CGExprScalar.cpp revision 252723
1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CGCXXABI.h"
16#include "CGDebugInfo.h"
17#include "CGObjCRuntime.h"
18#include "CodeGenModule.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/RecordLayout.h"
22#include "clang/AST/StmtVisitor.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/Frontend/CodeGenOptions.h"
25#include "llvm/IR/Constants.h"
26#include "llvm/IR/DataLayout.h"
27#include "llvm/IR/Function.h"
28#include "llvm/IR/GlobalVariable.h"
29#include "llvm/IR/Intrinsics.h"
30#include "llvm/IR/Module.h"
31#include "llvm/Support/CFG.h"
32#include <cstdarg>
33
34using namespace clang;
35using namespace CodeGen;
36using llvm::Value;
37
38//===----------------------------------------------------------------------===//
39//                         Scalar Expression Emitter
40//===----------------------------------------------------------------------===//
41
42namespace {
43struct BinOpInfo {
44  Value *LHS;
45  Value *RHS;
46  QualType Ty;  // Computation Type.
47  BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
48  bool FPContractable;
49  const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
50};
51
52static bool MustVisitNullValue(const Expr *E) {
53  // If a null pointer expression's type is the C++0x nullptr_t, then
54  // it's not necessarily a simple constant and it must be evaluated
55  // for its potential side effects.
56  return E->getType()->isNullPtrType();
57}
58
59class ScalarExprEmitter
60  : public StmtVisitor<ScalarExprEmitter, Value*> {
61  CodeGenFunction &CGF;
62  CGBuilderTy &Builder;
63  bool IgnoreResultAssign;
64  llvm::LLVMContext &VMContext;
65public:
66
67  ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
68    : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
69      VMContext(cgf.getLLVMContext()) {
70  }
71
72  //===--------------------------------------------------------------------===//
73  //                               Utilities
74  //===--------------------------------------------------------------------===//
75
76  bool TestAndClearIgnoreResultAssign() {
77    bool I = IgnoreResultAssign;
78    IgnoreResultAssign = false;
79    return I;
80  }
81
82  llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
83  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
84  LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
85    return CGF.EmitCheckedLValue(E, TCK);
86  }
87
88  void EmitBinOpCheck(Value *Check, const BinOpInfo &Info);
89
90  Value *EmitLoadOfLValue(LValue LV) {
91    return CGF.EmitLoadOfLValue(LV).getScalarVal();
92  }
93
94  /// EmitLoadOfLValue - Given an expression with complex type that represents a
95  /// value l-value, this method emits the address of the l-value, then loads
96  /// and returns the result.
97  Value *EmitLoadOfLValue(const Expr *E) {
98    return EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load));
99  }
100
101  /// EmitConversionToBool - Convert the specified expression value to a
102  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
103  Value *EmitConversionToBool(Value *Src, QualType DstTy);
104
105  /// \brief Emit a check that a conversion to or from a floating-point type
106  /// does not overflow.
107  void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
108                                Value *Src, QualType SrcType,
109                                QualType DstType, llvm::Type *DstTy);
110
111  /// EmitScalarConversion - Emit a conversion from the specified type to the
112  /// specified destination type, both of which are LLVM scalar types.
113  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
114
115  /// EmitComplexToScalarConversion - Emit a conversion from the specified
116  /// complex type to the specified destination type, where the destination type
117  /// is an LLVM scalar type.
118  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
119                                       QualType SrcTy, QualType DstTy);
120
121  /// EmitNullValue - Emit a value that corresponds to null for the given type.
122  Value *EmitNullValue(QualType Ty);
123
124  /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
125  Value *EmitFloatToBoolConversion(Value *V) {
126    // Compare against 0.0 for fp scalars.
127    llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
128    return Builder.CreateFCmpUNE(V, Zero, "tobool");
129  }
130
131  /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
132  Value *EmitPointerToBoolConversion(Value *V) {
133    Value *Zero = llvm::ConstantPointerNull::get(
134                                      cast<llvm::PointerType>(V->getType()));
135    return Builder.CreateICmpNE(V, Zero, "tobool");
136  }
137
138  Value *EmitIntToBoolConversion(Value *V) {
139    // Because of the type rules of C, we often end up computing a
140    // logical value, then zero extending it to int, then wanting it
141    // as a logical value again.  Optimize this common case.
142    if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
143      if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
144        Value *Result = ZI->getOperand(0);
145        // If there aren't any more uses, zap the instruction to save space.
146        // Note that there can be more uses, for example if this
147        // is the result of an assignment.
148        if (ZI->use_empty())
149          ZI->eraseFromParent();
150        return Result;
151      }
152    }
153
154    return Builder.CreateIsNotNull(V, "tobool");
155  }
156
157  //===--------------------------------------------------------------------===//
158  //                            Visitor Methods
159  //===--------------------------------------------------------------------===//
160
161  Value *Visit(Expr *E) {
162    return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
163  }
164
165  Value *VisitStmt(Stmt *S) {
166    S->dump(CGF.getContext().getSourceManager());
167    llvm_unreachable("Stmt can't have complex result type!");
168  }
169  Value *VisitExpr(Expr *S);
170
171  Value *VisitParenExpr(ParenExpr *PE) {
172    return Visit(PE->getSubExpr());
173  }
174  Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
175    return Visit(E->getReplacement());
176  }
177  Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
178    return Visit(GE->getResultExpr());
179  }
180
181  // Leaves.
182  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
183    return Builder.getInt(E->getValue());
184  }
185  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
186    return llvm::ConstantFP::get(VMContext, E->getValue());
187  }
188  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
189    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
190  }
191  Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
192    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
193  }
194  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
195    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
196  }
197  Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
198    return EmitNullValue(E->getType());
199  }
200  Value *VisitGNUNullExpr(const GNUNullExpr *E) {
201    return EmitNullValue(E->getType());
202  }
203  Value *VisitOffsetOfExpr(OffsetOfExpr *E);
204  Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
205  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
206    llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
207    return Builder.CreateBitCast(V, ConvertType(E->getType()));
208  }
209
210  Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
211    return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
212  }
213
214  Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
215    return CGF.EmitPseudoObjectRValue(E).getScalarVal();
216  }
217
218  Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
219    if (E->isGLValue())
220      return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E));
221
222    // Otherwise, assume the mapping is the scalar directly.
223    return CGF.getOpaqueRValueMapping(E).getScalarVal();
224  }
225
226  // l-values.
227  Value *VisitDeclRefExpr(DeclRefExpr *E) {
228    if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
229      if (result.isReference())
230        return EmitLoadOfLValue(result.getReferenceLValue(CGF, E));
231      return result.getValue();
232    }
233    return EmitLoadOfLValue(E);
234  }
235
236  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
237    return CGF.EmitObjCSelectorExpr(E);
238  }
239  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
240    return CGF.EmitObjCProtocolExpr(E);
241  }
242  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
243    return EmitLoadOfLValue(E);
244  }
245  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
246    if (E->getMethodDecl() &&
247        E->getMethodDecl()->getResultType()->isReferenceType())
248      return EmitLoadOfLValue(E);
249    return CGF.EmitObjCMessageExpr(E).getScalarVal();
250  }
251
252  Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
253    LValue LV = CGF.EmitObjCIsaExpr(E);
254    Value *V = CGF.EmitLoadOfLValue(LV).getScalarVal();
255    return V;
256  }
257
258  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
259  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
260  Value *VisitMemberExpr(MemberExpr *E);
261  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
262  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
263    return EmitLoadOfLValue(E);
264  }
265
266  Value *VisitInitListExpr(InitListExpr *E);
267
268  Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
269    return EmitNullValue(E->getType());
270  }
271  Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
272    if (E->getType()->isVariablyModifiedType())
273      CGF.EmitVariablyModifiedType(E->getType());
274    return VisitCastExpr(E);
275  }
276  Value *VisitCastExpr(CastExpr *E);
277
278  Value *VisitCallExpr(const CallExpr *E) {
279    if (E->getCallReturnType()->isReferenceType())
280      return EmitLoadOfLValue(E);
281
282    return CGF.EmitCallExpr(E).getScalarVal();
283  }
284
285  Value *VisitStmtExpr(const StmtExpr *E);
286
287  // Unary Operators.
288  Value *VisitUnaryPostDec(const UnaryOperator *E) {
289    LValue LV = EmitLValue(E->getSubExpr());
290    return EmitScalarPrePostIncDec(E, LV, false, false);
291  }
292  Value *VisitUnaryPostInc(const UnaryOperator *E) {
293    LValue LV = EmitLValue(E->getSubExpr());
294    return EmitScalarPrePostIncDec(E, LV, true, false);
295  }
296  Value *VisitUnaryPreDec(const UnaryOperator *E) {
297    LValue LV = EmitLValue(E->getSubExpr());
298    return EmitScalarPrePostIncDec(E, LV, false, true);
299  }
300  Value *VisitUnaryPreInc(const UnaryOperator *E) {
301    LValue LV = EmitLValue(E->getSubExpr());
302    return EmitScalarPrePostIncDec(E, LV, true, true);
303  }
304
305  llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
306                                               llvm::Value *InVal,
307                                               llvm::Value *NextVal,
308                                               bool IsInc);
309
310  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
311                                       bool isInc, bool isPre);
312
313
314  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
315    if (isa<MemberPointerType>(E->getType())) // never sugared
316      return CGF.CGM.getMemberPointerConstant(E);
317
318    return EmitLValue(E->getSubExpr()).getAddress();
319  }
320  Value *VisitUnaryDeref(const UnaryOperator *E) {
321    if (E->getType()->isVoidType())
322      return Visit(E->getSubExpr()); // the actual value should be unused
323    return EmitLoadOfLValue(E);
324  }
325  Value *VisitUnaryPlus(const UnaryOperator *E) {
326    // This differs from gcc, though, most likely due to a bug in gcc.
327    TestAndClearIgnoreResultAssign();
328    return Visit(E->getSubExpr());
329  }
330  Value *VisitUnaryMinus    (const UnaryOperator *E);
331  Value *VisitUnaryNot      (const UnaryOperator *E);
332  Value *VisitUnaryLNot     (const UnaryOperator *E);
333  Value *VisitUnaryReal     (const UnaryOperator *E);
334  Value *VisitUnaryImag     (const UnaryOperator *E);
335  Value *VisitUnaryExtension(const UnaryOperator *E) {
336    return Visit(E->getSubExpr());
337  }
338
339  // C++
340  Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
341    return EmitLoadOfLValue(E);
342  }
343
344  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
345    return Visit(DAE->getExpr());
346  }
347  Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
348    CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
349    return Visit(DIE->getExpr());
350  }
351  Value *VisitCXXThisExpr(CXXThisExpr *TE) {
352    return CGF.LoadCXXThis();
353  }
354
355  Value *VisitExprWithCleanups(ExprWithCleanups *E) {
356    CGF.enterFullExpression(E);
357    CodeGenFunction::RunCleanupsScope Scope(CGF);
358    return Visit(E->getSubExpr());
359  }
360  Value *VisitCXXNewExpr(const CXXNewExpr *E) {
361    return CGF.EmitCXXNewExpr(E);
362  }
363  Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
364    CGF.EmitCXXDeleteExpr(E);
365    return 0;
366  }
367  Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
368    return Builder.getInt1(E->getValue());
369  }
370
371  Value *VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
372    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
373  }
374
375  Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
376    return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
377  }
378
379  Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
380    return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
381  }
382
383  Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
384    // C++ [expr.pseudo]p1:
385    //   The result shall only be used as the operand for the function call
386    //   operator (), and the result of such a call has type void. The only
387    //   effect is the evaluation of the postfix-expression before the dot or
388    //   arrow.
389    CGF.EmitScalarExpr(E->getBase());
390    return 0;
391  }
392
393  Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
394    return EmitNullValue(E->getType());
395  }
396
397  Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
398    CGF.EmitCXXThrowExpr(E);
399    return 0;
400  }
401
402  Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
403    return Builder.getInt1(E->getValue());
404  }
405
406  // Binary Operators.
407  Value *EmitMul(const BinOpInfo &Ops) {
408    if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
409      switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
410      case LangOptions::SOB_Defined:
411        return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
412      case LangOptions::SOB_Undefined:
413        if (!CGF.SanOpts->SignedIntegerOverflow)
414          return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
415        // Fall through.
416      case LangOptions::SOB_Trapping:
417        return EmitOverflowCheckedBinOp(Ops);
418      }
419    }
420
421    if (Ops.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow)
422      return EmitOverflowCheckedBinOp(Ops);
423
424    if (Ops.LHS->getType()->isFPOrFPVectorTy())
425      return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
426    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
427  }
428  /// Create a binary op that checks for overflow.
429  /// Currently only supports +, - and *.
430  Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
431
432  // Check for undefined division and modulus behaviors.
433  void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
434                                                  llvm::Value *Zero,bool isDiv);
435  // Common helper for getting how wide LHS of shift is.
436  static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
437  Value *EmitDiv(const BinOpInfo &Ops);
438  Value *EmitRem(const BinOpInfo &Ops);
439  Value *EmitAdd(const BinOpInfo &Ops);
440  Value *EmitSub(const BinOpInfo &Ops);
441  Value *EmitShl(const BinOpInfo &Ops);
442  Value *EmitShr(const BinOpInfo &Ops);
443  Value *EmitAnd(const BinOpInfo &Ops) {
444    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
445  }
446  Value *EmitXor(const BinOpInfo &Ops) {
447    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
448  }
449  Value *EmitOr (const BinOpInfo &Ops) {
450    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
451  }
452
453  BinOpInfo EmitBinOps(const BinaryOperator *E);
454  LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
455                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
456                                  Value *&Result);
457
458  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
459                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
460
461  // Binary operators and binary compound assignment operators.
462#define HANDLEBINOP(OP) \
463  Value *VisitBin ## OP(const BinaryOperator *E) {                         \
464    return Emit ## OP(EmitBinOps(E));                                      \
465  }                                                                        \
466  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
467    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
468  }
469  HANDLEBINOP(Mul)
470  HANDLEBINOP(Div)
471  HANDLEBINOP(Rem)
472  HANDLEBINOP(Add)
473  HANDLEBINOP(Sub)
474  HANDLEBINOP(Shl)
475  HANDLEBINOP(Shr)
476  HANDLEBINOP(And)
477  HANDLEBINOP(Xor)
478  HANDLEBINOP(Or)
479#undef HANDLEBINOP
480
481  // Comparisons.
482  Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
483                     unsigned SICmpOpc, unsigned FCmpOpc);
484#define VISITCOMP(CODE, UI, SI, FP) \
485    Value *VisitBin##CODE(const BinaryOperator *E) { \
486      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
487                         llvm::FCmpInst::FP); }
488  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
489  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
490  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
491  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
492  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
493  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
494#undef VISITCOMP
495
496  Value *VisitBinAssign     (const BinaryOperator *E);
497
498  Value *VisitBinLAnd       (const BinaryOperator *E);
499  Value *VisitBinLOr        (const BinaryOperator *E);
500  Value *VisitBinComma      (const BinaryOperator *E);
501
502  Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
503  Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
504
505  // Other Operators.
506  Value *VisitBlockExpr(const BlockExpr *BE);
507  Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
508  Value *VisitChooseExpr(ChooseExpr *CE);
509  Value *VisitVAArgExpr(VAArgExpr *VE);
510  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
511    return CGF.EmitObjCStringLiteral(E);
512  }
513  Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
514    return CGF.EmitObjCBoxedExpr(E);
515  }
516  Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
517    return CGF.EmitObjCArrayLiteral(E);
518  }
519  Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
520    return CGF.EmitObjCDictionaryLiteral(E);
521  }
522  Value *VisitAsTypeExpr(AsTypeExpr *CE);
523  Value *VisitAtomicExpr(AtomicExpr *AE);
524};
525}  // end anonymous namespace.
526
527//===----------------------------------------------------------------------===//
528//                                Utilities
529//===----------------------------------------------------------------------===//
530
531/// EmitConversionToBool - Convert the specified expression value to a
532/// boolean (i1) truth value.  This is equivalent to "Val != 0".
533Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
534  assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
535
536  if (SrcType->isRealFloatingType())
537    return EmitFloatToBoolConversion(Src);
538
539  if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
540    return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
541
542  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
543         "Unknown scalar type to convert");
544
545  if (isa<llvm::IntegerType>(Src->getType()))
546    return EmitIntToBoolConversion(Src);
547
548  assert(isa<llvm::PointerType>(Src->getType()));
549  return EmitPointerToBoolConversion(Src);
550}
551
552void ScalarExprEmitter::EmitFloatConversionCheck(Value *OrigSrc,
553                                                 QualType OrigSrcType,
554                                                 Value *Src, QualType SrcType,
555                                                 QualType DstType,
556                                                 llvm::Type *DstTy) {
557  using llvm::APFloat;
558  using llvm::APSInt;
559
560  llvm::Type *SrcTy = Src->getType();
561
562  llvm::Value *Check = 0;
563  if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
564    // Integer to floating-point. This can fail for unsigned short -> __half
565    // or unsigned __int128 -> float.
566    assert(DstType->isFloatingType());
567    bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
568
569    APFloat LargestFloat =
570      APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
571    APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
572
573    bool IsExact;
574    if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
575                                      &IsExact) != APFloat::opOK)
576      // The range of representable values of this floating point type includes
577      // all values of this integer type. Don't need an overflow check.
578      return;
579
580    llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
581    if (SrcIsUnsigned)
582      Check = Builder.CreateICmpULE(Src, Max);
583    else {
584      llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
585      llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
586      llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
587      Check = Builder.CreateAnd(GE, LE);
588    }
589  } else {
590    const llvm::fltSemantics &SrcSema =
591      CGF.getContext().getFloatTypeSemantics(OrigSrcType);
592    if (isa<llvm::IntegerType>(DstTy)) {
593      // Floating-point to integer. This has undefined behavior if the source is
594      // +-Inf, NaN, or doesn't fit into the destination type (after truncation
595      // to an integer).
596      unsigned Width = CGF.getContext().getIntWidth(DstType);
597      bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
598
599      APSInt Min = APSInt::getMinValue(Width, Unsigned);
600      APFloat MinSrc(SrcSema, APFloat::uninitialized);
601      if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
602          APFloat::opOverflow)
603        // Don't need an overflow check for lower bound. Just check for
604        // -Inf/NaN.
605        MinSrc = APFloat::getInf(SrcSema, true);
606      else
607        // Find the largest value which is too small to represent (before
608        // truncation toward zero).
609        MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
610
611      APSInt Max = APSInt::getMaxValue(Width, Unsigned);
612      APFloat MaxSrc(SrcSema, APFloat::uninitialized);
613      if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
614          APFloat::opOverflow)
615        // Don't need an overflow check for upper bound. Just check for
616        // +Inf/NaN.
617        MaxSrc = APFloat::getInf(SrcSema, false);
618      else
619        // Find the smallest value which is too large to represent (before
620        // truncation toward zero).
621        MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
622
623      // If we're converting from __half, convert the range to float to match
624      // the type of src.
625      if (OrigSrcType->isHalfType()) {
626        const llvm::fltSemantics &Sema =
627          CGF.getContext().getFloatTypeSemantics(SrcType);
628        bool IsInexact;
629        MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
630        MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
631      }
632
633      llvm::Value *GE =
634        Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
635      llvm::Value *LE =
636        Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
637      Check = Builder.CreateAnd(GE, LE);
638    } else {
639      // FIXME: Maybe split this sanitizer out from float-cast-overflow.
640      //
641      // Floating-point to floating-point. This has undefined behavior if the
642      // source is not in the range of representable values of the destination
643      // type. The C and C++ standards are spectacularly unclear here. We
644      // diagnose finite out-of-range conversions, but allow infinities and NaNs
645      // to convert to the corresponding value in the smaller type.
646      //
647      // C11 Annex F gives all such conversions defined behavior for IEC 60559
648      // conforming implementations. Unfortunately, LLVM's fptrunc instruction
649      // does not.
650
651      // Converting from a lower rank to a higher rank can never have
652      // undefined behavior, since higher-rank types must have a superset
653      // of values of lower-rank types.
654      if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
655        return;
656
657      assert(!OrigSrcType->isHalfType() &&
658             "should not check conversion from __half, it has the lowest rank");
659
660      const llvm::fltSemantics &DstSema =
661        CGF.getContext().getFloatTypeSemantics(DstType);
662      APFloat MinBad = APFloat::getLargest(DstSema, false);
663      APFloat MaxBad = APFloat::getInf(DstSema, false);
664
665      bool IsInexact;
666      MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
667      MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
668
669      Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
670        CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
671      llvm::Value *GE =
672        Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
673      llvm::Value *LE =
674        Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
675      Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
676    }
677  }
678
679  // FIXME: Provide a SourceLocation.
680  llvm::Constant *StaticArgs[] = {
681    CGF.EmitCheckTypeDescriptor(OrigSrcType),
682    CGF.EmitCheckTypeDescriptor(DstType)
683  };
684  CGF.EmitCheck(Check, "float_cast_overflow", StaticArgs, OrigSrc,
685                CodeGenFunction::CRK_Recoverable);
686}
687
688/// EmitScalarConversion - Emit a conversion from the specified type to the
689/// specified destination type, both of which are LLVM scalar types.
690Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
691                                               QualType DstType) {
692  SrcType = CGF.getContext().getCanonicalType(SrcType);
693  DstType = CGF.getContext().getCanonicalType(DstType);
694  if (SrcType == DstType) return Src;
695
696  if (DstType->isVoidType()) return 0;
697
698  llvm::Value *OrigSrc = Src;
699  QualType OrigSrcType = SrcType;
700  llvm::Type *SrcTy = Src->getType();
701
702  // If casting to/from storage-only half FP, use special intrinsics.
703  if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
704    Src = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16), Src);
705    SrcType = CGF.getContext().FloatTy;
706    SrcTy = CGF.FloatTy;
707  }
708
709  // Handle conversions to bool first, they are special: comparisons against 0.
710  if (DstType->isBooleanType())
711    return EmitConversionToBool(Src, SrcType);
712
713  llvm::Type *DstTy = ConvertType(DstType);
714
715  // Ignore conversions like int -> uint.
716  if (SrcTy == DstTy)
717    return Src;
718
719  // Handle pointer conversions next: pointers can only be converted to/from
720  // other pointers and integers. Check for pointer types in terms of LLVM, as
721  // some native types (like Obj-C id) may map to a pointer type.
722  if (isa<llvm::PointerType>(DstTy)) {
723    // The source value may be an integer, or a pointer.
724    if (isa<llvm::PointerType>(SrcTy))
725      return Builder.CreateBitCast(Src, DstTy, "conv");
726
727    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
728    // First, convert to the correct width so that we control the kind of
729    // extension.
730    llvm::Type *MiddleTy = CGF.IntPtrTy;
731    bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
732    llvm::Value* IntResult =
733        Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
734    // Then, cast to pointer.
735    return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
736  }
737
738  if (isa<llvm::PointerType>(SrcTy)) {
739    // Must be an ptr to int cast.
740    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
741    return Builder.CreatePtrToInt(Src, DstTy, "conv");
742  }
743
744  // A scalar can be splatted to an extended vector of the same element type
745  if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
746    // Cast the scalar to element type
747    QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
748    llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
749
750    // Splat the element across to all elements
751    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
752    return Builder.CreateVectorSplat(NumElements, Elt, "splat");
753  }
754
755  // Allow bitcast from vector to integer/fp of the same size.
756  if (isa<llvm::VectorType>(SrcTy) ||
757      isa<llvm::VectorType>(DstTy))
758    return Builder.CreateBitCast(Src, DstTy, "conv");
759
760  // Finally, we have the arithmetic types: real int/float.
761  Value *Res = NULL;
762  llvm::Type *ResTy = DstTy;
763
764  // An overflowing conversion has undefined behavior if either the source type
765  // or the destination type is a floating-point type.
766  if (CGF.SanOpts->FloatCastOverflow &&
767      (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
768    EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType,
769                             DstTy);
770
771  // Cast to half via float
772  if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType)
773    DstTy = CGF.FloatTy;
774
775  if (isa<llvm::IntegerType>(SrcTy)) {
776    bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
777    if (isa<llvm::IntegerType>(DstTy))
778      Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
779    else if (InputSigned)
780      Res = Builder.CreateSIToFP(Src, DstTy, "conv");
781    else
782      Res = Builder.CreateUIToFP(Src, DstTy, "conv");
783  } else if (isa<llvm::IntegerType>(DstTy)) {
784    assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
785    if (DstType->isSignedIntegerOrEnumerationType())
786      Res = Builder.CreateFPToSI(Src, DstTy, "conv");
787    else
788      Res = Builder.CreateFPToUI(Src, DstTy, "conv");
789  } else {
790    assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
791           "Unknown real conversion");
792    if (DstTy->getTypeID() < SrcTy->getTypeID())
793      Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
794    else
795      Res = Builder.CreateFPExt(Src, DstTy, "conv");
796  }
797
798  if (DstTy != ResTy) {
799    assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
800    Res = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16), Res);
801  }
802
803  return Res;
804}
805
806/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
807/// type to the specified destination type, where the destination type is an
808/// LLVM scalar type.
809Value *ScalarExprEmitter::
810EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
811                              QualType SrcTy, QualType DstTy) {
812  // Get the source element type.
813  SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
814
815  // Handle conversions to bool first, they are special: comparisons against 0.
816  if (DstTy->isBooleanType()) {
817    //  Complex != 0  -> (Real != 0) | (Imag != 0)
818    Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
819    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
820    return Builder.CreateOr(Src.first, Src.second, "tobool");
821  }
822
823  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
824  // the imaginary part of the complex value is discarded and the value of the
825  // real part is converted according to the conversion rules for the
826  // corresponding real type.
827  return EmitScalarConversion(Src.first, SrcTy, DstTy);
828}
829
830Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
831  return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
832}
833
834/// \brief Emit a sanitization check for the given "binary" operation (which
835/// might actually be a unary increment which has been lowered to a binary
836/// operation). The check passes if \p Check, which is an \c i1, is \c true.
837void ScalarExprEmitter::EmitBinOpCheck(Value *Check, const BinOpInfo &Info) {
838  StringRef CheckName;
839  SmallVector<llvm::Constant *, 4> StaticData;
840  SmallVector<llvm::Value *, 2> DynamicData;
841
842  BinaryOperatorKind Opcode = Info.Opcode;
843  if (BinaryOperator::isCompoundAssignmentOp(Opcode))
844    Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
845
846  StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
847  const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
848  if (UO && UO->getOpcode() == UO_Minus) {
849    CheckName = "negate_overflow";
850    StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
851    DynamicData.push_back(Info.RHS);
852  } else {
853    if (BinaryOperator::isShiftOp(Opcode)) {
854      // Shift LHS negative or too large, or RHS out of bounds.
855      CheckName = "shift_out_of_bounds";
856      const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
857      StaticData.push_back(
858        CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
859      StaticData.push_back(
860        CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
861    } else if (Opcode == BO_Div || Opcode == BO_Rem) {
862      // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
863      CheckName = "divrem_overflow";
864      StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
865    } else {
866      // Signed arithmetic overflow (+, -, *).
867      switch (Opcode) {
868      case BO_Add: CheckName = "add_overflow"; break;
869      case BO_Sub: CheckName = "sub_overflow"; break;
870      case BO_Mul: CheckName = "mul_overflow"; break;
871      default: llvm_unreachable("unexpected opcode for bin op check");
872      }
873      StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
874    }
875    DynamicData.push_back(Info.LHS);
876    DynamicData.push_back(Info.RHS);
877  }
878
879  CGF.EmitCheck(Check, CheckName, StaticData, DynamicData,
880                CodeGenFunction::CRK_Recoverable);
881}
882
883//===----------------------------------------------------------------------===//
884//                            Visitor Methods
885//===----------------------------------------------------------------------===//
886
887Value *ScalarExprEmitter::VisitExpr(Expr *E) {
888  CGF.ErrorUnsupported(E, "scalar expression");
889  if (E->getType()->isVoidType())
890    return 0;
891  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
892}
893
894Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
895  // Vector Mask Case
896  if (E->getNumSubExprs() == 2 ||
897      (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
898    Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
899    Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
900    Value *Mask;
901
902    llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
903    unsigned LHSElts = LTy->getNumElements();
904
905    if (E->getNumSubExprs() == 3) {
906      Mask = CGF.EmitScalarExpr(E->getExpr(2));
907
908      // Shuffle LHS & RHS into one input vector.
909      SmallVector<llvm::Constant*, 32> concat;
910      for (unsigned i = 0; i != LHSElts; ++i) {
911        concat.push_back(Builder.getInt32(2*i));
912        concat.push_back(Builder.getInt32(2*i+1));
913      }
914
915      Value* CV = llvm::ConstantVector::get(concat);
916      LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
917      LHSElts *= 2;
918    } else {
919      Mask = RHS;
920    }
921
922    llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
923    llvm::Constant* EltMask;
924
925    // Treat vec3 like vec4.
926    if ((LHSElts == 6) && (E->getNumSubExprs() == 3))
927      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
928                                       (1 << llvm::Log2_32(LHSElts+2))-1);
929    else if ((LHSElts == 3) && (E->getNumSubExprs() == 2))
930      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
931                                       (1 << llvm::Log2_32(LHSElts+1))-1);
932    else
933      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
934                                       (1 << llvm::Log2_32(LHSElts))-1);
935
936    // Mask off the high bits of each shuffle index.
937    Value *MaskBits = llvm::ConstantVector::getSplat(MTy->getNumElements(),
938                                                     EltMask);
939    Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
940
941    // newv = undef
942    // mask = mask & maskbits
943    // for each elt
944    //   n = extract mask i
945    //   x = extract val n
946    //   newv = insert newv, x, i
947    llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
948                                                        MTy->getNumElements());
949    Value* NewV = llvm::UndefValue::get(RTy);
950    for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
951      Value *IIndx = Builder.getInt32(i);
952      Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
953      Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext");
954
955      // Handle vec3 special since the index will be off by one for the RHS.
956      if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) {
957        Value *cmpIndx, *newIndx;
958        cmpIndx = Builder.CreateICmpUGT(Indx, Builder.getInt32(3),
959                                        "cmp_shuf_idx");
960        newIndx = Builder.CreateSub(Indx, Builder.getInt32(1), "shuf_idx_adj");
961        Indx = Builder.CreateSelect(cmpIndx, newIndx, Indx, "sel_shuf_idx");
962      }
963      Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
964      NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
965    }
966    return NewV;
967  }
968
969  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
970  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
971
972  // Handle vec3 special since the index will be off by one for the RHS.
973  llvm::VectorType *VTy = cast<llvm::VectorType>(V1->getType());
974  SmallVector<llvm::Constant*, 32> indices;
975  for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
976    unsigned Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
977    if (VTy->getNumElements() == 3 && Idx > 3)
978      Idx -= 1;
979    indices.push_back(Builder.getInt32(Idx));
980  }
981
982  Value *SV = llvm::ConstantVector::get(indices);
983  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
984}
985Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
986  llvm::APSInt Value;
987  if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
988    if (E->isArrow())
989      CGF.EmitScalarExpr(E->getBase());
990    else
991      EmitLValue(E->getBase());
992    return Builder.getInt(Value);
993  }
994
995  // Emit debug info for aggregate now, if it was delayed to reduce
996  // debug info size.
997  CGDebugInfo *DI = CGF.getDebugInfo();
998  if (DI &&
999      CGF.CGM.getCodeGenOpts().getDebugInfo()
1000        == CodeGenOptions::LimitedDebugInfo) {
1001    QualType PQTy = E->getBase()->IgnoreParenImpCasts()->getType();
1002    if (const PointerType * PTy = dyn_cast<PointerType>(PQTy))
1003      if (FieldDecl *M = dyn_cast<FieldDecl>(E->getMemberDecl()))
1004        DI->getOrCreateRecordType(PTy->getPointeeType(),
1005                                  M->getParent()->getLocation());
1006  }
1007  return EmitLoadOfLValue(E);
1008}
1009
1010Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1011  TestAndClearIgnoreResultAssign();
1012
1013  // Emit subscript expressions in rvalue context's.  For most cases, this just
1014  // loads the lvalue formed by the subscript expr.  However, we have to be
1015  // careful, because the base of a vector subscript is occasionally an rvalue,
1016  // so we can't get it as an lvalue.
1017  if (!E->getBase()->getType()->isVectorType())
1018    return EmitLoadOfLValue(E);
1019
1020  // Handle the vector case.  The base must be a vector, the index must be an
1021  // integer value.
1022  Value *Base = Visit(E->getBase());
1023  Value *Idx  = Visit(E->getIdx());
1024  QualType IdxTy = E->getIdx()->getType();
1025
1026  if (CGF.SanOpts->Bounds)
1027    CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1028
1029  bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
1030  Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast");
1031  return Builder.CreateExtractElement(Base, Idx, "vecext");
1032}
1033
1034static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1035                                  unsigned Off, llvm::Type *I32Ty) {
1036  int MV = SVI->getMaskValue(Idx);
1037  if (MV == -1)
1038    return llvm::UndefValue::get(I32Ty);
1039  return llvm::ConstantInt::get(I32Ty, Off+MV);
1040}
1041
1042Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1043  bool Ignore = TestAndClearIgnoreResultAssign();
1044  (void)Ignore;
1045  assert (Ignore == false && "init list ignored");
1046  unsigned NumInitElements = E->getNumInits();
1047
1048  if (E->hadArrayRangeDesignator())
1049    CGF.ErrorUnsupported(E, "GNU array range designator extension");
1050
1051  llvm::VectorType *VType =
1052    dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1053
1054  if (!VType) {
1055    if (NumInitElements == 0) {
1056      // C++11 value-initialization for the scalar.
1057      return EmitNullValue(E->getType());
1058    }
1059    // We have a scalar in braces. Just use the first element.
1060    return Visit(E->getInit(0));
1061  }
1062
1063  unsigned ResElts = VType->getNumElements();
1064
1065  // Loop over initializers collecting the Value for each, and remembering
1066  // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1067  // us to fold the shuffle for the swizzle into the shuffle for the vector
1068  // initializer, since LLVM optimizers generally do not want to touch
1069  // shuffles.
1070  unsigned CurIdx = 0;
1071  bool VIsUndefShuffle = false;
1072  llvm::Value *V = llvm::UndefValue::get(VType);
1073  for (unsigned i = 0; i != NumInitElements; ++i) {
1074    Expr *IE = E->getInit(i);
1075    Value *Init = Visit(IE);
1076    SmallVector<llvm::Constant*, 16> Args;
1077
1078    llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1079
1080    // Handle scalar elements.  If the scalar initializer is actually one
1081    // element of a different vector of the same width, use shuffle instead of
1082    // extract+insert.
1083    if (!VVT) {
1084      if (isa<ExtVectorElementExpr>(IE)) {
1085        llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1086
1087        if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1088          llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1089          Value *LHS = 0, *RHS = 0;
1090          if (CurIdx == 0) {
1091            // insert into undef -> shuffle (src, undef)
1092            Args.push_back(C);
1093            Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1094
1095            LHS = EI->getVectorOperand();
1096            RHS = V;
1097            VIsUndefShuffle = true;
1098          } else if (VIsUndefShuffle) {
1099            // insert into undefshuffle && size match -> shuffle (v, src)
1100            llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1101            for (unsigned j = 0; j != CurIdx; ++j)
1102              Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1103            Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1104            Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1105
1106            LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1107            RHS = EI->getVectorOperand();
1108            VIsUndefShuffle = false;
1109          }
1110          if (!Args.empty()) {
1111            llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1112            V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1113            ++CurIdx;
1114            continue;
1115          }
1116        }
1117      }
1118      V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1119                                      "vecinit");
1120      VIsUndefShuffle = false;
1121      ++CurIdx;
1122      continue;
1123    }
1124
1125    unsigned InitElts = VVT->getNumElements();
1126
1127    // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1128    // input is the same width as the vector being constructed, generate an
1129    // optimized shuffle of the swizzle input into the result.
1130    unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1131    if (isa<ExtVectorElementExpr>(IE)) {
1132      llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1133      Value *SVOp = SVI->getOperand(0);
1134      llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1135
1136      if (OpTy->getNumElements() == ResElts) {
1137        for (unsigned j = 0; j != CurIdx; ++j) {
1138          // If the current vector initializer is a shuffle with undef, merge
1139          // this shuffle directly into it.
1140          if (VIsUndefShuffle) {
1141            Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1142                                      CGF.Int32Ty));
1143          } else {
1144            Args.push_back(Builder.getInt32(j));
1145          }
1146        }
1147        for (unsigned j = 0, je = InitElts; j != je; ++j)
1148          Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1149        Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1150
1151        if (VIsUndefShuffle)
1152          V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1153
1154        Init = SVOp;
1155      }
1156    }
1157
1158    // Extend init to result vector length, and then shuffle its contribution
1159    // to the vector initializer into V.
1160    if (Args.empty()) {
1161      for (unsigned j = 0; j != InitElts; ++j)
1162        Args.push_back(Builder.getInt32(j));
1163      Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1164      llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1165      Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1166                                         Mask, "vext");
1167
1168      Args.clear();
1169      for (unsigned j = 0; j != CurIdx; ++j)
1170        Args.push_back(Builder.getInt32(j));
1171      for (unsigned j = 0; j != InitElts; ++j)
1172        Args.push_back(Builder.getInt32(j+Offset));
1173      Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1174    }
1175
1176    // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1177    // merging subsequent shuffles into this one.
1178    if (CurIdx == 0)
1179      std::swap(V, Init);
1180    llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1181    V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1182    VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1183    CurIdx += InitElts;
1184  }
1185
1186  // FIXME: evaluate codegen vs. shuffling against constant null vector.
1187  // Emit remaining default initializers.
1188  llvm::Type *EltTy = VType->getElementType();
1189
1190  // Emit remaining default initializers
1191  for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1192    Value *Idx = Builder.getInt32(CurIdx);
1193    llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1194    V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1195  }
1196  return V;
1197}
1198
1199static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
1200  const Expr *E = CE->getSubExpr();
1201
1202  if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1203    return false;
1204
1205  if (isa<CXXThisExpr>(E)) {
1206    // We always assume that 'this' is never null.
1207    return false;
1208  }
1209
1210  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1211    // And that glvalue casts are never null.
1212    if (ICE->getValueKind() != VK_RValue)
1213      return false;
1214  }
1215
1216  return true;
1217}
1218
1219// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1220// have to handle a more broad range of conversions than explicit casts, as they
1221// handle things like function to ptr-to-function decay etc.
1222Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1223  Expr *E = CE->getSubExpr();
1224  QualType DestTy = CE->getType();
1225  CastKind Kind = CE->getCastKind();
1226
1227  if (!DestTy->isVoidType())
1228    TestAndClearIgnoreResultAssign();
1229
1230  // Since almost all cast kinds apply to scalars, this switch doesn't have
1231  // a default case, so the compiler will warn on a missing case.  The cases
1232  // are in the same order as in the CastKind enum.
1233  switch (Kind) {
1234  case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1235  case CK_BuiltinFnToFnPtr:
1236    llvm_unreachable("builtin functions are handled elsewhere");
1237
1238  case CK_LValueBitCast:
1239  case CK_ObjCObjectLValueCast: {
1240    Value *V = EmitLValue(E).getAddress();
1241    V = Builder.CreateBitCast(V,
1242                          ConvertType(CGF.getContext().getPointerType(DestTy)));
1243    return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(V, DestTy));
1244  }
1245
1246  case CK_CPointerToObjCPointerCast:
1247  case CK_BlockPointerToObjCPointerCast:
1248  case CK_AnyPointerToBlockPointerCast:
1249  case CK_BitCast: {
1250    Value *Src = Visit(const_cast<Expr*>(E));
1251    return Builder.CreateBitCast(Src, ConvertType(DestTy));
1252  }
1253  case CK_AtomicToNonAtomic:
1254  case CK_NonAtomicToAtomic:
1255  case CK_NoOp:
1256  case CK_UserDefinedConversion:
1257    return Visit(const_cast<Expr*>(E));
1258
1259  case CK_BaseToDerived: {
1260    const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
1261    assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
1262
1263    llvm::Value *V = Visit(E);
1264
1265    // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
1266    // performed and the object is not of the derived type.
1267    if (CGF.SanitizePerformTypeCheck)
1268      CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
1269                        V, DestTy->getPointeeType());
1270
1271    return CGF.GetAddressOfDerivedClass(V, DerivedClassDecl,
1272                                        CE->path_begin(), CE->path_end(),
1273                                        ShouldNullCheckClassCastValue(CE));
1274  }
1275  case CK_UncheckedDerivedToBase:
1276  case CK_DerivedToBase: {
1277    const CXXRecordDecl *DerivedClassDecl =
1278      E->getType()->getPointeeCXXRecordDecl();
1279    assert(DerivedClassDecl && "DerivedToBase arg isn't a C++ object pointer!");
1280
1281    return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
1282                                     CE->path_begin(), CE->path_end(),
1283                                     ShouldNullCheckClassCastValue(CE));
1284  }
1285  case CK_Dynamic: {
1286    Value *V = Visit(const_cast<Expr*>(E));
1287    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1288    return CGF.EmitDynamicCast(V, DCE);
1289  }
1290
1291  case CK_ArrayToPointerDecay: {
1292    assert(E->getType()->isArrayType() &&
1293           "Array to pointer decay must have array source type!");
1294
1295    Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
1296
1297    // Note that VLA pointers are always decayed, so we don't need to do
1298    // anything here.
1299    if (!E->getType()->isVariableArrayType()) {
1300      assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
1301      assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
1302                                 ->getElementType()) &&
1303             "Expected pointer to array");
1304      V = Builder.CreateStructGEP(V, 0, "arraydecay");
1305    }
1306
1307    // Make sure the array decay ends up being the right type.  This matters if
1308    // the array type was of an incomplete type.
1309    return CGF.Builder.CreateBitCast(V, ConvertType(CE->getType()));
1310  }
1311  case CK_FunctionToPointerDecay:
1312    return EmitLValue(E).getAddress();
1313
1314  case CK_NullToPointer:
1315    if (MustVisitNullValue(E))
1316      (void) Visit(E);
1317
1318    return llvm::ConstantPointerNull::get(
1319                               cast<llvm::PointerType>(ConvertType(DestTy)));
1320
1321  case CK_NullToMemberPointer: {
1322    if (MustVisitNullValue(E))
1323      (void) Visit(E);
1324
1325    const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1326    return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1327  }
1328
1329  case CK_ReinterpretMemberPointer:
1330  case CK_BaseToDerivedMemberPointer:
1331  case CK_DerivedToBaseMemberPointer: {
1332    Value *Src = Visit(E);
1333
1334    // Note that the AST doesn't distinguish between checked and
1335    // unchecked member pointer conversions, so we always have to
1336    // implement checked conversions here.  This is inefficient when
1337    // actual control flow may be required in order to perform the
1338    // check, which it is for data member pointers (but not member
1339    // function pointers on Itanium and ARM).
1340    return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1341  }
1342
1343  case CK_ARCProduceObject:
1344    return CGF.EmitARCRetainScalarExpr(E);
1345  case CK_ARCConsumeObject:
1346    return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1347  case CK_ARCReclaimReturnedObject: {
1348    llvm::Value *value = Visit(E);
1349    value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
1350    return CGF.EmitObjCConsumeObject(E->getType(), value);
1351  }
1352  case CK_ARCExtendBlockObject:
1353    return CGF.EmitARCExtendBlockObject(E);
1354
1355  case CK_CopyAndAutoreleaseBlockObject:
1356    return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
1357
1358  case CK_FloatingRealToComplex:
1359  case CK_FloatingComplexCast:
1360  case CK_IntegralRealToComplex:
1361  case CK_IntegralComplexCast:
1362  case CK_IntegralComplexToFloatingComplex:
1363  case CK_FloatingComplexToIntegralComplex:
1364  case CK_ConstructorConversion:
1365  case CK_ToUnion:
1366    llvm_unreachable("scalar cast to non-scalar value");
1367
1368  case CK_LValueToRValue:
1369    assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1370    assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1371    return Visit(const_cast<Expr*>(E));
1372
1373  case CK_IntegralToPointer: {
1374    Value *Src = Visit(const_cast<Expr*>(E));
1375
1376    // First, convert to the correct width so that we control the kind of
1377    // extension.
1378    llvm::Type *MiddleTy = CGF.IntPtrTy;
1379    bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1380    llvm::Value* IntResult =
1381      Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1382
1383    return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1384  }
1385  case CK_PointerToIntegral:
1386    assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1387    return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1388
1389  case CK_ToVoid: {
1390    CGF.EmitIgnoredExpr(E);
1391    return 0;
1392  }
1393  case CK_VectorSplat: {
1394    llvm::Type *DstTy = ConvertType(DestTy);
1395    Value *Elt = Visit(const_cast<Expr*>(E));
1396    Elt = EmitScalarConversion(Elt, E->getType(),
1397                               DestTy->getAs<VectorType>()->getElementType());
1398
1399    // Splat the element across to all elements
1400    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1401    return Builder.CreateVectorSplat(NumElements, Elt, "splat");;
1402  }
1403
1404  case CK_IntegralCast:
1405  case CK_IntegralToFloating:
1406  case CK_FloatingToIntegral:
1407  case CK_FloatingCast:
1408    return EmitScalarConversion(Visit(E), E->getType(), DestTy);
1409  case CK_IntegralToBoolean:
1410    return EmitIntToBoolConversion(Visit(E));
1411  case CK_PointerToBoolean:
1412    return EmitPointerToBoolConversion(Visit(E));
1413  case CK_FloatingToBoolean:
1414    return EmitFloatToBoolConversion(Visit(E));
1415  case CK_MemberPointerToBoolean: {
1416    llvm::Value *MemPtr = Visit(E);
1417    const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1418    return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1419  }
1420
1421  case CK_FloatingComplexToReal:
1422  case CK_IntegralComplexToReal:
1423    return CGF.EmitComplexExpr(E, false, true).first;
1424
1425  case CK_FloatingComplexToBoolean:
1426  case CK_IntegralComplexToBoolean: {
1427    CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1428
1429    // TODO: kill this function off, inline appropriate case here
1430    return EmitComplexToScalarConversion(V, E->getType(), DestTy);
1431  }
1432
1433  case CK_ZeroToOCLEvent: {
1434    assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non event type");
1435    return llvm::Constant::getNullValue(ConvertType(DestTy));
1436  }
1437
1438  }
1439
1440  llvm_unreachable("unknown scalar cast");
1441}
1442
1443Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1444  CodeGenFunction::StmtExprEvaluation eval(CGF);
1445  return CGF.EmitCompoundStmt(*E->getSubStmt(), !E->getType()->isVoidType())
1446    .getScalarVal();
1447}
1448
1449//===----------------------------------------------------------------------===//
1450//                             Unary Operators
1451//===----------------------------------------------------------------------===//
1452
1453llvm::Value *ScalarExprEmitter::
1454EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
1455                                llvm::Value *InVal,
1456                                llvm::Value *NextVal, bool IsInc) {
1457  switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
1458  case LangOptions::SOB_Defined:
1459    return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1460  case LangOptions::SOB_Undefined:
1461    if (!CGF.SanOpts->SignedIntegerOverflow)
1462      return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1463    // Fall through.
1464  case LangOptions::SOB_Trapping:
1465    BinOpInfo BinOp;
1466    BinOp.LHS = InVal;
1467    BinOp.RHS = NextVal;
1468    BinOp.Ty = E->getType();
1469    BinOp.Opcode = BO_Add;
1470    BinOp.FPContractable = false;
1471    BinOp.E = E;
1472    return EmitOverflowCheckedBinOp(BinOp);
1473  }
1474  llvm_unreachable("Unknown SignedOverflowBehaviorTy");
1475}
1476
1477llvm::Value *
1478ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1479                                           bool isInc, bool isPre) {
1480
1481  QualType type = E->getSubExpr()->getType();
1482  llvm::PHINode *atomicPHI = 0;
1483  llvm::Value *value;
1484  llvm::Value *input;
1485
1486  int amount = (isInc ? 1 : -1);
1487
1488  if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
1489    type = atomicTy->getValueType();
1490    if (isInc && type->isBooleanType()) {
1491      llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
1492      if (isPre) {
1493        Builder.Insert(new llvm::StoreInst(True,
1494              LV.getAddress(), LV.isVolatileQualified(),
1495              LV.getAlignment().getQuantity(),
1496              llvm::SequentiallyConsistent));
1497        return Builder.getTrue();
1498      }
1499      // For atomic bool increment, we just store true and return it for
1500      // preincrement, do an atomic swap with true for postincrement
1501        return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1502            LV.getAddress(), True, llvm::SequentiallyConsistent);
1503    }
1504    // Special case for atomic increment / decrement on integers, emit
1505    // atomicrmw instructions.  We skip this if we want to be doing overflow
1506    // checking, and fall into the slow path with the atomic cmpxchg loop.
1507    if (!type->isBooleanType() && type->isIntegerType() &&
1508        !(type->isUnsignedIntegerType() &&
1509         CGF.SanOpts->UnsignedIntegerOverflow) &&
1510        CGF.getLangOpts().getSignedOverflowBehavior() !=
1511         LangOptions::SOB_Trapping) {
1512      llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
1513        llvm::AtomicRMWInst::Sub;
1514      llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
1515        llvm::Instruction::Sub;
1516      llvm::Value *amt = CGF.EmitToMemory(
1517          llvm::ConstantInt::get(ConvertType(type), 1, true), type);
1518      llvm::Value *old = Builder.CreateAtomicRMW(aop,
1519          LV.getAddress(), amt, llvm::SequentiallyConsistent);
1520      return isPre ? Builder.CreateBinOp(op, old, amt) : old;
1521    }
1522    value = EmitLoadOfLValue(LV);
1523    input = value;
1524    // For every other atomic operation, we need to emit a load-op-cmpxchg loop
1525    llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1526    llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1527    value = CGF.EmitToMemory(value, type);
1528    Builder.CreateBr(opBB);
1529    Builder.SetInsertPoint(opBB);
1530    atomicPHI = Builder.CreatePHI(value->getType(), 2);
1531    atomicPHI->addIncoming(value, startBB);
1532    value = atomicPHI;
1533  } else {
1534    value = EmitLoadOfLValue(LV);
1535    input = value;
1536  }
1537
1538  // Special case of integer increment that we have to check first: bool++.
1539  // Due to promotion rules, we get:
1540  //   bool++ -> bool = bool + 1
1541  //          -> bool = (int)bool + 1
1542  //          -> bool = ((int)bool + 1 != 0)
1543  // An interesting aspect of this is that increment is always true.
1544  // Decrement does not have this property.
1545  if (isInc && type->isBooleanType()) {
1546    value = Builder.getTrue();
1547
1548  // Most common case by far: integer increment.
1549  } else if (type->isIntegerType()) {
1550
1551    llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
1552
1553    // Note that signed integer inc/dec with width less than int can't
1554    // overflow because of promotion rules; we're just eliding a few steps here.
1555    if (value->getType()->getPrimitiveSizeInBits() >=
1556            CGF.IntTy->getBitWidth() &&
1557        type->isSignedIntegerOrEnumerationType()) {
1558      value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc);
1559    } else if (value->getType()->getPrimitiveSizeInBits() >=
1560               CGF.IntTy->getBitWidth() && type->isUnsignedIntegerType() &&
1561               CGF.SanOpts->UnsignedIntegerOverflow) {
1562      BinOpInfo BinOp;
1563      BinOp.LHS = value;
1564      BinOp.RHS = llvm::ConstantInt::get(value->getType(), 1, false);
1565      BinOp.Ty = E->getType();
1566      BinOp.Opcode = isInc ? BO_Add : BO_Sub;
1567      BinOp.FPContractable = false;
1568      BinOp.E = E;
1569      value = EmitOverflowCheckedBinOp(BinOp);
1570    } else
1571      value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1572
1573  // Next most common: pointer increment.
1574  } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1575    QualType type = ptr->getPointeeType();
1576
1577    // VLA types don't have constant size.
1578    if (const VariableArrayType *vla
1579          = CGF.getContext().getAsVariableArrayType(type)) {
1580      llvm::Value *numElts = CGF.getVLASize(vla).first;
1581      if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1582      if (CGF.getLangOpts().isSignedOverflowDefined())
1583        value = Builder.CreateGEP(value, numElts, "vla.inc");
1584      else
1585        value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
1586
1587    // Arithmetic on function pointers (!) is just +-1.
1588    } else if (type->isFunctionType()) {
1589      llvm::Value *amt = Builder.getInt32(amount);
1590
1591      value = CGF.EmitCastToVoidPtr(value);
1592      if (CGF.getLangOpts().isSignedOverflowDefined())
1593        value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1594      else
1595        value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1596      value = Builder.CreateBitCast(value, input->getType());
1597
1598    // For everything else, we can just do a simple increment.
1599    } else {
1600      llvm::Value *amt = Builder.getInt32(amount);
1601      if (CGF.getLangOpts().isSignedOverflowDefined())
1602        value = Builder.CreateGEP(value, amt, "incdec.ptr");
1603      else
1604        value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1605    }
1606
1607  // Vector increment/decrement.
1608  } else if (type->isVectorType()) {
1609    if (type->hasIntegerRepresentation()) {
1610      llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1611
1612      value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1613    } else {
1614      value = Builder.CreateFAdd(
1615                  value,
1616                  llvm::ConstantFP::get(value->getType(), amount),
1617                  isInc ? "inc" : "dec");
1618    }
1619
1620  // Floating point.
1621  } else if (type->isRealFloatingType()) {
1622    // Add the inc/dec to the real part.
1623    llvm::Value *amt;
1624
1625    if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1626      // Another special case: half FP increment should be done via float
1627      value =
1628    Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16),
1629                       input);
1630    }
1631
1632    if (value->getType()->isFloatTy())
1633      amt = llvm::ConstantFP::get(VMContext,
1634                                  llvm::APFloat(static_cast<float>(amount)));
1635    else if (value->getType()->isDoubleTy())
1636      amt = llvm::ConstantFP::get(VMContext,
1637                                  llvm::APFloat(static_cast<double>(amount)));
1638    else {
1639      llvm::APFloat F(static_cast<float>(amount));
1640      bool ignored;
1641      F.convert(CGF.getTarget().getLongDoubleFormat(),
1642                llvm::APFloat::rmTowardZero, &ignored);
1643      amt = llvm::ConstantFP::get(VMContext, F);
1644    }
1645    value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1646
1647    if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType)
1648      value =
1649       Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16),
1650                          value);
1651
1652  // Objective-C pointer types.
1653  } else {
1654    const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1655    value = CGF.EmitCastToVoidPtr(value);
1656
1657    CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1658    if (!isInc) size = -size;
1659    llvm::Value *sizeValue =
1660      llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1661
1662    if (CGF.getLangOpts().isSignedOverflowDefined())
1663      value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1664    else
1665      value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1666    value = Builder.CreateBitCast(value, input->getType());
1667  }
1668
1669  if (atomicPHI) {
1670    llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1671    llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1672    llvm::Value *old = Builder.CreateAtomicCmpXchg(LV.getAddress(), atomicPHI,
1673        CGF.EmitToMemory(value, type), llvm::SequentiallyConsistent);
1674    atomicPHI->addIncoming(old, opBB);
1675    llvm::Value *success = Builder.CreateICmpEQ(old, atomicPHI);
1676    Builder.CreateCondBr(success, contBB, opBB);
1677    Builder.SetInsertPoint(contBB);
1678    return isPre ? value : input;
1679  }
1680
1681  // Store the updated result through the lvalue.
1682  if (LV.isBitField())
1683    CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
1684  else
1685    CGF.EmitStoreThroughLValue(RValue::get(value), LV);
1686
1687  // If this is a postinc, return the value read from memory, otherwise use the
1688  // updated value.
1689  return isPre ? value : input;
1690}
1691
1692
1693
1694Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1695  TestAndClearIgnoreResultAssign();
1696  // Emit unary minus with EmitSub so we handle overflow cases etc.
1697  BinOpInfo BinOp;
1698  BinOp.RHS = Visit(E->getSubExpr());
1699
1700  if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1701    BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1702  else
1703    BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1704  BinOp.Ty = E->getType();
1705  BinOp.Opcode = BO_Sub;
1706  BinOp.FPContractable = false;
1707  BinOp.E = E;
1708  return EmitSub(BinOp);
1709}
1710
1711Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1712  TestAndClearIgnoreResultAssign();
1713  Value *Op = Visit(E->getSubExpr());
1714  return Builder.CreateNot(Op, "neg");
1715}
1716
1717Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1718  // Perform vector logical not on comparison with zero vector.
1719  if (E->getType()->isExtVectorType()) {
1720    Value *Oper = Visit(E->getSubExpr());
1721    Value *Zero = llvm::Constant::getNullValue(Oper->getType());
1722    Value *Result;
1723    if (Oper->getType()->isFPOrFPVectorTy())
1724      Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
1725    else
1726      Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
1727    return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1728  }
1729
1730  // Compare operand to zero.
1731  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1732
1733  // Invert value.
1734  // TODO: Could dynamically modify easy computations here.  For example, if
1735  // the operand is an icmp ne, turn into icmp eq.
1736  BoolVal = Builder.CreateNot(BoolVal, "lnot");
1737
1738  // ZExt result to the expr type.
1739  return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1740}
1741
1742Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1743  // Try folding the offsetof to a constant.
1744  llvm::APSInt Value;
1745  if (E->EvaluateAsInt(Value, CGF.getContext()))
1746    return Builder.getInt(Value);
1747
1748  // Loop over the components of the offsetof to compute the value.
1749  unsigned n = E->getNumComponents();
1750  llvm::Type* ResultType = ConvertType(E->getType());
1751  llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1752  QualType CurrentType = E->getTypeSourceInfo()->getType();
1753  for (unsigned i = 0; i != n; ++i) {
1754    OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1755    llvm::Value *Offset = 0;
1756    switch (ON.getKind()) {
1757    case OffsetOfExpr::OffsetOfNode::Array: {
1758      // Compute the index
1759      Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1760      llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1761      bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
1762      Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1763
1764      // Save the element type
1765      CurrentType =
1766          CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1767
1768      // Compute the element size
1769      llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1770          CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1771
1772      // Multiply out to compute the result
1773      Offset = Builder.CreateMul(Idx, ElemSize);
1774      break;
1775    }
1776
1777    case OffsetOfExpr::OffsetOfNode::Field: {
1778      FieldDecl *MemberDecl = ON.getField();
1779      RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1780      const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1781
1782      // Compute the index of the field in its parent.
1783      unsigned i = 0;
1784      // FIXME: It would be nice if we didn't have to loop here!
1785      for (RecordDecl::field_iterator Field = RD->field_begin(),
1786                                      FieldEnd = RD->field_end();
1787           Field != FieldEnd; ++Field, ++i) {
1788        if (*Field == MemberDecl)
1789          break;
1790      }
1791      assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1792
1793      // Compute the offset to the field
1794      int64_t OffsetInt = RL.getFieldOffset(i) /
1795                          CGF.getContext().getCharWidth();
1796      Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1797
1798      // Save the element type.
1799      CurrentType = MemberDecl->getType();
1800      break;
1801    }
1802
1803    case OffsetOfExpr::OffsetOfNode::Identifier:
1804      llvm_unreachable("dependent __builtin_offsetof");
1805
1806    case OffsetOfExpr::OffsetOfNode::Base: {
1807      if (ON.getBase()->isVirtual()) {
1808        CGF.ErrorUnsupported(E, "virtual base in offsetof");
1809        continue;
1810      }
1811
1812      RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1813      const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1814
1815      // Save the element type.
1816      CurrentType = ON.getBase()->getType();
1817
1818      // Compute the offset to the base.
1819      const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1820      CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1821      CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
1822      Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
1823      break;
1824    }
1825    }
1826    Result = Builder.CreateAdd(Result, Offset);
1827  }
1828  return Result;
1829}
1830
1831/// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
1832/// argument of the sizeof expression as an integer.
1833Value *
1834ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
1835                              const UnaryExprOrTypeTraitExpr *E) {
1836  QualType TypeToSize = E->getTypeOfArgument();
1837  if (E->getKind() == UETT_SizeOf) {
1838    if (const VariableArrayType *VAT =
1839          CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1840      if (E->isArgumentType()) {
1841        // sizeof(type) - make sure to emit the VLA size.
1842        CGF.EmitVariablyModifiedType(TypeToSize);
1843      } else {
1844        // C99 6.5.3.4p2: If the argument is an expression of type
1845        // VLA, it is evaluated.
1846        CGF.EmitIgnoredExpr(E->getArgumentExpr());
1847      }
1848
1849      QualType eltType;
1850      llvm::Value *numElts;
1851      llvm::tie(numElts, eltType) = CGF.getVLASize(VAT);
1852
1853      llvm::Value *size = numElts;
1854
1855      // Scale the number of non-VLA elements by the non-VLA element size.
1856      CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
1857      if (!eltSize.isOne())
1858        size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
1859
1860      return size;
1861    }
1862  }
1863
1864  // If this isn't sizeof(vla), the result must be constant; use the constant
1865  // folding logic so we don't have to duplicate it here.
1866  return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
1867}
1868
1869Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1870  Expr *Op = E->getSubExpr();
1871  if (Op->getType()->isAnyComplexType()) {
1872    // If it's an l-value, load through the appropriate subobject l-value.
1873    // Note that we have to ask E because Op might be an l-value that
1874    // this won't work for, e.g. an Obj-C property.
1875    if (E->isGLValue())
1876      return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
1877
1878    // Otherwise, calculate and project.
1879    return CGF.EmitComplexExpr(Op, false, true).first;
1880  }
1881
1882  return Visit(Op);
1883}
1884
1885Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1886  Expr *Op = E->getSubExpr();
1887  if (Op->getType()->isAnyComplexType()) {
1888    // If it's an l-value, load through the appropriate subobject l-value.
1889    // Note that we have to ask E because Op might be an l-value that
1890    // this won't work for, e.g. an Obj-C property.
1891    if (Op->isGLValue())
1892      return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
1893
1894    // Otherwise, calculate and project.
1895    return CGF.EmitComplexExpr(Op, true, false).second;
1896  }
1897
1898  // __imag on a scalar returns zero.  Emit the subexpr to ensure side
1899  // effects are evaluated, but not the actual value.
1900  if (Op->isGLValue())
1901    CGF.EmitLValue(Op);
1902  else
1903    CGF.EmitScalarExpr(Op, true);
1904  return llvm::Constant::getNullValue(ConvertType(E->getType()));
1905}
1906
1907//===----------------------------------------------------------------------===//
1908//                           Binary Operators
1909//===----------------------------------------------------------------------===//
1910
1911BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1912  TestAndClearIgnoreResultAssign();
1913  BinOpInfo Result;
1914  Result.LHS = Visit(E->getLHS());
1915  Result.RHS = Visit(E->getRHS());
1916  Result.Ty  = E->getType();
1917  Result.Opcode = E->getOpcode();
1918  Result.FPContractable = E->isFPContractable();
1919  Result.E = E;
1920  return Result;
1921}
1922
1923LValue ScalarExprEmitter::EmitCompoundAssignLValue(
1924                                              const CompoundAssignOperator *E,
1925                        Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
1926                                                   Value *&Result) {
1927  QualType LHSTy = E->getLHS()->getType();
1928  BinOpInfo OpInfo;
1929
1930  if (E->getComputationResultType()->isAnyComplexType()) {
1931    // This needs to go through the complex expression emitter, but it's a tad
1932    // complicated to do that... I'm leaving it out for now.  (Note that we do
1933    // actually need the imaginary part of the RHS for multiplication and
1934    // division.)
1935    CGF.ErrorUnsupported(E, "complex compound assignment");
1936    Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1937    return LValue();
1938  }
1939
1940  // Emit the RHS first.  __block variables need to have the rhs evaluated
1941  // first, plus this should improve codegen a little.
1942  OpInfo.RHS = Visit(E->getRHS());
1943  OpInfo.Ty = E->getComputationResultType();
1944  OpInfo.Opcode = E->getOpcode();
1945  OpInfo.FPContractable = false;
1946  OpInfo.E = E;
1947  // Load/convert the LHS.
1948  LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
1949
1950  llvm::PHINode *atomicPHI = 0;
1951  if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
1952    QualType type = atomicTy->getValueType();
1953    if (!type->isBooleanType() && type->isIntegerType() &&
1954         !(type->isUnsignedIntegerType() &&
1955          CGF.SanOpts->UnsignedIntegerOverflow) &&
1956         CGF.getLangOpts().getSignedOverflowBehavior() !=
1957          LangOptions::SOB_Trapping) {
1958      llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
1959      switch (OpInfo.Opcode) {
1960        // We don't have atomicrmw operands for *, %, /, <<, >>
1961        case BO_MulAssign: case BO_DivAssign:
1962        case BO_RemAssign:
1963        case BO_ShlAssign:
1964        case BO_ShrAssign:
1965          break;
1966        case BO_AddAssign:
1967          aop = llvm::AtomicRMWInst::Add;
1968          break;
1969        case BO_SubAssign:
1970          aop = llvm::AtomicRMWInst::Sub;
1971          break;
1972        case BO_AndAssign:
1973          aop = llvm::AtomicRMWInst::And;
1974          break;
1975        case BO_XorAssign:
1976          aop = llvm::AtomicRMWInst::Xor;
1977          break;
1978        case BO_OrAssign:
1979          aop = llvm::AtomicRMWInst::Or;
1980          break;
1981        default:
1982          llvm_unreachable("Invalid compound assignment type");
1983      }
1984      if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
1985        llvm::Value *amt = CGF.EmitToMemory(EmitScalarConversion(OpInfo.RHS,
1986              E->getRHS()->getType(), LHSTy), LHSTy);
1987        Builder.CreateAtomicRMW(aop, LHSLV.getAddress(), amt,
1988            llvm::SequentiallyConsistent);
1989        return LHSLV;
1990      }
1991    }
1992    // FIXME: For floating point types, we should be saving and restoring the
1993    // floating point environment in the loop.
1994    llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1995    llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1996    OpInfo.LHS = EmitLoadOfLValue(LHSLV);
1997    OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
1998    Builder.CreateBr(opBB);
1999    Builder.SetInsertPoint(opBB);
2000    atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2001    atomicPHI->addIncoming(OpInfo.LHS, startBB);
2002    OpInfo.LHS = atomicPHI;
2003  }
2004  else
2005    OpInfo.LHS = EmitLoadOfLValue(LHSLV);
2006
2007  OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
2008                                    E->getComputationLHSType());
2009
2010  // Expand the binary operator.
2011  Result = (this->*Func)(OpInfo);
2012
2013  // Convert the result back to the LHS type.
2014  Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
2015
2016  if (atomicPHI) {
2017    llvm::BasicBlock *opBB = Builder.GetInsertBlock();
2018    llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2019    llvm::Value *old = Builder.CreateAtomicCmpXchg(LHSLV.getAddress(), atomicPHI,
2020        CGF.EmitToMemory(Result, LHSTy), llvm::SequentiallyConsistent);
2021    atomicPHI->addIncoming(old, opBB);
2022    llvm::Value *success = Builder.CreateICmpEQ(old, atomicPHI);
2023    Builder.CreateCondBr(success, contBB, opBB);
2024    Builder.SetInsertPoint(contBB);
2025    return LHSLV;
2026  }
2027
2028  // Store the result value into the LHS lvalue. Bit-fields are handled
2029  // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
2030  // 'An assignment expression has the value of the left operand after the
2031  // assignment...'.
2032  if (LHSLV.isBitField())
2033    CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
2034  else
2035    CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
2036
2037  return LHSLV;
2038}
2039
2040Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
2041                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
2042  bool Ignore = TestAndClearIgnoreResultAssign();
2043  Value *RHS;
2044  LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
2045
2046  // If the result is clearly ignored, return now.
2047  if (Ignore)
2048    return 0;
2049
2050  // The result of an assignment in C is the assigned r-value.
2051  if (!CGF.getLangOpts().CPlusPlus)
2052    return RHS;
2053
2054  // If the lvalue is non-volatile, return the computed value of the assignment.
2055  if (!LHS.isVolatileQualified())
2056    return RHS;
2057
2058  // Otherwise, reload the value.
2059  return EmitLoadOfLValue(LHS);
2060}
2061
2062void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
2063    const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
2064  llvm::Value *Cond = 0;
2065
2066  if (CGF.SanOpts->IntegerDivideByZero)
2067    Cond = Builder.CreateICmpNE(Ops.RHS, Zero);
2068
2069  if (CGF.SanOpts->SignedIntegerOverflow &&
2070      Ops.Ty->hasSignedIntegerRepresentation()) {
2071    llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
2072
2073    llvm::Value *IntMin =
2074      Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
2075    llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
2076
2077    llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
2078    llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
2079    llvm::Value *Overflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
2080    Cond = Cond ? Builder.CreateAnd(Cond, Overflow, "and") : Overflow;
2081  }
2082
2083  if (Cond)
2084    EmitBinOpCheck(Cond, Ops);
2085}
2086
2087Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
2088  if ((CGF.SanOpts->IntegerDivideByZero ||
2089       CGF.SanOpts->SignedIntegerOverflow) &&
2090      Ops.Ty->isIntegerType()) {
2091    llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2092    EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
2093  } else if (CGF.SanOpts->FloatDivideByZero &&
2094             Ops.Ty->isRealFloatingType()) {
2095    llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2096    EmitBinOpCheck(Builder.CreateFCmpUNE(Ops.RHS, Zero), Ops);
2097  }
2098
2099  if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
2100    llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
2101    if (CGF.getLangOpts().OpenCL) {
2102      // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp
2103      llvm::Type *ValTy = Val->getType();
2104      if (ValTy->isFloatTy() ||
2105          (isa<llvm::VectorType>(ValTy) &&
2106           cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
2107        CGF.SetFPAccuracy(Val, 2.5);
2108    }
2109    return Val;
2110  }
2111  else if (Ops.Ty->hasUnsignedIntegerRepresentation())
2112    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
2113  else
2114    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
2115}
2116
2117Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
2118  // Rem in C can't be a floating point type: C99 6.5.5p2.
2119  if (CGF.SanOpts->IntegerDivideByZero) {
2120    llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2121
2122    if (Ops.Ty->isIntegerType())
2123      EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
2124  }
2125
2126  if (Ops.Ty->hasUnsignedIntegerRepresentation())
2127    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
2128  else
2129    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
2130}
2131
2132Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
2133  unsigned IID;
2134  unsigned OpID = 0;
2135
2136  bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
2137  switch (Ops.Opcode) {
2138  case BO_Add:
2139  case BO_AddAssign:
2140    OpID = 1;
2141    IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
2142                     llvm::Intrinsic::uadd_with_overflow;
2143    break;
2144  case BO_Sub:
2145  case BO_SubAssign:
2146    OpID = 2;
2147    IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
2148                     llvm::Intrinsic::usub_with_overflow;
2149    break;
2150  case BO_Mul:
2151  case BO_MulAssign:
2152    OpID = 3;
2153    IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
2154                     llvm::Intrinsic::umul_with_overflow;
2155    break;
2156  default:
2157    llvm_unreachable("Unsupported operation for overflow detection");
2158  }
2159  OpID <<= 1;
2160  if (isSigned)
2161    OpID |= 1;
2162
2163  llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
2164
2165  llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
2166
2167  Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
2168  Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
2169  Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
2170
2171  // Handle overflow with llvm.trap if no custom handler has been specified.
2172  const std::string *handlerName =
2173    &CGF.getLangOpts().OverflowHandler;
2174  if (handlerName->empty()) {
2175    // If the signed-integer-overflow sanitizer is enabled, emit a call to its
2176    // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
2177    if (!isSigned || CGF.SanOpts->SignedIntegerOverflow)
2178      EmitBinOpCheck(Builder.CreateNot(overflow), Ops);
2179    else
2180      CGF.EmitTrapCheck(Builder.CreateNot(overflow));
2181    return result;
2182  }
2183
2184  // Branch in case of overflow.
2185  llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
2186  llvm::Function::iterator insertPt = initialBB;
2187  llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
2188                                                      llvm::next(insertPt));
2189  llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
2190
2191  Builder.CreateCondBr(overflow, overflowBB, continueBB);
2192
2193  // If an overflow handler is set, then we want to call it and then use its
2194  // result, if it returns.
2195  Builder.SetInsertPoint(overflowBB);
2196
2197  // Get the overflow handler.
2198  llvm::Type *Int8Ty = CGF.Int8Ty;
2199  llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
2200  llvm::FunctionType *handlerTy =
2201      llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
2202  llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
2203
2204  // Sign extend the args to 64-bit, so that we can use the same handler for
2205  // all types of overflow.
2206  llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
2207  llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
2208
2209  // Call the handler with the two arguments, the operation, and the size of
2210  // the result.
2211  llvm::Value *handlerArgs[] = {
2212    lhs,
2213    rhs,
2214    Builder.getInt8(OpID),
2215    Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
2216  };
2217  llvm::Value *handlerResult =
2218    CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
2219
2220  // Truncate the result back to the desired size.
2221  handlerResult = Builder.CreateTrunc(handlerResult, opTy);
2222  Builder.CreateBr(continueBB);
2223
2224  Builder.SetInsertPoint(continueBB);
2225  llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
2226  phi->addIncoming(result, initialBB);
2227  phi->addIncoming(handlerResult, overflowBB);
2228
2229  return phi;
2230}
2231
2232/// Emit pointer + index arithmetic.
2233static Value *emitPointerArithmetic(CodeGenFunction &CGF,
2234                                    const BinOpInfo &op,
2235                                    bool isSubtraction) {
2236  // Must have binary (not unary) expr here.  Unary pointer
2237  // increment/decrement doesn't use this path.
2238  const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2239
2240  Value *pointer = op.LHS;
2241  Expr *pointerOperand = expr->getLHS();
2242  Value *index = op.RHS;
2243  Expr *indexOperand = expr->getRHS();
2244
2245  // In a subtraction, the LHS is always the pointer.
2246  if (!isSubtraction && !pointer->getType()->isPointerTy()) {
2247    std::swap(pointer, index);
2248    std::swap(pointerOperand, indexOperand);
2249  }
2250
2251  unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
2252  if (width != CGF.PointerWidthInBits) {
2253    // Zero-extend or sign-extend the pointer value according to
2254    // whether the index is signed or not.
2255    bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
2256    index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
2257                                      "idx.ext");
2258  }
2259
2260  // If this is subtraction, negate the index.
2261  if (isSubtraction)
2262    index = CGF.Builder.CreateNeg(index, "idx.neg");
2263
2264  if (CGF.SanOpts->Bounds)
2265    CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
2266                        /*Accessed*/ false);
2267
2268  const PointerType *pointerType
2269    = pointerOperand->getType()->getAs<PointerType>();
2270  if (!pointerType) {
2271    QualType objectType = pointerOperand->getType()
2272                                        ->castAs<ObjCObjectPointerType>()
2273                                        ->getPointeeType();
2274    llvm::Value *objectSize
2275      = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
2276
2277    index = CGF.Builder.CreateMul(index, objectSize);
2278
2279    Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2280    result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2281    return CGF.Builder.CreateBitCast(result, pointer->getType());
2282  }
2283
2284  QualType elementType = pointerType->getPointeeType();
2285  if (const VariableArrayType *vla
2286        = CGF.getContext().getAsVariableArrayType(elementType)) {
2287    // The element count here is the total number of non-VLA elements.
2288    llvm::Value *numElements = CGF.getVLASize(vla).first;
2289
2290    // Effectively, the multiply by the VLA size is part of the GEP.
2291    // GEP indexes are signed, and scaling an index isn't permitted to
2292    // signed-overflow, so we use the same semantics for our explicit
2293    // multiply.  We suppress this if overflow is not undefined behavior.
2294    if (CGF.getLangOpts().isSignedOverflowDefined()) {
2295      index = CGF.Builder.CreateMul(index, numElements, "vla.index");
2296      pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2297    } else {
2298      index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
2299      pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2300    }
2301    return pointer;
2302  }
2303
2304  // Explicitly handle GNU void* and function pointer arithmetic extensions. The
2305  // GNU void* casts amount to no-ops since our void* type is i8*, but this is
2306  // future proof.
2307  if (elementType->isVoidType() || elementType->isFunctionType()) {
2308    Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2309    result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2310    return CGF.Builder.CreateBitCast(result, pointer->getType());
2311  }
2312
2313  if (CGF.getLangOpts().isSignedOverflowDefined())
2314    return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2315
2316  return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2317}
2318
2319// Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
2320// Addend. Use negMul and negAdd to negate the first operand of the Mul or
2321// the add operand respectively. This allows fmuladd to represent a*b-c, or
2322// c-a*b. Patterns in LLVM should catch the negated forms and translate them to
2323// efficient operations.
2324static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
2325                           const CodeGenFunction &CGF, CGBuilderTy &Builder,
2326                           bool negMul, bool negAdd) {
2327  assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
2328
2329  Value *MulOp0 = MulOp->getOperand(0);
2330  Value *MulOp1 = MulOp->getOperand(1);
2331  if (negMul) {
2332    MulOp0 =
2333      Builder.CreateFSub(
2334        llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
2335        "neg");
2336  } else if (negAdd) {
2337    Addend =
2338      Builder.CreateFSub(
2339        llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
2340        "neg");
2341  }
2342
2343  Value *FMulAdd =
2344    Builder.CreateCall3(
2345      CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
2346                           MulOp0, MulOp1, Addend);
2347   MulOp->eraseFromParent();
2348
2349   return FMulAdd;
2350}
2351
2352// Check whether it would be legal to emit an fmuladd intrinsic call to
2353// represent op and if so, build the fmuladd.
2354//
2355// Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
2356// Does NOT check the type of the operation - it's assumed that this function
2357// will be called from contexts where it's known that the type is contractable.
2358static Value* tryEmitFMulAdd(const BinOpInfo &op,
2359                         const CodeGenFunction &CGF, CGBuilderTy &Builder,
2360                         bool isSub=false) {
2361
2362  assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
2363          op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
2364         "Only fadd/fsub can be the root of an fmuladd.");
2365
2366  // Check whether this op is marked as fusable.
2367  if (!op.FPContractable)
2368    return 0;
2369
2370  // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is
2371  // either disabled, or handled entirely by the LLVM backend).
2372  if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On)
2373    return 0;
2374
2375  // We have a potentially fusable op. Look for a mul on one of the operands.
2376  if (llvm::BinaryOperator* LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
2377    if (LHSBinOp->getOpcode() == llvm::Instruction::FMul) {
2378      assert(LHSBinOp->getNumUses() == 0 &&
2379             "Operations with multiple uses shouldn't be contracted.");
2380      return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
2381    }
2382  } else if (llvm::BinaryOperator* RHSBinOp =
2383               dyn_cast<llvm::BinaryOperator>(op.RHS)) {
2384    if (RHSBinOp->getOpcode() == llvm::Instruction::FMul) {
2385      assert(RHSBinOp->getNumUses() == 0 &&
2386             "Operations with multiple uses shouldn't be contracted.");
2387      return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
2388    }
2389  }
2390
2391  return 0;
2392}
2393
2394Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
2395  if (op.LHS->getType()->isPointerTy() ||
2396      op.RHS->getType()->isPointerTy())
2397    return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
2398
2399  if (op.Ty->isSignedIntegerOrEnumerationType()) {
2400    switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2401    case LangOptions::SOB_Defined:
2402      return Builder.CreateAdd(op.LHS, op.RHS, "add");
2403    case LangOptions::SOB_Undefined:
2404      if (!CGF.SanOpts->SignedIntegerOverflow)
2405        return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2406      // Fall through.
2407    case LangOptions::SOB_Trapping:
2408      return EmitOverflowCheckedBinOp(op);
2409    }
2410  }
2411
2412  if (op.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow)
2413    return EmitOverflowCheckedBinOp(op);
2414
2415  if (op.LHS->getType()->isFPOrFPVectorTy()) {
2416    // Try to form an fmuladd.
2417    if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
2418      return FMulAdd;
2419
2420    return Builder.CreateFAdd(op.LHS, op.RHS, "add");
2421  }
2422
2423  return Builder.CreateAdd(op.LHS, op.RHS, "add");
2424}
2425
2426Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
2427  // The LHS is always a pointer if either side is.
2428  if (!op.LHS->getType()->isPointerTy()) {
2429    if (op.Ty->isSignedIntegerOrEnumerationType()) {
2430      switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2431      case LangOptions::SOB_Defined:
2432        return Builder.CreateSub(op.LHS, op.RHS, "sub");
2433      case LangOptions::SOB_Undefined:
2434        if (!CGF.SanOpts->SignedIntegerOverflow)
2435          return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2436        // Fall through.
2437      case LangOptions::SOB_Trapping:
2438        return EmitOverflowCheckedBinOp(op);
2439      }
2440    }
2441
2442    if (op.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow)
2443      return EmitOverflowCheckedBinOp(op);
2444
2445    if (op.LHS->getType()->isFPOrFPVectorTy()) {
2446      // Try to form an fmuladd.
2447      if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
2448        return FMulAdd;
2449      return Builder.CreateFSub(op.LHS, op.RHS, "sub");
2450    }
2451
2452    return Builder.CreateSub(op.LHS, op.RHS, "sub");
2453  }
2454
2455  // If the RHS is not a pointer, then we have normal pointer
2456  // arithmetic.
2457  if (!op.RHS->getType()->isPointerTy())
2458    return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
2459
2460  // Otherwise, this is a pointer subtraction.
2461
2462  // Do the raw subtraction part.
2463  llvm::Value *LHS
2464    = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
2465  llvm::Value *RHS
2466    = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
2467  Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
2468
2469  // Okay, figure out the element size.
2470  const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2471  QualType elementType = expr->getLHS()->getType()->getPointeeType();
2472
2473  llvm::Value *divisor = 0;
2474
2475  // For a variable-length array, this is going to be non-constant.
2476  if (const VariableArrayType *vla
2477        = CGF.getContext().getAsVariableArrayType(elementType)) {
2478    llvm::Value *numElements;
2479    llvm::tie(numElements, elementType) = CGF.getVLASize(vla);
2480
2481    divisor = numElements;
2482
2483    // Scale the number of non-VLA elements by the non-VLA element size.
2484    CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2485    if (!eltSize.isOne())
2486      divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2487
2488  // For everything elese, we can just compute it, safe in the
2489  // assumption that Sema won't let anything through that we can't
2490  // safely compute the size of.
2491  } else {
2492    CharUnits elementSize;
2493    // Handle GCC extension for pointer arithmetic on void* and
2494    // function pointer types.
2495    if (elementType->isVoidType() || elementType->isFunctionType())
2496      elementSize = CharUnits::One();
2497    else
2498      elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2499
2500    // Don't even emit the divide for element size of 1.
2501    if (elementSize.isOne())
2502      return diffInChars;
2503
2504    divisor = CGF.CGM.getSize(elementSize);
2505  }
2506
2507  // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2508  // pointer difference in C is only defined in the case where both operands
2509  // are pointing to elements of an array.
2510  return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2511}
2512
2513Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
2514  llvm::IntegerType *Ty;
2515  if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
2516    Ty = cast<llvm::IntegerType>(VT->getElementType());
2517  else
2518    Ty = cast<llvm::IntegerType>(LHS->getType());
2519  return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
2520}
2521
2522Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2523  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2524  // RHS to the same size as the LHS.
2525  Value *RHS = Ops.RHS;
2526  if (Ops.LHS->getType() != RHS->getType())
2527    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2528
2529  if (CGF.SanOpts->Shift && !CGF.getLangOpts().OpenCL &&
2530      isa<llvm::IntegerType>(Ops.LHS->getType())) {
2531    llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS);
2532    llvm::Value *Valid = Builder.CreateICmpULE(RHS, WidthMinusOne);
2533
2534    if (Ops.Ty->hasSignedIntegerRepresentation()) {
2535      llvm::BasicBlock *Orig = Builder.GetInsertBlock();
2536      llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2537      llvm::BasicBlock *CheckBitsShifted = CGF.createBasicBlock("check");
2538      Builder.CreateCondBr(Valid, CheckBitsShifted, Cont);
2539
2540      // Check whether we are shifting any non-zero bits off the top of the
2541      // integer.
2542      CGF.EmitBlock(CheckBitsShifted);
2543      llvm::Value *BitsShiftedOff =
2544        Builder.CreateLShr(Ops.LHS,
2545                           Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros",
2546                                             /*NUW*/true, /*NSW*/true),
2547                           "shl.check");
2548      if (CGF.getLangOpts().CPlusPlus) {
2549        // In C99, we are not permitted to shift a 1 bit into the sign bit.
2550        // Under C++11's rules, shifting a 1 bit into the sign bit is
2551        // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
2552        // define signed left shifts, so we use the C99 and C++11 rules there).
2553        llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
2554        BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
2555      }
2556      llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
2557      llvm::Value *SecondCheck = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
2558      CGF.EmitBlock(Cont);
2559      llvm::PHINode *P = Builder.CreatePHI(Valid->getType(), 2);
2560      P->addIncoming(Valid, Orig);
2561      P->addIncoming(SecondCheck, CheckBitsShifted);
2562      Valid = P;
2563    }
2564
2565    EmitBinOpCheck(Valid, Ops);
2566  }
2567  // OpenCL 6.3j: shift values are effectively % word size of LHS.
2568  if (CGF.getLangOpts().OpenCL)
2569    RHS = Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
2570
2571  return Builder.CreateShl(Ops.LHS, RHS, "shl");
2572}
2573
2574Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2575  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2576  // RHS to the same size as the LHS.
2577  Value *RHS = Ops.RHS;
2578  if (Ops.LHS->getType() != RHS->getType())
2579    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2580
2581  if (CGF.SanOpts->Shift && !CGF.getLangOpts().OpenCL &&
2582      isa<llvm::IntegerType>(Ops.LHS->getType()))
2583    EmitBinOpCheck(Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)), Ops);
2584
2585  // OpenCL 6.3j: shift values are effectively % word size of LHS.
2586  if (CGF.getLangOpts().OpenCL)
2587    RHS = Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
2588
2589  if (Ops.Ty->hasUnsignedIntegerRepresentation())
2590    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2591  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2592}
2593
2594enum IntrinsicType { VCMPEQ, VCMPGT };
2595// return corresponding comparison intrinsic for given vector type
2596static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2597                                        BuiltinType::Kind ElemKind) {
2598  switch (ElemKind) {
2599  default: llvm_unreachable("unexpected element type");
2600  case BuiltinType::Char_U:
2601  case BuiltinType::UChar:
2602    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2603                            llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2604  case BuiltinType::Char_S:
2605  case BuiltinType::SChar:
2606    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2607                            llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2608  case BuiltinType::UShort:
2609    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2610                            llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2611  case BuiltinType::Short:
2612    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2613                            llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2614  case BuiltinType::UInt:
2615  case BuiltinType::ULong:
2616    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2617                            llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2618  case BuiltinType::Int:
2619  case BuiltinType::Long:
2620    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2621                            llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2622  case BuiltinType::Float:
2623    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2624                            llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2625  }
2626}
2627
2628Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
2629                                      unsigned SICmpOpc, unsigned FCmpOpc) {
2630  TestAndClearIgnoreResultAssign();
2631  Value *Result;
2632  QualType LHSTy = E->getLHS()->getType();
2633  if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2634    assert(E->getOpcode() == BO_EQ ||
2635           E->getOpcode() == BO_NE);
2636    Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2637    Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2638    Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2639                   CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2640  } else if (!LHSTy->isAnyComplexType()) {
2641    Value *LHS = Visit(E->getLHS());
2642    Value *RHS = Visit(E->getRHS());
2643
2644    // If AltiVec, the comparison results in a numeric type, so we use
2645    // intrinsics comparing vectors and giving 0 or 1 as a result
2646    if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2647      // constants for mapping CR6 register bits to predicate result
2648      enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2649
2650      llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2651
2652      // in several cases vector arguments order will be reversed
2653      Value *FirstVecArg = LHS,
2654            *SecondVecArg = RHS;
2655
2656      QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2657      const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2658      BuiltinType::Kind ElementKind = BTy->getKind();
2659
2660      switch(E->getOpcode()) {
2661      default: llvm_unreachable("is not a comparison operation");
2662      case BO_EQ:
2663        CR6 = CR6_LT;
2664        ID = GetIntrinsic(VCMPEQ, ElementKind);
2665        break;
2666      case BO_NE:
2667        CR6 = CR6_EQ;
2668        ID = GetIntrinsic(VCMPEQ, ElementKind);
2669        break;
2670      case BO_LT:
2671        CR6 = CR6_LT;
2672        ID = GetIntrinsic(VCMPGT, ElementKind);
2673        std::swap(FirstVecArg, SecondVecArg);
2674        break;
2675      case BO_GT:
2676        CR6 = CR6_LT;
2677        ID = GetIntrinsic(VCMPGT, ElementKind);
2678        break;
2679      case BO_LE:
2680        if (ElementKind == BuiltinType::Float) {
2681          CR6 = CR6_LT;
2682          ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2683          std::swap(FirstVecArg, SecondVecArg);
2684        }
2685        else {
2686          CR6 = CR6_EQ;
2687          ID = GetIntrinsic(VCMPGT, ElementKind);
2688        }
2689        break;
2690      case BO_GE:
2691        if (ElementKind == BuiltinType::Float) {
2692          CR6 = CR6_LT;
2693          ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2694        }
2695        else {
2696          CR6 = CR6_EQ;
2697          ID = GetIntrinsic(VCMPGT, ElementKind);
2698          std::swap(FirstVecArg, SecondVecArg);
2699        }
2700        break;
2701      }
2702
2703      Value *CR6Param = Builder.getInt32(CR6);
2704      llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2705      Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, "");
2706      return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2707    }
2708
2709    if (LHS->getType()->isFPOrFPVectorTy()) {
2710      Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
2711                                  LHS, RHS, "cmp");
2712    } else if (LHSTy->hasSignedIntegerRepresentation()) {
2713      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
2714                                  LHS, RHS, "cmp");
2715    } else {
2716      // Unsigned integers and pointers.
2717      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2718                                  LHS, RHS, "cmp");
2719    }
2720
2721    // If this is a vector comparison, sign extend the result to the appropriate
2722    // vector integer type and return it (don't convert to bool).
2723    if (LHSTy->isVectorType())
2724      return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2725
2726  } else {
2727    // Complex Comparison: can only be an equality comparison.
2728    CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
2729    CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
2730
2731    QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
2732
2733    Value *ResultR, *ResultI;
2734    if (CETy->isRealFloatingType()) {
2735      ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2736                                   LHS.first, RHS.first, "cmp.r");
2737      ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2738                                   LHS.second, RHS.second, "cmp.i");
2739    } else {
2740      // Complex comparisons can only be equality comparisons.  As such, signed
2741      // and unsigned opcodes are the same.
2742      ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2743                                   LHS.first, RHS.first, "cmp.r");
2744      ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2745                                   LHS.second, RHS.second, "cmp.i");
2746    }
2747
2748    if (E->getOpcode() == BO_EQ) {
2749      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2750    } else {
2751      assert(E->getOpcode() == BO_NE &&
2752             "Complex comparison other than == or != ?");
2753      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2754    }
2755  }
2756
2757  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2758}
2759
2760Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2761  bool Ignore = TestAndClearIgnoreResultAssign();
2762
2763  Value *RHS;
2764  LValue LHS;
2765
2766  switch (E->getLHS()->getType().getObjCLifetime()) {
2767  case Qualifiers::OCL_Strong:
2768    llvm::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
2769    break;
2770
2771  case Qualifiers::OCL_Autoreleasing:
2772    llvm::tie(LHS,RHS) = CGF.EmitARCStoreAutoreleasing(E);
2773    break;
2774
2775  case Qualifiers::OCL_Weak:
2776    RHS = Visit(E->getRHS());
2777    LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2778    RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
2779    break;
2780
2781  // No reason to do any of these differently.
2782  case Qualifiers::OCL_None:
2783  case Qualifiers::OCL_ExplicitNone:
2784    // __block variables need to have the rhs evaluated first, plus
2785    // this should improve codegen just a little.
2786    RHS = Visit(E->getRHS());
2787    LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2788
2789    // Store the value into the LHS.  Bit-fields are handled specially
2790    // because the result is altered by the store, i.e., [C99 6.5.16p1]
2791    // 'An assignment expression has the value of the left operand after
2792    // the assignment...'.
2793    if (LHS.isBitField())
2794      CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
2795    else
2796      CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
2797  }
2798
2799  // If the result is clearly ignored, return now.
2800  if (Ignore)
2801    return 0;
2802
2803  // The result of an assignment in C is the assigned r-value.
2804  if (!CGF.getLangOpts().CPlusPlus)
2805    return RHS;
2806
2807  // If the lvalue is non-volatile, return the computed value of the assignment.
2808  if (!LHS.isVolatileQualified())
2809    return RHS;
2810
2811  // Otherwise, reload the value.
2812  return EmitLoadOfLValue(LHS);
2813}
2814
2815Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
2816  // Perform vector logical and on comparisons with zero vectors.
2817  if (E->getType()->isVectorType()) {
2818    Value *LHS = Visit(E->getLHS());
2819    Value *RHS = Visit(E->getRHS());
2820    Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
2821    if (LHS->getType()->isFPOrFPVectorTy()) {
2822      LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
2823      RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
2824    } else {
2825      LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
2826      RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
2827    }
2828    Value *And = Builder.CreateAnd(LHS, RHS);
2829    return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
2830  }
2831
2832  llvm::Type *ResTy = ConvertType(E->getType());
2833
2834  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
2835  // If we have 1 && X, just emit X without inserting the control flow.
2836  bool LHSCondVal;
2837  if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2838    if (LHSCondVal) { // If we have 1 && X, just emit X.
2839      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2840      // ZExt result to int or bool.
2841      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
2842    }
2843
2844    // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
2845    if (!CGF.ContainsLabel(E->getRHS()))
2846      return llvm::Constant::getNullValue(ResTy);
2847  }
2848
2849  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
2850  llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
2851
2852  CodeGenFunction::ConditionalEvaluation eval(CGF);
2853
2854  // Branch on the LHS first.  If it is false, go to the failure (cont) block.
2855  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
2856
2857  // Any edges into the ContBlock are now from an (indeterminate number of)
2858  // edges from this first condition.  All of these values will be false.  Start
2859  // setting up the PHI node in the Cont Block for this.
2860  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2861                                            "", ContBlock);
2862  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2863       PI != PE; ++PI)
2864    PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
2865
2866  eval.begin(CGF);
2867  CGF.EmitBlock(RHSBlock);
2868  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2869  eval.end(CGF);
2870
2871  // Reaquire the RHS block, as there may be subblocks inserted.
2872  RHSBlock = Builder.GetInsertBlock();
2873
2874  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2875  // into the phi node for the edge with the value of RHSCond.
2876  if (CGF.getDebugInfo())
2877    // There is no need to emit line number for unconditional branch.
2878    Builder.SetCurrentDebugLocation(llvm::DebugLoc());
2879  CGF.EmitBlock(ContBlock);
2880  PN->addIncoming(RHSCond, RHSBlock);
2881
2882  // ZExt result to int.
2883  return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
2884}
2885
2886Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
2887  // Perform vector logical or on comparisons with zero vectors.
2888  if (E->getType()->isVectorType()) {
2889    Value *LHS = Visit(E->getLHS());
2890    Value *RHS = Visit(E->getRHS());
2891    Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
2892    if (LHS->getType()->isFPOrFPVectorTy()) {
2893      LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
2894      RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
2895    } else {
2896      LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
2897      RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
2898    }
2899    Value *Or = Builder.CreateOr(LHS, RHS);
2900    return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
2901  }
2902
2903  llvm::Type *ResTy = ConvertType(E->getType());
2904
2905  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
2906  // If we have 0 || X, just emit X without inserting the control flow.
2907  bool LHSCondVal;
2908  if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2909    if (!LHSCondVal) { // If we have 0 || X, just emit X.
2910      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2911      // ZExt result to int or bool.
2912      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
2913    }
2914
2915    // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
2916    if (!CGF.ContainsLabel(E->getRHS()))
2917      return llvm::ConstantInt::get(ResTy, 1);
2918  }
2919
2920  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
2921  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
2922
2923  CodeGenFunction::ConditionalEvaluation eval(CGF);
2924
2925  // Branch on the LHS first.  If it is true, go to the success (cont) block.
2926  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
2927
2928  // Any edges into the ContBlock are now from an (indeterminate number of)
2929  // edges from this first condition.  All of these values will be true.  Start
2930  // setting up the PHI node in the Cont Block for this.
2931  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2932                                            "", ContBlock);
2933  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2934       PI != PE; ++PI)
2935    PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
2936
2937  eval.begin(CGF);
2938
2939  // Emit the RHS condition as a bool value.
2940  CGF.EmitBlock(RHSBlock);
2941  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2942
2943  eval.end(CGF);
2944
2945  // Reaquire the RHS block, as there may be subblocks inserted.
2946  RHSBlock = Builder.GetInsertBlock();
2947
2948  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2949  // into the phi node for the edge with the value of RHSCond.
2950  CGF.EmitBlock(ContBlock);
2951  PN->addIncoming(RHSCond, RHSBlock);
2952
2953  // ZExt result to int.
2954  return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
2955}
2956
2957Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
2958  CGF.EmitIgnoredExpr(E->getLHS());
2959  CGF.EnsureInsertPoint();
2960  return Visit(E->getRHS());
2961}
2962
2963//===----------------------------------------------------------------------===//
2964//                             Other Operators
2965//===----------------------------------------------------------------------===//
2966
2967/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
2968/// expression is cheap enough and side-effect-free enough to evaluate
2969/// unconditionally instead of conditionally.  This is used to convert control
2970/// flow into selects in some cases.
2971static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
2972                                                   CodeGenFunction &CGF) {
2973  E = E->IgnoreParens();
2974
2975  // Anything that is an integer or floating point constant is fine.
2976  if (E->isConstantInitializer(CGF.getContext(), false))
2977    return true;
2978
2979  // Non-volatile automatic variables too, to get "cond ? X : Y" where
2980  // X and Y are local variables.
2981  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
2982    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2983      if (VD->hasLocalStorage() && !(CGF.getContext()
2984                                     .getCanonicalType(VD->getType())
2985                                     .isVolatileQualified()))
2986        return true;
2987
2988  return false;
2989}
2990
2991
2992Value *ScalarExprEmitter::
2993VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
2994  TestAndClearIgnoreResultAssign();
2995
2996  // Bind the common expression if necessary.
2997  CodeGenFunction::OpaqueValueMapping binding(CGF, E);
2998
2999  Expr *condExpr = E->getCond();
3000  Expr *lhsExpr = E->getTrueExpr();
3001  Expr *rhsExpr = E->getFalseExpr();
3002
3003  // If the condition constant folds and can be elided, try to avoid emitting
3004  // the condition and the dead arm.
3005  bool CondExprBool;
3006  if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3007    Expr *live = lhsExpr, *dead = rhsExpr;
3008    if (!CondExprBool) std::swap(live, dead);
3009
3010    // If the dead side doesn't have labels we need, just emit the Live part.
3011    if (!CGF.ContainsLabel(dead)) {
3012      Value *Result = Visit(live);
3013
3014      // If the live part is a throw expression, it acts like it has a void
3015      // type, so evaluating it returns a null Value*.  However, a conditional
3016      // with non-void type must return a non-null Value*.
3017      if (!Result && !E->getType()->isVoidType())
3018        Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
3019
3020      return Result;
3021    }
3022  }
3023
3024  // OpenCL: If the condition is a vector, we can treat this condition like
3025  // the select function.
3026  if (CGF.getLangOpts().OpenCL
3027      && condExpr->getType()->isVectorType()) {
3028    llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
3029    llvm::Value *LHS = Visit(lhsExpr);
3030    llvm::Value *RHS = Visit(rhsExpr);
3031
3032    llvm::Type *condType = ConvertType(condExpr->getType());
3033    llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
3034
3035    unsigned numElem = vecTy->getNumElements();
3036    llvm::Type *elemType = vecTy->getElementType();
3037
3038    llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
3039    llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
3040    llvm::Value *tmp = Builder.CreateSExt(TestMSB,
3041                                          llvm::VectorType::get(elemType,
3042                                                                numElem),
3043                                          "sext");
3044    llvm::Value *tmp2 = Builder.CreateNot(tmp);
3045
3046    // Cast float to int to perform ANDs if necessary.
3047    llvm::Value *RHSTmp = RHS;
3048    llvm::Value *LHSTmp = LHS;
3049    bool wasCast = false;
3050    llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
3051    if (rhsVTy->getElementType()->isFloatingPointTy()) {
3052      RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
3053      LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
3054      wasCast = true;
3055    }
3056
3057    llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
3058    llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
3059    llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
3060    if (wasCast)
3061      tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
3062
3063    return tmp5;
3064  }
3065
3066  // If this is a really simple expression (like x ? 4 : 5), emit this as a
3067  // select instead of as control flow.  We can only do this if it is cheap and
3068  // safe to evaluate the LHS and RHS unconditionally.
3069  if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
3070      isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
3071    llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
3072    llvm::Value *LHS = Visit(lhsExpr);
3073    llvm::Value *RHS = Visit(rhsExpr);
3074    if (!LHS) {
3075      // If the conditional has void type, make sure we return a null Value*.
3076      assert(!RHS && "LHS and RHS types must match");
3077      return 0;
3078    }
3079    return Builder.CreateSelect(CondV, LHS, RHS, "cond");
3080  }
3081
3082  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
3083  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
3084  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
3085
3086  CodeGenFunction::ConditionalEvaluation eval(CGF);
3087  CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock);
3088
3089  CGF.EmitBlock(LHSBlock);
3090  eval.begin(CGF);
3091  Value *LHS = Visit(lhsExpr);
3092  eval.end(CGF);
3093
3094  LHSBlock = Builder.GetInsertBlock();
3095  Builder.CreateBr(ContBlock);
3096
3097  CGF.EmitBlock(RHSBlock);
3098  eval.begin(CGF);
3099  Value *RHS = Visit(rhsExpr);
3100  eval.end(CGF);
3101
3102  RHSBlock = Builder.GetInsertBlock();
3103  CGF.EmitBlock(ContBlock);
3104
3105  // If the LHS or RHS is a throw expression, it will be legitimately null.
3106  if (!LHS)
3107    return RHS;
3108  if (!RHS)
3109    return LHS;
3110
3111  // Create a PHI node for the real part.
3112  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
3113  PN->addIncoming(LHS, LHSBlock);
3114  PN->addIncoming(RHS, RHSBlock);
3115  return PN;
3116}
3117
3118Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
3119  return Visit(E->getChosenSubExpr(CGF.getContext()));
3120}
3121
3122Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
3123  llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
3124  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
3125
3126  // If EmitVAArg fails, we fall back to the LLVM instruction.
3127  if (!ArgPtr)
3128    return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
3129
3130  // FIXME Volatility.
3131  return Builder.CreateLoad(ArgPtr);
3132}
3133
3134Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
3135  return CGF.EmitBlockLiteral(block);
3136}
3137
3138Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
3139  Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
3140  llvm::Type *DstTy = ConvertType(E->getType());
3141
3142  // Going from vec4->vec3 or vec3->vec4 is a special case and requires
3143  // a shuffle vector instead of a bitcast.
3144  llvm::Type *SrcTy = Src->getType();
3145  if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
3146    unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
3147    unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
3148    if ((numElementsDst == 3 && numElementsSrc == 4)
3149        || (numElementsDst == 4 && numElementsSrc == 3)) {
3150
3151
3152      // In the case of going from int4->float3, a bitcast is needed before
3153      // doing a shuffle.
3154      llvm::Type *srcElemTy =
3155      cast<llvm::VectorType>(SrcTy)->getElementType();
3156      llvm::Type *dstElemTy =
3157      cast<llvm::VectorType>(DstTy)->getElementType();
3158
3159      if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
3160          || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
3161        // Create a float type of the same size as the source or destination.
3162        llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
3163                                                                 numElementsSrc);
3164
3165        Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
3166      }
3167
3168      llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
3169
3170      SmallVector<llvm::Constant*, 3> Args;
3171      Args.push_back(Builder.getInt32(0));
3172      Args.push_back(Builder.getInt32(1));
3173      Args.push_back(Builder.getInt32(2));
3174
3175      if (numElementsDst == 4)
3176        Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
3177
3178      llvm::Constant *Mask = llvm::ConstantVector::get(Args);
3179
3180      return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
3181    }
3182  }
3183
3184  return Builder.CreateBitCast(Src, DstTy, "astype");
3185}
3186
3187Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
3188  return CGF.EmitAtomicExpr(E).getScalarVal();
3189}
3190
3191//===----------------------------------------------------------------------===//
3192//                         Entry Point into this File
3193//===----------------------------------------------------------------------===//
3194
3195/// EmitScalarExpr - Emit the computation of the specified expression of scalar
3196/// type, ignoring the result.
3197Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
3198  assert(E && hasScalarEvaluationKind(E->getType()) &&
3199         "Invalid scalar expression to emit");
3200
3201  if (isa<CXXDefaultArgExpr>(E))
3202    disableDebugInfo();
3203  Value *V = ScalarExprEmitter(*this, IgnoreResultAssign)
3204    .Visit(const_cast<Expr*>(E));
3205  if (isa<CXXDefaultArgExpr>(E))
3206    enableDebugInfo();
3207  return V;
3208}
3209
3210/// EmitScalarConversion - Emit a conversion from the specified type to the
3211/// specified destination type, both of which are LLVM scalar types.
3212Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
3213                                             QualType DstTy) {
3214  assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
3215         "Invalid scalar expression to emit");
3216  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
3217}
3218
3219/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
3220/// type to the specified destination type, where the destination type is an
3221/// LLVM scalar type.
3222Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
3223                                                      QualType SrcTy,
3224                                                      QualType DstTy) {
3225  assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
3226         "Invalid complex -> scalar conversion");
3227  return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
3228                                                                DstTy);
3229}
3230
3231
3232llvm::Value *CodeGenFunction::
3233EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3234                        bool isInc, bool isPre) {
3235  return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
3236}
3237
3238LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
3239  llvm::Value *V;
3240  // object->isa or (*object).isa
3241  // Generate code as for: *(Class*)object
3242  // build Class* type
3243  llvm::Type *ClassPtrTy = ConvertType(E->getType());
3244
3245  Expr *BaseExpr = E->getBase();
3246  if (BaseExpr->isRValue()) {
3247    V = CreateMemTemp(E->getType(), "resval");
3248    llvm::Value *Src = EmitScalarExpr(BaseExpr);
3249    Builder.CreateStore(Src, V);
3250    V = ScalarExprEmitter(*this).EmitLoadOfLValue(
3251      MakeNaturalAlignAddrLValue(V, E->getType()));
3252  } else {
3253    if (E->isArrow())
3254      V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
3255    else
3256      V = EmitLValue(BaseExpr).getAddress();
3257  }
3258
3259  // build Class* type
3260  ClassPtrTy = ClassPtrTy->getPointerTo();
3261  V = Builder.CreateBitCast(V, ClassPtrTy);
3262  return MakeNaturalAlignAddrLValue(V, E->getType());
3263}
3264
3265
3266LValue CodeGenFunction::EmitCompoundAssignmentLValue(
3267                                            const CompoundAssignOperator *E) {
3268  ScalarExprEmitter Scalar(*this);
3269  Value *Result = 0;
3270  switch (E->getOpcode()) {
3271#define COMPOUND_OP(Op)                                                       \
3272    case BO_##Op##Assign:                                                     \
3273      return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
3274                                             Result)
3275  COMPOUND_OP(Mul);
3276  COMPOUND_OP(Div);
3277  COMPOUND_OP(Rem);
3278  COMPOUND_OP(Add);
3279  COMPOUND_OP(Sub);
3280  COMPOUND_OP(Shl);
3281  COMPOUND_OP(Shr);
3282  COMPOUND_OP(And);
3283  COMPOUND_OP(Xor);
3284  COMPOUND_OP(Or);
3285#undef COMPOUND_OP
3286
3287  case BO_PtrMemD:
3288  case BO_PtrMemI:
3289  case BO_Mul:
3290  case BO_Div:
3291  case BO_Rem:
3292  case BO_Add:
3293  case BO_Sub:
3294  case BO_Shl:
3295  case BO_Shr:
3296  case BO_LT:
3297  case BO_GT:
3298  case BO_LE:
3299  case BO_GE:
3300  case BO_EQ:
3301  case BO_NE:
3302  case BO_And:
3303  case BO_Xor:
3304  case BO_Or:
3305  case BO_LAnd:
3306  case BO_LOr:
3307  case BO_Assign:
3308  case BO_Comma:
3309    llvm_unreachable("Not valid compound assignment operators");
3310  }
3311
3312  llvm_unreachable("Unhandled compound assignment operator");
3313}
3314