CodeGenModule.cpp revision 193576
1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-module state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenModule.h"
15#include "CGDebugInfo.h"
16#include "CodeGenFunction.h"
17#include "CGCall.h"
18#include "CGObjCRuntime.h"
19#include "Mangle.h"
20#include "clang/Frontend/CompileOptions.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclCXX.h"
24#include "clang/Basic/Diagnostic.h"
25#include "clang/Basic/SourceManager.h"
26#include "clang/Basic/TargetInfo.h"
27#include "clang/Basic/ConvertUTF.h"
28#include "llvm/CallingConv.h"
29#include "llvm/Module.h"
30#include "llvm/Intrinsics.h"
31#include "llvm/Target/TargetData.h"
32using namespace clang;
33using namespace CodeGen;
34
35
36CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts,
37                             llvm::Module &M, const llvm::TargetData &TD,
38                             Diagnostic &diags)
39  : BlockModule(C, M, TD, Types, *this), Context(C),
40    Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M),
41    TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0),
42    MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) {
43
44  if (!Features.ObjC1)
45    Runtime = 0;
46  else if (!Features.NeXTRuntime)
47    Runtime = CreateGNUObjCRuntime(*this);
48  else if (Features.ObjCNonFragileABI)
49    Runtime = CreateMacNonFragileABIObjCRuntime(*this);
50  else
51    Runtime = CreateMacObjCRuntime(*this);
52
53  // If debug info generation is enabled, create the CGDebugInfo object.
54  DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0;
55}
56
57CodeGenModule::~CodeGenModule() {
58  delete Runtime;
59  delete DebugInfo;
60}
61
62void CodeGenModule::Release() {
63  EmitDeferred();
64  if (Runtime)
65    if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
66      AddGlobalCtor(ObjCInitFunction);
67  EmitCtorList(GlobalCtors, "llvm.global_ctors");
68  EmitCtorList(GlobalDtors, "llvm.global_dtors");
69  EmitAnnotations();
70  EmitLLVMUsed();
71}
72
73/// ErrorUnsupported - Print out an error that codegen doesn't support the
74/// specified stmt yet.
75void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
76                                     bool OmitOnError) {
77  if (OmitOnError && getDiags().hasErrorOccurred())
78    return;
79  unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
80                                               "cannot compile this %0 yet");
81  std::string Msg = Type;
82  getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
83    << Msg << S->getSourceRange();
84}
85
86/// ErrorUnsupported - Print out an error that codegen doesn't support the
87/// specified decl yet.
88void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
89                                     bool OmitOnError) {
90  if (OmitOnError && getDiags().hasErrorOccurred())
91    return;
92  unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
93                                               "cannot compile this %0 yet");
94  std::string Msg = Type;
95  getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
96}
97
98LangOptions::VisibilityMode
99CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
100  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
101    if (VD->getStorageClass() == VarDecl::PrivateExtern)
102      return LangOptions::Hidden;
103
104  if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
105    switch (attr->getVisibility()) {
106    default: assert(0 && "Unknown visibility!");
107    case VisibilityAttr::DefaultVisibility:
108      return LangOptions::Default;
109    case VisibilityAttr::HiddenVisibility:
110      return LangOptions::Hidden;
111    case VisibilityAttr::ProtectedVisibility:
112      return LangOptions::Protected;
113    }
114  }
115
116  return getLangOptions().getVisibilityMode();
117}
118
119void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
120                                        const Decl *D) const {
121  // Internal definitions always have default visibility.
122  if (GV->hasLocalLinkage()) {
123    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
124    return;
125  }
126
127  switch (getDeclVisibilityMode(D)) {
128  default: assert(0 && "Unknown visibility!");
129  case LangOptions::Default:
130    return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
131  case LangOptions::Hidden:
132    return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
133  case LangOptions::Protected:
134    return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
135  }
136}
137
138const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
139  const NamedDecl *ND = GD.getDecl();
140
141  if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
142    return getMangledCXXCtorName(D, GD.getCtorType());
143  if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
144    return getMangledCXXDtorName(D, GD.getDtorType());
145
146  return getMangledName(ND);
147}
148
149/// \brief Retrieves the mangled name for the given declaration.
150///
151/// If the given declaration requires a mangled name, returns an
152/// const char* containing the mangled name.  Otherwise, returns
153/// the unmangled name.
154///
155const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
156  // In C, functions with no attributes never need to be mangled. Fastpath them.
157  if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
158    assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
159    return ND->getNameAsCString();
160  }
161
162  llvm::SmallString<256> Name;
163  llvm::raw_svector_ostream Out(Name);
164  if (!mangleName(ND, Context, Out)) {
165    assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
166    return ND->getNameAsCString();
167  }
168
169  Name += '\0';
170  return UniqueMangledName(Name.begin(), Name.end());
171}
172
173const char *CodeGenModule::UniqueMangledName(const char *NameStart,
174                                             const char *NameEnd) {
175  assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
176
177  return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
178}
179
180/// AddGlobalCtor - Add a function to the list that will be called before
181/// main() runs.
182void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
183  // FIXME: Type coercion of void()* types.
184  GlobalCtors.push_back(std::make_pair(Ctor, Priority));
185}
186
187/// AddGlobalDtor - Add a function to the list that will be called
188/// when the module is unloaded.
189void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
190  // FIXME: Type coercion of void()* types.
191  GlobalDtors.push_back(std::make_pair(Dtor, Priority));
192}
193
194void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
195  // Ctor function type is void()*.
196  llvm::FunctionType* CtorFTy =
197    llvm::FunctionType::get(llvm::Type::VoidTy,
198                            std::vector<const llvm::Type*>(),
199                            false);
200  llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
201
202  // Get the type of a ctor entry, { i32, void ()* }.
203  llvm::StructType* CtorStructTy =
204    llvm::StructType::get(llvm::Type::Int32Ty,
205                          llvm::PointerType::getUnqual(CtorFTy), NULL);
206
207  // Construct the constructor and destructor arrays.
208  std::vector<llvm::Constant*> Ctors;
209  for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
210    std::vector<llvm::Constant*> S;
211    S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false));
212    S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
213    Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
214  }
215
216  if (!Ctors.empty()) {
217    llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
218    new llvm::GlobalVariable(AT, false,
219                             llvm::GlobalValue::AppendingLinkage,
220                             llvm::ConstantArray::get(AT, Ctors),
221                             GlobalName,
222                             &TheModule);
223  }
224}
225
226void CodeGenModule::EmitAnnotations() {
227  if (Annotations.empty())
228    return;
229
230  // Create a new global variable for the ConstantStruct in the Module.
231  llvm::Constant *Array =
232  llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
233                                                Annotations.size()),
234                           Annotations);
235  llvm::GlobalValue *gv =
236  new llvm::GlobalVariable(Array->getType(), false,
237                           llvm::GlobalValue::AppendingLinkage, Array,
238                           "llvm.global.annotations", &TheModule);
239  gv->setSection("llvm.metadata");
240}
241
242static CodeGenModule::GVALinkage
243GetLinkageForFunction(const FunctionDecl *FD, const LangOptions &Features) {
244  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
245    // C++ member functions defined inside the class are always inline.
246    if (MD->isInline() || !MD->isOutOfLineDefinition())
247      return CodeGenModule::GVA_CXXInline;
248
249    return CodeGenModule::GVA_StrongExternal;
250  }
251
252  // "static" functions get internal linkage.
253  if (FD->getStorageClass() == FunctionDecl::Static)
254    return CodeGenModule::GVA_Internal;
255
256  if (!FD->isInline())
257    return CodeGenModule::GVA_StrongExternal;
258
259  // If the inline function explicitly has the GNU inline attribute on it, or if
260  // this is C89 mode, we use to GNU semantics.
261  if (!Features.C99 && !Features.CPlusPlus) {
262    // extern inline in GNU mode is like C99 inline.
263    if (FD->getStorageClass() == FunctionDecl::Extern)
264      return CodeGenModule::GVA_C99Inline;
265    // Normal inline is a strong symbol.
266    return CodeGenModule::GVA_StrongExternal;
267  } else if (FD->hasActiveGNUInlineAttribute()) {
268    // GCC in C99 mode seems to use a different decision-making
269    // process for extern inline, which factors in previous
270    // declarations.
271    if (FD->isExternGNUInline())
272      return CodeGenModule::GVA_C99Inline;
273    // Normal inline is a strong symbol.
274    return CodeGenModule::GVA_StrongExternal;
275  }
276
277  // The definition of inline changes based on the language.  Note that we
278  // have already handled "static inline" above, with the GVA_Internal case.
279  if (Features.CPlusPlus)  // inline and extern inline.
280    return CodeGenModule::GVA_CXXInline;
281
282  assert(Features.C99 && "Must be in C99 mode if not in C89 or C++ mode");
283  if (FD->isC99InlineDefinition())
284    return CodeGenModule::GVA_C99Inline;
285
286  return CodeGenModule::GVA_StrongExternal;
287}
288
289/// SetFunctionDefinitionAttributes - Set attributes for a global.
290///
291/// FIXME: This is currently only done for aliases and functions, but not for
292/// variables (these details are set in EmitGlobalVarDefinition for variables).
293void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
294                                                    llvm::GlobalValue *GV) {
295  GVALinkage Linkage = GetLinkageForFunction(D, Features);
296
297  if (Linkage == GVA_Internal) {
298    GV->setLinkage(llvm::Function::InternalLinkage);
299  } else if (D->hasAttr<DLLExportAttr>()) {
300    GV->setLinkage(llvm::Function::DLLExportLinkage);
301  } else if (D->hasAttr<WeakAttr>()) {
302    GV->setLinkage(llvm::Function::WeakAnyLinkage);
303  } else if (Linkage == GVA_C99Inline) {
304    // In C99 mode, 'inline' functions are guaranteed to have a strong
305    // definition somewhere else, so we can use available_externally linkage.
306    GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
307  } else if (Linkage == GVA_CXXInline) {
308    // In C++, the compiler has to emit a definition in every translation unit
309    // that references the function.  We should use linkonce_odr because
310    // a) if all references in this translation unit are optimized away, we
311    // don't need to codegen it.  b) if the function persists, it needs to be
312    // merged with other definitions. c) C++ has the ODR, so we know the
313    // definition is dependable.
314    GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
315  } else {
316    assert(Linkage == GVA_StrongExternal);
317    // Otherwise, we have strong external linkage.
318    GV->setLinkage(llvm::Function::ExternalLinkage);
319  }
320
321  SetCommonAttributes(D, GV);
322}
323
324void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
325                                              const CGFunctionInfo &Info,
326                                              llvm::Function *F) {
327  AttributeListType AttributeList;
328  ConstructAttributeList(Info, D, AttributeList);
329
330  F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
331                                        AttributeList.size()));
332
333  // Set the appropriate calling convention for the Function.
334  if (D->hasAttr<FastCallAttr>())
335    F->setCallingConv(llvm::CallingConv::X86_FastCall);
336
337  if (D->hasAttr<StdCallAttr>())
338    F->setCallingConv(llvm::CallingConv::X86_StdCall);
339}
340
341void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
342                                                           llvm::Function *F) {
343  if (!Features.Exceptions && !Features.ObjCNonFragileABI)
344    F->addFnAttr(llvm::Attribute::NoUnwind);
345
346  if (D->hasAttr<AlwaysInlineAttr>())
347    F->addFnAttr(llvm::Attribute::AlwaysInline);
348
349  if (D->hasAttr<NoinlineAttr>())
350    F->addFnAttr(llvm::Attribute::NoInline);
351}
352
353void CodeGenModule::SetCommonAttributes(const Decl *D,
354                                        llvm::GlobalValue *GV) {
355  setGlobalVisibility(GV, D);
356
357  if (D->hasAttr<UsedAttr>())
358    AddUsedGlobal(GV);
359
360  if (const SectionAttr *SA = D->getAttr<SectionAttr>())
361    GV->setSection(SA->getName());
362}
363
364void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
365                                                  llvm::Function *F,
366                                                  const CGFunctionInfo &FI) {
367  SetLLVMFunctionAttributes(D, FI, F);
368  SetLLVMFunctionAttributesForDefinition(D, F);
369
370  F->setLinkage(llvm::Function::InternalLinkage);
371
372  SetCommonAttributes(D, F);
373}
374
375void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
376                                          llvm::Function *F,
377                                          bool IsIncompleteFunction) {
378  if (!IsIncompleteFunction)
379    SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
380
381  // Only a few attributes are set on declarations; these may later be
382  // overridden by a definition.
383
384  if (FD->hasAttr<DLLImportAttr>()) {
385    F->setLinkage(llvm::Function::DLLImportLinkage);
386  } else if (FD->hasAttr<WeakAttr>() || FD->hasAttr<WeakImportAttr>()) {
387    // "extern_weak" is overloaded in LLVM; we probably should have
388    // separate linkage types for this.
389    F->setLinkage(llvm::Function::ExternalWeakLinkage);
390  } else {
391    F->setLinkage(llvm::Function::ExternalLinkage);
392  }
393
394  if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
395    F->setSection(SA->getName());
396}
397
398void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
399  assert(!GV->isDeclaration() &&
400         "Only globals with definition can force usage.");
401  LLVMUsed.push_back(GV);
402}
403
404void CodeGenModule::EmitLLVMUsed() {
405  // Don't create llvm.used if there is no need.
406  if (LLVMUsed.empty())
407    return;
408
409  llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
410  llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, LLVMUsed.size());
411
412  // Convert LLVMUsed to what ConstantArray needs.
413  std::vector<llvm::Constant*> UsedArray;
414  UsedArray.resize(LLVMUsed.size());
415  for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
416    UsedArray[i] =
417     llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), i8PTy);
418  }
419
420  llvm::GlobalVariable *GV =
421    new llvm::GlobalVariable(ATy, false,
422                             llvm::GlobalValue::AppendingLinkage,
423                             llvm::ConstantArray::get(ATy, UsedArray),
424                             "llvm.used", &getModule());
425
426  GV->setSection("llvm.metadata");
427}
428
429void CodeGenModule::EmitDeferred() {
430  // Emit code for any potentially referenced deferred decls.  Since a
431  // previously unused static decl may become used during the generation of code
432  // for a static function, iterate until no  changes are made.
433  while (!DeferredDeclsToEmit.empty()) {
434    GlobalDecl D = DeferredDeclsToEmit.back();
435    DeferredDeclsToEmit.pop_back();
436
437    // The mangled name for the decl must have been emitted in GlobalDeclMap.
438    // Look it up to see if it was defined with a stronger definition (e.g. an
439    // extern inline function with a strong function redefinition).  If so,
440    // just ignore the deferred decl.
441    llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
442    assert(CGRef && "Deferred decl wasn't referenced?");
443
444    if (!CGRef->isDeclaration())
445      continue;
446
447    // Otherwise, emit the definition and move on to the next one.
448    EmitGlobalDefinition(D);
449  }
450}
451
452/// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
453/// annotation information for a given GlobalValue.  The annotation struct is
454/// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
455/// GlobalValue being annotated.  The second field is the constant string
456/// created from the AnnotateAttr's annotation.  The third field is a constant
457/// string containing the name of the translation unit.  The fourth field is
458/// the line number in the file of the annotated value declaration.
459///
460/// FIXME: this does not unique the annotation string constants, as llvm-gcc
461///        appears to.
462///
463llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
464                                                const AnnotateAttr *AA,
465                                                unsigned LineNo) {
466  llvm::Module *M = &getModule();
467
468  // get [N x i8] constants for the annotation string, and the filename string
469  // which are the 2nd and 3rd elements of the global annotation structure.
470  const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
471  llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true);
472  llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(),
473                                                  true);
474
475  // Get the two global values corresponding to the ConstantArrays we just
476  // created to hold the bytes of the strings.
477  const char *StringPrefix = getContext().Target.getStringSymbolPrefix(true);
478  llvm::GlobalValue *annoGV =
479  new llvm::GlobalVariable(anno->getType(), false,
480                           llvm::GlobalValue::InternalLinkage, anno,
481                           GV->getName() + StringPrefix, M);
482  // translation unit name string, emitted into the llvm.metadata section.
483  llvm::GlobalValue *unitGV =
484  new llvm::GlobalVariable(unit->getType(), false,
485                           llvm::GlobalValue::InternalLinkage, unit,
486                           StringPrefix, M);
487
488  // Create the ConstantStruct for the global annotation.
489  llvm::Constant *Fields[4] = {
490    llvm::ConstantExpr::getBitCast(GV, SBP),
491    llvm::ConstantExpr::getBitCast(annoGV, SBP),
492    llvm::ConstantExpr::getBitCast(unitGV, SBP),
493    llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo)
494  };
495  return llvm::ConstantStruct::get(Fields, 4, false);
496}
497
498bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
499  // Never defer when EmitAllDecls is specified or the decl has
500  // attribute used.
501  if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
502    return false;
503
504  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
505    // Constructors and destructors should never be deferred.
506    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
507      return false;
508
509    GVALinkage Linkage = GetLinkageForFunction(FD, Features);
510
511    // static, static inline, always_inline, and extern inline functions can
512    // always be deferred.  Normal inline functions can be deferred in C99/C++.
513    if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
514        Linkage == GVA_CXXInline)
515      return true;
516    return false;
517  }
518
519  const VarDecl *VD = cast<VarDecl>(Global);
520  assert(VD->isFileVarDecl() && "Invalid decl");
521
522  return VD->getStorageClass() == VarDecl::Static;
523}
524
525void CodeGenModule::EmitGlobal(GlobalDecl GD) {
526  const ValueDecl *Global = GD.getDecl();
527
528  // If this is an alias definition (which otherwise looks like a declaration)
529  // emit it now.
530  if (Global->hasAttr<AliasAttr>())
531    return EmitAliasDefinition(Global);
532
533  // Ignore declarations, they will be emitted on their first use.
534  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
535    // Forward declarations are emitted lazily on first use.
536    if (!FD->isThisDeclarationADefinition())
537      return;
538  } else {
539    const VarDecl *VD = cast<VarDecl>(Global);
540    assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
541
542    // In C++, if this is marked "extern", defer code generation.
543    if (getLangOptions().CPlusPlus && !VD->getInit() &&
544        (VD->getStorageClass() == VarDecl::Extern ||
545         VD->isExternC(getContext())))
546      return;
547
548    // In C, if this isn't a definition, defer code generation.
549    if (!getLangOptions().CPlusPlus && !VD->getInit())
550      return;
551  }
552
553  // Defer code generation when possible if this is a static definition, inline
554  // function etc.  These we only want to emit if they are used.
555  if (MayDeferGeneration(Global)) {
556    // If the value has already been used, add it directly to the
557    // DeferredDeclsToEmit list.
558    const char *MangledName = getMangledName(GD);
559    if (GlobalDeclMap.count(MangledName))
560      DeferredDeclsToEmit.push_back(GD);
561    else {
562      // Otherwise, remember that we saw a deferred decl with this name.  The
563      // first use of the mangled name will cause it to move into
564      // DeferredDeclsToEmit.
565      DeferredDecls[MangledName] = GD;
566    }
567    return;
568  }
569
570  // Otherwise emit the definition.
571  EmitGlobalDefinition(GD);
572}
573
574void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
575  const ValueDecl *D = GD.getDecl();
576
577  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
578    EmitCXXConstructor(CD, GD.getCtorType());
579  else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
580    EmitCXXDestructor(DD, GD.getDtorType());
581  else if (isa<FunctionDecl>(D))
582    EmitGlobalFunctionDefinition(GD);
583  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
584    EmitGlobalVarDefinition(VD);
585  else {
586    assert(0 && "Invalid argument to EmitGlobalDefinition()");
587  }
588}
589
590/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
591/// module, create and return an llvm Function with the specified type. If there
592/// is something in the module with the specified name, return it potentially
593/// bitcasted to the right type.
594///
595/// If D is non-null, it specifies a decl that correspond to this.  This is used
596/// to set the attributes on the function when it is first created.
597llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
598                                                       const llvm::Type *Ty,
599                                                       GlobalDecl D) {
600  // Lookup the entry, lazily creating it if necessary.
601  llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
602  if (Entry) {
603    if (Entry->getType()->getElementType() == Ty)
604      return Entry;
605
606    // Make sure the result is of the correct type.
607    const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
608    return llvm::ConstantExpr::getBitCast(Entry, PTy);
609  }
610
611  // This is the first use or definition of a mangled name.  If there is a
612  // deferred decl with this name, remember that we need to emit it at the end
613  // of the file.
614  llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
615    DeferredDecls.find(MangledName);
616  if (DDI != DeferredDecls.end()) {
617    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
618    // list, and remove it from DeferredDecls (since we don't need it anymore).
619    DeferredDeclsToEmit.push_back(DDI->second);
620    DeferredDecls.erase(DDI);
621  } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
622    // If this the first reference to a C++ inline function in a class, queue up
623    // the deferred function body for emission.  These are not seen as
624    // top-level declarations.
625    if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
626      DeferredDeclsToEmit.push_back(D);
627  }
628
629  // This function doesn't have a complete type (for example, the return
630  // type is an incomplete struct). Use a fake type instead, and make
631  // sure not to try to set attributes.
632  bool IsIncompleteFunction = false;
633  if (!isa<llvm::FunctionType>(Ty)) {
634    Ty = llvm::FunctionType::get(llvm::Type::VoidTy,
635                                 std::vector<const llvm::Type*>(), false);
636    IsIncompleteFunction = true;
637  }
638  llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
639                                             llvm::Function::ExternalLinkage,
640                                             "", &getModule());
641  F->setName(MangledName);
642  if (D.getDecl())
643    SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F,
644                          IsIncompleteFunction);
645  Entry = F;
646  return F;
647}
648
649/// GetAddrOfFunction - Return the address of the given function.  If Ty is
650/// non-null, then this function will use the specified type if it has to
651/// create it (this occurs when we see a definition of the function).
652llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
653                                                 const llvm::Type *Ty) {
654  // If there was no specific requested type, just convert it now.
655  if (!Ty)
656    Ty = getTypes().ConvertType(GD.getDecl()->getType());
657  return GetOrCreateLLVMFunction(getMangledName(GD.getDecl()), Ty, GD);
658}
659
660/// CreateRuntimeFunction - Create a new runtime function with the specified
661/// type and name.
662llvm::Constant *
663CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
664                                     const char *Name) {
665  // Convert Name to be a uniqued string from the IdentifierInfo table.
666  Name = getContext().Idents.get(Name).getName();
667  return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
668}
669
670/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
671/// create and return an llvm GlobalVariable with the specified type.  If there
672/// is something in the module with the specified name, return it potentially
673/// bitcasted to the right type.
674///
675/// If D is non-null, it specifies a decl that correspond to this.  This is used
676/// to set the attributes on the global when it is first created.
677llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
678                                                     const llvm::PointerType*Ty,
679                                                     const VarDecl *D) {
680  // Lookup the entry, lazily creating it if necessary.
681  llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
682  if (Entry) {
683    if (Entry->getType() == Ty)
684      return Entry;
685
686    // Make sure the result is of the correct type.
687    return llvm::ConstantExpr::getBitCast(Entry, Ty);
688  }
689
690  // This is the first use or definition of a mangled name.  If there is a
691  // deferred decl with this name, remember that we need to emit it at the end
692  // of the file.
693  llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
694    DeferredDecls.find(MangledName);
695  if (DDI != DeferredDecls.end()) {
696    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
697    // list, and remove it from DeferredDecls (since we don't need it anymore).
698    DeferredDeclsToEmit.push_back(DDI->second);
699    DeferredDecls.erase(DDI);
700  }
701
702  llvm::GlobalVariable *GV =
703    new llvm::GlobalVariable(Ty->getElementType(), false,
704                             llvm::GlobalValue::ExternalLinkage,
705                             0, "", &getModule(),
706                             false, Ty->getAddressSpace());
707  GV->setName(MangledName);
708
709  // Handle things which are present even on external declarations.
710  if (D) {
711    // FIXME: This code is overly simple and should be merged with other global
712    // handling.
713    GV->setConstant(D->getType().isConstant(Context));
714
715    // FIXME: Merge with other attribute handling code.
716    if (D->getStorageClass() == VarDecl::PrivateExtern)
717      GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
718
719    if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>())
720      GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
721
722    GV->setThreadLocal(D->isThreadSpecified());
723  }
724
725  return Entry = GV;
726}
727
728
729/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
730/// given global variable.  If Ty is non-null and if the global doesn't exist,
731/// then it will be greated with the specified type instead of whatever the
732/// normal requested type would be.
733llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
734                                                  const llvm::Type *Ty) {
735  assert(D->hasGlobalStorage() && "Not a global variable");
736  QualType ASTTy = D->getType();
737  if (Ty == 0)
738    Ty = getTypes().ConvertTypeForMem(ASTTy);
739
740  const llvm::PointerType *PTy =
741    llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
742  return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
743}
744
745/// CreateRuntimeVariable - Create a new runtime global variable with the
746/// specified type and name.
747llvm::Constant *
748CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
749                                     const char *Name) {
750  // Convert Name to be a uniqued string from the IdentifierInfo table.
751  Name = getContext().Idents.get(Name).getName();
752  return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
753}
754
755void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
756  assert(!D->getInit() && "Cannot emit definite definitions here!");
757
758  if (MayDeferGeneration(D)) {
759    // If we have not seen a reference to this variable yet, place it
760    // into the deferred declarations table to be emitted if needed
761    // later.
762    const char *MangledName = getMangledName(D);
763    if (GlobalDeclMap.count(MangledName) == 0) {
764      DeferredDecls[MangledName] = GlobalDecl(D);
765      return;
766    }
767  }
768
769  // The tentative definition is the only definition.
770  EmitGlobalVarDefinition(D);
771}
772
773void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
774  llvm::Constant *Init = 0;
775  QualType ASTTy = D->getType();
776
777  if (D->getInit() == 0) {
778    // This is a tentative definition; tentative definitions are
779    // implicitly initialized with { 0 }.
780    //
781    // Note that tentative definitions are only emitted at the end of
782    // a translation unit, so they should never have incomplete
783    // type. In addition, EmitTentativeDefinition makes sure that we
784    // never attempt to emit a tentative definition if a real one
785    // exists. A use may still exists, however, so we still may need
786    // to do a RAUW.
787    assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
788    Init = llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(ASTTy));
789  } else {
790    Init = EmitConstantExpr(D->getInit(), D->getType());
791    if (!Init) {
792      ErrorUnsupported(D, "static initializer");
793      QualType T = D->getInit()->getType();
794      Init = llvm::UndefValue::get(getTypes().ConvertType(T));
795    }
796  }
797
798  const llvm::Type* InitType = Init->getType();
799  llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
800
801  // Strip off a bitcast if we got one back.
802  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
803    assert(CE->getOpcode() == llvm::Instruction::BitCast);
804    Entry = CE->getOperand(0);
805  }
806
807  // Entry is now either a Function or GlobalVariable.
808  llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
809
810  // We have a definition after a declaration with the wrong type.
811  // We must make a new GlobalVariable* and update everything that used OldGV
812  // (a declaration or tentative definition) with the new GlobalVariable*
813  // (which will be a definition).
814  //
815  // This happens if there is a prototype for a global (e.g.
816  // "extern int x[];") and then a definition of a different type (e.g.
817  // "int x[10];"). This also happens when an initializer has a different type
818  // from the type of the global (this happens with unions).
819  if (GV == 0 ||
820      GV->getType()->getElementType() != InitType ||
821      GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
822
823    // Remove the old entry from GlobalDeclMap so that we'll create a new one.
824    GlobalDeclMap.erase(getMangledName(D));
825
826    // Make a new global with the correct type, this is now guaranteed to work.
827    GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
828    GV->takeName(cast<llvm::GlobalValue>(Entry));
829
830    // Replace all uses of the old global with the new global
831    llvm::Constant *NewPtrForOldDecl =
832        llvm::ConstantExpr::getBitCast(GV, Entry->getType());
833    Entry->replaceAllUsesWith(NewPtrForOldDecl);
834
835    // Erase the old global, since it is no longer used.
836    cast<llvm::GlobalValue>(Entry)->eraseFromParent();
837  }
838
839  if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
840    SourceManager &SM = Context.getSourceManager();
841    AddAnnotation(EmitAnnotateAttr(GV, AA,
842                              SM.getInstantiationLineNumber(D->getLocation())));
843  }
844
845  GV->setInitializer(Init);
846  GV->setConstant(D->getType().isConstant(Context));
847  GV->setAlignment(getContext().getDeclAlignInBytes(D));
848
849  // Set the llvm linkage type as appropriate.
850  if (D->getStorageClass() == VarDecl::Static)
851    GV->setLinkage(llvm::Function::InternalLinkage);
852  else if (D->hasAttr<DLLImportAttr>())
853    GV->setLinkage(llvm::Function::DLLImportLinkage);
854  else if (D->hasAttr<DLLExportAttr>())
855    GV->setLinkage(llvm::Function::DLLExportLinkage);
856  else if (D->hasAttr<WeakAttr>())
857    GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
858  else if (!CompileOpts.NoCommon &&
859           (!D->hasExternalStorage() && !D->getInit()))
860    GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
861  else
862    GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
863
864  SetCommonAttributes(D, GV);
865
866  // Emit global variable debug information.
867  if (CGDebugInfo *DI = getDebugInfo()) {
868    DI->setLocation(D->getLocation());
869    DI->EmitGlobalVariable(GV, D);
870  }
871}
872
873/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
874/// implement a function with no prototype, e.g. "int foo() {}".  If there are
875/// existing call uses of the old function in the module, this adjusts them to
876/// call the new function directly.
877///
878/// This is not just a cleanup: the always_inline pass requires direct calls to
879/// functions to be able to inline them.  If there is a bitcast in the way, it
880/// won't inline them.  Instcombine normally deletes these calls, but it isn't
881/// run at -O0.
882static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
883                                                      llvm::Function *NewFn) {
884  // If we're redefining a global as a function, don't transform it.
885  llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
886  if (OldFn == 0) return;
887
888  const llvm::Type *NewRetTy = NewFn->getReturnType();
889  llvm::SmallVector<llvm::Value*, 4> ArgList;
890
891  for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
892       UI != E; ) {
893    // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
894    unsigned OpNo = UI.getOperandNo();
895    llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
896    if (!CI || OpNo != 0) continue;
897
898    // If the return types don't match exactly, and if the call isn't dead, then
899    // we can't transform this call.
900    if (CI->getType() != NewRetTy && !CI->use_empty())
901      continue;
902
903    // If the function was passed too few arguments, don't transform.  If extra
904    // arguments were passed, we silently drop them.  If any of the types
905    // mismatch, we don't transform.
906    unsigned ArgNo = 0;
907    bool DontTransform = false;
908    for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
909         E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
910      if (CI->getNumOperands()-1 == ArgNo ||
911          CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
912        DontTransform = true;
913        break;
914      }
915    }
916    if (DontTransform)
917      continue;
918
919    // Okay, we can transform this.  Create the new call instruction and copy
920    // over the required information.
921    ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
922    llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
923                                                     ArgList.end(), "", CI);
924    ArgList.clear();
925    if (NewCall->getType() != llvm::Type::VoidTy)
926      NewCall->takeName(CI);
927    NewCall->setCallingConv(CI->getCallingConv());
928    NewCall->setAttributes(CI->getAttributes());
929
930    // Finally, remove the old call, replacing any uses with the new one.
931    if (!CI->use_empty())
932      CI->replaceAllUsesWith(NewCall);
933    CI->eraseFromParent();
934  }
935}
936
937
938void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
939  const llvm::FunctionType *Ty;
940  const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
941
942  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
943    bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic();
944
945    Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
946  } else {
947    Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
948
949    // As a special case, make sure that definitions of K&R function
950    // "type foo()" aren't declared as varargs (which forces the backend
951    // to do unnecessary work).
952    if (D->getType()->isFunctionNoProtoType()) {
953      assert(Ty->isVarArg() && "Didn't lower type as expected");
954      // Due to stret, the lowered function could have arguments.
955      // Just create the same type as was lowered by ConvertType
956      // but strip off the varargs bit.
957      std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
958      Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
959    }
960  }
961
962  // Get or create the prototype for the function.
963  llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
964
965  // Strip off a bitcast if we got one back.
966  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
967    assert(CE->getOpcode() == llvm::Instruction::BitCast);
968    Entry = CE->getOperand(0);
969  }
970
971
972  if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
973    llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
974
975    // If the types mismatch then we have to rewrite the definition.
976    assert(OldFn->isDeclaration() &&
977           "Shouldn't replace non-declaration");
978
979    // F is the Function* for the one with the wrong type, we must make a new
980    // Function* and update everything that used F (a declaration) with the new
981    // Function* (which will be a definition).
982    //
983    // This happens if there is a prototype for a function
984    // (e.g. "int f()") and then a definition of a different type
985    // (e.g. "int f(int x)").  Start by making a new function of the
986    // correct type, RAUW, then steal the name.
987    GlobalDeclMap.erase(getMangledName(D));
988    llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
989    NewFn->takeName(OldFn);
990
991    // If this is an implementation of a function without a prototype, try to
992    // replace any existing uses of the function (which may be calls) with uses
993    // of the new function
994    if (D->getType()->isFunctionNoProtoType()) {
995      ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
996      OldFn->removeDeadConstantUsers();
997    }
998
999    // Replace uses of F with the Function we will endow with a body.
1000    if (!Entry->use_empty()) {
1001      llvm::Constant *NewPtrForOldDecl =
1002        llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1003      Entry->replaceAllUsesWith(NewPtrForOldDecl);
1004    }
1005
1006    // Ok, delete the old function now, which is dead.
1007    OldFn->eraseFromParent();
1008
1009    Entry = NewFn;
1010  }
1011
1012  llvm::Function *Fn = cast<llvm::Function>(Entry);
1013
1014  CodeGenFunction(*this).GenerateCode(D, Fn);
1015
1016  SetFunctionDefinitionAttributes(D, Fn);
1017  SetLLVMFunctionAttributesForDefinition(D, Fn);
1018
1019  if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1020    AddGlobalCtor(Fn, CA->getPriority());
1021  if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1022    AddGlobalDtor(Fn, DA->getPriority());
1023}
1024
1025void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1026  const AliasAttr *AA = D->getAttr<AliasAttr>();
1027  assert(AA && "Not an alias?");
1028
1029  const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1030
1031  // Unique the name through the identifier table.
1032  const char *AliaseeName = AA->getAliasee().c_str();
1033  AliaseeName = getContext().Idents.get(AliaseeName).getName();
1034
1035  // Create a reference to the named value.  This ensures that it is emitted
1036  // if a deferred decl.
1037  llvm::Constant *Aliasee;
1038  if (isa<llvm::FunctionType>(DeclTy))
1039    Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1040  else
1041    Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1042                                    llvm::PointerType::getUnqual(DeclTy), 0);
1043
1044  // Create the new alias itself, but don't set a name yet.
1045  llvm::GlobalValue *GA =
1046    new llvm::GlobalAlias(Aliasee->getType(),
1047                          llvm::Function::ExternalLinkage,
1048                          "", Aliasee, &getModule());
1049
1050  // See if there is already something with the alias' name in the module.
1051  const char *MangledName = getMangledName(D);
1052  llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1053
1054  if (Entry && !Entry->isDeclaration()) {
1055    // If there is a definition in the module, then it wins over the alias.
1056    // This is dubious, but allow it to be safe.  Just ignore the alias.
1057    GA->eraseFromParent();
1058    return;
1059  }
1060
1061  if (Entry) {
1062    // If there is a declaration in the module, then we had an extern followed
1063    // by the alias, as in:
1064    //   extern int test6();
1065    //   ...
1066    //   int test6() __attribute__((alias("test7")));
1067    //
1068    // Remove it and replace uses of it with the alias.
1069
1070    Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1071                                                          Entry->getType()));
1072    Entry->eraseFromParent();
1073  }
1074
1075  // Now we know that there is no conflict, set the name.
1076  Entry = GA;
1077  GA->setName(MangledName);
1078
1079  // Set attributes which are particular to an alias; this is a
1080  // specialization of the attributes which may be set on a global
1081  // variable/function.
1082  if (D->hasAttr<DLLExportAttr>()) {
1083    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1084      // The dllexport attribute is ignored for undefined symbols.
1085      if (FD->getBody(getContext()))
1086        GA->setLinkage(llvm::Function::DLLExportLinkage);
1087    } else {
1088      GA->setLinkage(llvm::Function::DLLExportLinkage);
1089    }
1090  } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) {
1091    GA->setLinkage(llvm::Function::WeakAnyLinkage);
1092  }
1093
1094  SetCommonAttributes(D, GA);
1095}
1096
1097/// getBuiltinLibFunction - Given a builtin id for a function like
1098/// "__builtin_fabsf", return a Function* for "fabsf".
1099llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) {
1100  assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1101          Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1102         "isn't a lib fn");
1103
1104  // Get the name, skip over the __builtin_ prefix (if necessary).
1105  const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1106  if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1107    Name += 10;
1108
1109  // Get the type for the builtin.
1110  Builtin::Context::GetBuiltinTypeError Error;
1111  QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context, Error);
1112  assert(Error == Builtin::Context::GE_None && "Can't get builtin type");
1113
1114  const llvm::FunctionType *Ty =
1115    cast<llvm::FunctionType>(getTypes().ConvertType(Type));
1116
1117  // Unique the name through the identifier table.
1118  Name = getContext().Idents.get(Name).getName();
1119  // FIXME: param attributes for sext/zext etc.
1120  return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl());
1121}
1122
1123llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1124                                            unsigned NumTys) {
1125  return llvm::Intrinsic::getDeclaration(&getModule(),
1126                                         (llvm::Intrinsic::ID)IID, Tys, NumTys);
1127}
1128
1129llvm::Function *CodeGenModule::getMemCpyFn() {
1130  if (MemCpyFn) return MemCpyFn;
1131  const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1132  return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1133}
1134
1135llvm::Function *CodeGenModule::getMemMoveFn() {
1136  if (MemMoveFn) return MemMoveFn;
1137  const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1138  return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1139}
1140
1141llvm::Function *CodeGenModule::getMemSetFn() {
1142  if (MemSetFn) return MemSetFn;
1143  const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1144  return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1145}
1146
1147static void appendFieldAndPadding(CodeGenModule &CGM,
1148                                  std::vector<llvm::Constant*>& Fields,
1149                                  FieldDecl *FieldD, FieldDecl *NextFieldD,
1150                                  llvm::Constant* Field,
1151                                  RecordDecl* RD, const llvm::StructType *STy) {
1152  // Append the field.
1153  Fields.push_back(Field);
1154
1155  int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD);
1156
1157  int NextStructFieldNo;
1158  if (!NextFieldD) {
1159    NextStructFieldNo = STy->getNumElements();
1160  } else {
1161    NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD);
1162  }
1163
1164  // Append padding
1165  for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) {
1166    llvm::Constant *C =
1167      llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1));
1168
1169    Fields.push_back(C);
1170  }
1171}
1172
1173llvm::Constant *CodeGenModule::
1174GetAddrOfConstantCFString(const StringLiteral *Literal) {
1175  std::string str;
1176  unsigned StringLength = 0;
1177
1178  bool isUTF16 = false;
1179  if (Literal->containsNonAsciiOrNull()) {
1180    // Convert from UTF-8 to UTF-16.
1181    llvm::SmallVector<UTF16, 128> ToBuf(Literal->getByteLength());
1182    const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1183    UTF16 *ToPtr = &ToBuf[0];
1184
1185    ConversionResult Result;
1186    Result = ConvertUTF8toUTF16(&FromPtr, FromPtr+Literal->getByteLength(),
1187                                &ToPtr, ToPtr+Literal->getByteLength(),
1188                                strictConversion);
1189    if (Result == conversionOK) {
1190      // FIXME: Storing UTF-16 in a C string is a hack to test Unicode strings
1191      // without doing more surgery to this routine. Since we aren't explicitly
1192      // checking for endianness here, it's also a bug (when generating code for
1193      // a target that doesn't match the host endianness). Modeling this as an
1194      // i16 array is likely the cleanest solution.
1195      StringLength = ToPtr-&ToBuf[0];
1196      str.assign((char *)&ToBuf[0], StringLength*2);// Twice as many UTF8 chars.
1197      isUTF16 = true;
1198    } else if (Result == sourceIllegal) {
1199      // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string.
1200      str.assign(Literal->getStrData(), Literal->getByteLength());
1201      StringLength = str.length();
1202    } else
1203      assert(Result == conversionOK && "UTF-8 to UTF-16 conversion failed");
1204
1205  } else {
1206    str.assign(Literal->getStrData(), Literal->getByteLength());
1207    StringLength = str.length();
1208  }
1209  llvm::StringMapEntry<llvm::Constant *> &Entry =
1210    CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1211
1212  if (llvm::Constant *C = Entry.getValue())
1213    return C;
1214
1215  llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
1216  llvm::Constant *Zeros[] = { Zero, Zero };
1217
1218  if (!CFConstantStringClassRef) {
1219    const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1220    Ty = llvm::ArrayType::get(Ty, 0);
1221
1222    // FIXME: This is fairly broken if __CFConstantStringClassReference is
1223    // already defined, in that it will get renamed and the user will most
1224    // likely see an opaque error message. This is a general issue with relying
1225    // on particular names.
1226    llvm::GlobalVariable *GV =
1227      new llvm::GlobalVariable(Ty, false,
1228                               llvm::GlobalVariable::ExternalLinkage, 0,
1229                               "__CFConstantStringClassReference",
1230                               &getModule());
1231
1232    // Decay array -> ptr
1233    CFConstantStringClassRef =
1234      llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1235  }
1236
1237  QualType CFTy = getContext().getCFConstantStringType();
1238  RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl();
1239
1240  const llvm::StructType *STy =
1241    cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1242
1243  std::vector<llvm::Constant*> Fields;
1244  RecordDecl::field_iterator Field = CFRD->field_begin(getContext());
1245
1246  // Class pointer.
1247  FieldDecl *CurField = *Field++;
1248  FieldDecl *NextField = *Field++;
1249  appendFieldAndPadding(*this, Fields, CurField, NextField,
1250                        CFConstantStringClassRef, CFRD, STy);
1251
1252  // Flags.
1253  CurField = NextField;
1254  NextField = *Field++;
1255  const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1256  appendFieldAndPadding(*this, Fields, CurField, NextField,
1257                        isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0)
1258                                : llvm::ConstantInt::get(Ty, 0x07C8),
1259                        CFRD, STy);
1260
1261  // String pointer.
1262  CurField = NextField;
1263  NextField = *Field++;
1264  llvm::Constant *C = llvm::ConstantArray::get(str);
1265
1266  const char *Sect, *Prefix;
1267  bool isConstant;
1268  if (isUTF16) {
1269    Prefix = getContext().Target.getUnicodeStringSymbolPrefix();
1270    Sect = getContext().Target.getUnicodeStringSection();
1271    // FIXME: Why does GCC not set constant here?
1272    isConstant = false;
1273  } else {
1274    Prefix = getContext().Target.getStringSymbolPrefix(true);
1275    Sect = getContext().Target.getCFStringDataSection();
1276    // FIXME: -fwritable-strings should probably affect this, but we
1277    // are following gcc here.
1278    isConstant = true;
1279  }
1280  llvm::GlobalVariable *GV =
1281    new llvm::GlobalVariable(C->getType(), isConstant,
1282                             llvm::GlobalValue::InternalLinkage,
1283                             C, Prefix, &getModule());
1284  if (Sect)
1285    GV->setSection(Sect);
1286  if (isUTF16) {
1287    unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1288    GV->setAlignment(Align);
1289  }
1290  appendFieldAndPadding(*this, Fields, CurField, NextField,
1291                        llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2),
1292                        CFRD, STy);
1293
1294  // String length.
1295  CurField = NextField;
1296  NextField = 0;
1297  Ty = getTypes().ConvertType(getContext().LongTy);
1298  appendFieldAndPadding(*this, Fields, CurField, NextField,
1299                        llvm::ConstantInt::get(Ty, StringLength), CFRD, STy);
1300
1301  // The struct.
1302  C = llvm::ConstantStruct::get(STy, Fields);
1303  GV = new llvm::GlobalVariable(C->getType(), true,
1304                                llvm::GlobalVariable::InternalLinkage, C,
1305                                getContext().Target.getCFStringSymbolPrefix(),
1306                                &getModule());
1307  if (const char *Sect = getContext().Target.getCFStringSection())
1308    GV->setSection(Sect);
1309  Entry.setValue(GV);
1310
1311  return GV;
1312}
1313
1314/// GetStringForStringLiteral - Return the appropriate bytes for a
1315/// string literal, properly padded to match the literal type.
1316std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1317  const char *StrData = E->getStrData();
1318  unsigned Len = E->getByteLength();
1319
1320  const ConstantArrayType *CAT =
1321    getContext().getAsConstantArrayType(E->getType());
1322  assert(CAT && "String isn't pointer or array!");
1323
1324  // Resize the string to the right size.
1325  std::string Str(StrData, StrData+Len);
1326  uint64_t RealLen = CAT->getSize().getZExtValue();
1327
1328  if (E->isWide())
1329    RealLen *= getContext().Target.getWCharWidth()/8;
1330
1331  Str.resize(RealLen, '\0');
1332
1333  return Str;
1334}
1335
1336/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1337/// constant array for the given string literal.
1338llvm::Constant *
1339CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1340  // FIXME: This can be more efficient.
1341  return GetAddrOfConstantString(GetStringForStringLiteral(S));
1342}
1343
1344/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1345/// array for the given ObjCEncodeExpr node.
1346llvm::Constant *
1347CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1348  std::string Str;
1349  getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1350
1351  return GetAddrOfConstantCString(Str);
1352}
1353
1354
1355/// GenerateWritableString -- Creates storage for a string literal.
1356static llvm::Constant *GenerateStringLiteral(const std::string &str,
1357                                             bool constant,
1358                                             CodeGenModule &CGM,
1359                                             const char *GlobalName) {
1360  // Create Constant for this string literal. Don't add a '\0'.
1361  llvm::Constant *C = llvm::ConstantArray::get(str, false);
1362
1363  // Create a global variable for this string
1364  return new llvm::GlobalVariable(C->getType(), constant,
1365                                  llvm::GlobalValue::InternalLinkage,
1366                                  C, GlobalName, &CGM.getModule());
1367}
1368
1369/// GetAddrOfConstantString - Returns a pointer to a character array
1370/// containing the literal. This contents are exactly that of the
1371/// given string, i.e. it will not be null terminated automatically;
1372/// see GetAddrOfConstantCString. Note that whether the result is
1373/// actually a pointer to an LLVM constant depends on
1374/// Feature.WriteableStrings.
1375///
1376/// The result has pointer to array type.
1377llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1378                                                       const char *GlobalName) {
1379  bool IsConstant = !Features.WritableStrings;
1380
1381  // Get the default prefix if a name wasn't specified.
1382  if (!GlobalName)
1383    GlobalName = getContext().Target.getStringSymbolPrefix(IsConstant);
1384
1385  // Don't share any string literals if strings aren't constant.
1386  if (!IsConstant)
1387    return GenerateStringLiteral(str, false, *this, GlobalName);
1388
1389  llvm::StringMapEntry<llvm::Constant *> &Entry =
1390  ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1391
1392  if (Entry.getValue())
1393    return Entry.getValue();
1394
1395  // Create a global variable for this.
1396  llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1397  Entry.setValue(C);
1398  return C;
1399}
1400
1401/// GetAddrOfConstantCString - Returns a pointer to a character
1402/// array containing the literal and a terminating '\-'
1403/// character. The result has pointer to array type.
1404llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1405                                                        const char *GlobalName){
1406  return GetAddrOfConstantString(str + '\0', GlobalName);
1407}
1408
1409/// EmitObjCPropertyImplementations - Emit information for synthesized
1410/// properties for an implementation.
1411void CodeGenModule::EmitObjCPropertyImplementations(const
1412                                                    ObjCImplementationDecl *D) {
1413  for (ObjCImplementationDecl::propimpl_iterator
1414         i = D->propimpl_begin(getContext()),
1415         e = D->propimpl_end(getContext()); i != e; ++i) {
1416    ObjCPropertyImplDecl *PID = *i;
1417
1418    // Dynamic is just for type-checking.
1419    if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1420      ObjCPropertyDecl *PD = PID->getPropertyDecl();
1421
1422      // Determine which methods need to be implemented, some may have
1423      // been overridden. Note that ::isSynthesized is not the method
1424      // we want, that just indicates if the decl came from a
1425      // property. What we want to know is if the method is defined in
1426      // this implementation.
1427      if (!D->getInstanceMethod(getContext(), PD->getGetterName()))
1428        CodeGenFunction(*this).GenerateObjCGetter(
1429                                 const_cast<ObjCImplementationDecl *>(D), PID);
1430      if (!PD->isReadOnly() &&
1431          !D->getInstanceMethod(getContext(), PD->getSetterName()))
1432        CodeGenFunction(*this).GenerateObjCSetter(
1433                                 const_cast<ObjCImplementationDecl *>(D), PID);
1434    }
1435  }
1436}
1437
1438/// EmitNamespace - Emit all declarations in a namespace.
1439void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1440  for (RecordDecl::decl_iterator I = ND->decls_begin(getContext()),
1441         E = ND->decls_end(getContext());
1442       I != E; ++I)
1443    EmitTopLevelDecl(*I);
1444}
1445
1446// EmitLinkageSpec - Emit all declarations in a linkage spec.
1447void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1448  if (LSD->getLanguage() != LinkageSpecDecl::lang_c) {
1449    ErrorUnsupported(LSD, "linkage spec");
1450    return;
1451  }
1452
1453  for (RecordDecl::decl_iterator I = LSD->decls_begin(getContext()),
1454         E = LSD->decls_end(getContext());
1455       I != E; ++I)
1456    EmitTopLevelDecl(*I);
1457}
1458
1459/// EmitTopLevelDecl - Emit code for a single top level declaration.
1460void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1461  // If an error has occurred, stop code generation, but continue
1462  // parsing and semantic analysis (to ensure all warnings and errors
1463  // are emitted).
1464  if (Diags.hasErrorOccurred())
1465    return;
1466
1467  switch (D->getKind()) {
1468  case Decl::CXXMethod:
1469  case Decl::Function:
1470  case Decl::Var:
1471    EmitGlobal(GlobalDecl(cast<ValueDecl>(D)));
1472    break;
1473
1474  // C++ Decls
1475  case Decl::Namespace:
1476    EmitNamespace(cast<NamespaceDecl>(D));
1477    break;
1478  case Decl::CXXConstructor:
1479    EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1480    break;
1481  case Decl::CXXDestructor:
1482    EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1483    break;
1484
1485  // Objective-C Decls
1486
1487  // Forward declarations, no (immediate) code generation.
1488  case Decl::ObjCClass:
1489  case Decl::ObjCForwardProtocol:
1490  case Decl::ObjCCategory:
1491  case Decl::ObjCInterface:
1492    break;
1493
1494  case Decl::ObjCProtocol:
1495    Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1496    break;
1497
1498  case Decl::ObjCCategoryImpl:
1499    // Categories have properties but don't support synthesize so we
1500    // can ignore them here.
1501    Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1502    break;
1503
1504  case Decl::ObjCImplementation: {
1505    ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1506    EmitObjCPropertyImplementations(OMD);
1507    Runtime->GenerateClass(OMD);
1508    break;
1509  }
1510  case Decl::ObjCMethod: {
1511    ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1512    // If this is not a prototype, emit the body.
1513    if (OMD->getBody(getContext()))
1514      CodeGenFunction(*this).GenerateObjCMethod(OMD);
1515    break;
1516  }
1517  case Decl::ObjCCompatibleAlias:
1518    // compatibility-alias is a directive and has no code gen.
1519    break;
1520
1521  case Decl::LinkageSpec:
1522    EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1523    break;
1524
1525  case Decl::FileScopeAsm: {
1526    FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1527    std::string AsmString(AD->getAsmString()->getStrData(),
1528                          AD->getAsmString()->getByteLength());
1529
1530    const std::string &S = getModule().getModuleInlineAsm();
1531    if (S.empty())
1532      getModule().setModuleInlineAsm(AsmString);
1533    else
1534      getModule().setModuleInlineAsm(S + '\n' + AsmString);
1535    break;
1536  }
1537
1538  default:
1539    // Make sure we handled everything we should, every other kind is a
1540    // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1541    // function. Need to recode Decl::Kind to do that easily.
1542    assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1543  }
1544}
1545