CGExprScalar.cpp revision 245431
1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Frontend/CodeGenOptions.h"
15#include "CodeGenFunction.h"
16#include "CGCXXABI.h"
17#include "CGObjCRuntime.h"
18#include "CodeGenModule.h"
19#include "CGDebugInfo.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/StmtVisitor.h"
24#include "clang/Basic/TargetInfo.h"
25#include "llvm/Constants.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/Module.h"
30#include "llvm/Support/CFG.h"
31#include "llvm/DataLayout.h"
32#include <cstdarg>
33
34using namespace clang;
35using namespace CodeGen;
36using llvm::Value;
37
38//===----------------------------------------------------------------------===//
39//                         Scalar Expression Emitter
40//===----------------------------------------------------------------------===//
41
42namespace {
43struct BinOpInfo {
44  Value *LHS;
45  Value *RHS;
46  QualType Ty;  // Computation Type.
47  BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
48  bool FPContractable;
49  const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
50};
51
52static bool MustVisitNullValue(const Expr *E) {
53  // If a null pointer expression's type is the C++0x nullptr_t, then
54  // it's not necessarily a simple constant and it must be evaluated
55  // for its potential side effects.
56  return E->getType()->isNullPtrType();
57}
58
59class ScalarExprEmitter
60  : public StmtVisitor<ScalarExprEmitter, Value*> {
61  CodeGenFunction &CGF;
62  CGBuilderTy &Builder;
63  bool IgnoreResultAssign;
64  llvm::LLVMContext &VMContext;
65public:
66
67  ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
68    : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
69      VMContext(cgf.getLLVMContext()) {
70  }
71
72  //===--------------------------------------------------------------------===//
73  //                               Utilities
74  //===--------------------------------------------------------------------===//
75
76  bool TestAndClearIgnoreResultAssign() {
77    bool I = IgnoreResultAssign;
78    IgnoreResultAssign = false;
79    return I;
80  }
81
82  llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
83  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
84  LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
85    return CGF.EmitCheckedLValue(E, TCK);
86  }
87
88  void EmitBinOpCheck(Value *Check, const BinOpInfo &Info);
89
90  Value *EmitLoadOfLValue(LValue LV) {
91    return CGF.EmitLoadOfLValue(LV).getScalarVal();
92  }
93
94  /// EmitLoadOfLValue - Given an expression with complex type that represents a
95  /// value l-value, this method emits the address of the l-value, then loads
96  /// and returns the result.
97  Value *EmitLoadOfLValue(const Expr *E) {
98    return EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load));
99  }
100
101  /// EmitConversionToBool - Convert the specified expression value to a
102  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
103  Value *EmitConversionToBool(Value *Src, QualType DstTy);
104
105  /// \brief Emit a check that a conversion to or from a floating-point type
106  /// does not overflow.
107  void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
108                                Value *Src, QualType SrcType,
109                                QualType DstType, llvm::Type *DstTy);
110
111  /// EmitScalarConversion - Emit a conversion from the specified type to the
112  /// specified destination type, both of which are LLVM scalar types.
113  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
114
115  /// EmitComplexToScalarConversion - Emit a conversion from the specified
116  /// complex type to the specified destination type, where the destination type
117  /// is an LLVM scalar type.
118  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
119                                       QualType SrcTy, QualType DstTy);
120
121  /// EmitNullValue - Emit a value that corresponds to null for the given type.
122  Value *EmitNullValue(QualType Ty);
123
124  /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
125  Value *EmitFloatToBoolConversion(Value *V) {
126    // Compare against 0.0 for fp scalars.
127    llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
128    return Builder.CreateFCmpUNE(V, Zero, "tobool");
129  }
130
131  /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
132  Value *EmitPointerToBoolConversion(Value *V) {
133    Value *Zero = llvm::ConstantPointerNull::get(
134                                      cast<llvm::PointerType>(V->getType()));
135    return Builder.CreateICmpNE(V, Zero, "tobool");
136  }
137
138  Value *EmitIntToBoolConversion(Value *V) {
139    // Because of the type rules of C, we often end up computing a
140    // logical value, then zero extending it to int, then wanting it
141    // as a logical value again.  Optimize this common case.
142    if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
143      if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
144        Value *Result = ZI->getOperand(0);
145        // If there aren't any more uses, zap the instruction to save space.
146        // Note that there can be more uses, for example if this
147        // is the result of an assignment.
148        if (ZI->use_empty())
149          ZI->eraseFromParent();
150        return Result;
151      }
152    }
153
154    return Builder.CreateIsNotNull(V, "tobool");
155  }
156
157  //===--------------------------------------------------------------------===//
158  //                            Visitor Methods
159  //===--------------------------------------------------------------------===//
160
161  Value *Visit(Expr *E) {
162    return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
163  }
164
165  Value *VisitStmt(Stmt *S) {
166    S->dump(CGF.getContext().getSourceManager());
167    llvm_unreachable("Stmt can't have complex result type!");
168  }
169  Value *VisitExpr(Expr *S);
170
171  Value *VisitParenExpr(ParenExpr *PE) {
172    return Visit(PE->getSubExpr());
173  }
174  Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
175    return Visit(E->getReplacement());
176  }
177  Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
178    return Visit(GE->getResultExpr());
179  }
180
181  // Leaves.
182  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
183    return Builder.getInt(E->getValue());
184  }
185  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
186    return llvm::ConstantFP::get(VMContext, E->getValue());
187  }
188  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
189    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
190  }
191  Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
192    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
193  }
194  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
195    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
196  }
197  Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
198    return EmitNullValue(E->getType());
199  }
200  Value *VisitGNUNullExpr(const GNUNullExpr *E) {
201    return EmitNullValue(E->getType());
202  }
203  Value *VisitOffsetOfExpr(OffsetOfExpr *E);
204  Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
205  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
206    llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
207    return Builder.CreateBitCast(V, ConvertType(E->getType()));
208  }
209
210  Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
211    return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
212  }
213
214  Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
215    return CGF.EmitPseudoObjectRValue(E).getScalarVal();
216  }
217
218  Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
219    if (E->isGLValue())
220      return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E));
221
222    // Otherwise, assume the mapping is the scalar directly.
223    return CGF.getOpaqueRValueMapping(E).getScalarVal();
224  }
225
226  // l-values.
227  Value *VisitDeclRefExpr(DeclRefExpr *E) {
228    if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
229      if (result.isReference())
230        return EmitLoadOfLValue(result.getReferenceLValue(CGF, E));
231      return result.getValue();
232    }
233    return EmitLoadOfLValue(E);
234  }
235
236  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
237    return CGF.EmitObjCSelectorExpr(E);
238  }
239  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
240    return CGF.EmitObjCProtocolExpr(E);
241  }
242  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
243    return EmitLoadOfLValue(E);
244  }
245  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
246    if (E->getMethodDecl() &&
247        E->getMethodDecl()->getResultType()->isReferenceType())
248      return EmitLoadOfLValue(E);
249    return CGF.EmitObjCMessageExpr(E).getScalarVal();
250  }
251
252  Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
253    LValue LV = CGF.EmitObjCIsaExpr(E);
254    Value *V = CGF.EmitLoadOfLValue(LV).getScalarVal();
255    return V;
256  }
257
258  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
259  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
260  Value *VisitMemberExpr(MemberExpr *E);
261  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
262  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
263    return EmitLoadOfLValue(E);
264  }
265
266  Value *VisitInitListExpr(InitListExpr *E);
267
268  Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
269    return CGF.CGM.EmitNullConstant(E->getType());
270  }
271  Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
272    if (E->getType()->isVariablyModifiedType())
273      CGF.EmitVariablyModifiedType(E->getType());
274    return VisitCastExpr(E);
275  }
276  Value *VisitCastExpr(CastExpr *E);
277
278  Value *VisitCallExpr(const CallExpr *E) {
279    if (E->getCallReturnType()->isReferenceType())
280      return EmitLoadOfLValue(E);
281
282    return CGF.EmitCallExpr(E).getScalarVal();
283  }
284
285  Value *VisitStmtExpr(const StmtExpr *E);
286
287  // Unary Operators.
288  Value *VisitUnaryPostDec(const UnaryOperator *E) {
289    LValue LV = EmitLValue(E->getSubExpr());
290    return EmitScalarPrePostIncDec(E, LV, false, false);
291  }
292  Value *VisitUnaryPostInc(const UnaryOperator *E) {
293    LValue LV = EmitLValue(E->getSubExpr());
294    return EmitScalarPrePostIncDec(E, LV, true, false);
295  }
296  Value *VisitUnaryPreDec(const UnaryOperator *E) {
297    LValue LV = EmitLValue(E->getSubExpr());
298    return EmitScalarPrePostIncDec(E, LV, false, true);
299  }
300  Value *VisitUnaryPreInc(const UnaryOperator *E) {
301    LValue LV = EmitLValue(E->getSubExpr());
302    return EmitScalarPrePostIncDec(E, LV, true, true);
303  }
304
305  llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
306                                               llvm::Value *InVal,
307                                               llvm::Value *NextVal,
308                                               bool IsInc);
309
310  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
311                                       bool isInc, bool isPre);
312
313
314  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
315    if (isa<MemberPointerType>(E->getType())) // never sugared
316      return CGF.CGM.getMemberPointerConstant(E);
317
318    return EmitLValue(E->getSubExpr()).getAddress();
319  }
320  Value *VisitUnaryDeref(const UnaryOperator *E) {
321    if (E->getType()->isVoidType())
322      return Visit(E->getSubExpr()); // the actual value should be unused
323    return EmitLoadOfLValue(E);
324  }
325  Value *VisitUnaryPlus(const UnaryOperator *E) {
326    // This differs from gcc, though, most likely due to a bug in gcc.
327    TestAndClearIgnoreResultAssign();
328    return Visit(E->getSubExpr());
329  }
330  Value *VisitUnaryMinus    (const UnaryOperator *E);
331  Value *VisitUnaryNot      (const UnaryOperator *E);
332  Value *VisitUnaryLNot     (const UnaryOperator *E);
333  Value *VisitUnaryReal     (const UnaryOperator *E);
334  Value *VisitUnaryImag     (const UnaryOperator *E);
335  Value *VisitUnaryExtension(const UnaryOperator *E) {
336    return Visit(E->getSubExpr());
337  }
338
339  // C++
340  Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
341    return EmitLoadOfLValue(E);
342  }
343
344  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
345    return Visit(DAE->getExpr());
346  }
347  Value *VisitCXXThisExpr(CXXThisExpr *TE) {
348    return CGF.LoadCXXThis();
349  }
350
351  Value *VisitExprWithCleanups(ExprWithCleanups *E) {
352    CGF.enterFullExpression(E);
353    CodeGenFunction::RunCleanupsScope Scope(CGF);
354    return Visit(E->getSubExpr());
355  }
356  Value *VisitCXXNewExpr(const CXXNewExpr *E) {
357    return CGF.EmitCXXNewExpr(E);
358  }
359  Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
360    CGF.EmitCXXDeleteExpr(E);
361    return 0;
362  }
363  Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
364    return Builder.getInt1(E->getValue());
365  }
366
367  Value *VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
368    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
369  }
370
371  Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
372    return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
373  }
374
375  Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
376    return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
377  }
378
379  Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
380    // C++ [expr.pseudo]p1:
381    //   The result shall only be used as the operand for the function call
382    //   operator (), and the result of such a call has type void. The only
383    //   effect is the evaluation of the postfix-expression before the dot or
384    //   arrow.
385    CGF.EmitScalarExpr(E->getBase());
386    return 0;
387  }
388
389  Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
390    return EmitNullValue(E->getType());
391  }
392
393  Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
394    CGF.EmitCXXThrowExpr(E);
395    return 0;
396  }
397
398  Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
399    return Builder.getInt1(E->getValue());
400  }
401
402  // Binary Operators.
403  Value *EmitMul(const BinOpInfo &Ops) {
404    if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
405      switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
406      case LangOptions::SOB_Defined:
407        return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
408      case LangOptions::SOB_Undefined:
409        if (!CGF.getLangOpts().SanitizeSignedIntegerOverflow)
410          return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
411        // Fall through.
412      case LangOptions::SOB_Trapping:
413        return EmitOverflowCheckedBinOp(Ops);
414      }
415    }
416
417    if (Ops.LHS->getType()->isFPOrFPVectorTy())
418      return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
419    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
420  }
421  /// Create a binary op that checks for overflow.
422  /// Currently only supports +, - and *.
423  Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
424
425  // Check for undefined division and modulus behaviors.
426  void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
427                                                  llvm::Value *Zero,bool isDiv);
428  Value *EmitDiv(const BinOpInfo &Ops);
429  Value *EmitRem(const BinOpInfo &Ops);
430  Value *EmitAdd(const BinOpInfo &Ops);
431  Value *EmitSub(const BinOpInfo &Ops);
432  Value *EmitShl(const BinOpInfo &Ops);
433  Value *EmitShr(const BinOpInfo &Ops);
434  Value *EmitAnd(const BinOpInfo &Ops) {
435    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
436  }
437  Value *EmitXor(const BinOpInfo &Ops) {
438    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
439  }
440  Value *EmitOr (const BinOpInfo &Ops) {
441    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
442  }
443
444  BinOpInfo EmitBinOps(const BinaryOperator *E);
445  LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
446                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
447                                  Value *&Result);
448
449  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
450                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
451
452  // Binary operators and binary compound assignment operators.
453#define HANDLEBINOP(OP) \
454  Value *VisitBin ## OP(const BinaryOperator *E) {                         \
455    return Emit ## OP(EmitBinOps(E));                                      \
456  }                                                                        \
457  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
458    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
459  }
460  HANDLEBINOP(Mul)
461  HANDLEBINOP(Div)
462  HANDLEBINOP(Rem)
463  HANDLEBINOP(Add)
464  HANDLEBINOP(Sub)
465  HANDLEBINOP(Shl)
466  HANDLEBINOP(Shr)
467  HANDLEBINOP(And)
468  HANDLEBINOP(Xor)
469  HANDLEBINOP(Or)
470#undef HANDLEBINOP
471
472  // Comparisons.
473  Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
474                     unsigned SICmpOpc, unsigned FCmpOpc);
475#define VISITCOMP(CODE, UI, SI, FP) \
476    Value *VisitBin##CODE(const BinaryOperator *E) { \
477      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
478                         llvm::FCmpInst::FP); }
479  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
480  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
481  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
482  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
483  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
484  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
485#undef VISITCOMP
486
487  Value *VisitBinAssign     (const BinaryOperator *E);
488
489  Value *VisitBinLAnd       (const BinaryOperator *E);
490  Value *VisitBinLOr        (const BinaryOperator *E);
491  Value *VisitBinComma      (const BinaryOperator *E);
492
493  Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
494  Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
495
496  // Other Operators.
497  Value *VisitBlockExpr(const BlockExpr *BE);
498  Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
499  Value *VisitChooseExpr(ChooseExpr *CE);
500  Value *VisitVAArgExpr(VAArgExpr *VE);
501  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
502    return CGF.EmitObjCStringLiteral(E);
503  }
504  Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
505    return CGF.EmitObjCBoxedExpr(E);
506  }
507  Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
508    return CGF.EmitObjCArrayLiteral(E);
509  }
510  Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
511    return CGF.EmitObjCDictionaryLiteral(E);
512  }
513  Value *VisitAsTypeExpr(AsTypeExpr *CE);
514  Value *VisitAtomicExpr(AtomicExpr *AE);
515};
516}  // end anonymous namespace.
517
518//===----------------------------------------------------------------------===//
519//                                Utilities
520//===----------------------------------------------------------------------===//
521
522/// EmitConversionToBool - Convert the specified expression value to a
523/// boolean (i1) truth value.  This is equivalent to "Val != 0".
524Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
525  assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
526
527  if (SrcType->isRealFloatingType())
528    return EmitFloatToBoolConversion(Src);
529
530  if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
531    return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
532
533  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
534         "Unknown scalar type to convert");
535
536  if (isa<llvm::IntegerType>(Src->getType()))
537    return EmitIntToBoolConversion(Src);
538
539  assert(isa<llvm::PointerType>(Src->getType()));
540  return EmitPointerToBoolConversion(Src);
541}
542
543void ScalarExprEmitter::EmitFloatConversionCheck(Value *OrigSrc,
544                                                 QualType OrigSrcType,
545                                                 Value *Src, QualType SrcType,
546                                                 QualType DstType,
547                                                 llvm::Type *DstTy) {
548  using llvm::APFloat;
549  using llvm::APSInt;
550
551  llvm::Type *SrcTy = Src->getType();
552
553  llvm::Value *Check = 0;
554  if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
555    // Integer to floating-point. This can fail for unsigned short -> __half
556    // or unsigned __int128 -> float.
557    assert(DstType->isFloatingType());
558    bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
559
560    APFloat LargestFloat =
561      APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
562    APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
563
564    bool IsExact;
565    if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
566                                      &IsExact) != APFloat::opOK)
567      // The range of representable values of this floating point type includes
568      // all values of this integer type. Don't need an overflow check.
569      return;
570
571    llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
572    if (SrcIsUnsigned)
573      Check = Builder.CreateICmpULE(Src, Max);
574    else {
575      llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
576      llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
577      llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
578      Check = Builder.CreateAnd(GE, LE);
579    }
580  } else {
581    // Floating-point to integer or floating-point to floating-point. This has
582    // undefined behavior if the source is +-Inf, NaN, or doesn't fit into the
583    // destination type.
584    const llvm::fltSemantics &SrcSema =
585      CGF.getContext().getFloatTypeSemantics(OrigSrcType);
586    APFloat MaxSrc(SrcSema, APFloat::uninitialized);
587    APFloat MinSrc(SrcSema, APFloat::uninitialized);
588
589    if (isa<llvm::IntegerType>(DstTy)) {
590      unsigned Width = CGF.getContext().getIntWidth(DstType);
591      bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
592
593      APSInt Min = APSInt::getMinValue(Width, Unsigned);
594      if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
595          APFloat::opOverflow)
596        // Don't need an overflow check for lower bound. Just check for
597        // -Inf/NaN.
598        MinSrc = APFloat::getLargest(SrcSema, true);
599
600      APSInt Max = APSInt::getMaxValue(Width, Unsigned);
601      if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
602          APFloat::opOverflow)
603        // Don't need an overflow check for upper bound. Just check for
604        // +Inf/NaN.
605        MaxSrc = APFloat::getLargest(SrcSema, false);
606    } else {
607      const llvm::fltSemantics &DstSema =
608        CGF.getContext().getFloatTypeSemantics(DstType);
609      bool IsInexact;
610
611      MinSrc = APFloat::getLargest(DstSema, true);
612      if (MinSrc.convert(SrcSema, APFloat::rmTowardZero, &IsInexact) &
613          APFloat::opOverflow)
614        MinSrc = APFloat::getLargest(SrcSema, true);
615
616      MaxSrc = APFloat::getLargest(DstSema, false);
617      if (MaxSrc.convert(SrcSema, APFloat::rmTowardZero, &IsInexact) &
618          APFloat::opOverflow)
619        MaxSrc = APFloat::getLargest(SrcSema, false);
620    }
621
622    // If we're converting from __half, convert the range to float to match
623    // the type of src.
624    if (OrigSrcType->isHalfType()) {
625      const llvm::fltSemantics &Sema =
626        CGF.getContext().getFloatTypeSemantics(SrcType);
627      bool IsInexact;
628      MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
629      MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
630    }
631
632    llvm::Value *GE =
633      Builder.CreateFCmpOGE(Src, llvm::ConstantFP::get(VMContext, MinSrc));
634    llvm::Value *LE =
635      Builder.CreateFCmpOLE(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
636    Check = Builder.CreateAnd(GE, LE);
637  }
638
639  // FIXME: Provide a SourceLocation.
640  llvm::Constant *StaticArgs[] = {
641    CGF.EmitCheckTypeDescriptor(OrigSrcType),
642    CGF.EmitCheckTypeDescriptor(DstType)
643  };
644  CGF.EmitCheck(Check, "float_cast_overflow", StaticArgs, OrigSrc);
645}
646
647/// EmitScalarConversion - Emit a conversion from the specified type to the
648/// specified destination type, both of which are LLVM scalar types.
649Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
650                                               QualType DstType) {
651  SrcType = CGF.getContext().getCanonicalType(SrcType);
652  DstType = CGF.getContext().getCanonicalType(DstType);
653  if (SrcType == DstType) return Src;
654
655  if (DstType->isVoidType()) return 0;
656
657  llvm::Value *OrigSrc = Src;
658  QualType OrigSrcType = SrcType;
659  llvm::Type *SrcTy = Src->getType();
660
661  // Floating casts might be a bit special: if we're doing casts to / from half
662  // FP, we should go via special intrinsics.
663  if (SrcType->isHalfType()) {
664    Src = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16), Src);
665    SrcType = CGF.getContext().FloatTy;
666    SrcTy = CGF.FloatTy;
667  }
668
669  // Handle conversions to bool first, they are special: comparisons against 0.
670  if (DstType->isBooleanType())
671    return EmitConversionToBool(Src, SrcType);
672
673  llvm::Type *DstTy = ConvertType(DstType);
674
675  // Ignore conversions like int -> uint.
676  if (SrcTy == DstTy)
677    return Src;
678
679  // Handle pointer conversions next: pointers can only be converted to/from
680  // other pointers and integers. Check for pointer types in terms of LLVM, as
681  // some native types (like Obj-C id) may map to a pointer type.
682  if (isa<llvm::PointerType>(DstTy)) {
683    // The source value may be an integer, or a pointer.
684    if (isa<llvm::PointerType>(SrcTy))
685      return Builder.CreateBitCast(Src, DstTy, "conv");
686
687    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
688    // First, convert to the correct width so that we control the kind of
689    // extension.
690    llvm::Type *MiddleTy = CGF.IntPtrTy;
691    bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
692    llvm::Value* IntResult =
693        Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
694    // Then, cast to pointer.
695    return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
696  }
697
698  if (isa<llvm::PointerType>(SrcTy)) {
699    // Must be an ptr to int cast.
700    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
701    return Builder.CreatePtrToInt(Src, DstTy, "conv");
702  }
703
704  // A scalar can be splatted to an extended vector of the same element type
705  if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
706    // Cast the scalar to element type
707    QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
708    llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
709
710    // Insert the element in element zero of an undef vector
711    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
712    llvm::Value *Idx = Builder.getInt32(0);
713    UnV = Builder.CreateInsertElement(UnV, Elt, Idx);
714
715    // Splat the element across to all elements
716    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
717    llvm::Constant *Mask = llvm::ConstantVector::getSplat(NumElements,
718                                                          Builder.getInt32(0));
719    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
720    return Yay;
721  }
722
723  // Allow bitcast from vector to integer/fp of the same size.
724  if (isa<llvm::VectorType>(SrcTy) ||
725      isa<llvm::VectorType>(DstTy))
726    return Builder.CreateBitCast(Src, DstTy, "conv");
727
728  // Finally, we have the arithmetic types: real int/float.
729  Value *Res = NULL;
730  llvm::Type *ResTy = DstTy;
731
732  // An overflowing conversion has undefined behavior if either the source type
733  // or the destination type is a floating-point type.
734  if (CGF.getLangOpts().SanitizeFloatCastOverflow &&
735      (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
736    EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy);
737
738  // Cast to half via float
739  if (DstType->isHalfType())
740    DstTy = CGF.FloatTy;
741
742  if (isa<llvm::IntegerType>(SrcTy)) {
743    bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
744    if (isa<llvm::IntegerType>(DstTy))
745      Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
746    else if (InputSigned)
747      Res = Builder.CreateSIToFP(Src, DstTy, "conv");
748    else
749      Res = Builder.CreateUIToFP(Src, DstTy, "conv");
750  } else if (isa<llvm::IntegerType>(DstTy)) {
751    assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
752    if (DstType->isSignedIntegerOrEnumerationType())
753      Res = Builder.CreateFPToSI(Src, DstTy, "conv");
754    else
755      Res = Builder.CreateFPToUI(Src, DstTy, "conv");
756  } else {
757    assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
758           "Unknown real conversion");
759    if (DstTy->getTypeID() < SrcTy->getTypeID())
760      Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
761    else
762      Res = Builder.CreateFPExt(Src, DstTy, "conv");
763  }
764
765  if (DstTy != ResTy) {
766    assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
767    Res = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16), Res);
768  }
769
770  return Res;
771}
772
773/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
774/// type to the specified destination type, where the destination type is an
775/// LLVM scalar type.
776Value *ScalarExprEmitter::
777EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
778                              QualType SrcTy, QualType DstTy) {
779  // Get the source element type.
780  SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
781
782  // Handle conversions to bool first, they are special: comparisons against 0.
783  if (DstTy->isBooleanType()) {
784    //  Complex != 0  -> (Real != 0) | (Imag != 0)
785    Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
786    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
787    return Builder.CreateOr(Src.first, Src.second, "tobool");
788  }
789
790  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
791  // the imaginary part of the complex value is discarded and the value of the
792  // real part is converted according to the conversion rules for the
793  // corresponding real type.
794  return EmitScalarConversion(Src.first, SrcTy, DstTy);
795}
796
797Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
798  if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>())
799    return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
800
801  return llvm::Constant::getNullValue(ConvertType(Ty));
802}
803
804/// \brief Emit a sanitization check for the given "binary" operation (which
805/// might actually be a unary increment which has been lowered to a binary
806/// operation). The check passes if \p Check, which is an \c i1, is \c true.
807void ScalarExprEmitter::EmitBinOpCheck(Value *Check, const BinOpInfo &Info) {
808  StringRef CheckName;
809  llvm::SmallVector<llvm::Constant *, 4> StaticData;
810  llvm::SmallVector<llvm::Value *, 2> DynamicData;
811
812  BinaryOperatorKind Opcode = Info.Opcode;
813  if (BinaryOperator::isCompoundAssignmentOp(Opcode))
814    Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
815
816  StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
817  const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
818  if (UO && UO->getOpcode() == UO_Minus) {
819    CheckName = "negate_overflow";
820    StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
821    DynamicData.push_back(Info.RHS);
822  } else {
823    if (BinaryOperator::isShiftOp(Opcode)) {
824      // Shift LHS negative or too large, or RHS out of bounds.
825      CheckName = "shift_out_of_bounds";
826      const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
827      StaticData.push_back(
828        CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
829      StaticData.push_back(
830        CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
831    } else if (Opcode == BO_Div || Opcode == BO_Rem) {
832      // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
833      CheckName = "divrem_overflow";
834      StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.E->getType()));
835    } else {
836      // Signed arithmetic overflow (+, -, *).
837      switch (Opcode) {
838      case BO_Add: CheckName = "add_overflow"; break;
839      case BO_Sub: CheckName = "sub_overflow"; break;
840      case BO_Mul: CheckName = "mul_overflow"; break;
841      default: llvm_unreachable("unexpected opcode for bin op check");
842      }
843      StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.E->getType()));
844    }
845    DynamicData.push_back(Info.LHS);
846    DynamicData.push_back(Info.RHS);
847  }
848
849  CGF.EmitCheck(Check, CheckName, StaticData, DynamicData);
850}
851
852//===----------------------------------------------------------------------===//
853//                            Visitor Methods
854//===----------------------------------------------------------------------===//
855
856Value *ScalarExprEmitter::VisitExpr(Expr *E) {
857  CGF.ErrorUnsupported(E, "scalar expression");
858  if (E->getType()->isVoidType())
859    return 0;
860  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
861}
862
863Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
864  // Vector Mask Case
865  if (E->getNumSubExprs() == 2 ||
866      (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
867    Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
868    Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
869    Value *Mask;
870
871    llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
872    unsigned LHSElts = LTy->getNumElements();
873
874    if (E->getNumSubExprs() == 3) {
875      Mask = CGF.EmitScalarExpr(E->getExpr(2));
876
877      // Shuffle LHS & RHS into one input vector.
878      SmallVector<llvm::Constant*, 32> concat;
879      for (unsigned i = 0; i != LHSElts; ++i) {
880        concat.push_back(Builder.getInt32(2*i));
881        concat.push_back(Builder.getInt32(2*i+1));
882      }
883
884      Value* CV = llvm::ConstantVector::get(concat);
885      LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
886      LHSElts *= 2;
887    } else {
888      Mask = RHS;
889    }
890
891    llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
892    llvm::Constant* EltMask;
893
894    // Treat vec3 like vec4.
895    if ((LHSElts == 6) && (E->getNumSubExprs() == 3))
896      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
897                                       (1 << llvm::Log2_32(LHSElts+2))-1);
898    else if ((LHSElts == 3) && (E->getNumSubExprs() == 2))
899      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
900                                       (1 << llvm::Log2_32(LHSElts+1))-1);
901    else
902      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
903                                       (1 << llvm::Log2_32(LHSElts))-1);
904
905    // Mask off the high bits of each shuffle index.
906    Value *MaskBits = llvm::ConstantVector::getSplat(MTy->getNumElements(),
907                                                     EltMask);
908    Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
909
910    // newv = undef
911    // mask = mask & maskbits
912    // for each elt
913    //   n = extract mask i
914    //   x = extract val n
915    //   newv = insert newv, x, i
916    llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
917                                                        MTy->getNumElements());
918    Value* NewV = llvm::UndefValue::get(RTy);
919    for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
920      Value *IIndx = Builder.getInt32(i);
921      Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
922      Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext");
923
924      // Handle vec3 special since the index will be off by one for the RHS.
925      if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) {
926        Value *cmpIndx, *newIndx;
927        cmpIndx = Builder.CreateICmpUGT(Indx, Builder.getInt32(3),
928                                        "cmp_shuf_idx");
929        newIndx = Builder.CreateSub(Indx, Builder.getInt32(1), "shuf_idx_adj");
930        Indx = Builder.CreateSelect(cmpIndx, newIndx, Indx, "sel_shuf_idx");
931      }
932      Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
933      NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
934    }
935    return NewV;
936  }
937
938  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
939  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
940
941  // Handle vec3 special since the index will be off by one for the RHS.
942  llvm::VectorType *VTy = cast<llvm::VectorType>(V1->getType());
943  SmallVector<llvm::Constant*, 32> indices;
944  for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
945    unsigned Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
946    if (VTy->getNumElements() == 3 && Idx > 3)
947      Idx -= 1;
948    indices.push_back(Builder.getInt32(Idx));
949  }
950
951  Value *SV = llvm::ConstantVector::get(indices);
952  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
953}
954Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
955  llvm::APSInt Value;
956  if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
957    if (E->isArrow())
958      CGF.EmitScalarExpr(E->getBase());
959    else
960      EmitLValue(E->getBase());
961    return Builder.getInt(Value);
962  }
963
964  // Emit debug info for aggregate now, if it was delayed to reduce
965  // debug info size.
966  CGDebugInfo *DI = CGF.getDebugInfo();
967  if (DI &&
968      CGF.CGM.getCodeGenOpts().getDebugInfo()
969        == CodeGenOptions::LimitedDebugInfo) {
970    QualType PQTy = E->getBase()->IgnoreParenImpCasts()->getType();
971    if (const PointerType * PTy = dyn_cast<PointerType>(PQTy))
972      if (FieldDecl *M = dyn_cast<FieldDecl>(E->getMemberDecl()))
973        DI->getOrCreateRecordType(PTy->getPointeeType(),
974                                  M->getParent()->getLocation());
975  }
976  return EmitLoadOfLValue(E);
977}
978
979Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
980  TestAndClearIgnoreResultAssign();
981
982  // Emit subscript expressions in rvalue context's.  For most cases, this just
983  // loads the lvalue formed by the subscript expr.  However, we have to be
984  // careful, because the base of a vector subscript is occasionally an rvalue,
985  // so we can't get it as an lvalue.
986  if (!E->getBase()->getType()->isVectorType())
987    return EmitLoadOfLValue(E);
988
989  // Handle the vector case.  The base must be a vector, the index must be an
990  // integer value.
991  Value *Base = Visit(E->getBase());
992  Value *Idx  = Visit(E->getIdx());
993  bool IdxSigned = E->getIdx()->getType()->isSignedIntegerOrEnumerationType();
994  Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast");
995  return Builder.CreateExtractElement(Base, Idx, "vecext");
996}
997
998static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
999                                  unsigned Off, llvm::Type *I32Ty) {
1000  int MV = SVI->getMaskValue(Idx);
1001  if (MV == -1)
1002    return llvm::UndefValue::get(I32Ty);
1003  return llvm::ConstantInt::get(I32Ty, Off+MV);
1004}
1005
1006Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1007  bool Ignore = TestAndClearIgnoreResultAssign();
1008  (void)Ignore;
1009  assert (Ignore == false && "init list ignored");
1010  unsigned NumInitElements = E->getNumInits();
1011
1012  if (E->hadArrayRangeDesignator())
1013    CGF.ErrorUnsupported(E, "GNU array range designator extension");
1014
1015  llvm::VectorType *VType =
1016    dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1017
1018  if (!VType) {
1019    if (NumInitElements == 0) {
1020      // C++11 value-initialization for the scalar.
1021      return EmitNullValue(E->getType());
1022    }
1023    // We have a scalar in braces. Just use the first element.
1024    return Visit(E->getInit(0));
1025  }
1026
1027  unsigned ResElts = VType->getNumElements();
1028
1029  // Loop over initializers collecting the Value for each, and remembering
1030  // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1031  // us to fold the shuffle for the swizzle into the shuffle for the vector
1032  // initializer, since LLVM optimizers generally do not want to touch
1033  // shuffles.
1034  unsigned CurIdx = 0;
1035  bool VIsUndefShuffle = false;
1036  llvm::Value *V = llvm::UndefValue::get(VType);
1037  for (unsigned i = 0; i != NumInitElements; ++i) {
1038    Expr *IE = E->getInit(i);
1039    Value *Init = Visit(IE);
1040    SmallVector<llvm::Constant*, 16> Args;
1041
1042    llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1043
1044    // Handle scalar elements.  If the scalar initializer is actually one
1045    // element of a different vector of the same width, use shuffle instead of
1046    // extract+insert.
1047    if (!VVT) {
1048      if (isa<ExtVectorElementExpr>(IE)) {
1049        llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1050
1051        if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1052          llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1053          Value *LHS = 0, *RHS = 0;
1054          if (CurIdx == 0) {
1055            // insert into undef -> shuffle (src, undef)
1056            Args.push_back(C);
1057            Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1058
1059            LHS = EI->getVectorOperand();
1060            RHS = V;
1061            VIsUndefShuffle = true;
1062          } else if (VIsUndefShuffle) {
1063            // insert into undefshuffle && size match -> shuffle (v, src)
1064            llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1065            for (unsigned j = 0; j != CurIdx; ++j)
1066              Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1067            Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1068            Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1069
1070            LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1071            RHS = EI->getVectorOperand();
1072            VIsUndefShuffle = false;
1073          }
1074          if (!Args.empty()) {
1075            llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1076            V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1077            ++CurIdx;
1078            continue;
1079          }
1080        }
1081      }
1082      V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1083                                      "vecinit");
1084      VIsUndefShuffle = false;
1085      ++CurIdx;
1086      continue;
1087    }
1088
1089    unsigned InitElts = VVT->getNumElements();
1090
1091    // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1092    // input is the same width as the vector being constructed, generate an
1093    // optimized shuffle of the swizzle input into the result.
1094    unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1095    if (isa<ExtVectorElementExpr>(IE)) {
1096      llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1097      Value *SVOp = SVI->getOperand(0);
1098      llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1099
1100      if (OpTy->getNumElements() == ResElts) {
1101        for (unsigned j = 0; j != CurIdx; ++j) {
1102          // If the current vector initializer is a shuffle with undef, merge
1103          // this shuffle directly into it.
1104          if (VIsUndefShuffle) {
1105            Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1106                                      CGF.Int32Ty));
1107          } else {
1108            Args.push_back(Builder.getInt32(j));
1109          }
1110        }
1111        for (unsigned j = 0, je = InitElts; j != je; ++j)
1112          Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1113        Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1114
1115        if (VIsUndefShuffle)
1116          V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1117
1118        Init = SVOp;
1119      }
1120    }
1121
1122    // Extend init to result vector length, and then shuffle its contribution
1123    // to the vector initializer into V.
1124    if (Args.empty()) {
1125      for (unsigned j = 0; j != InitElts; ++j)
1126        Args.push_back(Builder.getInt32(j));
1127      Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1128      llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1129      Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1130                                         Mask, "vext");
1131
1132      Args.clear();
1133      for (unsigned j = 0; j != CurIdx; ++j)
1134        Args.push_back(Builder.getInt32(j));
1135      for (unsigned j = 0; j != InitElts; ++j)
1136        Args.push_back(Builder.getInt32(j+Offset));
1137      Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1138    }
1139
1140    // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1141    // merging subsequent shuffles into this one.
1142    if (CurIdx == 0)
1143      std::swap(V, Init);
1144    llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1145    V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1146    VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1147    CurIdx += InitElts;
1148  }
1149
1150  // FIXME: evaluate codegen vs. shuffling against constant null vector.
1151  // Emit remaining default initializers.
1152  llvm::Type *EltTy = VType->getElementType();
1153
1154  // Emit remaining default initializers
1155  for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1156    Value *Idx = Builder.getInt32(CurIdx);
1157    llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1158    V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1159  }
1160  return V;
1161}
1162
1163static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
1164  const Expr *E = CE->getSubExpr();
1165
1166  if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1167    return false;
1168
1169  if (isa<CXXThisExpr>(E)) {
1170    // We always assume that 'this' is never null.
1171    return false;
1172  }
1173
1174  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1175    // And that glvalue casts are never null.
1176    if (ICE->getValueKind() != VK_RValue)
1177      return false;
1178  }
1179
1180  return true;
1181}
1182
1183// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1184// have to handle a more broad range of conversions than explicit casts, as they
1185// handle things like function to ptr-to-function decay etc.
1186Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1187  Expr *E = CE->getSubExpr();
1188  QualType DestTy = CE->getType();
1189  CastKind Kind = CE->getCastKind();
1190
1191  if (!DestTy->isVoidType())
1192    TestAndClearIgnoreResultAssign();
1193
1194  // Since almost all cast kinds apply to scalars, this switch doesn't have
1195  // a default case, so the compiler will warn on a missing case.  The cases
1196  // are in the same order as in the CastKind enum.
1197  switch (Kind) {
1198  case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1199  case CK_BuiltinFnToFnPtr:
1200    llvm_unreachable("builtin functions are handled elsewhere");
1201
1202  case CK_LValueBitCast:
1203  case CK_ObjCObjectLValueCast: {
1204    Value *V = EmitLValue(E).getAddress();
1205    V = Builder.CreateBitCast(V,
1206                          ConvertType(CGF.getContext().getPointerType(DestTy)));
1207    return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(V, DestTy));
1208  }
1209
1210  case CK_CPointerToObjCPointerCast:
1211  case CK_BlockPointerToObjCPointerCast:
1212  case CK_AnyPointerToBlockPointerCast:
1213  case CK_BitCast: {
1214    Value *Src = Visit(const_cast<Expr*>(E));
1215    return Builder.CreateBitCast(Src, ConvertType(DestTy));
1216  }
1217  case CK_AtomicToNonAtomic:
1218  case CK_NonAtomicToAtomic:
1219  case CK_NoOp:
1220  case CK_UserDefinedConversion:
1221    return Visit(const_cast<Expr*>(E));
1222
1223  case CK_BaseToDerived: {
1224    const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
1225    assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
1226
1227    return CGF.GetAddressOfDerivedClass(Visit(E), DerivedClassDecl,
1228                                        CE->path_begin(), CE->path_end(),
1229                                        ShouldNullCheckClassCastValue(CE));
1230  }
1231  case CK_UncheckedDerivedToBase:
1232  case CK_DerivedToBase: {
1233    const CXXRecordDecl *DerivedClassDecl =
1234      E->getType()->getPointeeCXXRecordDecl();
1235    assert(DerivedClassDecl && "DerivedToBase arg isn't a C++ object pointer!");
1236
1237    return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
1238                                     CE->path_begin(), CE->path_end(),
1239                                     ShouldNullCheckClassCastValue(CE));
1240  }
1241  case CK_Dynamic: {
1242    Value *V = Visit(const_cast<Expr*>(E));
1243    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1244    return CGF.EmitDynamicCast(V, DCE);
1245  }
1246
1247  case CK_ArrayToPointerDecay: {
1248    assert(E->getType()->isArrayType() &&
1249           "Array to pointer decay must have array source type!");
1250
1251    Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
1252
1253    // Note that VLA pointers are always decayed, so we don't need to do
1254    // anything here.
1255    if (!E->getType()->isVariableArrayType()) {
1256      assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
1257      assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
1258                                 ->getElementType()) &&
1259             "Expected pointer to array");
1260      V = Builder.CreateStructGEP(V, 0, "arraydecay");
1261    }
1262
1263    // Make sure the array decay ends up being the right type.  This matters if
1264    // the array type was of an incomplete type.
1265    return CGF.Builder.CreateBitCast(V, ConvertType(CE->getType()));
1266  }
1267  case CK_FunctionToPointerDecay:
1268    return EmitLValue(E).getAddress();
1269
1270  case CK_NullToPointer:
1271    if (MustVisitNullValue(E))
1272      (void) Visit(E);
1273
1274    return llvm::ConstantPointerNull::get(
1275                               cast<llvm::PointerType>(ConvertType(DestTy)));
1276
1277  case CK_NullToMemberPointer: {
1278    if (MustVisitNullValue(E))
1279      (void) Visit(E);
1280
1281    const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1282    return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1283  }
1284
1285  case CK_ReinterpretMemberPointer:
1286  case CK_BaseToDerivedMemberPointer:
1287  case CK_DerivedToBaseMemberPointer: {
1288    Value *Src = Visit(E);
1289
1290    // Note that the AST doesn't distinguish between checked and
1291    // unchecked member pointer conversions, so we always have to
1292    // implement checked conversions here.  This is inefficient when
1293    // actual control flow may be required in order to perform the
1294    // check, which it is for data member pointers (but not member
1295    // function pointers on Itanium and ARM).
1296    return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1297  }
1298
1299  case CK_ARCProduceObject:
1300    return CGF.EmitARCRetainScalarExpr(E);
1301  case CK_ARCConsumeObject:
1302    return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1303  case CK_ARCReclaimReturnedObject: {
1304    llvm::Value *value = Visit(E);
1305    value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
1306    return CGF.EmitObjCConsumeObject(E->getType(), value);
1307  }
1308  case CK_ARCExtendBlockObject:
1309    return CGF.EmitARCExtendBlockObject(E);
1310
1311  case CK_CopyAndAutoreleaseBlockObject:
1312    return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
1313
1314  case CK_FloatingRealToComplex:
1315  case CK_FloatingComplexCast:
1316  case CK_IntegralRealToComplex:
1317  case CK_IntegralComplexCast:
1318  case CK_IntegralComplexToFloatingComplex:
1319  case CK_FloatingComplexToIntegralComplex:
1320  case CK_ConstructorConversion:
1321  case CK_ToUnion:
1322    llvm_unreachable("scalar cast to non-scalar value");
1323
1324  case CK_LValueToRValue:
1325    assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1326    assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1327    return Visit(const_cast<Expr*>(E));
1328
1329  case CK_IntegralToPointer: {
1330    Value *Src = Visit(const_cast<Expr*>(E));
1331
1332    // First, convert to the correct width so that we control the kind of
1333    // extension.
1334    llvm::Type *MiddleTy = CGF.IntPtrTy;
1335    bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1336    llvm::Value* IntResult =
1337      Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1338
1339    return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1340  }
1341  case CK_PointerToIntegral:
1342    assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1343    return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1344
1345  case CK_ToVoid: {
1346    CGF.EmitIgnoredExpr(E);
1347    return 0;
1348  }
1349  case CK_VectorSplat: {
1350    llvm::Type *DstTy = ConvertType(DestTy);
1351    Value *Elt = Visit(const_cast<Expr*>(E));
1352    Elt = EmitScalarConversion(Elt, E->getType(),
1353                               DestTy->getAs<VectorType>()->getElementType());
1354
1355    // Insert the element in element zero of an undef vector
1356    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
1357    llvm::Value *Idx = Builder.getInt32(0);
1358    UnV = Builder.CreateInsertElement(UnV, Elt, Idx);
1359
1360    // Splat the element across to all elements
1361    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1362    llvm::Constant *Zero = Builder.getInt32(0);
1363    llvm::Constant *Mask = llvm::ConstantVector::getSplat(NumElements, Zero);
1364    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
1365    return Yay;
1366  }
1367
1368  case CK_IntegralCast:
1369  case CK_IntegralToFloating:
1370  case CK_FloatingToIntegral:
1371  case CK_FloatingCast:
1372    return EmitScalarConversion(Visit(E), E->getType(), DestTy);
1373  case CK_IntegralToBoolean:
1374    return EmitIntToBoolConversion(Visit(E));
1375  case CK_PointerToBoolean:
1376    return EmitPointerToBoolConversion(Visit(E));
1377  case CK_FloatingToBoolean:
1378    return EmitFloatToBoolConversion(Visit(E));
1379  case CK_MemberPointerToBoolean: {
1380    llvm::Value *MemPtr = Visit(E);
1381    const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1382    return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1383  }
1384
1385  case CK_FloatingComplexToReal:
1386  case CK_IntegralComplexToReal:
1387    return CGF.EmitComplexExpr(E, false, true).first;
1388
1389  case CK_FloatingComplexToBoolean:
1390  case CK_IntegralComplexToBoolean: {
1391    CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1392
1393    // TODO: kill this function off, inline appropriate case here
1394    return EmitComplexToScalarConversion(V, E->getType(), DestTy);
1395  }
1396
1397  }
1398
1399  llvm_unreachable("unknown scalar cast");
1400}
1401
1402Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1403  CodeGenFunction::StmtExprEvaluation eval(CGF);
1404  return CGF.EmitCompoundStmt(*E->getSubStmt(), !E->getType()->isVoidType())
1405    .getScalarVal();
1406}
1407
1408//===----------------------------------------------------------------------===//
1409//                             Unary Operators
1410//===----------------------------------------------------------------------===//
1411
1412llvm::Value *ScalarExprEmitter::
1413EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
1414                                llvm::Value *InVal,
1415                                llvm::Value *NextVal, bool IsInc) {
1416  switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
1417  case LangOptions::SOB_Defined:
1418    return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1419  case LangOptions::SOB_Undefined:
1420    if (!CGF.getLangOpts().SanitizeSignedIntegerOverflow)
1421      return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1422    // Fall through.
1423  case LangOptions::SOB_Trapping:
1424    BinOpInfo BinOp;
1425    BinOp.LHS = InVal;
1426    BinOp.RHS = NextVal;
1427    BinOp.Ty = E->getType();
1428    BinOp.Opcode = BO_Add;
1429    BinOp.FPContractable = false;
1430    BinOp.E = E;
1431    return EmitOverflowCheckedBinOp(BinOp);
1432  }
1433  llvm_unreachable("Unknown SignedOverflowBehaviorTy");
1434}
1435
1436llvm::Value *
1437ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1438                                           bool isInc, bool isPre) {
1439
1440  QualType type = E->getSubExpr()->getType();
1441  llvm::Value *value = EmitLoadOfLValue(LV);
1442  llvm::Value *input = value;
1443  llvm::PHINode *atomicPHI = 0;
1444
1445  int amount = (isInc ? 1 : -1);
1446
1447  if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
1448    llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1449    llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1450    Builder.CreateBr(opBB);
1451    Builder.SetInsertPoint(opBB);
1452    atomicPHI = Builder.CreatePHI(value->getType(), 2);
1453    atomicPHI->addIncoming(value, startBB);
1454    type = atomicTy->getValueType();
1455    value = atomicPHI;
1456  }
1457
1458  // Special case of integer increment that we have to check first: bool++.
1459  // Due to promotion rules, we get:
1460  //   bool++ -> bool = bool + 1
1461  //          -> bool = (int)bool + 1
1462  //          -> bool = ((int)bool + 1 != 0)
1463  // An interesting aspect of this is that increment is always true.
1464  // Decrement does not have this property.
1465  if (isInc && type->isBooleanType()) {
1466    value = Builder.getTrue();
1467
1468  // Most common case by far: integer increment.
1469  } else if (type->isIntegerType()) {
1470
1471    llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
1472
1473    // Note that signed integer inc/dec with width less than int can't
1474    // overflow because of promotion rules; we're just eliding a few steps here.
1475    if (type->isSignedIntegerOrEnumerationType() &&
1476        value->getType()->getPrimitiveSizeInBits() >=
1477            CGF.IntTy->getBitWidth())
1478      value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc);
1479    else
1480      value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1481
1482  // Next most common: pointer increment.
1483  } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1484    QualType type = ptr->getPointeeType();
1485
1486    // VLA types don't have constant size.
1487    if (const VariableArrayType *vla
1488          = CGF.getContext().getAsVariableArrayType(type)) {
1489      llvm::Value *numElts = CGF.getVLASize(vla).first;
1490      if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1491      if (CGF.getLangOpts().isSignedOverflowDefined())
1492        value = Builder.CreateGEP(value, numElts, "vla.inc");
1493      else
1494        value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
1495
1496    // Arithmetic on function pointers (!) is just +-1.
1497    } else if (type->isFunctionType()) {
1498      llvm::Value *amt = Builder.getInt32(amount);
1499
1500      value = CGF.EmitCastToVoidPtr(value);
1501      if (CGF.getLangOpts().isSignedOverflowDefined())
1502        value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1503      else
1504        value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1505      value = Builder.CreateBitCast(value, input->getType());
1506
1507    // For everything else, we can just do a simple increment.
1508    } else {
1509      llvm::Value *amt = Builder.getInt32(amount);
1510      if (CGF.getLangOpts().isSignedOverflowDefined())
1511        value = Builder.CreateGEP(value, amt, "incdec.ptr");
1512      else
1513        value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1514    }
1515
1516  // Vector increment/decrement.
1517  } else if (type->isVectorType()) {
1518    if (type->hasIntegerRepresentation()) {
1519      llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1520
1521      value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1522    } else {
1523      value = Builder.CreateFAdd(
1524                  value,
1525                  llvm::ConstantFP::get(value->getType(), amount),
1526                  isInc ? "inc" : "dec");
1527    }
1528
1529  // Floating point.
1530  } else if (type->isRealFloatingType()) {
1531    // Add the inc/dec to the real part.
1532    llvm::Value *amt;
1533
1534    if (type->isHalfType()) {
1535      // Another special case: half FP increment should be done via float
1536      value =
1537    Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16),
1538                       input);
1539    }
1540
1541    if (value->getType()->isFloatTy())
1542      amt = llvm::ConstantFP::get(VMContext,
1543                                  llvm::APFloat(static_cast<float>(amount)));
1544    else if (value->getType()->isDoubleTy())
1545      amt = llvm::ConstantFP::get(VMContext,
1546                                  llvm::APFloat(static_cast<double>(amount)));
1547    else {
1548      llvm::APFloat F(static_cast<float>(amount));
1549      bool ignored;
1550      F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
1551                &ignored);
1552      amt = llvm::ConstantFP::get(VMContext, F);
1553    }
1554    value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1555
1556    if (type->isHalfType())
1557      value =
1558       Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16),
1559                          value);
1560
1561  // Objective-C pointer types.
1562  } else {
1563    const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1564    value = CGF.EmitCastToVoidPtr(value);
1565
1566    CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1567    if (!isInc) size = -size;
1568    llvm::Value *sizeValue =
1569      llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1570
1571    if (CGF.getLangOpts().isSignedOverflowDefined())
1572      value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1573    else
1574      value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1575    value = Builder.CreateBitCast(value, input->getType());
1576  }
1577
1578  if (atomicPHI) {
1579    llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1580    llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1581    llvm::Value *old = Builder.CreateAtomicCmpXchg(LV.getAddress(), atomicPHI,
1582        value, llvm::SequentiallyConsistent);
1583    atomicPHI->addIncoming(old, opBB);
1584    llvm::Value *success = Builder.CreateICmpEQ(old, atomicPHI);
1585    Builder.CreateCondBr(success, contBB, opBB);
1586    Builder.SetInsertPoint(contBB);
1587    return isPre ? value : input;
1588  }
1589
1590  // Store the updated result through the lvalue.
1591  if (LV.isBitField())
1592    CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
1593  else
1594    CGF.EmitStoreThroughLValue(RValue::get(value), LV);
1595
1596  // If this is a postinc, return the value read from memory, otherwise use the
1597  // updated value.
1598  return isPre ? value : input;
1599}
1600
1601
1602
1603Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1604  TestAndClearIgnoreResultAssign();
1605  // Emit unary minus with EmitSub so we handle overflow cases etc.
1606  BinOpInfo BinOp;
1607  BinOp.RHS = Visit(E->getSubExpr());
1608
1609  if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1610    BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1611  else
1612    BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1613  BinOp.Ty = E->getType();
1614  BinOp.Opcode = BO_Sub;
1615  BinOp.FPContractable = false;
1616  BinOp.E = E;
1617  return EmitSub(BinOp);
1618}
1619
1620Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1621  TestAndClearIgnoreResultAssign();
1622  Value *Op = Visit(E->getSubExpr());
1623  return Builder.CreateNot(Op, "neg");
1624}
1625
1626Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1627
1628  // Perform vector logical not on comparison with zero vector.
1629  if (E->getType()->isExtVectorType()) {
1630    Value *Oper = Visit(E->getSubExpr());
1631    Value *Zero = llvm::Constant::getNullValue(Oper->getType());
1632    Value *Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
1633    return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1634  }
1635
1636  // Compare operand to zero.
1637  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1638
1639  // Invert value.
1640  // TODO: Could dynamically modify easy computations here.  For example, if
1641  // the operand is an icmp ne, turn into icmp eq.
1642  BoolVal = Builder.CreateNot(BoolVal, "lnot");
1643
1644  // ZExt result to the expr type.
1645  return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1646}
1647
1648Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1649  // Try folding the offsetof to a constant.
1650  llvm::APSInt Value;
1651  if (E->EvaluateAsInt(Value, CGF.getContext()))
1652    return Builder.getInt(Value);
1653
1654  // Loop over the components of the offsetof to compute the value.
1655  unsigned n = E->getNumComponents();
1656  llvm::Type* ResultType = ConvertType(E->getType());
1657  llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1658  QualType CurrentType = E->getTypeSourceInfo()->getType();
1659  for (unsigned i = 0; i != n; ++i) {
1660    OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1661    llvm::Value *Offset = 0;
1662    switch (ON.getKind()) {
1663    case OffsetOfExpr::OffsetOfNode::Array: {
1664      // Compute the index
1665      Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1666      llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1667      bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
1668      Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1669
1670      // Save the element type
1671      CurrentType =
1672          CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1673
1674      // Compute the element size
1675      llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1676          CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1677
1678      // Multiply out to compute the result
1679      Offset = Builder.CreateMul(Idx, ElemSize);
1680      break;
1681    }
1682
1683    case OffsetOfExpr::OffsetOfNode::Field: {
1684      FieldDecl *MemberDecl = ON.getField();
1685      RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1686      const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1687
1688      // Compute the index of the field in its parent.
1689      unsigned i = 0;
1690      // FIXME: It would be nice if we didn't have to loop here!
1691      for (RecordDecl::field_iterator Field = RD->field_begin(),
1692                                      FieldEnd = RD->field_end();
1693           Field != FieldEnd; ++Field, ++i) {
1694        if (*Field == MemberDecl)
1695          break;
1696      }
1697      assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1698
1699      // Compute the offset to the field
1700      int64_t OffsetInt = RL.getFieldOffset(i) /
1701                          CGF.getContext().getCharWidth();
1702      Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1703
1704      // Save the element type.
1705      CurrentType = MemberDecl->getType();
1706      break;
1707    }
1708
1709    case OffsetOfExpr::OffsetOfNode::Identifier:
1710      llvm_unreachable("dependent __builtin_offsetof");
1711
1712    case OffsetOfExpr::OffsetOfNode::Base: {
1713      if (ON.getBase()->isVirtual()) {
1714        CGF.ErrorUnsupported(E, "virtual base in offsetof");
1715        continue;
1716      }
1717
1718      RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1719      const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1720
1721      // Save the element type.
1722      CurrentType = ON.getBase()->getType();
1723
1724      // Compute the offset to the base.
1725      const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1726      CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1727      CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
1728      Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
1729      break;
1730    }
1731    }
1732    Result = Builder.CreateAdd(Result, Offset);
1733  }
1734  return Result;
1735}
1736
1737/// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
1738/// argument of the sizeof expression as an integer.
1739Value *
1740ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
1741                              const UnaryExprOrTypeTraitExpr *E) {
1742  QualType TypeToSize = E->getTypeOfArgument();
1743  if (E->getKind() == UETT_SizeOf) {
1744    if (const VariableArrayType *VAT =
1745          CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1746      if (E->isArgumentType()) {
1747        // sizeof(type) - make sure to emit the VLA size.
1748        CGF.EmitVariablyModifiedType(TypeToSize);
1749      } else {
1750        // C99 6.5.3.4p2: If the argument is an expression of type
1751        // VLA, it is evaluated.
1752        CGF.EmitIgnoredExpr(E->getArgumentExpr());
1753      }
1754
1755      QualType eltType;
1756      llvm::Value *numElts;
1757      llvm::tie(numElts, eltType) = CGF.getVLASize(VAT);
1758
1759      llvm::Value *size = numElts;
1760
1761      // Scale the number of non-VLA elements by the non-VLA element size.
1762      CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
1763      if (!eltSize.isOne())
1764        size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
1765
1766      return size;
1767    }
1768  }
1769
1770  // If this isn't sizeof(vla), the result must be constant; use the constant
1771  // folding logic so we don't have to duplicate it here.
1772  return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
1773}
1774
1775Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1776  Expr *Op = E->getSubExpr();
1777  if (Op->getType()->isAnyComplexType()) {
1778    // If it's an l-value, load through the appropriate subobject l-value.
1779    // Note that we have to ask E because Op might be an l-value that
1780    // this won't work for, e.g. an Obj-C property.
1781    if (E->isGLValue())
1782      return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
1783
1784    // Otherwise, calculate and project.
1785    return CGF.EmitComplexExpr(Op, false, true).first;
1786  }
1787
1788  return Visit(Op);
1789}
1790
1791Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1792  Expr *Op = E->getSubExpr();
1793  if (Op->getType()->isAnyComplexType()) {
1794    // If it's an l-value, load through the appropriate subobject l-value.
1795    // Note that we have to ask E because Op might be an l-value that
1796    // this won't work for, e.g. an Obj-C property.
1797    if (Op->isGLValue())
1798      return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
1799
1800    // Otherwise, calculate and project.
1801    return CGF.EmitComplexExpr(Op, true, false).second;
1802  }
1803
1804  // __imag on a scalar returns zero.  Emit the subexpr to ensure side
1805  // effects are evaluated, but not the actual value.
1806  if (Op->isGLValue())
1807    CGF.EmitLValue(Op);
1808  else
1809    CGF.EmitScalarExpr(Op, true);
1810  return llvm::Constant::getNullValue(ConvertType(E->getType()));
1811}
1812
1813//===----------------------------------------------------------------------===//
1814//                           Binary Operators
1815//===----------------------------------------------------------------------===//
1816
1817BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1818  TestAndClearIgnoreResultAssign();
1819  BinOpInfo Result;
1820  Result.LHS = Visit(E->getLHS());
1821  Result.RHS = Visit(E->getRHS());
1822  Result.Ty  = E->getType();
1823  Result.Opcode = E->getOpcode();
1824  Result.FPContractable = E->isFPContractable();
1825  Result.E = E;
1826  return Result;
1827}
1828
1829LValue ScalarExprEmitter::EmitCompoundAssignLValue(
1830                                              const CompoundAssignOperator *E,
1831                        Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
1832                                                   Value *&Result) {
1833  QualType LHSTy = E->getLHS()->getType();
1834  BinOpInfo OpInfo;
1835
1836  if (E->getComputationResultType()->isAnyComplexType()) {
1837    // This needs to go through the complex expression emitter, but it's a tad
1838    // complicated to do that... I'm leaving it out for now.  (Note that we do
1839    // actually need the imaginary part of the RHS for multiplication and
1840    // division.)
1841    CGF.ErrorUnsupported(E, "complex compound assignment");
1842    Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1843    return LValue();
1844  }
1845
1846  // Emit the RHS first.  __block variables need to have the rhs evaluated
1847  // first, plus this should improve codegen a little.
1848  OpInfo.RHS = Visit(E->getRHS());
1849  OpInfo.Ty = E->getComputationResultType();
1850  OpInfo.Opcode = E->getOpcode();
1851  OpInfo.FPContractable = false;
1852  OpInfo.E = E;
1853  // Load/convert the LHS.
1854  LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
1855  OpInfo.LHS = EmitLoadOfLValue(LHSLV);
1856
1857  llvm::PHINode *atomicPHI = 0;
1858  if (LHSTy->isAtomicType()) {
1859    // FIXME: For floating point types, we should be saving and restoring the
1860    // floating point environment in the loop.
1861    llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1862    llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1863    Builder.CreateBr(opBB);
1864    Builder.SetInsertPoint(opBB);
1865    atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
1866    atomicPHI->addIncoming(OpInfo.LHS, startBB);
1867    OpInfo.LHS = atomicPHI;
1868  }
1869
1870  OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
1871                                    E->getComputationLHSType());
1872
1873  // Expand the binary operator.
1874  Result = (this->*Func)(OpInfo);
1875
1876  // Convert the result back to the LHS type.
1877  Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
1878
1879  if (atomicPHI) {
1880    llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1881    llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1882    llvm::Value *old = Builder.CreateAtomicCmpXchg(LHSLV.getAddress(), atomicPHI,
1883        Result, llvm::SequentiallyConsistent);
1884    atomicPHI->addIncoming(old, opBB);
1885    llvm::Value *success = Builder.CreateICmpEQ(old, atomicPHI);
1886    Builder.CreateCondBr(success, contBB, opBB);
1887    Builder.SetInsertPoint(contBB);
1888    return LHSLV;
1889  }
1890
1891  // Store the result value into the LHS lvalue. Bit-fields are handled
1892  // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
1893  // 'An assignment expression has the value of the left operand after the
1894  // assignment...'.
1895  if (LHSLV.isBitField())
1896    CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
1897  else
1898    CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
1899
1900  return LHSLV;
1901}
1902
1903Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
1904                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
1905  bool Ignore = TestAndClearIgnoreResultAssign();
1906  Value *RHS;
1907  LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
1908
1909  // If the result is clearly ignored, return now.
1910  if (Ignore)
1911    return 0;
1912
1913  // The result of an assignment in C is the assigned r-value.
1914  if (!CGF.getLangOpts().CPlusPlus)
1915    return RHS;
1916
1917  // If the lvalue is non-volatile, return the computed value of the assignment.
1918  if (!LHS.isVolatileQualified())
1919    return RHS;
1920
1921  // Otherwise, reload the value.
1922  return EmitLoadOfLValue(LHS);
1923}
1924
1925void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
1926    const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
1927  llvm::Value *Cond = 0;
1928
1929  if (CGF.getLangOpts().SanitizeDivideByZero)
1930    Cond = Builder.CreateICmpNE(Ops.RHS, Zero);
1931
1932  if (CGF.getLangOpts().SanitizeSignedIntegerOverflow &&
1933      Ops.Ty->hasSignedIntegerRepresentation()) {
1934    llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
1935
1936    llvm::Value *IntMin =
1937      Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
1938    llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
1939
1940    llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
1941    llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
1942    llvm::Value *Overflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
1943    Cond = Cond ? Builder.CreateAnd(Cond, Overflow, "and") : Overflow;
1944  }
1945
1946  if (Cond)
1947    EmitBinOpCheck(Cond, Ops);
1948}
1949
1950Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
1951  if (CGF.getLangOpts().SanitizeDivideByZero ||
1952      CGF.getLangOpts().SanitizeSignedIntegerOverflow) {
1953    llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1954
1955    if (Ops.Ty->isIntegerType())
1956      EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
1957    else if (CGF.getLangOpts().SanitizeDivideByZero &&
1958             Ops.Ty->isRealFloatingType())
1959      EmitBinOpCheck(Builder.CreateFCmpUNE(Ops.RHS, Zero), Ops);
1960  }
1961  if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
1962    llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
1963    if (CGF.getLangOpts().OpenCL) {
1964      // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp
1965      llvm::Type *ValTy = Val->getType();
1966      if (ValTy->isFloatTy() ||
1967          (isa<llvm::VectorType>(ValTy) &&
1968           cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
1969        CGF.SetFPAccuracy(Val, 2.5);
1970    }
1971    return Val;
1972  }
1973  else if (Ops.Ty->hasUnsignedIntegerRepresentation())
1974    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
1975  else
1976    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
1977}
1978
1979Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
1980  // Rem in C can't be a floating point type: C99 6.5.5p2.
1981  if (CGF.getLangOpts().SanitizeDivideByZero) {
1982    llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1983
1984    if (Ops.Ty->isIntegerType())
1985      EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
1986  }
1987
1988  if (Ops.Ty->hasUnsignedIntegerRepresentation())
1989    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
1990  else
1991    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
1992}
1993
1994Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
1995  unsigned IID;
1996  unsigned OpID = 0;
1997
1998  switch (Ops.Opcode) {
1999  case BO_Add:
2000  case BO_AddAssign:
2001    OpID = 1;
2002    IID = llvm::Intrinsic::sadd_with_overflow;
2003    break;
2004  case BO_Sub:
2005  case BO_SubAssign:
2006    OpID = 2;
2007    IID = llvm::Intrinsic::ssub_with_overflow;
2008    break;
2009  case BO_Mul:
2010  case BO_MulAssign:
2011    OpID = 3;
2012    IID = llvm::Intrinsic::smul_with_overflow;
2013    break;
2014  default:
2015    llvm_unreachable("Unsupported operation for overflow detection");
2016  }
2017  OpID <<= 1;
2018  OpID |= 1;
2019
2020  llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
2021
2022  llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
2023
2024  Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
2025  Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
2026  Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
2027
2028  // Handle overflow with llvm.trap if no custom handler has been specified.
2029  const std::string *handlerName =
2030    &CGF.getLangOpts().OverflowHandler;
2031  if (handlerName->empty()) {
2032    // If the signed-integer-overflow sanitizer is enabled, emit a call to its
2033    // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
2034    if (CGF.getLangOpts().SanitizeSignedIntegerOverflow)
2035      EmitBinOpCheck(Builder.CreateNot(overflow), Ops);
2036    else
2037      CGF.EmitTrapvCheck(Builder.CreateNot(overflow));
2038    return result;
2039  }
2040
2041  // Branch in case of overflow.
2042  llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
2043  llvm::Function::iterator insertPt = initialBB;
2044  llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
2045                                                      llvm::next(insertPt));
2046  llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
2047
2048  Builder.CreateCondBr(overflow, overflowBB, continueBB);
2049
2050  // If an overflow handler is set, then we want to call it and then use its
2051  // result, if it returns.
2052  Builder.SetInsertPoint(overflowBB);
2053
2054  // Get the overflow handler.
2055  llvm::Type *Int8Ty = CGF.Int8Ty;
2056  llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
2057  llvm::FunctionType *handlerTy =
2058      llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
2059  llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
2060
2061  // Sign extend the args to 64-bit, so that we can use the same handler for
2062  // all types of overflow.
2063  llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
2064  llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
2065
2066  // Call the handler with the two arguments, the operation, and the size of
2067  // the result.
2068  llvm::Value *handlerResult = Builder.CreateCall4(handler, lhs, rhs,
2069      Builder.getInt8(OpID),
2070      Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()));
2071
2072  // Truncate the result back to the desired size.
2073  handlerResult = Builder.CreateTrunc(handlerResult, opTy);
2074  Builder.CreateBr(continueBB);
2075
2076  Builder.SetInsertPoint(continueBB);
2077  llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
2078  phi->addIncoming(result, initialBB);
2079  phi->addIncoming(handlerResult, overflowBB);
2080
2081  return phi;
2082}
2083
2084/// Emit pointer + index arithmetic.
2085static Value *emitPointerArithmetic(CodeGenFunction &CGF,
2086                                    const BinOpInfo &op,
2087                                    bool isSubtraction) {
2088  // Must have binary (not unary) expr here.  Unary pointer
2089  // increment/decrement doesn't use this path.
2090  const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2091
2092  Value *pointer = op.LHS;
2093  Expr *pointerOperand = expr->getLHS();
2094  Value *index = op.RHS;
2095  Expr *indexOperand = expr->getRHS();
2096
2097  // In a subtraction, the LHS is always the pointer.
2098  if (!isSubtraction && !pointer->getType()->isPointerTy()) {
2099    std::swap(pointer, index);
2100    std::swap(pointerOperand, indexOperand);
2101  }
2102
2103  unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
2104  if (width != CGF.PointerWidthInBits) {
2105    // Zero-extend or sign-extend the pointer value according to
2106    // whether the index is signed or not.
2107    bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
2108    index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
2109                                      "idx.ext");
2110  }
2111
2112  // If this is subtraction, negate the index.
2113  if (isSubtraction)
2114    index = CGF.Builder.CreateNeg(index, "idx.neg");
2115
2116  const PointerType *pointerType
2117    = pointerOperand->getType()->getAs<PointerType>();
2118  if (!pointerType) {
2119    QualType objectType = pointerOperand->getType()
2120                                        ->castAs<ObjCObjectPointerType>()
2121                                        ->getPointeeType();
2122    llvm::Value *objectSize
2123      = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
2124
2125    index = CGF.Builder.CreateMul(index, objectSize);
2126
2127    Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2128    result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2129    return CGF.Builder.CreateBitCast(result, pointer->getType());
2130  }
2131
2132  QualType elementType = pointerType->getPointeeType();
2133  if (const VariableArrayType *vla
2134        = CGF.getContext().getAsVariableArrayType(elementType)) {
2135    // The element count here is the total number of non-VLA elements.
2136    llvm::Value *numElements = CGF.getVLASize(vla).first;
2137
2138    // Effectively, the multiply by the VLA size is part of the GEP.
2139    // GEP indexes are signed, and scaling an index isn't permitted to
2140    // signed-overflow, so we use the same semantics for our explicit
2141    // multiply.  We suppress this if overflow is not undefined behavior.
2142    if (CGF.getLangOpts().isSignedOverflowDefined()) {
2143      index = CGF.Builder.CreateMul(index, numElements, "vla.index");
2144      pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2145    } else {
2146      index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
2147      pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2148    }
2149    return pointer;
2150  }
2151
2152  // Explicitly handle GNU void* and function pointer arithmetic extensions. The
2153  // GNU void* casts amount to no-ops since our void* type is i8*, but this is
2154  // future proof.
2155  if (elementType->isVoidType() || elementType->isFunctionType()) {
2156    Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2157    result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2158    return CGF.Builder.CreateBitCast(result, pointer->getType());
2159  }
2160
2161  if (CGF.getLangOpts().isSignedOverflowDefined())
2162    return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2163
2164  return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2165}
2166
2167// Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
2168// Addend. Use negMul and negAdd to negate the first operand of the Mul or
2169// the add operand respectively. This allows fmuladd to represent a*b-c, or
2170// c-a*b. Patterns in LLVM should catch the negated forms and translate them to
2171// efficient operations.
2172static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
2173                           const CodeGenFunction &CGF, CGBuilderTy &Builder,
2174                           bool negMul, bool negAdd) {
2175  assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
2176
2177  Value *MulOp0 = MulOp->getOperand(0);
2178  Value *MulOp1 = MulOp->getOperand(1);
2179  if (negMul) {
2180    MulOp0 =
2181      Builder.CreateFSub(
2182        llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
2183        "neg");
2184  } else if (negAdd) {
2185    Addend =
2186      Builder.CreateFSub(
2187        llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
2188        "neg");
2189  }
2190
2191  Value *FMulAdd =
2192    Builder.CreateCall3(
2193      CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
2194                           MulOp0, MulOp1, Addend);
2195   MulOp->eraseFromParent();
2196
2197   return FMulAdd;
2198}
2199
2200// Check whether it would be legal to emit an fmuladd intrinsic call to
2201// represent op and if so, build the fmuladd.
2202//
2203// Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
2204// Does NOT check the type of the operation - it's assumed that this function
2205// will be called from contexts where it's known that the type is contractable.
2206static Value* tryEmitFMulAdd(const BinOpInfo &op,
2207                         const CodeGenFunction &CGF, CGBuilderTy &Builder,
2208                         bool isSub=false) {
2209
2210  assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
2211          op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
2212         "Only fadd/fsub can be the root of an fmuladd.");
2213
2214  // Check whether this op is marked as fusable.
2215  if (!op.FPContractable)
2216    return 0;
2217
2218  // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is
2219  // either disabled, or handled entirely by the LLVM backend).
2220  if (CGF.getLangOpts().getFPContractMode() != LangOptions::FPC_On)
2221    return 0;
2222
2223  // We have a potentially fusable op. Look for a mul on one of the operands.
2224  if (llvm::BinaryOperator* LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
2225    if (LHSBinOp->getOpcode() == llvm::Instruction::FMul) {
2226      assert(LHSBinOp->getNumUses() == 0 &&
2227             "Operations with multiple uses shouldn't be contracted.");
2228      return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
2229    }
2230  } else if (llvm::BinaryOperator* RHSBinOp =
2231               dyn_cast<llvm::BinaryOperator>(op.RHS)) {
2232    if (RHSBinOp->getOpcode() == llvm::Instruction::FMul) {
2233      assert(RHSBinOp->getNumUses() == 0 &&
2234             "Operations with multiple uses shouldn't be contracted.");
2235      return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
2236    }
2237  }
2238
2239  return 0;
2240}
2241
2242Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
2243  if (op.LHS->getType()->isPointerTy() ||
2244      op.RHS->getType()->isPointerTy())
2245    return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
2246
2247  if (op.Ty->isSignedIntegerOrEnumerationType()) {
2248    switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2249    case LangOptions::SOB_Defined:
2250      return Builder.CreateAdd(op.LHS, op.RHS, "add");
2251    case LangOptions::SOB_Undefined:
2252      if (!CGF.getLangOpts().SanitizeSignedIntegerOverflow)
2253        return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2254      // Fall through.
2255    case LangOptions::SOB_Trapping:
2256      return EmitOverflowCheckedBinOp(op);
2257    }
2258  }
2259
2260  if (op.LHS->getType()->isFPOrFPVectorTy()) {
2261    // Try to form an fmuladd.
2262    if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
2263      return FMulAdd;
2264
2265    return Builder.CreateFAdd(op.LHS, op.RHS, "add");
2266  }
2267
2268  return Builder.CreateAdd(op.LHS, op.RHS, "add");
2269}
2270
2271Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
2272  // The LHS is always a pointer if either side is.
2273  if (!op.LHS->getType()->isPointerTy()) {
2274    if (op.Ty->isSignedIntegerOrEnumerationType()) {
2275      switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2276      case LangOptions::SOB_Defined:
2277        return Builder.CreateSub(op.LHS, op.RHS, "sub");
2278      case LangOptions::SOB_Undefined:
2279        if (!CGF.getLangOpts().SanitizeSignedIntegerOverflow)
2280          return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2281        // Fall through.
2282      case LangOptions::SOB_Trapping:
2283        return EmitOverflowCheckedBinOp(op);
2284      }
2285    }
2286
2287    if (op.LHS->getType()->isFPOrFPVectorTy()) {
2288      // Try to form an fmuladd.
2289      if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
2290        return FMulAdd;
2291      return Builder.CreateFSub(op.LHS, op.RHS, "sub");
2292    }
2293
2294    return Builder.CreateSub(op.LHS, op.RHS, "sub");
2295  }
2296
2297  // If the RHS is not a pointer, then we have normal pointer
2298  // arithmetic.
2299  if (!op.RHS->getType()->isPointerTy())
2300    return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
2301
2302  // Otherwise, this is a pointer subtraction.
2303
2304  // Do the raw subtraction part.
2305  llvm::Value *LHS
2306    = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
2307  llvm::Value *RHS
2308    = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
2309  Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
2310
2311  // Okay, figure out the element size.
2312  const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2313  QualType elementType = expr->getLHS()->getType()->getPointeeType();
2314
2315  llvm::Value *divisor = 0;
2316
2317  // For a variable-length array, this is going to be non-constant.
2318  if (const VariableArrayType *vla
2319        = CGF.getContext().getAsVariableArrayType(elementType)) {
2320    llvm::Value *numElements;
2321    llvm::tie(numElements, elementType) = CGF.getVLASize(vla);
2322
2323    divisor = numElements;
2324
2325    // Scale the number of non-VLA elements by the non-VLA element size.
2326    CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2327    if (!eltSize.isOne())
2328      divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2329
2330  // For everything elese, we can just compute it, safe in the
2331  // assumption that Sema won't let anything through that we can't
2332  // safely compute the size of.
2333  } else {
2334    CharUnits elementSize;
2335    // Handle GCC extension for pointer arithmetic on void* and
2336    // function pointer types.
2337    if (elementType->isVoidType() || elementType->isFunctionType())
2338      elementSize = CharUnits::One();
2339    else
2340      elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2341
2342    // Don't even emit the divide for element size of 1.
2343    if (elementSize.isOne())
2344      return diffInChars;
2345
2346    divisor = CGF.CGM.getSize(elementSize);
2347  }
2348
2349  // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2350  // pointer difference in C is only defined in the case where both operands
2351  // are pointing to elements of an array.
2352  return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2353}
2354
2355Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2356  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2357  // RHS to the same size as the LHS.
2358  Value *RHS = Ops.RHS;
2359  if (Ops.LHS->getType() != RHS->getType())
2360    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2361
2362  if (CGF.getLangOpts().SanitizeShift &&
2363      isa<llvm::IntegerType>(Ops.LHS->getType())) {
2364    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
2365    llvm::Value *WidthMinusOne =
2366      llvm::ConstantInt::get(RHS->getType(), Width - 1);
2367    // FIXME: Emit the branching explicitly rather than emitting the check
2368    // twice.
2369    EmitBinOpCheck(Builder.CreateICmpULE(RHS, WidthMinusOne), Ops);
2370
2371    if (Ops.Ty->hasSignedIntegerRepresentation()) {
2372      // Check whether we are shifting any non-zero bits off the top of the
2373      // integer.
2374      llvm::Value *BitsShiftedOff =
2375        Builder.CreateLShr(Ops.LHS,
2376                           Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros",
2377                                             /*NUW*/true, /*NSW*/true),
2378                           "shl.check");
2379      if (CGF.getLangOpts().CPlusPlus) {
2380        // In C99, we are not permitted to shift a 1 bit into the sign bit.
2381        // Under C++11's rules, shifting a 1 bit into the sign bit is
2382        // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
2383        // define signed left shifts, so we use the C99 and C++11 rules there).
2384        llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
2385        BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
2386      }
2387      llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
2388      EmitBinOpCheck(Builder.CreateICmpEQ(BitsShiftedOff, Zero), Ops);
2389    }
2390  }
2391
2392  return Builder.CreateShl(Ops.LHS, RHS, "shl");
2393}
2394
2395Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2396  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2397  // RHS to the same size as the LHS.
2398  Value *RHS = Ops.RHS;
2399  if (Ops.LHS->getType() != RHS->getType())
2400    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2401
2402  if (CGF.getLangOpts().SanitizeShift &&
2403      isa<llvm::IntegerType>(Ops.LHS->getType())) {
2404    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
2405    llvm::Value *WidthVal = llvm::ConstantInt::get(RHS->getType(), Width);
2406    EmitBinOpCheck(Builder.CreateICmpULT(RHS, WidthVal), Ops);
2407  }
2408
2409  if (Ops.Ty->hasUnsignedIntegerRepresentation())
2410    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2411  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2412}
2413
2414enum IntrinsicType { VCMPEQ, VCMPGT };
2415// return corresponding comparison intrinsic for given vector type
2416static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2417                                        BuiltinType::Kind ElemKind) {
2418  switch (ElemKind) {
2419  default: llvm_unreachable("unexpected element type");
2420  case BuiltinType::Char_U:
2421  case BuiltinType::UChar:
2422    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2423                            llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2424  case BuiltinType::Char_S:
2425  case BuiltinType::SChar:
2426    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2427                            llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2428  case BuiltinType::UShort:
2429    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2430                            llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2431  case BuiltinType::Short:
2432    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2433                            llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2434  case BuiltinType::UInt:
2435  case BuiltinType::ULong:
2436    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2437                            llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2438  case BuiltinType::Int:
2439  case BuiltinType::Long:
2440    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2441                            llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2442  case BuiltinType::Float:
2443    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2444                            llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2445  }
2446}
2447
2448Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
2449                                      unsigned SICmpOpc, unsigned FCmpOpc) {
2450  TestAndClearIgnoreResultAssign();
2451  Value *Result;
2452  QualType LHSTy = E->getLHS()->getType();
2453  if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2454    assert(E->getOpcode() == BO_EQ ||
2455           E->getOpcode() == BO_NE);
2456    Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2457    Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2458    Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2459                   CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2460  } else if (!LHSTy->isAnyComplexType()) {
2461    Value *LHS = Visit(E->getLHS());
2462    Value *RHS = Visit(E->getRHS());
2463
2464    // If AltiVec, the comparison results in a numeric type, so we use
2465    // intrinsics comparing vectors and giving 0 or 1 as a result
2466    if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2467      // constants for mapping CR6 register bits to predicate result
2468      enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2469
2470      llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2471
2472      // in several cases vector arguments order will be reversed
2473      Value *FirstVecArg = LHS,
2474            *SecondVecArg = RHS;
2475
2476      QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2477      const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2478      BuiltinType::Kind ElementKind = BTy->getKind();
2479
2480      switch(E->getOpcode()) {
2481      default: llvm_unreachable("is not a comparison operation");
2482      case BO_EQ:
2483        CR6 = CR6_LT;
2484        ID = GetIntrinsic(VCMPEQ, ElementKind);
2485        break;
2486      case BO_NE:
2487        CR6 = CR6_EQ;
2488        ID = GetIntrinsic(VCMPEQ, ElementKind);
2489        break;
2490      case BO_LT:
2491        CR6 = CR6_LT;
2492        ID = GetIntrinsic(VCMPGT, ElementKind);
2493        std::swap(FirstVecArg, SecondVecArg);
2494        break;
2495      case BO_GT:
2496        CR6 = CR6_LT;
2497        ID = GetIntrinsic(VCMPGT, ElementKind);
2498        break;
2499      case BO_LE:
2500        if (ElementKind == BuiltinType::Float) {
2501          CR6 = CR6_LT;
2502          ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2503          std::swap(FirstVecArg, SecondVecArg);
2504        }
2505        else {
2506          CR6 = CR6_EQ;
2507          ID = GetIntrinsic(VCMPGT, ElementKind);
2508        }
2509        break;
2510      case BO_GE:
2511        if (ElementKind == BuiltinType::Float) {
2512          CR6 = CR6_LT;
2513          ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2514        }
2515        else {
2516          CR6 = CR6_EQ;
2517          ID = GetIntrinsic(VCMPGT, ElementKind);
2518          std::swap(FirstVecArg, SecondVecArg);
2519        }
2520        break;
2521      }
2522
2523      Value *CR6Param = Builder.getInt32(CR6);
2524      llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2525      Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, "");
2526      return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2527    }
2528
2529    if (LHS->getType()->isFPOrFPVectorTy()) {
2530      Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
2531                                  LHS, RHS, "cmp");
2532    } else if (LHSTy->hasSignedIntegerRepresentation()) {
2533      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
2534                                  LHS, RHS, "cmp");
2535    } else {
2536      // Unsigned integers and pointers.
2537      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2538                                  LHS, RHS, "cmp");
2539    }
2540
2541    // If this is a vector comparison, sign extend the result to the appropriate
2542    // vector integer type and return it (don't convert to bool).
2543    if (LHSTy->isVectorType())
2544      return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2545
2546  } else {
2547    // Complex Comparison: can only be an equality comparison.
2548    CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
2549    CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
2550
2551    QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
2552
2553    Value *ResultR, *ResultI;
2554    if (CETy->isRealFloatingType()) {
2555      ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2556                                   LHS.first, RHS.first, "cmp.r");
2557      ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2558                                   LHS.second, RHS.second, "cmp.i");
2559    } else {
2560      // Complex comparisons can only be equality comparisons.  As such, signed
2561      // and unsigned opcodes are the same.
2562      ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2563                                   LHS.first, RHS.first, "cmp.r");
2564      ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2565                                   LHS.second, RHS.second, "cmp.i");
2566    }
2567
2568    if (E->getOpcode() == BO_EQ) {
2569      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2570    } else {
2571      assert(E->getOpcode() == BO_NE &&
2572             "Complex comparison other than == or != ?");
2573      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2574    }
2575  }
2576
2577  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2578}
2579
2580Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2581  bool Ignore = TestAndClearIgnoreResultAssign();
2582
2583  Value *RHS;
2584  LValue LHS;
2585
2586  switch (E->getLHS()->getType().getObjCLifetime()) {
2587  case Qualifiers::OCL_Strong:
2588    llvm::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
2589    break;
2590
2591  case Qualifiers::OCL_Autoreleasing:
2592    llvm::tie(LHS,RHS) = CGF.EmitARCStoreAutoreleasing(E);
2593    break;
2594
2595  case Qualifiers::OCL_Weak:
2596    RHS = Visit(E->getRHS());
2597    LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2598    RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
2599    break;
2600
2601  // No reason to do any of these differently.
2602  case Qualifiers::OCL_None:
2603  case Qualifiers::OCL_ExplicitNone:
2604    // __block variables need to have the rhs evaluated first, plus
2605    // this should improve codegen just a little.
2606    RHS = Visit(E->getRHS());
2607    LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2608
2609    // Store the value into the LHS.  Bit-fields are handled specially
2610    // because the result is altered by the store, i.e., [C99 6.5.16p1]
2611    // 'An assignment expression has the value of the left operand after
2612    // the assignment...'.
2613    if (LHS.isBitField())
2614      CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
2615    else
2616      CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
2617  }
2618
2619  // If the result is clearly ignored, return now.
2620  if (Ignore)
2621    return 0;
2622
2623  // The result of an assignment in C is the assigned r-value.
2624  if (!CGF.getLangOpts().CPlusPlus)
2625    return RHS;
2626
2627  // If the lvalue is non-volatile, return the computed value of the assignment.
2628  if (!LHS.isVolatileQualified())
2629    return RHS;
2630
2631  // Otherwise, reload the value.
2632  return EmitLoadOfLValue(LHS);
2633}
2634
2635Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
2636
2637  // Perform vector logical and on comparisons with zero vectors.
2638  if (E->getType()->isVectorType()) {
2639    Value *LHS = Visit(E->getLHS());
2640    Value *RHS = Visit(E->getRHS());
2641    Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
2642    LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
2643    RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
2644    Value *And = Builder.CreateAnd(LHS, RHS);
2645    return Builder.CreateSExt(And, Zero->getType(), "sext");
2646  }
2647
2648  llvm::Type *ResTy = ConvertType(E->getType());
2649
2650  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
2651  // If we have 1 && X, just emit X without inserting the control flow.
2652  bool LHSCondVal;
2653  if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2654    if (LHSCondVal) { // If we have 1 && X, just emit X.
2655      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2656      // ZExt result to int or bool.
2657      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
2658    }
2659
2660    // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
2661    if (!CGF.ContainsLabel(E->getRHS()))
2662      return llvm::Constant::getNullValue(ResTy);
2663  }
2664
2665  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
2666  llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
2667
2668  CodeGenFunction::ConditionalEvaluation eval(CGF);
2669
2670  // Branch on the LHS first.  If it is false, go to the failure (cont) block.
2671  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
2672
2673  // Any edges into the ContBlock are now from an (indeterminate number of)
2674  // edges from this first condition.  All of these values will be false.  Start
2675  // setting up the PHI node in the Cont Block for this.
2676  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2677                                            "", ContBlock);
2678  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2679       PI != PE; ++PI)
2680    PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
2681
2682  eval.begin(CGF);
2683  CGF.EmitBlock(RHSBlock);
2684  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2685  eval.end(CGF);
2686
2687  // Reaquire the RHS block, as there may be subblocks inserted.
2688  RHSBlock = Builder.GetInsertBlock();
2689
2690  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2691  // into the phi node for the edge with the value of RHSCond.
2692  if (CGF.getDebugInfo())
2693    // There is no need to emit line number for unconditional branch.
2694    Builder.SetCurrentDebugLocation(llvm::DebugLoc());
2695  CGF.EmitBlock(ContBlock);
2696  PN->addIncoming(RHSCond, RHSBlock);
2697
2698  // ZExt result to int.
2699  return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
2700}
2701
2702Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
2703
2704  // Perform vector logical or on comparisons with zero vectors.
2705  if (E->getType()->isVectorType()) {
2706    Value *LHS = Visit(E->getLHS());
2707    Value *RHS = Visit(E->getRHS());
2708    Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
2709    LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
2710    RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
2711    Value *Or = Builder.CreateOr(LHS, RHS);
2712    return Builder.CreateSExt(Or, Zero->getType(), "sext");
2713  }
2714
2715  llvm::Type *ResTy = ConvertType(E->getType());
2716
2717  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
2718  // If we have 0 || X, just emit X without inserting the control flow.
2719  bool LHSCondVal;
2720  if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2721    if (!LHSCondVal) { // If we have 0 || X, just emit X.
2722      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2723      // ZExt result to int or bool.
2724      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
2725    }
2726
2727    // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
2728    if (!CGF.ContainsLabel(E->getRHS()))
2729      return llvm::ConstantInt::get(ResTy, 1);
2730  }
2731
2732  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
2733  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
2734
2735  CodeGenFunction::ConditionalEvaluation eval(CGF);
2736
2737  // Branch on the LHS first.  If it is true, go to the success (cont) block.
2738  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
2739
2740  // Any edges into the ContBlock are now from an (indeterminate number of)
2741  // edges from this first condition.  All of these values will be true.  Start
2742  // setting up the PHI node in the Cont Block for this.
2743  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2744                                            "", ContBlock);
2745  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2746       PI != PE; ++PI)
2747    PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
2748
2749  eval.begin(CGF);
2750
2751  // Emit the RHS condition as a bool value.
2752  CGF.EmitBlock(RHSBlock);
2753  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2754
2755  eval.end(CGF);
2756
2757  // Reaquire the RHS block, as there may be subblocks inserted.
2758  RHSBlock = Builder.GetInsertBlock();
2759
2760  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2761  // into the phi node for the edge with the value of RHSCond.
2762  CGF.EmitBlock(ContBlock);
2763  PN->addIncoming(RHSCond, RHSBlock);
2764
2765  // ZExt result to int.
2766  return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
2767}
2768
2769Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
2770  CGF.EmitIgnoredExpr(E->getLHS());
2771  CGF.EnsureInsertPoint();
2772  return Visit(E->getRHS());
2773}
2774
2775//===----------------------------------------------------------------------===//
2776//                             Other Operators
2777//===----------------------------------------------------------------------===//
2778
2779/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
2780/// expression is cheap enough and side-effect-free enough to evaluate
2781/// unconditionally instead of conditionally.  This is used to convert control
2782/// flow into selects in some cases.
2783static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
2784                                                   CodeGenFunction &CGF) {
2785  E = E->IgnoreParens();
2786
2787  // Anything that is an integer or floating point constant is fine.
2788  if (E->isConstantInitializer(CGF.getContext(), false))
2789    return true;
2790
2791  // Non-volatile automatic variables too, to get "cond ? X : Y" where
2792  // X and Y are local variables.
2793  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
2794    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2795      if (VD->hasLocalStorage() && !(CGF.getContext()
2796                                     .getCanonicalType(VD->getType())
2797                                     .isVolatileQualified()))
2798        return true;
2799
2800  return false;
2801}
2802
2803
2804Value *ScalarExprEmitter::
2805VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
2806  TestAndClearIgnoreResultAssign();
2807
2808  // Bind the common expression if necessary.
2809  CodeGenFunction::OpaqueValueMapping binding(CGF, E);
2810
2811  Expr *condExpr = E->getCond();
2812  Expr *lhsExpr = E->getTrueExpr();
2813  Expr *rhsExpr = E->getFalseExpr();
2814
2815  // If the condition constant folds and can be elided, try to avoid emitting
2816  // the condition and the dead arm.
2817  bool CondExprBool;
2818  if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2819    Expr *live = lhsExpr, *dead = rhsExpr;
2820    if (!CondExprBool) std::swap(live, dead);
2821
2822    // If the dead side doesn't have labels we need, just emit the Live part.
2823    if (!CGF.ContainsLabel(dead)) {
2824      Value *Result = Visit(live);
2825
2826      // If the live part is a throw expression, it acts like it has a void
2827      // type, so evaluating it returns a null Value*.  However, a conditional
2828      // with non-void type must return a non-null Value*.
2829      if (!Result && !E->getType()->isVoidType())
2830        Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
2831
2832      return Result;
2833    }
2834  }
2835
2836  // OpenCL: If the condition is a vector, we can treat this condition like
2837  // the select function.
2838  if (CGF.getLangOpts().OpenCL
2839      && condExpr->getType()->isVectorType()) {
2840    llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
2841    llvm::Value *LHS = Visit(lhsExpr);
2842    llvm::Value *RHS = Visit(rhsExpr);
2843
2844    llvm::Type *condType = ConvertType(condExpr->getType());
2845    llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
2846
2847    unsigned numElem = vecTy->getNumElements();
2848    llvm::Type *elemType = vecTy->getElementType();
2849
2850    llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
2851    llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
2852    llvm::Value *tmp = Builder.CreateSExt(TestMSB,
2853                                          llvm::VectorType::get(elemType,
2854                                                                numElem),
2855                                          "sext");
2856    llvm::Value *tmp2 = Builder.CreateNot(tmp);
2857
2858    // Cast float to int to perform ANDs if necessary.
2859    llvm::Value *RHSTmp = RHS;
2860    llvm::Value *LHSTmp = LHS;
2861    bool wasCast = false;
2862    llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
2863    if (rhsVTy->getElementType()->isFloatingPointTy()) {
2864      RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
2865      LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
2866      wasCast = true;
2867    }
2868
2869    llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
2870    llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
2871    llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
2872    if (wasCast)
2873      tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
2874
2875    return tmp5;
2876  }
2877
2878  // If this is a really simple expression (like x ? 4 : 5), emit this as a
2879  // select instead of as control flow.  We can only do this if it is cheap and
2880  // safe to evaluate the LHS and RHS unconditionally.
2881  if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
2882      isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
2883    llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
2884    llvm::Value *LHS = Visit(lhsExpr);
2885    llvm::Value *RHS = Visit(rhsExpr);
2886    if (!LHS) {
2887      // If the conditional has void type, make sure we return a null Value*.
2888      assert(!RHS && "LHS and RHS types must match");
2889      return 0;
2890    }
2891    return Builder.CreateSelect(CondV, LHS, RHS, "cond");
2892  }
2893
2894  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
2895  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
2896  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
2897
2898  CodeGenFunction::ConditionalEvaluation eval(CGF);
2899  CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock);
2900
2901  CGF.EmitBlock(LHSBlock);
2902  eval.begin(CGF);
2903  Value *LHS = Visit(lhsExpr);
2904  eval.end(CGF);
2905
2906  LHSBlock = Builder.GetInsertBlock();
2907  Builder.CreateBr(ContBlock);
2908
2909  CGF.EmitBlock(RHSBlock);
2910  eval.begin(CGF);
2911  Value *RHS = Visit(rhsExpr);
2912  eval.end(CGF);
2913
2914  RHSBlock = Builder.GetInsertBlock();
2915  CGF.EmitBlock(ContBlock);
2916
2917  // If the LHS or RHS is a throw expression, it will be legitimately null.
2918  if (!LHS)
2919    return RHS;
2920  if (!RHS)
2921    return LHS;
2922
2923  // Create a PHI node for the real part.
2924  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
2925  PN->addIncoming(LHS, LHSBlock);
2926  PN->addIncoming(RHS, RHSBlock);
2927  return PN;
2928}
2929
2930Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
2931  return Visit(E->getChosenSubExpr(CGF.getContext()));
2932}
2933
2934Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
2935  llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
2936  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
2937
2938  // If EmitVAArg fails, we fall back to the LLVM instruction.
2939  if (!ArgPtr)
2940    return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
2941
2942  // FIXME Volatility.
2943  return Builder.CreateLoad(ArgPtr);
2944}
2945
2946Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
2947  return CGF.EmitBlockLiteral(block);
2948}
2949
2950Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
2951  Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
2952  llvm::Type *DstTy = ConvertType(E->getType());
2953
2954  // Going from vec4->vec3 or vec3->vec4 is a special case and requires
2955  // a shuffle vector instead of a bitcast.
2956  llvm::Type *SrcTy = Src->getType();
2957  if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
2958    unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
2959    unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
2960    if ((numElementsDst == 3 && numElementsSrc == 4)
2961        || (numElementsDst == 4 && numElementsSrc == 3)) {
2962
2963
2964      // In the case of going from int4->float3, a bitcast is needed before
2965      // doing a shuffle.
2966      llvm::Type *srcElemTy =
2967      cast<llvm::VectorType>(SrcTy)->getElementType();
2968      llvm::Type *dstElemTy =
2969      cast<llvm::VectorType>(DstTy)->getElementType();
2970
2971      if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
2972          || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
2973        // Create a float type of the same size as the source or destination.
2974        llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
2975                                                                 numElementsSrc);
2976
2977        Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
2978      }
2979
2980      llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
2981
2982      SmallVector<llvm::Constant*, 3> Args;
2983      Args.push_back(Builder.getInt32(0));
2984      Args.push_back(Builder.getInt32(1));
2985      Args.push_back(Builder.getInt32(2));
2986
2987      if (numElementsDst == 4)
2988        Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
2989
2990      llvm::Constant *Mask = llvm::ConstantVector::get(Args);
2991
2992      return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
2993    }
2994  }
2995
2996  return Builder.CreateBitCast(Src, DstTy, "astype");
2997}
2998
2999Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
3000  return CGF.EmitAtomicExpr(E).getScalarVal();
3001}
3002
3003//===----------------------------------------------------------------------===//
3004//                         Entry Point into this File
3005//===----------------------------------------------------------------------===//
3006
3007/// EmitScalarExpr - Emit the computation of the specified expression of scalar
3008/// type, ignoring the result.
3009Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
3010  assert(E && !hasAggregateLLVMType(E->getType()) &&
3011         "Invalid scalar expression to emit");
3012
3013  if (isa<CXXDefaultArgExpr>(E))
3014    disableDebugInfo();
3015  Value *V = ScalarExprEmitter(*this, IgnoreResultAssign)
3016    .Visit(const_cast<Expr*>(E));
3017  if (isa<CXXDefaultArgExpr>(E))
3018    enableDebugInfo();
3019  return V;
3020}
3021
3022/// EmitScalarConversion - Emit a conversion from the specified type to the
3023/// specified destination type, both of which are LLVM scalar types.
3024Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
3025                                             QualType DstTy) {
3026  assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
3027         "Invalid scalar expression to emit");
3028  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
3029}
3030
3031/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
3032/// type to the specified destination type, where the destination type is an
3033/// LLVM scalar type.
3034Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
3035                                                      QualType SrcTy,
3036                                                      QualType DstTy) {
3037  assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
3038         "Invalid complex -> scalar conversion");
3039  return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
3040                                                                DstTy);
3041}
3042
3043
3044llvm::Value *CodeGenFunction::
3045EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3046                        bool isInc, bool isPre) {
3047  return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
3048}
3049
3050LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
3051  llvm::Value *V;
3052  // object->isa or (*object).isa
3053  // Generate code as for: *(Class*)object
3054  // build Class* type
3055  llvm::Type *ClassPtrTy = ConvertType(E->getType());
3056
3057  Expr *BaseExpr = E->getBase();
3058  if (BaseExpr->isRValue()) {
3059    V = CreateMemTemp(E->getType(), "resval");
3060    llvm::Value *Src = EmitScalarExpr(BaseExpr);
3061    Builder.CreateStore(Src, V);
3062    V = ScalarExprEmitter(*this).EmitLoadOfLValue(
3063      MakeNaturalAlignAddrLValue(V, E->getType()));
3064  } else {
3065    if (E->isArrow())
3066      V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
3067    else
3068      V = EmitLValue(BaseExpr).getAddress();
3069  }
3070
3071  // build Class* type
3072  ClassPtrTy = ClassPtrTy->getPointerTo();
3073  V = Builder.CreateBitCast(V, ClassPtrTy);
3074  return MakeNaturalAlignAddrLValue(V, E->getType());
3075}
3076
3077
3078LValue CodeGenFunction::EmitCompoundAssignmentLValue(
3079                                            const CompoundAssignOperator *E) {
3080  ScalarExprEmitter Scalar(*this);
3081  Value *Result = 0;
3082  switch (E->getOpcode()) {
3083#define COMPOUND_OP(Op)                                                       \
3084    case BO_##Op##Assign:                                                     \
3085      return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
3086                                             Result)
3087  COMPOUND_OP(Mul);
3088  COMPOUND_OP(Div);
3089  COMPOUND_OP(Rem);
3090  COMPOUND_OP(Add);
3091  COMPOUND_OP(Sub);
3092  COMPOUND_OP(Shl);
3093  COMPOUND_OP(Shr);
3094  COMPOUND_OP(And);
3095  COMPOUND_OP(Xor);
3096  COMPOUND_OP(Or);
3097#undef COMPOUND_OP
3098
3099  case BO_PtrMemD:
3100  case BO_PtrMemI:
3101  case BO_Mul:
3102  case BO_Div:
3103  case BO_Rem:
3104  case BO_Add:
3105  case BO_Sub:
3106  case BO_Shl:
3107  case BO_Shr:
3108  case BO_LT:
3109  case BO_GT:
3110  case BO_LE:
3111  case BO_GE:
3112  case BO_EQ:
3113  case BO_NE:
3114  case BO_And:
3115  case BO_Xor:
3116  case BO_Or:
3117  case BO_LAnd:
3118  case BO_LOr:
3119  case BO_Assign:
3120  case BO_Comma:
3121    llvm_unreachable("Not valid compound assignment operators");
3122  }
3123
3124  llvm_unreachable("Unhandled compound assignment operator");
3125}
3126