->getLanguage() != LinkageSpecDecl::lang_c) {
1468    ErrorUnsupported(LSD, "linkage spec");
1469    return;
1470  }
1471
1472  for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1473       I != E; ++I)
1474    EmitTopLevelDecl(*I);
1475}
1476
1477/// EmitTopLevelDecl - Emit code for a single top level declaration.
1478void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1479  // If an error has occurred, stop code generation, but continue
1480  // parsing and semantic analysis (to ensure all warnings and errors
1481  // are emitted).
1482  if (Diags.hasErrorOccurred())
1483    return;
1484
1485  // Ignore dependent declarations.
1486  if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1487    return;
1488
1489  switch (D->getKind()) {
1490  case Decl::CXXMethod:
1491  case Decl::Function:
1492    // Skip function templates
1493    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1494      return;
1495
1496    // Fall through
1497
1498  case Decl::Var:
1499    EmitGlobal(GlobalDecl(cast<ValueDecl>(D)));
1500    break;
1501
1502  // C++ Decls
1503  case Decl::Namespace:
1504    EmitNamespace(cast<NamespaceDecl>(D));
1505    break;
1506    // No code generation needed.
1507  case Decl::Using:
1508  case Decl::ClassTemplate:
1509  case Decl::FunctionTemplate:
1510    break;
1511  case Decl::CXXConstructor:
1512    EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1513    break;
1514  case Decl::CXXDestructor:
1515    EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1516    break;
1517
1518  case Decl::StaticAssert:
1519    // Nothing to do.
1520    break;
1521
1522  // Objective-C Decls
1523
1524  // Forward declarations, no (immediate) code generation.
1525  case Decl::ObjCClass:
1526  case Decl::ObjCForwardProtocol:
1527  case Decl::ObjCCategory:
1528  case Decl::ObjCInterface:
1529    break;
1530
1531  case Decl::ObjCProtocol:
1532    Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1533    break;
1534
1535  case Decl::ObjCCategoryImpl:
1536    // Categories have properties but don't support synthesize so we
1537    // can ignore them here.
1538    Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1539    break;
1540
1541  case Decl::ObjCImplementation: {
1542    ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1543    EmitObjCPropertyImplementations(OMD);
1544    Runtime->GenerateClass(OMD);
1545    break;
1546  }
1547  case Decl::ObjCMethod: {
1548    ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1549    // If this is not a prototype, emit the body.
1550    if (OMD->getBody())
1551      CodeGenFunction(*this).GenerateObjCMethod(OMD);
1552    break;
1553  }
1554  case Decl::ObjCCompatibleAlias:
1555    // compatibility-alias is a directive and has no code gen.
1556    break;
1557
1558  case Decl::LinkageSpec:
1559    EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1560    break;
1561
1562  case Decl::FileScopeAsm: {
1563    FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1564    std::string AsmString(AD->getAsmString()->getStrData(),
1565                          AD->getAsmString()->getByteLength());
1566
1567    const std::string &S = getModule().getModuleInlineAsm();
1568    if (S.empty())
1569      getModule().setModuleInlineAsm(AsmString);
1570    else
1571      getModule().setModuleInlineAsm(S + '\n' + AsmString);
1572    break;
1573  }
1574
1575  default:
1576    // Make sure we handled everything we should, every other kind is a
1577    // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1578    // function. Need to recode Decl::Kind to do that easily.
1579    assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1580  }
1581}
1582