1193326Sed//===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2193326Sed//
3193326Sed//                     The LLVM Compiler Infrastructure
4193326Sed//
5193326Sed// This file is distributed under the University of Illinois Open Source
6193326Sed// License. See LICENSE.TXT for details.
7193326Sed//
8193326Sed//===----------------------------------------------------------------------===//
9193326Sed//
10193326Sed// This contains code to emit Stmt nodes as LLVM code.
11193326Sed//
12193326Sed//===----------------------------------------------------------------------===//
13193326Sed
14252723Sdim#include "CodeGenFunction.h"
15193326Sed#include "CGDebugInfo.h"
16193326Sed#include "CodeGenModule.h"
17218893Sdim#include "TargetInfo.h"
18193326Sed#include "clang/AST/StmtVisitor.h"
19263509Sdim#include "clang/Sema/SemaDiagnostic.h"
20193326Sed#include "clang/Basic/PrettyStackTrace.h"
21193326Sed#include "clang/Basic/TargetInfo.h"
22193326Sed#include "llvm/ADT/StringExtras.h"
23252723Sdim#include "llvm/IR/DataLayout.h"
24252723Sdim#include "llvm/IR/InlineAsm.h"
25252723Sdim#include "llvm/IR/Intrinsics.h"
26263509Sdim#include "llvm/Support/CallSite.h"
27193326Sedusing namespace clang;
28193326Sedusing namespace CodeGen;
29193326Sed
30193326Sed//===----------------------------------------------------------------------===//
31193326Sed//                              Statement Emission
32193326Sed//===----------------------------------------------------------------------===//
33193326Sed
34193326Sedvoid CodeGenFunction::EmitStopPoint(const Stmt *S) {
35193326Sed  if (CGDebugInfo *DI = getDebugInfo()) {
36226890Sdim    SourceLocation Loc;
37263509Sdim    Loc = S->getLocStart();
38226890Sdim    DI->EmitLocation(Builder, Loc);
39252723Sdim
40263509Sdim    LastStopPoint = Loc;
41193326Sed  }
42193326Sed}
43193326Sed
44193326Sedvoid CodeGenFunction::EmitStmt(const Stmt *S) {
45193326Sed  assert(S && "Null statement?");
46193326Sed
47226890Sdim  // These statements have their own debug info handling.
48193326Sed  if (EmitSimpleStmt(S))
49193326Sed    return;
50193326Sed
51198092Srdivacky  // Check if we are generating unreachable code.
52198092Srdivacky  if (!HaveInsertPoint()) {
53198092Srdivacky    // If so, and the statement doesn't contain a label, then we do not need to
54198092Srdivacky    // generate actual code. This is safe because (1) the current point is
55198092Srdivacky    // unreachable, so we don't need to execute the code, and (2) we've already
56198092Srdivacky    // handled the statements which update internal data structures (like the
57198092Srdivacky    // local variable map) which could be used by subsequent statements.
58198092Srdivacky    if (!ContainsLabel(S)) {
59198092Srdivacky      // Verify that any decl statements were handled as simple, they may be in
60198092Srdivacky      // scope of subsequent reachable statements.
61198092Srdivacky      assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
62198092Srdivacky      return;
63198092Srdivacky    }
64198092Srdivacky
65198092Srdivacky    // Otherwise, make a new block to hold the code.
66198092Srdivacky    EnsureInsertPoint();
67198092Srdivacky  }
68198092Srdivacky
69193326Sed  // Generate a stoppoint if we are emitting debug info.
70193326Sed  EmitStopPoint(S);
71193326Sed
72193326Sed  switch (S->getStmtClass()) {
73218893Sdim  case Stmt::NoStmtClass:
74218893Sdim  case Stmt::CXXCatchStmtClass:
75221345Sdim  case Stmt::SEHExceptStmtClass:
76221345Sdim  case Stmt::SEHFinallyStmtClass:
77235633Sdim  case Stmt::MSDependentExistsStmtClass:
78263509Sdim  case Stmt::OMPParallelDirectiveClass:
79218893Sdim    llvm_unreachable("invalid statement class to emit generically");
80218893Sdim  case Stmt::NullStmtClass:
81218893Sdim  case Stmt::CompoundStmtClass:
82218893Sdim  case Stmt::DeclStmtClass:
83218893Sdim  case Stmt::LabelStmtClass:
84235633Sdim  case Stmt::AttributedStmtClass:
85218893Sdim  case Stmt::GotoStmtClass:
86218893Sdim  case Stmt::BreakStmtClass:
87218893Sdim  case Stmt::ContinueStmtClass:
88218893Sdim  case Stmt::DefaultStmtClass:
89218893Sdim  case Stmt::CaseStmtClass:
90218893Sdim    llvm_unreachable("should have emitted these statements as simple");
91198092Srdivacky
92218893Sdim#define STMT(Type, Base)
93218893Sdim#define ABSTRACT_STMT(Op)
94218893Sdim#define EXPR(Type, Base) \
95218893Sdim  case Stmt::Type##Class:
96218893Sdim#include "clang/AST/StmtNodes.inc"
97218893Sdim  {
98218893Sdim    // Remember the block we came in on.
99218893Sdim    llvm::BasicBlock *incoming = Builder.GetInsertBlock();
100218893Sdim    assert(incoming && "expression emission must have an insertion point");
101198092Srdivacky
102218893Sdim    EmitIgnoredExpr(cast<Expr>(S));
103218893Sdim
104218893Sdim    llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
105218893Sdim    assert(outgoing && "expression emission cleared block!");
106218893Sdim
107218893Sdim    // The expression emitters assume (reasonably!) that the insertion
108218893Sdim    // point is always set.  To maintain that, the call-emission code
109218893Sdim    // for noreturn functions has to enter a new block with no
110218893Sdim    // predecessors.  We want to kill that block and mark the current
111218893Sdim    // insertion point unreachable in the common case of a call like
112218893Sdim    // "exit();".  Since expression emission doesn't otherwise create
113218893Sdim    // blocks with no predecessors, we can just test for that.
114218893Sdim    // However, we must be careful not to do this to our incoming
115218893Sdim    // block, because *statement* emission does sometimes create
116218893Sdim    // reachable blocks which will have no predecessors until later in
117218893Sdim    // the function.  This occurs with, e.g., labels that are not
118218893Sdim    // reachable by fallthrough.
119218893Sdim    if (incoming != outgoing && outgoing->use_empty()) {
120218893Sdim      outgoing->eraseFromParent();
121218893Sdim      Builder.ClearInsertionPoint();
122193326Sed    }
123193326Sed    break;
124218893Sdim  }
125218893Sdim
126198092Srdivacky  case Stmt::IndirectGotoStmtClass:
127193326Sed    EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
128193326Sed
129193326Sed  case Stmt::IfStmtClass:       EmitIfStmt(cast<IfStmt>(*S));             break;
130193326Sed  case Stmt::WhileStmtClass:    EmitWhileStmt(cast<WhileStmt>(*S));       break;
131193326Sed  case Stmt::DoStmtClass:       EmitDoStmt(cast<DoStmt>(*S));             break;
132193326Sed  case Stmt::ForStmtClass:      EmitForStmt(cast<ForStmt>(*S));           break;
133198092Srdivacky
134193326Sed  case Stmt::ReturnStmtClass:   EmitReturnStmt(cast<ReturnStmt>(*S));     break;
135193326Sed
136193326Sed  case Stmt::SwitchStmtClass:   EmitSwitchStmt(cast<SwitchStmt>(*S));     break;
137245431Sdim  case Stmt::GCCAsmStmtClass:   // Intentional fall-through.
138245431Sdim  case Stmt::MSAsmStmtClass:    EmitAsmStmt(cast<AsmStmt>(*S));           break;
139263509Sdim  case Stmt::CapturedStmtClass: {
140263509Sdim    const CapturedStmt *CS = cast<CapturedStmt>(S);
141263509Sdim    EmitCapturedStmt(*CS, CS->getCapturedRegionKind());
142263509Sdim    }
143252723Sdim    break;
144193326Sed  case Stmt::ObjCAtTryStmtClass:
145193326Sed    EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
146198092Srdivacky    break;
147193326Sed  case Stmt::ObjCAtCatchStmtClass:
148226890Sdim    llvm_unreachable(
149226890Sdim                    "@catch statements should be handled by EmitObjCAtTryStmt");
150193326Sed  case Stmt::ObjCAtFinallyStmtClass:
151226890Sdim    llvm_unreachable(
152226890Sdim                  "@finally statements should be handled by EmitObjCAtTryStmt");
153193326Sed  case Stmt::ObjCAtThrowStmtClass:
154193326Sed    EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
155193326Sed    break;
156193326Sed  case Stmt::ObjCAtSynchronizedStmtClass:
157193326Sed    EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
158193326Sed    break;
159198092Srdivacky  case Stmt::ObjCForCollectionStmtClass:
160193326Sed    EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
161193326Sed    break;
162224145Sdim  case Stmt::ObjCAutoreleasePoolStmtClass:
163224145Sdim    EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
164224145Sdim    break;
165245431Sdim
166198092Srdivacky  case Stmt::CXXTryStmtClass:
167198092Srdivacky    EmitCXXTryStmt(cast<CXXTryStmt>(*S));
168198092Srdivacky    break;
169221345Sdim  case Stmt::CXXForRangeStmtClass:
170221345Sdim    EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S));
171263509Sdim    break;
172221345Sdim  case Stmt::SEHTryStmtClass:
173263509Sdim    EmitSEHTryStmt(cast<SEHTryStmt>(*S));
174221345Sdim    break;
175193326Sed  }
176193326Sed}
177193326Sed
178193326Sedbool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
179193326Sed  switch (S->getStmtClass()) {
180193326Sed  default: return false;
181193326Sed  case Stmt::NullStmtClass: break;
182193326Sed  case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
183198092Srdivacky  case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break;
184193326Sed  case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break;
185235633Sdim  case Stmt::AttributedStmtClass:
186235633Sdim                            EmitAttributedStmt(cast<AttributedStmt>(*S)); break;
187193326Sed  case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break;
188193326Sed  case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break;
189193326Sed  case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
190193326Sed  case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break;
191193326Sed  case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break;
192193326Sed  }
193193326Sed
194193326Sed  return true;
195193326Sed}
196193326Sed
197193326Sed/// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
198193326Sed/// this captures the expression result of the last sub-statement and returns it
199193326Sed/// (for use by the statement expression extension).
200263509Sdimllvm::Value* CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
201263509Sdim                                               AggValueSlot AggSlot) {
202193326Sed  PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
203193326Sed                             "LLVM IR generation of compound statement ('{}')");
204198092Srdivacky
205235633Sdim  // Keep track of the current cleanup stack depth, including debug scopes.
206235633Sdim  LexicalScope Scope(*this, S.getSourceRange());
207193326Sed
208252723Sdim  return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
209252723Sdim}
210252723Sdim
211263509Sdimllvm::Value*
212263509SdimCodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S,
213263509Sdim                                              bool GetLast,
214263509Sdim                                              AggValueSlot AggSlot) {
215252723Sdim
216193326Sed  for (CompoundStmt::const_body_iterator I = S.body_begin(),
217193326Sed       E = S.body_end()-GetLast; I != E; ++I)
218193326Sed    EmitStmt(*I);
219193326Sed
220263509Sdim  llvm::Value *RetAlloca = 0;
221263509Sdim  if (GetLast) {
222198092Srdivacky    // We have to special case labels here.  They are statements, but when put
223193326Sed    // at the end of a statement expression, they yield the value of their
224193326Sed    // subexpression.  Handle this by walking through all labels we encounter,
225193326Sed    // emitting them before we evaluate the subexpr.
226193326Sed    const Stmt *LastStmt = S.body_back();
227193326Sed    while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
228218893Sdim      EmitLabel(LS->getDecl());
229193326Sed      LastStmt = LS->getSubStmt();
230193326Sed    }
231198092Srdivacky
232193326Sed    EnsureInsertPoint();
233198092Srdivacky
234263509Sdim    QualType ExprTy = cast<Expr>(LastStmt)->getType();
235263509Sdim    if (hasAggregateEvaluationKind(ExprTy)) {
236263509Sdim      EmitAggExpr(cast<Expr>(LastStmt), AggSlot);
237263509Sdim    } else {
238263509Sdim      // We can't return an RValue here because there might be cleanups at
239263509Sdim      // the end of the StmtExpr.  Because of that, we have to emit the result
240263509Sdim      // here into a temporary alloca.
241263509Sdim      RetAlloca = CreateMemTemp(ExprTy);
242263509Sdim      EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(),
243263509Sdim                       /*IsInit*/false);
244263509Sdim    }
245263509Sdim
246193326Sed  }
247193326Sed
248263509Sdim  return RetAlloca;
249193326Sed}
250193326Sed
251193326Sedvoid CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
252193326Sed  llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
253198092Srdivacky
254193326Sed  // If there is a cleanup stack, then we it isn't worth trying to
255193326Sed  // simplify this block (we would need to remove it from the scope map
256193326Sed  // and cleanup entry).
257210299Sed  if (!EHStack.empty())
258193326Sed    return;
259193326Sed
260193326Sed  // Can only simplify direct branches.
261193326Sed  if (!BI || !BI->isUnconditional())
262193326Sed    return;
263193326Sed
264245431Sdim  // Can only simplify empty blocks.
265245431Sdim  if (BI != BB->begin())
266245431Sdim    return;
267245431Sdim
268193326Sed  BB->replaceAllUsesWith(BI->getSuccessor(0));
269193326Sed  BI->eraseFromParent();
270193326Sed  BB->eraseFromParent();
271193326Sed}
272193326Sed
273193326Sedvoid CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
274207619Srdivacky  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
275207619Srdivacky
276193326Sed  // Fall out of the current block (if necessary).
277193326Sed  EmitBranch(BB);
278193326Sed
279193326Sed  if (IsFinished && BB->use_empty()) {
280193326Sed    delete BB;
281193326Sed    return;
282193326Sed  }
283193326Sed
284207619Srdivacky  // Place the block after the current block, if possible, or else at
285207619Srdivacky  // the end of the function.
286207619Srdivacky  if (CurBB && CurBB->getParent())
287207619Srdivacky    CurFn->getBasicBlockList().insertAfter(CurBB, BB);
288207619Srdivacky  else
289207619Srdivacky    CurFn->getBasicBlockList().push_back(BB);
290193326Sed  Builder.SetInsertPoint(BB);
291193326Sed}
292193326Sed
293193326Sedvoid CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
294193326Sed  // Emit a branch from the current block to the target one if this
295193326Sed  // was a real block.  If this was just a fall-through block after a
296193326Sed  // terminator, don't emit it.
297193326Sed  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
298193326Sed
299193326Sed  if (!CurBB || CurBB->getTerminator()) {
300193326Sed    // If there is no insert point or the previous block is already
301193326Sed    // terminated, don't touch it.
302193326Sed  } else {
303193326Sed    // Otherwise, create a fall-through branch.
304193326Sed    Builder.CreateBr(Target);
305193326Sed  }
306193326Sed
307193326Sed  Builder.ClearInsertionPoint();
308193326Sed}
309193326Sed
310226890Sdimvoid CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
311226890Sdim  bool inserted = false;
312226890Sdim  for (llvm::BasicBlock::use_iterator
313226890Sdim         i = block->use_begin(), e = block->use_end(); i != e; ++i) {
314226890Sdim    if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(*i)) {
315226890Sdim      CurFn->getBasicBlockList().insertAfter(insn->getParent(), block);
316226890Sdim      inserted = true;
317226890Sdim      break;
318226890Sdim    }
319226890Sdim  }
320226890Sdim
321226890Sdim  if (!inserted)
322226890Sdim    CurFn->getBasicBlockList().push_back(block);
323226890Sdim
324226890Sdim  Builder.SetInsertPoint(block);
325226890Sdim}
326226890Sdim
327210299SedCodeGenFunction::JumpDest
328218893SdimCodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
329218893Sdim  JumpDest &Dest = LabelMap[D];
330212904Sdim  if (Dest.isValid()) return Dest;
331210299Sed
332210299Sed  // Create, but don't insert, the new block.
333218893Sdim  Dest = JumpDest(createBasicBlock(D->getName()),
334212904Sdim                  EHScopeStack::stable_iterator::invalid(),
335212904Sdim                  NextCleanupDestIndex++);
336210299Sed  return Dest;
337210299Sed}
338210299Sed
339218893Sdimvoid CodeGenFunction::EmitLabel(const LabelDecl *D) {
340252723Sdim  // Add this label to the current lexical scope if we're within any
341252723Sdim  // normal cleanups.  Jumps "in" to this label --- when permitted by
342252723Sdim  // the language --- may need to be routed around such cleanups.
343252723Sdim  if (EHStack.hasNormalCleanups() && CurLexicalScope)
344252723Sdim    CurLexicalScope->addLabel(D);
345252723Sdim
346218893Sdim  JumpDest &Dest = LabelMap[D];
347210299Sed
348212904Sdim  // If we didn't need a forward reference to this label, just go
349210299Sed  // ahead and create a destination at the current scope.
350212904Sdim  if (!Dest.isValid()) {
351218893Sdim    Dest = getJumpDestInCurrentScope(D->getName());
352210299Sed
353210299Sed  // Otherwise, we need to give this label a target depth and remove
354210299Sed  // it from the branch-fixups list.
355210299Sed  } else {
356212904Sdim    assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
357252723Sdim    Dest.setScopeDepth(EHStack.stable_begin());
358212904Sdim    ResolveBranchFixups(Dest.getBlock());
359210299Sed  }
360210299Sed
361212904Sdim  EmitBlock(Dest.getBlock());
362193326Sed}
363193326Sed
364252723Sdim/// Change the cleanup scope of the labels in this lexical scope to
365252723Sdim/// match the scope of the enclosing context.
366252723Sdimvoid CodeGenFunction::LexicalScope::rescopeLabels() {
367252723Sdim  assert(!Labels.empty());
368252723Sdim  EHScopeStack::stable_iterator innermostScope
369252723Sdim    = CGF.EHStack.getInnermostNormalCleanup();
370193326Sed
371252723Sdim  // Change the scope depth of all the labels.
372252723Sdim  for (SmallVectorImpl<const LabelDecl*>::const_iterator
373252723Sdim         i = Labels.begin(), e = Labels.end(); i != e; ++i) {
374252723Sdim    assert(CGF.LabelMap.count(*i));
375252723Sdim    JumpDest &dest = CGF.LabelMap.find(*i)->second;
376252723Sdim    assert(dest.getScopeDepth().isValid());
377252723Sdim    assert(innermostScope.encloses(dest.getScopeDepth()));
378252723Sdim    dest.setScopeDepth(innermostScope);
379252723Sdim  }
380252723Sdim
381252723Sdim  // Reparent the labels if the new scope also has cleanups.
382252723Sdim  if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
383252723Sdim    ParentScope->Labels.append(Labels.begin(), Labels.end());
384252723Sdim  }
385252723Sdim}
386252723Sdim
387252723Sdim
388193326Sedvoid CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
389218893Sdim  EmitLabel(S.getDecl());
390193326Sed  EmitStmt(S.getSubStmt());
391193326Sed}
392193326Sed
393235633Sdimvoid CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
394235633Sdim  EmitStmt(S.getSubStmt());
395235633Sdim}
396235633Sdim
397193326Sedvoid CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
398193326Sed  // If this code is reachable then emit a stop point (if generating
399193326Sed  // debug info). We have to do this ourselves because we are on the
400193326Sed  // "simple" statement path.
401193326Sed  if (HaveInsertPoint())
402193326Sed    EmitStopPoint(&S);
403193326Sed
404210299Sed  EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
405193326Sed}
406193326Sed
407198092Srdivacky
408193326Sedvoid CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
409218893Sdim  if (const LabelDecl *Target = S.getConstantTarget()) {
410218893Sdim    EmitBranchThroughCleanup(getJumpDestForLabel(Target));
411218893Sdim    return;
412218893Sdim  }
413218893Sdim
414199482Srdivacky  // Ensure that we have an i8* for our PHI node.
415198893Srdivacky  llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
416218893Sdim                                         Int8PtrTy, "addr");
417198092Srdivacky  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
418193326Sed
419198092Srdivacky  // Get the basic block for the indirect goto.
420198092Srdivacky  llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
421245431Sdim
422198092Srdivacky  // The first instruction in the block has to be the PHI for the switch dest,
423198092Srdivacky  // add an entry for this branch.
424198092Srdivacky  cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
425245431Sdim
426198092Srdivacky  EmitBranch(IndGotoBB);
427193326Sed}
428193326Sed
429193326Sedvoid CodeGenFunction::EmitIfStmt(const IfStmt &S) {
430193326Sed  // C99 6.8.4.1: The first substatement is executed if the expression compares
431193326Sed  // unequal to 0.  The condition must be a scalar type.
432263509Sdim  LexicalScope ConditionScope(*this, S.getSourceRange());
433198092Srdivacky
434199990Srdivacky  if (S.getConditionVariable())
435218893Sdim    EmitAutoVarDecl(*S.getConditionVariable());
436199990Srdivacky
437193326Sed  // If the condition constant folds and can be elided, try to avoid emitting
438193326Sed  // the condition and the dead arm of the if/else.
439221345Sdim  bool CondConstant;
440221345Sdim  if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) {
441193326Sed    // Figure out which block (then or else) is executed.
442221345Sdim    const Stmt *Executed = S.getThen();
443221345Sdim    const Stmt *Skipped  = S.getElse();
444221345Sdim    if (!CondConstant)  // Condition false?
445193326Sed      std::swap(Executed, Skipped);
446198092Srdivacky
447193326Sed    // If the skipped block has no labels in it, just emit the executed block.
448193326Sed    // This avoids emitting dead code and simplifies the CFG substantially.
449193326Sed    if (!ContainsLabel(Skipped)) {
450199990Srdivacky      if (Executed) {
451210299Sed        RunCleanupsScope ExecutedScope(*this);
452193326Sed        EmitStmt(Executed);
453199990Srdivacky      }
454193326Sed      return;
455193326Sed    }
456193326Sed  }
457193326Sed
458193326Sed  // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
459193326Sed  // the conditional branch.
460193326Sed  llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
461193326Sed  llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
462193326Sed  llvm::BasicBlock *ElseBlock = ContBlock;
463193326Sed  if (S.getElse())
464193326Sed    ElseBlock = createBasicBlock("if.else");
465193326Sed  EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock);
466198092Srdivacky
467193326Sed  // Emit the 'then' code.
468199990Srdivacky  EmitBlock(ThenBlock);
469199990Srdivacky  {
470210299Sed    RunCleanupsScope ThenScope(*this);
471199990Srdivacky    EmitStmt(S.getThen());
472199990Srdivacky  }
473193326Sed  EmitBranch(ContBlock);
474198092Srdivacky
475193326Sed  // Emit the 'else' code if present.
476193326Sed  if (const Stmt *Else = S.getElse()) {
477221345Sdim    // There is no need to emit line number for unconditional branch.
478221345Sdim    if (getDebugInfo())
479221345Sdim      Builder.SetCurrentDebugLocation(llvm::DebugLoc());
480193326Sed    EmitBlock(ElseBlock);
481199990Srdivacky    {
482210299Sed      RunCleanupsScope ElseScope(*this);
483199990Srdivacky      EmitStmt(Else);
484199990Srdivacky    }
485221345Sdim    // There is no need to emit line number for unconditional branch.
486221345Sdim    if (getDebugInfo())
487221345Sdim      Builder.SetCurrentDebugLocation(llvm::DebugLoc());
488193326Sed    EmitBranch(ContBlock);
489193326Sed  }
490198092Srdivacky
491193326Sed  // Emit the continuation block for code after the if.
492193326Sed  EmitBlock(ContBlock, true);
493193326Sed}
494193326Sed
495193326Sedvoid CodeGenFunction::EmitWhileStmt(const WhileStmt &S) {
496210299Sed  // Emit the header for the loop, which will also become
497210299Sed  // the continue target.
498210299Sed  JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
499212904Sdim  EmitBlock(LoopHeader.getBlock());
500193326Sed
501210299Sed  // Create an exit block for when the condition fails, which will
502210299Sed  // also become the break target.
503210299Sed  JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
504193326Sed
505193326Sed  // Store the blocks to use for break and continue.
506210299Sed  BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
507198092Srdivacky
508199990Srdivacky  // C++ [stmt.while]p2:
509199990Srdivacky  //   When the condition of a while statement is a declaration, the
510199990Srdivacky  //   scope of the variable that is declared extends from its point
511199990Srdivacky  //   of declaration (3.3.2) to the end of the while statement.
512199990Srdivacky  //   [...]
513199990Srdivacky  //   The object created in a condition is destroyed and created
514199990Srdivacky  //   with each iteration of the loop.
515210299Sed  RunCleanupsScope ConditionScope(*this);
516199990Srdivacky
517210299Sed  if (S.getConditionVariable())
518218893Sdim    EmitAutoVarDecl(*S.getConditionVariable());
519245431Sdim
520193326Sed  // Evaluate the conditional in the while header.  C99 6.8.5.1: The
521193326Sed  // evaluation of the controlling expression takes place before each
522193326Sed  // execution of the loop body.
523193326Sed  llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
524245431Sdim
525193326Sed  // while(1) is common, avoid extra exit blocks.  Be sure
526193326Sed  // to correctly handle break/continue though.
527193326Sed  bool EmitBoolCondBranch = true;
528198092Srdivacky  if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
529193326Sed    if (C->isOne())
530193326Sed      EmitBoolCondBranch = false;
531198092Srdivacky
532193326Sed  // As long as the condition is true, go to the loop body.
533210299Sed  llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
534210299Sed  if (EmitBoolCondBranch) {
535212904Sdim    llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
536210299Sed    if (ConditionScope.requiresCleanups())
537210299Sed      ExitBlock = createBasicBlock("while.exit");
538210299Sed
539210299Sed    Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
540210299Sed
541212904Sdim    if (ExitBlock != LoopExit.getBlock()) {
542210299Sed      EmitBlock(ExitBlock);
543210299Sed      EmitBranchThroughCleanup(LoopExit);
544210299Sed    }
545210299Sed  }
546245431Sdim
547210299Sed  // Emit the loop body.  We have to emit this in a cleanup scope
548210299Sed  // because it might be a singleton DeclStmt.
549199990Srdivacky  {
550210299Sed    RunCleanupsScope BodyScope(*this);
551199990Srdivacky    EmitBlock(LoopBody);
552199990Srdivacky    EmitStmt(S.getBody());
553199990Srdivacky  }
554193326Sed
555198092Srdivacky  BreakContinueStack.pop_back();
556198092Srdivacky
557210299Sed  // Immediately force cleanup.
558210299Sed  ConditionScope.ForceCleanup();
559198092Srdivacky
560210299Sed  // Branch to the loop header again.
561212904Sdim  EmitBranch(LoopHeader.getBlock());
562199990Srdivacky
563193326Sed  // Emit the exit block.
564212904Sdim  EmitBlock(LoopExit.getBlock(), true);
565193326Sed
566193326Sed  // The LoopHeader typically is just a branch if we skipped emitting
567193326Sed  // a branch, try to erase it.
568210299Sed  if (!EmitBoolCondBranch)
569212904Sdim    SimplifyForwardingBlocks(LoopHeader.getBlock());
570193326Sed}
571193326Sed
572193326Sedvoid CodeGenFunction::EmitDoStmt(const DoStmt &S) {
573210299Sed  JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
574210299Sed  JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
575193326Sed
576193326Sed  // Store the blocks to use for break and continue.
577210299Sed  BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
578198092Srdivacky
579210299Sed  // Emit the body of the loop.
580210299Sed  llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
581210299Sed  EmitBlock(LoopBody);
582210299Sed  {
583210299Sed    RunCleanupsScope BodyScope(*this);
584210299Sed    EmitStmt(S.getBody());
585210299Sed  }
586198092Srdivacky
587193326Sed  BreakContinueStack.pop_back();
588198092Srdivacky
589212904Sdim  EmitBlock(LoopCond.getBlock());
590198092Srdivacky
591193326Sed  // C99 6.8.5.2: "The evaluation of the controlling expression takes place
592193326Sed  // after each execution of the loop body."
593198092Srdivacky
594193326Sed  // Evaluate the conditional in the while header.
595193326Sed  // C99 6.8.5p2/p4: The first substatement is executed if the expression
596193326Sed  // compares unequal to 0.  The condition must be a scalar type.
597193326Sed  llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
598193326Sed
599193326Sed  // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
600193326Sed  // to correctly handle break/continue though.
601193326Sed  bool EmitBoolCondBranch = true;
602198092Srdivacky  if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
603193326Sed    if (C->isZero())
604193326Sed      EmitBoolCondBranch = false;
605193326Sed
606193326Sed  // As long as the condition is true, iterate the loop.
607193326Sed  if (EmitBoolCondBranch)
608212904Sdim    Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock());
609198092Srdivacky
610193326Sed  // Emit the exit block.
611212904Sdim  EmitBlock(LoopExit.getBlock());
612193326Sed
613193326Sed  // The DoCond block typically is just a branch if we skipped
614193326Sed  // emitting a branch, try to erase it.
615193326Sed  if (!EmitBoolCondBranch)
616212904Sdim    SimplifyForwardingBlocks(LoopCond.getBlock());
617193326Sed}
618193326Sed
619193326Sedvoid CodeGenFunction::EmitForStmt(const ForStmt &S) {
620210299Sed  JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
621193326Sed
622210299Sed  RunCleanupsScope ForScope(*this);
623210299Sed
624212904Sdim  CGDebugInfo *DI = getDebugInfo();
625226890Sdim  if (DI)
626226890Sdim    DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
627212904Sdim
628193326Sed  // Evaluate the first part before the loop.
629193326Sed  if (S.getInit())
630193326Sed    EmitStmt(S.getInit());
631193326Sed
632193326Sed  // Start the loop with a block that tests the condition.
633210299Sed  // If there's an increment, the continue scope will be overwritten
634210299Sed  // later.
635210299Sed  JumpDest Continue = getJumpDestInCurrentScope("for.cond");
636212904Sdim  llvm::BasicBlock *CondBlock = Continue.getBlock();
637193326Sed  EmitBlock(CondBlock);
638193326Sed
639199990Srdivacky  // Create a cleanup scope for the condition variable cleanups.
640210299Sed  RunCleanupsScope ConditionScope(*this);
641245431Sdim
642193326Sed  if (S.getCond()) {
643199990Srdivacky    // If the for statement has a condition scope, emit the local variable
644199990Srdivacky    // declaration.
645199990Srdivacky    if (S.getConditionVariable()) {
646218893Sdim      EmitAutoVarDecl(*S.getConditionVariable());
647199990Srdivacky    }
648210299Sed
649263509Sdim    llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
650210299Sed    // If there are any cleanups between here and the loop-exit scope,
651210299Sed    // create a block to stage a loop exit along.
652210299Sed    if (ForScope.requiresCleanups())
653210299Sed      ExitBlock = createBasicBlock("for.cond.cleanup");
654245431Sdim
655193326Sed    // As long as the condition is true, iterate the loop.
656193326Sed    llvm::BasicBlock *ForBody = createBasicBlock("for.body");
657198092Srdivacky
658193326Sed    // C99 6.8.5p2/p4: The first substatement is executed if the expression
659193326Sed    // compares unequal to 0.  The condition must be a scalar type.
660263509Sdim    EmitBranchOnBoolExpr(S.getCond(), ForBody, ExitBlock);
661198092Srdivacky
662212904Sdim    if (ExitBlock != LoopExit.getBlock()) {
663210299Sed      EmitBlock(ExitBlock);
664210299Sed      EmitBranchThroughCleanup(LoopExit);
665210299Sed    }
666210299Sed
667198092Srdivacky    EmitBlock(ForBody);
668193326Sed  } else {
669193326Sed    // Treat it as a non-zero constant.  Don't even create a new block for the
670193326Sed    // body, just fall into it.
671193326Sed  }
672193326Sed
673198092Srdivacky  // If the for loop doesn't have an increment we can just use the
674210299Sed  // condition as the continue block.  Otherwise we'll need to create
675210299Sed  // a block for it (in the current scope, i.e. in the scope of the
676210299Sed  // condition), and that we will become our continue block.
677193326Sed  if (S.getInc())
678210299Sed    Continue = getJumpDestInCurrentScope("for.inc");
679198092Srdivacky
680193326Sed  // Store the blocks to use for break and continue.
681210299Sed  BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
682193326Sed
683199990Srdivacky  {
684199990Srdivacky    // Create a separate cleanup scope for the body, in case it is not
685199990Srdivacky    // a compound statement.
686210299Sed    RunCleanupsScope BodyScope(*this);
687199990Srdivacky    EmitStmt(S.getBody());
688199990Srdivacky  }
689199990Srdivacky
690193326Sed  // If there is an increment, emit it next.
691193326Sed  if (S.getInc()) {
692212904Sdim    EmitBlock(Continue.getBlock());
693193326Sed    EmitStmt(S.getInc());
694193326Sed  }
695198092Srdivacky
696208600Srdivacky  BreakContinueStack.pop_back();
697199990Srdivacky
698210299Sed  ConditionScope.ForceCleanup();
699210299Sed  EmitBranch(CondBlock);
700210299Sed
701210299Sed  ForScope.ForceCleanup();
702210299Sed
703226890Sdim  if (DI)
704226890Sdim    DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
705193326Sed
706193326Sed  // Emit the fall-through block.
707212904Sdim  EmitBlock(LoopExit.getBlock(), true);
708193326Sed}
709193326Sed
710221345Sdimvoid CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S) {
711221345Sdim  JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
712221345Sdim
713221345Sdim  RunCleanupsScope ForScope(*this);
714221345Sdim
715221345Sdim  CGDebugInfo *DI = getDebugInfo();
716226890Sdim  if (DI)
717226890Sdim    DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
718221345Sdim
719221345Sdim  // Evaluate the first pieces before the loop.
720221345Sdim  EmitStmt(S.getRangeStmt());
721221345Sdim  EmitStmt(S.getBeginEndStmt());
722221345Sdim
723221345Sdim  // Start the loop with a block that tests the condition.
724221345Sdim  // If there's an increment, the continue scope will be overwritten
725221345Sdim  // later.
726221345Sdim  llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
727221345Sdim  EmitBlock(CondBlock);
728221345Sdim
729221345Sdim  // If there are any cleanups between here and the loop-exit scope,
730221345Sdim  // create a block to stage a loop exit along.
731221345Sdim  llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
732221345Sdim  if (ForScope.requiresCleanups())
733221345Sdim    ExitBlock = createBasicBlock("for.cond.cleanup");
734245431Sdim
735221345Sdim  // The loop body, consisting of the specified body and the loop variable.
736221345Sdim  llvm::BasicBlock *ForBody = createBasicBlock("for.body");
737221345Sdim
738221345Sdim  // The body is executed if the expression, contextually converted
739221345Sdim  // to bool, is true.
740263509Sdim  EmitBranchOnBoolExpr(S.getCond(), ForBody, ExitBlock);
741221345Sdim
742221345Sdim  if (ExitBlock != LoopExit.getBlock()) {
743221345Sdim    EmitBlock(ExitBlock);
744221345Sdim    EmitBranchThroughCleanup(LoopExit);
745221345Sdim  }
746221345Sdim
747221345Sdim  EmitBlock(ForBody);
748221345Sdim
749221345Sdim  // Create a block for the increment. In case of a 'continue', we jump there.
750221345Sdim  JumpDest Continue = getJumpDestInCurrentScope("for.inc");
751221345Sdim
752221345Sdim  // Store the blocks to use for break and continue.
753221345Sdim  BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
754221345Sdim
755221345Sdim  {
756221345Sdim    // Create a separate cleanup scope for the loop variable and body.
757221345Sdim    RunCleanupsScope BodyScope(*this);
758221345Sdim    EmitStmt(S.getLoopVarStmt());
759221345Sdim    EmitStmt(S.getBody());
760221345Sdim  }
761221345Sdim
762221345Sdim  // If there is an increment, emit it next.
763221345Sdim  EmitBlock(Continue.getBlock());
764221345Sdim  EmitStmt(S.getInc());
765221345Sdim
766221345Sdim  BreakContinueStack.pop_back();
767221345Sdim
768221345Sdim  EmitBranch(CondBlock);
769221345Sdim
770221345Sdim  ForScope.ForceCleanup();
771221345Sdim
772226890Sdim  if (DI)
773226890Sdim    DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
774221345Sdim
775221345Sdim  // Emit the fall-through block.
776221345Sdim  EmitBlock(LoopExit.getBlock(), true);
777221345Sdim}
778221345Sdim
779193326Sedvoid CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
780193326Sed  if (RV.isScalar()) {
781193326Sed    Builder.CreateStore(RV.getScalarVal(), ReturnValue);
782193326Sed  } else if (RV.isAggregate()) {
783193326Sed    EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty);
784193326Sed  } else {
785252723Sdim    EmitStoreOfComplex(RV.getComplexVal(),
786252723Sdim                       MakeNaturalAlignAddrLValue(ReturnValue, Ty),
787252723Sdim                       /*init*/ true);
788193326Sed  }
789193326Sed  EmitBranchThroughCleanup(ReturnBlock);
790193326Sed}
791193326Sed
792193326Sed/// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
793193326Sed/// if the function returns void, or may be missing one if the function returns
794193326Sed/// non-void.  Fun stuff :).
795193326Sedvoid CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
796193326Sed  // Emit the result value, even if unused, to evalute the side effects.
797193326Sed  const Expr *RV = S.getRetValue();
798198092Srdivacky
799245431Sdim  // Treat block literals in a return expression as if they appeared
800245431Sdim  // in their own scope.  This permits a small, easily-implemented
801245431Sdim  // exception to our over-conservative rules about not jumping to
802245431Sdim  // statements following block literals with non-trivial cleanups.
803245431Sdim  RunCleanupsScope cleanupScope(*this);
804245431Sdim  if (const ExprWithCleanups *cleanups =
805245431Sdim        dyn_cast_or_null<ExprWithCleanups>(RV)) {
806245431Sdim    enterFullExpression(cleanups);
807245431Sdim    RV = cleanups->getSubExpr();
808245431Sdim  }
809245431Sdim
810193326Sed  // FIXME: Clean this up by using an LValue for ReturnTemp,
811193326Sed  // EmitStoreThroughLValue, and EmitAnyExpr.
812252723Sdim  if (S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) {
813208600Srdivacky    // Apply the named return value optimization for this return statement,
814208600Srdivacky    // which means doing nothing: the appropriate result has already been
815208600Srdivacky    // constructed into the NRVO variable.
816245431Sdim
817208600Srdivacky    // If there is an NRVO flag for this variable, set it to 1 into indicate
818208600Srdivacky    // that the cleanup code should not destroy the variable.
819218893Sdim    if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
820218893Sdim      Builder.CreateStore(Builder.getTrue(), NRVOFlag);
821208600Srdivacky  } else if (!ReturnValue) {
822193326Sed    // Make sure not to return anything, but evaluate the expression
823193326Sed    // for side effects.
824193326Sed    if (RV)
825193326Sed      EmitAnyExpr(RV);
826193326Sed  } else if (RV == 0) {
827193326Sed    // Do nothing (return value is left uninitialized)
828193326Sed  } else if (FnRetTy->isReferenceType()) {
829193326Sed    // If this function returns a reference, take the address of the expression
830193326Sed    // rather than the value.
831263509Sdim    RValue Result = EmitReferenceBindingToExpr(RV);
832206084Srdivacky    Builder.CreateStore(Result.getScalarVal(), ReturnValue);
833193326Sed  } else {
834252723Sdim    switch (getEvaluationKind(RV->getType())) {
835252723Sdim    case TEK_Scalar:
836252723Sdim      Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
837252723Sdim      break;
838252723Sdim    case TEK_Complex:
839252723Sdim      EmitComplexExprIntoLValue(RV,
840252723Sdim                     MakeNaturalAlignAddrLValue(ReturnValue, RV->getType()),
841252723Sdim                                /*isInit*/ true);
842252723Sdim      break;
843252723Sdim    case TEK_Aggregate: {
844252723Sdim      CharUnits Alignment = getContext().getTypeAlignInChars(RV->getType());
845252723Sdim      EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, Alignment,
846252723Sdim                                            Qualifiers(),
847252723Sdim                                            AggValueSlot::IsDestructed,
848252723Sdim                                            AggValueSlot::DoesNotNeedGCBarriers,
849252723Sdim                                            AggValueSlot::IsNotAliased));
850252723Sdim      break;
851252723Sdim    }
852252723Sdim    }
853193326Sed  }
854193326Sed
855263509Sdim  ++NumReturnExprs;
856252723Sdim  if (RV == 0 || RV->isEvaluatable(getContext()))
857263509Sdim    ++NumSimpleReturnExprs;
858252723Sdim
859245431Sdim  cleanupScope.ForceCleanup();
860193326Sed  EmitBranchThroughCleanup(ReturnBlock);
861193326Sed}
862193326Sed
863193326Sedvoid CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
864198092Srdivacky  // As long as debug info is modeled with instructions, we have to ensure we
865198092Srdivacky  // have a place to insert here and write the stop point here.
866235633Sdim  if (HaveInsertPoint())
867198092Srdivacky    EmitStopPoint(&S);
868198092Srdivacky
869193326Sed  for (DeclStmt::const_decl_iterator I = S.decl_begin(), E = S.decl_end();
870193326Sed       I != E; ++I)
871193326Sed    EmitDecl(**I);
872193326Sed}
873193326Sed
874193326Sedvoid CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
875193326Sed  assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
876193326Sed
877193326Sed  // If this code is reachable then emit a stop point (if generating
878193326Sed  // debug info). We have to do this ourselves because we are on the
879193326Sed  // "simple" statement path.
880193326Sed  if (HaveInsertPoint())
881193326Sed    EmitStopPoint(&S);
882193326Sed
883210299Sed  JumpDest Block = BreakContinueStack.back().BreakBlock;
884193326Sed  EmitBranchThroughCleanup(Block);
885193326Sed}
886193326Sed
887193326Sedvoid CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
888193326Sed  assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
889193326Sed
890193326Sed  // If this code is reachable then emit a stop point (if generating
891193326Sed  // debug info). We have to do this ourselves because we are on the
892193326Sed  // "simple" statement path.
893193326Sed  if (HaveInsertPoint())
894193326Sed    EmitStopPoint(&S);
895193326Sed
896210299Sed  JumpDest Block = BreakContinueStack.back().ContinueBlock;
897193326Sed  EmitBranchThroughCleanup(Block);
898193326Sed}
899193326Sed
900193326Sed/// EmitCaseStmtRange - If case statement range is not too big then
901193326Sed/// add multiple cases to switch instruction, one for each value within
902193326Sed/// the range. If range is too big then emit "if" condition check.
903193326Sedvoid CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
904193326Sed  assert(S.getRHS() && "Expected RHS value in CaseStmt");
905193326Sed
906226890Sdim  llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
907226890Sdim  llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
908193326Sed
909193326Sed  // Emit the code for this case. We do this first to make sure it is
910193326Sed  // properly chained from our predecessor before generating the
911193326Sed  // switch machinery to enter this block.
912193326Sed  EmitBlock(createBasicBlock("sw.bb"));
913193326Sed  llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
914193326Sed  EmitStmt(S.getSubStmt());
915193326Sed
916193326Sed  // If range is empty, do nothing.
917193326Sed  if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
918193326Sed    return;
919193326Sed
920193326Sed  llvm::APInt Range = RHS - LHS;
921193326Sed  // FIXME: parameters such as this should not be hardcoded.
922193326Sed  if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
923193326Sed    // Range is small enough to add multiple switch instruction cases.
924193326Sed    for (unsigned i = 0, e = Range.getZExtValue() + 1; i != e; ++i) {
925221345Sdim      SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
926193326Sed      LHS++;
927193326Sed    }
928193326Sed    return;
929198092Srdivacky  }
930198092Srdivacky
931193326Sed  // The range is too big. Emit "if" condition into a new block,
932193326Sed  // making sure to save and restore the current insertion point.
933193326Sed  llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
934193326Sed
935193326Sed  // Push this test onto the chain of range checks (which terminates
936193326Sed  // in the default basic block). The switch's default will be changed
937193326Sed  // to the top of this chain after switch emission is complete.
938193326Sed  llvm::BasicBlock *FalseDest = CaseRangeBlock;
939193326Sed  CaseRangeBlock = createBasicBlock("sw.caserange");
940193326Sed
941193326Sed  CurFn->getBasicBlockList().push_back(CaseRangeBlock);
942193326Sed  Builder.SetInsertPoint(CaseRangeBlock);
943193326Sed
944193326Sed  // Emit range check.
945198092Srdivacky  llvm::Value *Diff =
946226890Sdim    Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
947198092Srdivacky  llvm::Value *Cond =
948221345Sdim    Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
949193326Sed  Builder.CreateCondBr(Cond, CaseDest, FalseDest);
950193326Sed
951193326Sed  // Restore the appropriate insertion point.
952193326Sed  if (RestoreBB)
953193326Sed    Builder.SetInsertPoint(RestoreBB);
954193326Sed  else
955193326Sed    Builder.ClearInsertionPoint();
956193326Sed}
957193326Sed
958193326Sedvoid CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
959235633Sdim  // If there is no enclosing switch instance that we're aware of, then this
960235633Sdim  // case statement and its block can be elided.  This situation only happens
961235633Sdim  // when we've constant-folded the switch, are emitting the constant case,
962235633Sdim  // and part of the constant case includes another case statement.  For
963235633Sdim  // instance: switch (4) { case 4: do { case 5: } while (1); }
964235633Sdim  if (!SwitchInsn) {
965235633Sdim    EmitStmt(S.getSubStmt());
966235633Sdim    return;
967235633Sdim  }
968235633Sdim
969221345Sdim  // Handle case ranges.
970193326Sed  if (S.getRHS()) {
971193326Sed    EmitCaseStmtRange(S);
972193326Sed    return;
973193326Sed  }
974198092Srdivacky
975221345Sdim  llvm::ConstantInt *CaseVal =
976226890Sdim    Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
977221345Sdim
978221345Sdim  // If the body of the case is just a 'break', and if there was no fallthrough,
979221345Sdim  // try to not emit an empty block.
980245431Sdim  if ((CGM.getCodeGenOpts().OptimizationLevel > 0) &&
981245431Sdim      isa<BreakStmt>(S.getSubStmt())) {
982221345Sdim    JumpDest Block = BreakContinueStack.back().BreakBlock;
983245431Sdim
984221345Sdim    // Only do this optimization if there are no cleanups that need emitting.
985221345Sdim    if (isObviouslyBranchWithoutCleanups(Block)) {
986221345Sdim      SwitchInsn->addCase(CaseVal, Block.getBlock());
987221345Sdim
988221345Sdim      // If there was a fallthrough into this case, make sure to redirect it to
989221345Sdim      // the end of the switch as well.
990221345Sdim      if (Builder.GetInsertBlock()) {
991221345Sdim        Builder.CreateBr(Block.getBlock());
992221345Sdim        Builder.ClearInsertionPoint();
993221345Sdim      }
994221345Sdim      return;
995221345Sdim    }
996221345Sdim  }
997245431Sdim
998193326Sed  EmitBlock(createBasicBlock("sw.bb"));
999193326Sed  llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
1000221345Sdim  SwitchInsn->addCase(CaseVal, CaseDest);
1001198092Srdivacky
1002193326Sed  // Recursively emitting the statement is acceptable, but is not wonderful for
1003193326Sed  // code where we have many case statements nested together, i.e.:
1004193326Sed  //  case 1:
1005193326Sed  //    case 2:
1006193326Sed  //      case 3: etc.
1007193326Sed  // Handling this recursively will create a new block for each case statement
1008193326Sed  // that falls through to the next case which is IR intensive.  It also causes
1009193326Sed  // deep recursion which can run into stack depth limitations.  Handle
1010193326Sed  // sequential non-range case statements specially.
1011193326Sed  const CaseStmt *CurCase = &S;
1012193326Sed  const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
1013193326Sed
1014221345Sdim  // Otherwise, iteratively add consecutive cases to this switch stmt.
1015193326Sed  while (NextCase && NextCase->getRHS() == 0) {
1016193326Sed    CurCase = NextCase;
1017221345Sdim    llvm::ConstantInt *CaseVal =
1018226890Sdim      Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
1019221345Sdim    SwitchInsn->addCase(CaseVal, CaseDest);
1020193326Sed    NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
1021193326Sed  }
1022198092Srdivacky
1023193326Sed  // Normal default recursion for non-cases.
1024193326Sed  EmitStmt(CurCase->getSubStmt());
1025193326Sed}
1026193326Sed
1027193326Sedvoid CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
1028193326Sed  llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
1029198092Srdivacky  assert(DefaultBlock->empty() &&
1030193326Sed         "EmitDefaultStmt: Default block already defined?");
1031193326Sed  EmitBlock(DefaultBlock);
1032193326Sed  EmitStmt(S.getSubStmt());
1033193326Sed}
1034193326Sed
1035221345Sdim/// CollectStatementsForCase - Given the body of a 'switch' statement and a
1036221345Sdim/// constant value that is being switched on, see if we can dead code eliminate
1037221345Sdim/// the body of the switch to a simple series of statements to emit.  Basically,
1038221345Sdim/// on a switch (5) we want to find these statements:
1039221345Sdim///    case 5:
1040221345Sdim///      printf(...);    <--
1041221345Sdim///      ++i;            <--
1042221345Sdim///      break;
1043221345Sdim///
1044221345Sdim/// and add them to the ResultStmts vector.  If it is unsafe to do this
1045221345Sdim/// transformation (for example, one of the elided statements contains a label
1046221345Sdim/// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
1047221345Sdim/// should include statements after it (e.g. the printf() line is a substmt of
1048221345Sdim/// the case) then return CSFC_FallThrough.  If we handled it and found a break
1049221345Sdim/// statement, then return CSFC_Success.
1050221345Sdim///
1051221345Sdim/// If Case is non-null, then we are looking for the specified case, checking
1052221345Sdim/// that nothing we jump over contains labels.  If Case is null, then we found
1053221345Sdim/// the case and are looking for the break.
1054221345Sdim///
1055221345Sdim/// If the recursive walk actually finds our Case, then we set FoundCase to
1056221345Sdim/// true.
1057221345Sdim///
1058221345Sdimenum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
1059221345Sdimstatic CSFC_Result CollectStatementsForCase(const Stmt *S,
1060221345Sdim                                            const SwitchCase *Case,
1061221345Sdim                                            bool &FoundCase,
1062226890Sdim                              SmallVectorImpl<const Stmt*> &ResultStmts) {
1063221345Sdim  // If this is a null statement, just succeed.
1064221345Sdim  if (S == 0)
1065221345Sdim    return Case ? CSFC_Success : CSFC_FallThrough;
1066245431Sdim
1067221345Sdim  // If this is the switchcase (case 4: or default) that we're looking for, then
1068221345Sdim  // we're in business.  Just add the substatement.
1069221345Sdim  if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
1070221345Sdim    if (S == Case) {
1071221345Sdim      FoundCase = true;
1072221345Sdim      return CollectStatementsForCase(SC->getSubStmt(), 0, FoundCase,
1073221345Sdim                                      ResultStmts);
1074221345Sdim    }
1075245431Sdim
1076221345Sdim    // Otherwise, this is some other case or default statement, just ignore it.
1077221345Sdim    return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
1078221345Sdim                                    ResultStmts);
1079221345Sdim  }
1080221345Sdim
1081221345Sdim  // If we are in the live part of the code and we found our break statement,
1082221345Sdim  // return a success!
1083221345Sdim  if (Case == 0 && isa<BreakStmt>(S))
1084221345Sdim    return CSFC_Success;
1085245431Sdim
1086221345Sdim  // If this is a switch statement, then it might contain the SwitchCase, the
1087221345Sdim  // break, or neither.
1088221345Sdim  if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1089221345Sdim    // Handle this as two cases: we might be looking for the SwitchCase (if so
1090221345Sdim    // the skipped statements must be skippable) or we might already have it.
1091221345Sdim    CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1092221345Sdim    if (Case) {
1093221345Sdim      // Keep track of whether we see a skipped declaration.  The code could be
1094221345Sdim      // using the declaration even if it is skipped, so we can't optimize out
1095221345Sdim      // the decl if the kept statements might refer to it.
1096221345Sdim      bool HadSkippedDecl = false;
1097245431Sdim
1098221345Sdim      // If we're looking for the case, just see if we can skip each of the
1099221345Sdim      // substatements.
1100221345Sdim      for (; Case && I != E; ++I) {
1101223017Sdim        HadSkippedDecl |= isa<DeclStmt>(*I);
1102245431Sdim
1103221345Sdim        switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1104221345Sdim        case CSFC_Failure: return CSFC_Failure;
1105221345Sdim        case CSFC_Success:
1106221345Sdim          // A successful result means that either 1) that the statement doesn't
1107221345Sdim          // have the case and is skippable, or 2) does contain the case value
1108221345Sdim          // and also contains the break to exit the switch.  In the later case,
1109221345Sdim          // we just verify the rest of the statements are elidable.
1110221345Sdim          if (FoundCase) {
1111221345Sdim            // If we found the case and skipped declarations, we can't do the
1112221345Sdim            // optimization.
1113221345Sdim            if (HadSkippedDecl)
1114221345Sdim              return CSFC_Failure;
1115245431Sdim
1116221345Sdim            for (++I; I != E; ++I)
1117221345Sdim              if (CodeGenFunction::ContainsLabel(*I, true))
1118221345Sdim                return CSFC_Failure;
1119221345Sdim            return CSFC_Success;
1120221345Sdim          }
1121221345Sdim          break;
1122221345Sdim        case CSFC_FallThrough:
1123221345Sdim          // If we have a fallthrough condition, then we must have found the
1124221345Sdim          // case started to include statements.  Consider the rest of the
1125221345Sdim          // statements in the compound statement as candidates for inclusion.
1126221345Sdim          assert(FoundCase && "Didn't find case but returned fallthrough?");
1127221345Sdim          // We recursively found Case, so we're not looking for it anymore.
1128221345Sdim          Case = 0;
1129245431Sdim
1130221345Sdim          // If we found the case and skipped declarations, we can't do the
1131221345Sdim          // optimization.
1132221345Sdim          if (HadSkippedDecl)
1133221345Sdim            return CSFC_Failure;
1134221345Sdim          break;
1135221345Sdim        }
1136221345Sdim      }
1137221345Sdim    }
1138221345Sdim
1139221345Sdim    // If we have statements in our range, then we know that the statements are
1140221345Sdim    // live and need to be added to the set of statements we're tracking.
1141221345Sdim    for (; I != E; ++I) {
1142221345Sdim      switch (CollectStatementsForCase(*I, 0, FoundCase, ResultStmts)) {
1143221345Sdim      case CSFC_Failure: return CSFC_Failure;
1144221345Sdim      case CSFC_FallThrough:
1145221345Sdim        // A fallthrough result means that the statement was simple and just
1146221345Sdim        // included in ResultStmt, keep adding them afterwards.
1147221345Sdim        break;
1148221345Sdim      case CSFC_Success:
1149221345Sdim        // A successful result means that we found the break statement and
1150221345Sdim        // stopped statement inclusion.  We just ensure that any leftover stmts
1151221345Sdim        // are skippable and return success ourselves.
1152221345Sdim        for (++I; I != E; ++I)
1153221345Sdim          if (CodeGenFunction::ContainsLabel(*I, true))
1154221345Sdim            return CSFC_Failure;
1155221345Sdim        return CSFC_Success;
1156245431Sdim      }
1157221345Sdim    }
1158245431Sdim
1159221345Sdim    return Case ? CSFC_Success : CSFC_FallThrough;
1160221345Sdim  }
1161221345Sdim
1162221345Sdim  // Okay, this is some other statement that we don't handle explicitly, like a
1163221345Sdim  // for statement or increment etc.  If we are skipping over this statement,
1164221345Sdim  // just verify it doesn't have labels, which would make it invalid to elide.
1165221345Sdim  if (Case) {
1166221345Sdim    if (CodeGenFunction::ContainsLabel(S, true))
1167221345Sdim      return CSFC_Failure;
1168221345Sdim    return CSFC_Success;
1169221345Sdim  }
1170245431Sdim
1171221345Sdim  // Otherwise, we want to include this statement.  Everything is cool with that
1172221345Sdim  // so long as it doesn't contain a break out of the switch we're in.
1173221345Sdim  if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1174245431Sdim
1175221345Sdim  // Otherwise, everything is great.  Include the statement and tell the caller
1176221345Sdim  // that we fall through and include the next statement as well.
1177221345Sdim  ResultStmts.push_back(S);
1178221345Sdim  return CSFC_FallThrough;
1179221345Sdim}
1180221345Sdim
1181221345Sdim/// FindCaseStatementsForValue - Find the case statement being jumped to and
1182221345Sdim/// then invoke CollectStatementsForCase to find the list of statements to emit
1183221345Sdim/// for a switch on constant.  See the comment above CollectStatementsForCase
1184221345Sdim/// for more details.
1185221345Sdimstatic bool FindCaseStatementsForValue(const SwitchStmt &S,
1186245431Sdim                                       const llvm::APSInt &ConstantCondValue,
1187226890Sdim                                SmallVectorImpl<const Stmt*> &ResultStmts,
1188221345Sdim                                       ASTContext &C) {
1189221345Sdim  // First step, find the switch case that is being branched to.  We can do this
1190221345Sdim  // efficiently by scanning the SwitchCase list.
1191221345Sdim  const SwitchCase *Case = S.getSwitchCaseList();
1192221345Sdim  const DefaultStmt *DefaultCase = 0;
1193245431Sdim
1194221345Sdim  for (; Case; Case = Case->getNextSwitchCase()) {
1195221345Sdim    // It's either a default or case.  Just remember the default statement in
1196221345Sdim    // case we're not jumping to any numbered cases.
1197221345Sdim    if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1198221345Sdim      DefaultCase = DS;
1199221345Sdim      continue;
1200221345Sdim    }
1201245431Sdim
1202221345Sdim    // Check to see if this case is the one we're looking for.
1203221345Sdim    const CaseStmt *CS = cast<CaseStmt>(Case);
1204221345Sdim    // Don't handle case ranges yet.
1205221345Sdim    if (CS->getRHS()) return false;
1206245431Sdim
1207221345Sdim    // If we found our case, remember it as 'case'.
1208226890Sdim    if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1209221345Sdim      break;
1210221345Sdim  }
1211245431Sdim
1212221345Sdim  // If we didn't find a matching case, we use a default if it exists, or we
1213221345Sdim  // elide the whole switch body!
1214221345Sdim  if (Case == 0) {
1215221345Sdim    // It is safe to elide the body of the switch if it doesn't contain labels
1216221345Sdim    // etc.  If it is safe, return successfully with an empty ResultStmts list.
1217221345Sdim    if (DefaultCase == 0)
1218221345Sdim      return !CodeGenFunction::ContainsLabel(&S);
1219221345Sdim    Case = DefaultCase;
1220221345Sdim  }
1221221345Sdim
1222221345Sdim  // Ok, we know which case is being jumped to, try to collect all the
1223221345Sdim  // statements that follow it.  This can fail for a variety of reasons.  Also,
1224221345Sdim  // check to see that the recursive walk actually found our case statement.
1225221345Sdim  // Insane cases like this can fail to find it in the recursive walk since we
1226221345Sdim  // don't handle every stmt kind:
1227221345Sdim  // switch (4) {
1228221345Sdim  //   while (1) {
1229221345Sdim  //     case 4: ...
1230221345Sdim  bool FoundCase = false;
1231221345Sdim  return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1232221345Sdim                                  ResultStmts) != CSFC_Failure &&
1233221345Sdim         FoundCase;
1234221345Sdim}
1235221345Sdim
1236193326Sedvoid CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1237210299Sed  JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1238199990Srdivacky
1239210299Sed  RunCleanupsScope ConditionScope(*this);
1240210299Sed
1241199990Srdivacky  if (S.getConditionVariable())
1242218893Sdim    EmitAutoVarDecl(*S.getConditionVariable());
1243199990Srdivacky
1244235633Sdim  // Handle nested switch statements.
1245235633Sdim  llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1246235633Sdim  llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1247235633Sdim
1248221345Sdim  // See if we can constant fold the condition of the switch and therefore only
1249221345Sdim  // emit the live case statement (if any) of the switch.
1250245431Sdim  llvm::APSInt ConstantCondValue;
1251221345Sdim  if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1252226890Sdim    SmallVector<const Stmt*, 4> CaseStmts;
1253221345Sdim    if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1254221345Sdim                                   getContext())) {
1255221345Sdim      RunCleanupsScope ExecutedScope(*this);
1256221345Sdim
1257235633Sdim      // At this point, we are no longer "within" a switch instance, so
1258235633Sdim      // we can temporarily enforce this to ensure that any embedded case
1259235633Sdim      // statements are not emitted.
1260235633Sdim      SwitchInsn = 0;
1261235633Sdim
1262221345Sdim      // Okay, we can dead code eliminate everything except this case.  Emit the
1263221345Sdim      // specified series of statements and we're good.
1264221345Sdim      for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1265221345Sdim        EmitStmt(CaseStmts[i]);
1266235633Sdim
1267235633Sdim      // Now we want to restore the saved switch instance so that nested
1268235633Sdim      // switches continue to function properly
1269235633Sdim      SwitchInsn = SavedSwitchInsn;
1270235633Sdim
1271221345Sdim      return;
1272221345Sdim    }
1273221345Sdim  }
1274245431Sdim
1275193326Sed  llvm::Value *CondV = EmitScalarExpr(S.getCond());
1276193326Sed
1277193326Sed  // Create basic block to hold stuff that comes after switch
1278193326Sed  // statement. We also need to create a default block now so that
1279193326Sed  // explicit case ranges tests can have a place to jump to on
1280193326Sed  // failure.
1281193326Sed  llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1282193326Sed  SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1283193326Sed  CaseRangeBlock = DefaultBlock;
1284193326Sed
1285193326Sed  // Clear the insertion point to indicate we are in unreachable code.
1286193326Sed  Builder.ClearInsertionPoint();
1287193326Sed
1288193326Sed  // All break statements jump to NextBlock. If BreakContinueStack is non empty
1289193326Sed  // then reuse last ContinueBlock.
1290210299Sed  JumpDest OuterContinue;
1291193326Sed  if (!BreakContinueStack.empty())
1292210299Sed    OuterContinue = BreakContinueStack.back().ContinueBlock;
1293193326Sed
1294210299Sed  BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1295193326Sed
1296193326Sed  // Emit switch body.
1297193326Sed  EmitStmt(S.getBody());
1298198092Srdivacky
1299193326Sed  BreakContinueStack.pop_back();
1300193326Sed
1301193326Sed  // Update the default block in case explicit case range tests have
1302193326Sed  // been chained on top.
1303235633Sdim  SwitchInsn->setDefaultDest(CaseRangeBlock);
1304198092Srdivacky
1305210299Sed  // If a default was never emitted:
1306193326Sed  if (!DefaultBlock->getParent()) {
1307210299Sed    // If we have cleanups, emit the default block so that there's a
1308210299Sed    // place to jump through the cleanups from.
1309210299Sed    if (ConditionScope.requiresCleanups()) {
1310210299Sed      EmitBlock(DefaultBlock);
1311210299Sed
1312210299Sed    // Otherwise, just forward the default block to the switch end.
1313210299Sed    } else {
1314212904Sdim      DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
1315210299Sed      delete DefaultBlock;
1316210299Sed    }
1317193326Sed  }
1318193326Sed
1319212904Sdim  ConditionScope.ForceCleanup();
1320212904Sdim
1321193326Sed  // Emit continuation.
1322212904Sdim  EmitBlock(SwitchExit.getBlock(), true);
1323193326Sed
1324193326Sed  SwitchInsn = SavedSwitchInsn;
1325193326Sed  CaseRangeBlock = SavedCRBlock;
1326193326Sed}
1327193326Sed
1328193326Sedstatic std::string
1329199482SrdivackySimplifyConstraint(const char *Constraint, const TargetInfo &Target,
1330226890Sdim                 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=0) {
1331193326Sed  std::string Result;
1332198092Srdivacky
1333193326Sed  while (*Constraint) {
1334193326Sed    switch (*Constraint) {
1335193326Sed    default:
1336223017Sdim      Result += Target.convertConstraint(Constraint);
1337193326Sed      break;
1338193326Sed    // Ignore these
1339193326Sed    case '*':
1340193326Sed    case '?':
1341193326Sed    case '!':
1342212904Sdim    case '=': // Will see this and the following in mult-alt constraints.
1343212904Sdim    case '+':
1344193326Sed      break;
1345245431Sdim    case '#': // Ignore the rest of the constraint alternative.
1346245431Sdim      while (Constraint[1] && Constraint[1] != ',')
1347263509Sdim        Constraint++;
1348245431Sdim      break;
1349218893Sdim    case ',':
1350218893Sdim      Result += "|";
1351212904Sdim      break;
1352193326Sed    case 'g':
1353193326Sed      Result += "imr";
1354193326Sed      break;
1355193326Sed    case '[': {
1356193326Sed      assert(OutCons &&
1357193326Sed             "Must pass output names to constraints with a symbolic name");
1358193326Sed      unsigned Index;
1359198092Srdivacky      bool result = Target.resolveSymbolicName(Constraint,
1360193326Sed                                               &(*OutCons)[0],
1361193326Sed                                               OutCons->size(), Index);
1362218893Sdim      assert(result && "Could not resolve symbolic name"); (void)result;
1363193326Sed      Result += llvm::utostr(Index);
1364193326Sed      break;
1365193326Sed    }
1366193326Sed    }
1367198092Srdivacky
1368193326Sed    Constraint++;
1369193326Sed  }
1370198092Srdivacky
1371193326Sed  return Result;
1372193326Sed}
1373193326Sed
1374218893Sdim/// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
1375218893Sdim/// as using a particular register add that as a constraint that will be used
1376218893Sdim/// in this asm stmt.
1377218893Sdimstatic std::string
1378218893SdimAddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
1379218893Sdim                       const TargetInfo &Target, CodeGenModule &CGM,
1380218893Sdim                       const AsmStmt &Stmt) {
1381218893Sdim  const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
1382218893Sdim  if (!AsmDeclRef)
1383218893Sdim    return Constraint;
1384218893Sdim  const ValueDecl &Value = *AsmDeclRef->getDecl();
1385218893Sdim  const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
1386218893Sdim  if (!Variable)
1387218893Sdim    return Constraint;
1388235633Sdim  if (Variable->getStorageClass() != SC_Register)
1389235633Sdim    return Constraint;
1390218893Sdim  AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
1391218893Sdim  if (!Attr)
1392218893Sdim    return Constraint;
1393226890Sdim  StringRef Register = Attr->getLabel();
1394218893Sdim  assert(Target.isValidGCCRegisterName(Register));
1395224145Sdim  // We're using validateOutputConstraint here because we only care if
1396224145Sdim  // this is a register constraint.
1397224145Sdim  TargetInfo::ConstraintInfo Info(Constraint, "");
1398224145Sdim  if (Target.validateOutputConstraint(Info) &&
1399224145Sdim      !Info.allowsRegister()) {
1400218893Sdim    CGM.ErrorUnsupported(&Stmt, "__asm__");
1401218893Sdim    return Constraint;
1402218893Sdim  }
1403224145Sdim  // Canonicalize the register here before returning it.
1404224145Sdim  Register = Target.getNormalizedGCCRegisterName(Register);
1405218893Sdim  return "{" + Register.str() + "}";
1406218893Sdim}
1407218893Sdim
1408212904Sdimllvm::Value*
1409245431SdimCodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
1410212904Sdim                                    LValue InputValue, QualType InputType,
1411263509Sdim                                    std::string &ConstraintStr,
1412263509Sdim                                    SourceLocation Loc) {
1413193326Sed  llvm::Value *Arg;
1414198092Srdivacky  if (Info.allowsRegister() || !Info.allowsMemory()) {
1415252723Sdim    if (CodeGenFunction::hasScalarEvaluationKind(InputType)) {
1416263509Sdim      Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal();
1417193326Sed    } else {
1418226890Sdim      llvm::Type *Ty = ConvertType(InputType);
1419245431Sdim      uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
1420193326Sed      if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
1421218893Sdim        Ty = llvm::IntegerType::get(getLLVMContext(), Size);
1422193326Sed        Ty = llvm::PointerType::getUnqual(Ty);
1423198092Srdivacky
1424212904Sdim        Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(),
1425212904Sdim                                                       Ty));
1426193326Sed      } else {
1427212904Sdim        Arg = InputValue.getAddress();
1428193326Sed        ConstraintStr += '*';
1429193326Sed      }
1430193326Sed    }
1431193326Sed  } else {
1432212904Sdim    Arg = InputValue.getAddress();
1433193326Sed    ConstraintStr += '*';
1434193326Sed  }
1435198092Srdivacky
1436193326Sed  return Arg;
1437193326Sed}
1438193326Sed
1439245431Sdimllvm::Value* CodeGenFunction::EmitAsmInput(
1440212904Sdim                                         const TargetInfo::ConstraintInfo &Info,
1441212904Sdim                                           const Expr *InputExpr,
1442212904Sdim                                           std::string &ConstraintStr) {
1443212904Sdim  if (Info.allowsRegister() || !Info.allowsMemory())
1444252723Sdim    if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
1445212904Sdim      return EmitScalarExpr(InputExpr);
1446212904Sdim
1447212904Sdim  InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
1448212904Sdim  LValue Dest = EmitLValue(InputExpr);
1449263509Sdim  return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr,
1450263509Sdim                            InputExpr->getExprLoc());
1451212904Sdim}
1452212904Sdim
1453218893Sdim/// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
1454218893Sdim/// asm call instruction.  The !srcloc MDNode contains a list of constant
1455218893Sdim/// integers which are the source locations of the start of each line in the
1456218893Sdim/// asm.
1457218893Sdimstatic llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
1458218893Sdim                                      CodeGenFunction &CGF) {
1459226890Sdim  SmallVector<llvm::Value *, 8> Locs;
1460218893Sdim  // Add the location of the first line to the MDNode.
1461218893Sdim  Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
1462218893Sdim                                        Str->getLocStart().getRawEncoding()));
1463226890Sdim  StringRef StrVal = Str->getString();
1464218893Sdim  if (!StrVal.empty()) {
1465218893Sdim    const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
1466235633Sdim    const LangOptions &LangOpts = CGF.CGM.getLangOpts();
1467245431Sdim
1468218893Sdim    // Add the location of the start of each subsequent line of the asm to the
1469218893Sdim    // MDNode.
1470218893Sdim    for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) {
1471218893Sdim      if (StrVal[i] != '\n') continue;
1472218893Sdim      SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts,
1473252723Sdim                                                      CGF.getTarget());
1474218893Sdim      Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
1475218893Sdim                                            LineLoc.getRawEncoding()));
1476218893Sdim    }
1477245431Sdim  }
1478245431Sdim
1479221345Sdim  return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
1480218893Sdim}
1481218893Sdim
1482193326Sedvoid CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
1483245431Sdim  // Assemble the final asm string.
1484245431Sdim  std::string AsmString = S.generateAsmString(getContext());
1485198092Srdivacky
1486193326Sed  // Get all the output and input constraints together.
1487226890Sdim  SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1488226890Sdim  SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1489193326Sed
1490198092Srdivacky  for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1491252723Sdim    StringRef Name;
1492252723Sdim    if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1493252723Sdim      Name = GAS->getOutputName(i);
1494252723Sdim    TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name);
1495252723Sdim    bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
1496204793Srdivacky    assert(IsValid && "Failed to parse output constraint");
1497193326Sed    OutputConstraintInfos.push_back(Info);
1498198092Srdivacky  }
1499198092Srdivacky
1500193326Sed  for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1501252723Sdim    StringRef Name;
1502252723Sdim    if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1503252723Sdim      Name = GAS->getInputName(i);
1504252723Sdim    TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name);
1505252723Sdim    bool IsValid =
1506252723Sdim      getTarget().validateInputConstraint(OutputConstraintInfos.data(),
1507252723Sdim                                          S.getNumOutputs(), Info);
1508204793Srdivacky    assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
1509193326Sed    InputConstraintInfos.push_back(Info);
1510193326Sed  }
1511198092Srdivacky
1512193326Sed  std::string Constraints;
1513198092Srdivacky
1514193326Sed  std::vector<LValue> ResultRegDests;
1515193326Sed  std::vector<QualType> ResultRegQualTys;
1516224145Sdim  std::vector<llvm::Type *> ResultRegTypes;
1517224145Sdim  std::vector<llvm::Type *> ResultTruncRegTypes;
1518245431Sdim  std::vector<llvm::Type *> ArgTypes;
1519193326Sed  std::vector<llvm::Value*> Args;
1520193326Sed
1521193326Sed  // Keep track of inout constraints.
1522193326Sed  std::string InOutConstraints;
1523193326Sed  std::vector<llvm::Value*> InOutArgs;
1524224145Sdim  std::vector<llvm::Type*> InOutArgTypes;
1525193326Sed
1526198092Srdivacky  for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1527193326Sed    TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
1528193326Sed
1529193326Sed    // Simplify the output constraint.
1530193326Sed    std::string OutputConstraint(S.getOutputConstraint(i));
1531252723Sdim    OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
1532252723Sdim                                          getTarget());
1533198092Srdivacky
1534193326Sed    const Expr *OutExpr = S.getOutputExpr(i);
1535193326Sed    OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
1536198092Srdivacky
1537223017Sdim    OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
1538252723Sdim                                              getTarget(), CGM, S);
1539218893Sdim
1540193326Sed    LValue Dest = EmitLValue(OutExpr);
1541193326Sed    if (!Constraints.empty())
1542193326Sed      Constraints += ',';
1543193326Sed
1544193326Sed    // If this is a register output, then make the inline asm return it
1545193326Sed    // by-value.  If this is a memory result, return the value by-reference.
1546252723Sdim    if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) {
1547193326Sed      Constraints += "=" + OutputConstraint;
1548193326Sed      ResultRegQualTys.push_back(OutExpr->getType());
1549193326Sed      ResultRegDests.push_back(Dest);
1550193326Sed      ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
1551193326Sed      ResultTruncRegTypes.push_back(ResultRegTypes.back());
1552198092Srdivacky
1553193326Sed      // If this output is tied to an input, and if the input is larger, then
1554193326Sed      // we need to set the actual result type of the inline asm node to be the
1555193326Sed      // same as the input type.
1556193326Sed      if (Info.hasMatchingInput()) {
1557193326Sed        unsigned InputNo;
1558193326Sed        for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
1559193326Sed          TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
1560207619Srdivacky          if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
1561193326Sed            break;
1562193326Sed        }
1563193326Sed        assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
1564198092Srdivacky
1565193326Sed        QualType InputTy = S.getInputExpr(InputNo)->getType();
1566207619Srdivacky        QualType OutputType = OutExpr->getType();
1567198092Srdivacky
1568193326Sed        uint64_t InputSize = getContext().getTypeSize(InputTy);
1569207619Srdivacky        if (getContext().getTypeSize(OutputType) < InputSize) {
1570207619Srdivacky          // Form the asm to return the value as a larger integer or fp type.
1571207619Srdivacky          ResultRegTypes.back() = ConvertType(InputTy);
1572193326Sed        }
1573193326Sed      }
1574263509Sdim      if (llvm::Type* AdjTy =
1575218893Sdim            getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1576218893Sdim                                                 ResultRegTypes.back()))
1577218893Sdim        ResultRegTypes.back() = AdjTy;
1578263509Sdim      else {
1579263509Sdim        CGM.getDiags().Report(S.getAsmLoc(),
1580263509Sdim                              diag::err_asm_invalid_type_in_input)
1581263509Sdim            << OutExpr->getType() << OutputConstraint;
1582263509Sdim      }
1583193326Sed    } else {
1584193326Sed      ArgTypes.push_back(Dest.getAddress()->getType());
1585193326Sed      Args.push_back(Dest.getAddress());
1586193326Sed      Constraints += "=*";
1587193326Sed      Constraints += OutputConstraint;
1588193326Sed    }
1589198092Srdivacky
1590193326Sed    if (Info.isReadWrite()) {
1591193326Sed      InOutConstraints += ',';
1592193326Sed
1593193326Sed      const Expr *InputExpr = S.getOutputExpr(i);
1594245431Sdim      llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(),
1595263509Sdim                                            InOutConstraints,
1596263509Sdim                                            InputExpr->getExprLoc());
1597198092Srdivacky
1598235633Sdim      if (llvm::Type* AdjTy =
1599263509Sdim          getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1600263509Sdim                                               Arg->getType()))
1601235633Sdim        Arg = Builder.CreateBitCast(Arg, AdjTy);
1602235633Sdim
1603193326Sed      if (Info.allowsRegister())
1604193326Sed        InOutConstraints += llvm::utostr(i);
1605193326Sed      else
1606193326Sed        InOutConstraints += OutputConstraint;
1607193326Sed
1608193326Sed      InOutArgTypes.push_back(Arg->getType());
1609193326Sed      InOutArgs.push_back(Arg);
1610193326Sed    }
1611193326Sed  }
1612198092Srdivacky
1613193326Sed  unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs();
1614198092Srdivacky
1615193326Sed  for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1616193326Sed    const Expr *InputExpr = S.getInputExpr(i);
1617193326Sed
1618193326Sed    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1619193326Sed
1620193326Sed    if (!Constraints.empty())
1621193326Sed      Constraints += ',';
1622198092Srdivacky
1623193326Sed    // Simplify the input constraint.
1624193326Sed    std::string InputConstraint(S.getInputConstraint(i));
1625252723Sdim    InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
1626193326Sed                                         &OutputConstraintInfos);
1627193326Sed
1628218893Sdim    InputConstraint =
1629218893Sdim      AddVariableConstraints(InputConstraint,
1630218893Sdim                            *InputExpr->IgnoreParenNoopCasts(getContext()),
1631252723Sdim                            getTarget(), CGM, S);
1632218893Sdim
1633245431Sdim    llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints);
1634198092Srdivacky
1635193326Sed    // If this input argument is tied to a larger output result, extend the
1636193326Sed    // input to be the same size as the output.  The LLVM backend wants to see
1637193326Sed    // the input and output of a matching constraint be the same size.  Note
1638193326Sed    // that GCC does not define what the top bits are here.  We use zext because
1639193326Sed    // that is usually cheaper, but LLVM IR should really get an anyext someday.
1640193326Sed    if (Info.hasTiedOperand()) {
1641193326Sed      unsigned Output = Info.getTiedOperand();
1642207619Srdivacky      QualType OutputType = S.getOutputExpr(Output)->getType();
1643193326Sed      QualType InputTy = InputExpr->getType();
1644198092Srdivacky
1645207619Srdivacky      if (getContext().getTypeSize(OutputType) >
1646193326Sed          getContext().getTypeSize(InputTy)) {
1647193326Sed        // Use ptrtoint as appropriate so that we can do our extension.
1648193326Sed        if (isa<llvm::PointerType>(Arg->getType()))
1649210299Sed          Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
1650226890Sdim        llvm::Type *OutputTy = ConvertType(OutputType);
1651207619Srdivacky        if (isa<llvm::IntegerType>(OutputTy))
1652207619Srdivacky          Arg = Builder.CreateZExt(Arg, OutputTy);
1653226890Sdim        else if (isa<llvm::PointerType>(OutputTy))
1654226890Sdim          Arg = Builder.CreateZExt(Arg, IntPtrTy);
1655226890Sdim        else {
1656226890Sdim          assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
1657207619Srdivacky          Arg = Builder.CreateFPExt(Arg, OutputTy);
1658226890Sdim        }
1659193326Sed      }
1660193326Sed    }
1661235633Sdim    if (llvm::Type* AdjTy =
1662218893Sdim              getTargetHooks().adjustInlineAsmType(*this, InputConstraint,
1663218893Sdim                                                   Arg->getType()))
1664218893Sdim      Arg = Builder.CreateBitCast(Arg, AdjTy);
1665263509Sdim    else
1666263509Sdim      CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
1667263509Sdim          << InputExpr->getType() << InputConstraint;
1668198092Srdivacky
1669193326Sed    ArgTypes.push_back(Arg->getType());
1670193326Sed    Args.push_back(Arg);
1671193326Sed    Constraints += InputConstraint;
1672193326Sed  }
1673198092Srdivacky
1674193326Sed  // Append the "input" part of inout constraints last.
1675193326Sed  for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
1676193326Sed    ArgTypes.push_back(InOutArgTypes[i]);
1677193326Sed    Args.push_back(InOutArgs[i]);
1678193326Sed  }
1679193326Sed  Constraints += InOutConstraints;
1680198092Srdivacky
1681193326Sed  // Clobbers
1682193326Sed  for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
1683245431Sdim    StringRef Clobber = S.getClobber(i);
1684193326Sed
1685224145Sdim    if (Clobber != "memory" && Clobber != "cc")
1686252723Sdim    Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
1687198092Srdivacky
1688193326Sed    if (i != 0 || NumConstraints != 0)
1689193326Sed      Constraints += ',';
1690198092Srdivacky
1691193326Sed    Constraints += "~{";
1692193326Sed    Constraints += Clobber;
1693193326Sed    Constraints += '}';
1694193326Sed  }
1695198092Srdivacky
1696193326Sed  // Add machine specific clobbers
1697252723Sdim  std::string MachineClobbers = getTarget().getClobbers();
1698193326Sed  if (!MachineClobbers.empty()) {
1699193326Sed    if (!Constraints.empty())
1700193326Sed      Constraints += ',';
1701193326Sed    Constraints += MachineClobbers;
1702193326Sed  }
1703193326Sed
1704226890Sdim  llvm::Type *ResultType;
1705193326Sed  if (ResultRegTypes.empty())
1706235633Sdim    ResultType = VoidTy;
1707193326Sed  else if (ResultRegTypes.size() == 1)
1708193326Sed    ResultType = ResultRegTypes[0];
1709193326Sed  else
1710218893Sdim    ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
1711198092Srdivacky
1712226890Sdim  llvm::FunctionType *FTy =
1713193326Sed    llvm::FunctionType::get(ResultType, ArgTypes, false);
1714198092Srdivacky
1715245431Sdim  bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
1716245431Sdim  llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
1717245431Sdim    llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT;
1718198092Srdivacky  llvm::InlineAsm *IA =
1719245431Sdim    llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect,
1720245431Sdim                         /* IsAlignStack */ false, AsmDialect);
1721224145Sdim  llvm::CallInst *Result = Builder.CreateCall(IA, Args);
1722252723Sdim  Result->addAttribute(llvm::AttributeSet::FunctionIndex,
1723252723Sdim                       llvm::Attribute::NoUnwind);
1724198092Srdivacky
1725207619Srdivacky  // Slap the source location of the inline asm into a !srcloc metadata on the
1726245431Sdim  // call.  FIXME: Handle metadata for MS-style inline asms.
1727245431Sdim  if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S))
1728245431Sdim    Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(),
1729245431Sdim                                                   *this));
1730198092Srdivacky
1731193326Sed  // Extract all of the register value results from the asm.
1732193326Sed  std::vector<llvm::Value*> RegResults;
1733193326Sed  if (ResultRegTypes.size() == 1) {
1734193326Sed    RegResults.push_back(Result);
1735193326Sed  } else {
1736193326Sed    for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
1737193326Sed      llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
1738193326Sed      RegResults.push_back(Tmp);
1739193326Sed    }
1740193326Sed  }
1741198092Srdivacky
1742193326Sed  for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
1743193326Sed    llvm::Value *Tmp = RegResults[i];
1744198092Srdivacky
1745193326Sed    // If the result type of the LLVM IR asm doesn't match the result type of
1746193326Sed    // the expression, do the conversion.
1747193326Sed    if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
1748226890Sdim      llvm::Type *TruncTy = ResultTruncRegTypes[i];
1749245431Sdim
1750207619Srdivacky      // Truncate the integer result to the right size, note that TruncTy can be
1751207619Srdivacky      // a pointer.
1752207619Srdivacky      if (TruncTy->isFloatingPointTy())
1753207619Srdivacky        Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
1754207619Srdivacky      else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
1755245431Sdim        uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
1756218893Sdim        Tmp = Builder.CreateTrunc(Tmp,
1757218893Sdim                   llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
1758193326Sed        Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
1759207619Srdivacky      } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
1760245431Sdim        uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
1761218893Sdim        Tmp = Builder.CreatePtrToInt(Tmp,
1762218893Sdim                   llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
1763207619Srdivacky        Tmp = Builder.CreateTrunc(Tmp, TruncTy);
1764207619Srdivacky      } else if (TruncTy->isIntegerTy()) {
1765207619Srdivacky        Tmp = Builder.CreateTrunc(Tmp, TruncTy);
1766218893Sdim      } else if (TruncTy->isVectorTy()) {
1767218893Sdim        Tmp = Builder.CreateBitCast(Tmp, TruncTy);
1768193326Sed      }
1769193326Sed    }
1770198092Srdivacky
1771224145Sdim    EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]);
1772193326Sed  }
1773193326Sed}
1774252723Sdim
1775263509Sdimstatic LValue InitCapturedStruct(CodeGenFunction &CGF, const CapturedStmt &S) {
1776263509Sdim  const RecordDecl *RD = S.getCapturedRecordDecl();
1777263509Sdim  QualType RecordTy = CGF.getContext().getRecordType(RD);
1778263509Sdim
1779263509Sdim  // Initialize the captured struct.
1780263509Sdim  LValue SlotLV = CGF.MakeNaturalAlignAddrLValue(
1781263509Sdim                    CGF.CreateMemTemp(RecordTy, "agg.captured"), RecordTy);
1782263509Sdim
1783263509Sdim  RecordDecl::field_iterator CurField = RD->field_begin();
1784263509Sdim  for (CapturedStmt::capture_init_iterator I = S.capture_init_begin(),
1785263509Sdim                                           E = S.capture_init_end();
1786263509Sdim       I != E; ++I, ++CurField) {
1787263509Sdim    LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField);
1788263509Sdim    CGF.EmitInitializerForField(*CurField, LV, *I, ArrayRef<VarDecl *>());
1789263509Sdim  }
1790263509Sdim
1791263509Sdim  return SlotLV;
1792252723Sdim}
1793263509Sdim
1794263509Sdim/// Generate an outlined function for the body of a CapturedStmt, store any
1795263509Sdim/// captured variables into the captured struct, and call the outlined function.
1796263509Sdimllvm::Function *
1797263509SdimCodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) {
1798263509Sdim  const CapturedDecl *CD = S.getCapturedDecl();
1799263509Sdim  const RecordDecl *RD = S.getCapturedRecordDecl();
1800263509Sdim  assert(CD->hasBody() && "missing CapturedDecl body");
1801263509Sdim
1802263509Sdim  LValue CapStruct = InitCapturedStruct(*this, S);
1803263509Sdim
1804263509Sdim  // Emit the CapturedDecl
1805263509Sdim  CodeGenFunction CGF(CGM, true);
1806263509Sdim  CGF.CapturedStmtInfo = new CGCapturedStmtInfo(S, K);
1807263509Sdim  llvm::Function *F = CGF.GenerateCapturedStmtFunction(CD, RD, S.getLocStart());
1808263509Sdim  delete CGF.CapturedStmtInfo;
1809263509Sdim
1810263509Sdim  // Emit call to the helper function.
1811263509Sdim  EmitCallOrInvoke(F, CapStruct.getAddress());
1812263509Sdim
1813263509Sdim  return F;
1814263509Sdim}
1815263509Sdim
1816263509Sdim/// Creates the outlined function for a CapturedStmt.
1817263509Sdimllvm::Function *
1818263509SdimCodeGenFunction::GenerateCapturedStmtFunction(const CapturedDecl *CD,
1819263509Sdim                                              const RecordDecl *RD,
1820263509Sdim                                              SourceLocation Loc) {
1821263509Sdim  assert(CapturedStmtInfo &&
1822263509Sdim    "CapturedStmtInfo should be set when generating the captured function");
1823263509Sdim
1824263509Sdim  // Build the argument list.
1825263509Sdim  ASTContext &Ctx = CGM.getContext();
1826263509Sdim  FunctionArgList Args;
1827263509Sdim  Args.append(CD->param_begin(), CD->param_end());
1828263509Sdim
1829263509Sdim  // Create the function declaration.
1830263509Sdim  FunctionType::ExtInfo ExtInfo;
1831263509Sdim  const CGFunctionInfo &FuncInfo =
1832263509Sdim    CGM.getTypes().arrangeFunctionDeclaration(Ctx.VoidTy, Args, ExtInfo,
1833263509Sdim                                              /*IsVariadic=*/false);
1834263509Sdim  llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
1835263509Sdim
1836263509Sdim  llvm::Function *F =
1837263509Sdim    llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
1838263509Sdim                           CapturedStmtInfo->getHelperName(), &CGM.getModule());
1839263509Sdim  CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
1840263509Sdim
1841263509Sdim  // Generate the function.
1842263509Sdim  StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getBody()->getLocStart());
1843263509Sdim
1844263509Sdim  // Set the context parameter in CapturedStmtInfo.
1845263509Sdim  llvm::Value *DeclPtr = LocalDeclMap[CD->getContextParam()];
1846263509Sdim  assert(DeclPtr && "missing context parameter for CapturedStmt");
1847263509Sdim  CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr));
1848263509Sdim
1849263509Sdim  // If 'this' is captured, load it into CXXThisValue.
1850263509Sdim  if (CapturedStmtInfo->isCXXThisExprCaptured()) {
1851263509Sdim    FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl();
1852263509Sdim    LValue LV = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(),
1853263509Sdim                                           Ctx.getTagDeclType(RD));
1854263509Sdim    LValue ThisLValue = EmitLValueForField(LV, FD);
1855263509Sdim    CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal();
1856263509Sdim  }
1857263509Sdim
1858263509Sdim  CapturedStmtInfo->EmitBody(*this, CD->getBody());
1859263509Sdim  FinishFunction(CD->getBodyRBrace());
1860263509Sdim
1861263509Sdim  return F;
1862263509Sdim}
1863