CGExprScalar.cpp revision 223017
1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Frontend/CodeGenOptions.h"
15#include "CodeGenFunction.h"
16#include "CGCXXABI.h"
17#include "CGObjCRuntime.h"
18#include "CodeGenModule.h"
19#include "CGDebugInfo.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/StmtVisitor.h"
24#include "clang/Basic/TargetInfo.h"
25#include "llvm/Constants.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/Module.h"
30#include "llvm/Support/CFG.h"
31#include "llvm/Target/TargetData.h"
32#include <cstdarg>
33
34using namespace clang;
35using namespace CodeGen;
36using llvm::Value;
37
38//===----------------------------------------------------------------------===//
39//                         Scalar Expression Emitter
40//===----------------------------------------------------------------------===//
41
42namespace {
43struct BinOpInfo {
44  Value *LHS;
45  Value *RHS;
46  QualType Ty;  // Computation Type.
47  BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
48  const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
49};
50
51static bool MustVisitNullValue(const Expr *E) {
52  // If a null pointer expression's type is the C++0x nullptr_t, then
53  // it's not necessarily a simple constant and it must be evaluated
54  // for its potential side effects.
55  return E->getType()->isNullPtrType();
56}
57
58class ScalarExprEmitter
59  : public StmtVisitor<ScalarExprEmitter, Value*> {
60  CodeGenFunction &CGF;
61  CGBuilderTy &Builder;
62  bool IgnoreResultAssign;
63  llvm::LLVMContext &VMContext;
64public:
65
66  ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
67    : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
68      VMContext(cgf.getLLVMContext()) {
69  }
70
71  //===--------------------------------------------------------------------===//
72  //                               Utilities
73  //===--------------------------------------------------------------------===//
74
75  bool TestAndClearIgnoreResultAssign() {
76    bool I = IgnoreResultAssign;
77    IgnoreResultAssign = false;
78    return I;
79  }
80
81  const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
82  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
83  LValue EmitCheckedLValue(const Expr *E) { return CGF.EmitCheckedLValue(E); }
84
85  Value *EmitLoadOfLValue(LValue LV, QualType T) {
86    return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
87  }
88
89  /// EmitLoadOfLValue - Given an expression with complex type that represents a
90  /// value l-value, this method emits the address of the l-value, then loads
91  /// and returns the result.
92  Value *EmitLoadOfLValue(const Expr *E) {
93    return EmitLoadOfLValue(EmitCheckedLValue(E), E->getType());
94  }
95
96  /// EmitConversionToBool - Convert the specified expression value to a
97  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
98  Value *EmitConversionToBool(Value *Src, QualType DstTy);
99
100  /// EmitScalarConversion - Emit a conversion from the specified type to the
101  /// specified destination type, both of which are LLVM scalar types.
102  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
103
104  /// EmitComplexToScalarConversion - Emit a conversion from the specified
105  /// complex type to the specified destination type, where the destination type
106  /// is an LLVM scalar type.
107  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
108                                       QualType SrcTy, QualType DstTy);
109
110  /// EmitNullValue - Emit a value that corresponds to null for the given type.
111  Value *EmitNullValue(QualType Ty);
112
113  /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
114  Value *EmitFloatToBoolConversion(Value *V) {
115    // Compare against 0.0 for fp scalars.
116    llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
117    return Builder.CreateFCmpUNE(V, Zero, "tobool");
118  }
119
120  /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
121  Value *EmitPointerToBoolConversion(Value *V) {
122    Value *Zero = llvm::ConstantPointerNull::get(
123                                      cast<llvm::PointerType>(V->getType()));
124    return Builder.CreateICmpNE(V, Zero, "tobool");
125  }
126
127  Value *EmitIntToBoolConversion(Value *V) {
128    // Because of the type rules of C, we often end up computing a
129    // logical value, then zero extending it to int, then wanting it
130    // as a logical value again.  Optimize this common case.
131    if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
132      if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
133        Value *Result = ZI->getOperand(0);
134        // If there aren't any more uses, zap the instruction to save space.
135        // Note that there can be more uses, for example if this
136        // is the result of an assignment.
137        if (ZI->use_empty())
138          ZI->eraseFromParent();
139        return Result;
140      }
141    }
142
143    return Builder.CreateIsNotNull(V, "tobool");
144  }
145
146  //===--------------------------------------------------------------------===//
147  //                            Visitor Methods
148  //===--------------------------------------------------------------------===//
149
150  Value *Visit(Expr *E) {
151    return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
152  }
153
154  Value *VisitStmt(Stmt *S) {
155    S->dump(CGF.getContext().getSourceManager());
156    assert(0 && "Stmt can't have complex result type!");
157    return 0;
158  }
159  Value *VisitExpr(Expr *S);
160
161  Value *VisitParenExpr(ParenExpr *PE) {
162    return Visit(PE->getSubExpr());
163  }
164  Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
165    return Visit(GE->getResultExpr());
166  }
167
168  // Leaves.
169  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
170    return Builder.getInt(E->getValue());
171  }
172  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
173    return llvm::ConstantFP::get(VMContext, E->getValue());
174  }
175  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
176    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
177  }
178  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
179    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
180  }
181  Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
182    return EmitNullValue(E->getType());
183  }
184  Value *VisitGNUNullExpr(const GNUNullExpr *E) {
185    return EmitNullValue(E->getType());
186  }
187  Value *VisitOffsetOfExpr(OffsetOfExpr *E);
188  Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
189  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
190    llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
191    return Builder.CreateBitCast(V, ConvertType(E->getType()));
192  }
193
194  Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
195    return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
196  }
197
198  Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
199    if (E->isGLValue())
200      return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getType());
201
202    // Otherwise, assume the mapping is the scalar directly.
203    return CGF.getOpaqueRValueMapping(E).getScalarVal();
204  }
205
206  // l-values.
207  Value *VisitDeclRefExpr(DeclRefExpr *E) {
208    Expr::EvalResult Result;
209    if (!E->Evaluate(Result, CGF.getContext()))
210      return EmitLoadOfLValue(E);
211
212    assert(!Result.HasSideEffects && "Constant declref with side-effect?!");
213
214    llvm::Constant *C;
215    if (Result.Val.isInt())
216      C = Builder.getInt(Result.Val.getInt());
217    else if (Result.Val.isFloat())
218      C = llvm::ConstantFP::get(VMContext, Result.Val.getFloat());
219    else
220      return EmitLoadOfLValue(E);
221
222    // Make sure we emit a debug reference to the global variable.
223    if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl())) {
224      if (!CGF.getContext().DeclMustBeEmitted(VD))
225        CGF.EmitDeclRefExprDbgValue(E, C);
226    } else if (isa<EnumConstantDecl>(E->getDecl())) {
227      CGF.EmitDeclRefExprDbgValue(E, C);
228    }
229
230    return C;
231  }
232  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
233    return CGF.EmitObjCSelectorExpr(E);
234  }
235  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
236    return CGF.EmitObjCProtocolExpr(E);
237  }
238  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
239    return EmitLoadOfLValue(E);
240  }
241  Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
242    assert(E->getObjectKind() == OK_Ordinary &&
243           "reached property reference without lvalue-to-rvalue");
244    return EmitLoadOfLValue(E);
245  }
246  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
247    if (E->getMethodDecl() &&
248        E->getMethodDecl()->getResultType()->isReferenceType())
249      return EmitLoadOfLValue(E);
250    return CGF.EmitObjCMessageExpr(E).getScalarVal();
251  }
252
253  Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
254    LValue LV = CGF.EmitObjCIsaExpr(E);
255    Value *V = CGF.EmitLoadOfLValue(LV, E->getType()).getScalarVal();
256    return V;
257  }
258
259  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
260  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
261  Value *VisitMemberExpr(MemberExpr *E);
262  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
263  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
264    return EmitLoadOfLValue(E);
265  }
266
267  Value *VisitInitListExpr(InitListExpr *E);
268
269  Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
270    return CGF.CGM.EmitNullConstant(E->getType());
271  }
272  Value *VisitCastExpr(CastExpr *E) {
273    // Make sure to evaluate VLA bounds now so that we have them for later.
274    if (E->getType()->isVariablyModifiedType())
275      CGF.EmitVLASize(E->getType());
276
277    return EmitCastExpr(E);
278  }
279  Value *EmitCastExpr(CastExpr *E);
280
281  Value *VisitCallExpr(const CallExpr *E) {
282    if (E->getCallReturnType()->isReferenceType())
283      return EmitLoadOfLValue(E);
284
285    return CGF.EmitCallExpr(E).getScalarVal();
286  }
287
288  Value *VisitStmtExpr(const StmtExpr *E);
289
290  Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
291
292  // Unary Operators.
293  Value *VisitUnaryPostDec(const UnaryOperator *E) {
294    LValue LV = EmitLValue(E->getSubExpr());
295    return EmitScalarPrePostIncDec(E, LV, false, false);
296  }
297  Value *VisitUnaryPostInc(const UnaryOperator *E) {
298    LValue LV = EmitLValue(E->getSubExpr());
299    return EmitScalarPrePostIncDec(E, LV, true, false);
300  }
301  Value *VisitUnaryPreDec(const UnaryOperator *E) {
302    LValue LV = EmitLValue(E->getSubExpr());
303    return EmitScalarPrePostIncDec(E, LV, false, true);
304  }
305  Value *VisitUnaryPreInc(const UnaryOperator *E) {
306    LValue LV = EmitLValue(E->getSubExpr());
307    return EmitScalarPrePostIncDec(E, LV, true, true);
308  }
309
310  llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
311                                               llvm::Value *InVal,
312                                               llvm::Value *NextVal,
313                                               bool IsInc);
314
315  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
316                                       bool isInc, bool isPre);
317
318
319  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
320    if (isa<MemberPointerType>(E->getType())) // never sugared
321      return CGF.CGM.getMemberPointerConstant(E);
322
323    return EmitLValue(E->getSubExpr()).getAddress();
324  }
325  Value *VisitUnaryDeref(const UnaryOperator *E) {
326    if (E->getType()->isVoidType())
327      return Visit(E->getSubExpr()); // the actual value should be unused
328    return EmitLoadOfLValue(E);
329  }
330  Value *VisitUnaryPlus(const UnaryOperator *E) {
331    // This differs from gcc, though, most likely due to a bug in gcc.
332    TestAndClearIgnoreResultAssign();
333    return Visit(E->getSubExpr());
334  }
335  Value *VisitUnaryMinus    (const UnaryOperator *E);
336  Value *VisitUnaryNot      (const UnaryOperator *E);
337  Value *VisitUnaryLNot     (const UnaryOperator *E);
338  Value *VisitUnaryReal     (const UnaryOperator *E);
339  Value *VisitUnaryImag     (const UnaryOperator *E);
340  Value *VisitUnaryExtension(const UnaryOperator *E) {
341    return Visit(E->getSubExpr());
342  }
343
344  // C++
345  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
346    return Visit(DAE->getExpr());
347  }
348  Value *VisitCXXThisExpr(CXXThisExpr *TE) {
349    return CGF.LoadCXXThis();
350  }
351
352  Value *VisitExprWithCleanups(ExprWithCleanups *E) {
353    return CGF.EmitExprWithCleanups(E).getScalarVal();
354  }
355  Value *VisitCXXNewExpr(const CXXNewExpr *E) {
356    return CGF.EmitCXXNewExpr(E);
357  }
358  Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
359    CGF.EmitCXXDeleteExpr(E);
360    return 0;
361  }
362  Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
363    return Builder.getInt1(E->getValue());
364  }
365
366  Value *VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
367    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
368  }
369
370  Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
371    return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
372  }
373
374  Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
375    return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
376  }
377
378  Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
379    // C++ [expr.pseudo]p1:
380    //   The result shall only be used as the operand for the function call
381    //   operator (), and the result of such a call has type void. The only
382    //   effect is the evaluation of the postfix-expression before the dot or
383    //   arrow.
384    CGF.EmitScalarExpr(E->getBase());
385    return 0;
386  }
387
388  Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
389    return EmitNullValue(E->getType());
390  }
391
392  Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
393    CGF.EmitCXXThrowExpr(E);
394    return 0;
395  }
396
397  Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
398    return Builder.getInt1(E->getValue());
399  }
400
401  // Binary Operators.
402  Value *EmitMul(const BinOpInfo &Ops) {
403    if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
404      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
405      case LangOptions::SOB_Undefined:
406        return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
407      case LangOptions::SOB_Defined:
408        return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
409      case LangOptions::SOB_Trapping:
410        return EmitOverflowCheckedBinOp(Ops);
411      }
412    }
413
414    if (Ops.LHS->getType()->isFPOrFPVectorTy())
415      return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
416    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
417  }
418  bool isTrapvOverflowBehavior() {
419    return CGF.getContext().getLangOptions().getSignedOverflowBehavior()
420               == LangOptions::SOB_Trapping;
421  }
422  /// Create a binary op that checks for overflow.
423  /// Currently only supports +, - and *.
424  Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
425  // Emit the overflow BB when -ftrapv option is activated.
426  void EmitOverflowBB(llvm::BasicBlock *overflowBB) {
427    Builder.SetInsertPoint(overflowBB);
428    llvm::Function *Trap = CGF.CGM.getIntrinsic(llvm::Intrinsic::trap);
429    Builder.CreateCall(Trap);
430    Builder.CreateUnreachable();
431  }
432  // Check for undefined division and modulus behaviors.
433  void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
434                                                  llvm::Value *Zero,bool isDiv);
435  Value *EmitDiv(const BinOpInfo &Ops);
436  Value *EmitRem(const BinOpInfo &Ops);
437  Value *EmitAdd(const BinOpInfo &Ops);
438  Value *EmitSub(const BinOpInfo &Ops);
439  Value *EmitShl(const BinOpInfo &Ops);
440  Value *EmitShr(const BinOpInfo &Ops);
441  Value *EmitAnd(const BinOpInfo &Ops) {
442    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
443  }
444  Value *EmitXor(const BinOpInfo &Ops) {
445    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
446  }
447  Value *EmitOr (const BinOpInfo &Ops) {
448    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
449  }
450
451  BinOpInfo EmitBinOps(const BinaryOperator *E);
452  LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
453                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
454                                  Value *&Result);
455
456  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
457                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
458
459  // Binary operators and binary compound assignment operators.
460#define HANDLEBINOP(OP) \
461  Value *VisitBin ## OP(const BinaryOperator *E) {                         \
462    return Emit ## OP(EmitBinOps(E));                                      \
463  }                                                                        \
464  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
465    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
466  }
467  HANDLEBINOP(Mul)
468  HANDLEBINOP(Div)
469  HANDLEBINOP(Rem)
470  HANDLEBINOP(Add)
471  HANDLEBINOP(Sub)
472  HANDLEBINOP(Shl)
473  HANDLEBINOP(Shr)
474  HANDLEBINOP(And)
475  HANDLEBINOP(Xor)
476  HANDLEBINOP(Or)
477#undef HANDLEBINOP
478
479  // Comparisons.
480  Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
481                     unsigned SICmpOpc, unsigned FCmpOpc);
482#define VISITCOMP(CODE, UI, SI, FP) \
483    Value *VisitBin##CODE(const BinaryOperator *E) { \
484      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
485                         llvm::FCmpInst::FP); }
486  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
487  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
488  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
489  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
490  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
491  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
492#undef VISITCOMP
493
494  Value *VisitBinAssign     (const BinaryOperator *E);
495
496  Value *VisitBinLAnd       (const BinaryOperator *E);
497  Value *VisitBinLOr        (const BinaryOperator *E);
498  Value *VisitBinComma      (const BinaryOperator *E);
499
500  Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
501  Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
502
503  // Other Operators.
504  Value *VisitBlockExpr(const BlockExpr *BE);
505  Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
506  Value *VisitChooseExpr(ChooseExpr *CE);
507  Value *VisitVAArgExpr(VAArgExpr *VE);
508  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
509    return CGF.EmitObjCStringLiteral(E);
510  }
511  Value *VisitAsTypeExpr(AsTypeExpr *CE);
512};
513}  // end anonymous namespace.
514
515//===----------------------------------------------------------------------===//
516//                                Utilities
517//===----------------------------------------------------------------------===//
518
519/// EmitConversionToBool - Convert the specified expression value to a
520/// boolean (i1) truth value.  This is equivalent to "Val != 0".
521Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
522  assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
523
524  if (SrcType->isRealFloatingType())
525    return EmitFloatToBoolConversion(Src);
526
527  if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
528    return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
529
530  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
531         "Unknown scalar type to convert");
532
533  if (isa<llvm::IntegerType>(Src->getType()))
534    return EmitIntToBoolConversion(Src);
535
536  assert(isa<llvm::PointerType>(Src->getType()));
537  return EmitPointerToBoolConversion(Src);
538}
539
540/// EmitScalarConversion - Emit a conversion from the specified type to the
541/// specified destination type, both of which are LLVM scalar types.
542Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
543                                               QualType DstType) {
544  SrcType = CGF.getContext().getCanonicalType(SrcType);
545  DstType = CGF.getContext().getCanonicalType(DstType);
546  if (SrcType == DstType) return Src;
547
548  if (DstType->isVoidType()) return 0;
549
550  // Handle conversions to bool first, they are special: comparisons against 0.
551  if (DstType->isBooleanType())
552    return EmitConversionToBool(Src, SrcType);
553
554  const llvm::Type *DstTy = ConvertType(DstType);
555
556  // Ignore conversions like int -> uint.
557  if (Src->getType() == DstTy)
558    return Src;
559
560  // Handle pointer conversions next: pointers can only be converted to/from
561  // other pointers and integers. Check for pointer types in terms of LLVM, as
562  // some native types (like Obj-C id) may map to a pointer type.
563  if (isa<llvm::PointerType>(DstTy)) {
564    // The source value may be an integer, or a pointer.
565    if (isa<llvm::PointerType>(Src->getType()))
566      return Builder.CreateBitCast(Src, DstTy, "conv");
567
568    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
569    // First, convert to the correct width so that we control the kind of
570    // extension.
571    const llvm::Type *MiddleTy = CGF.IntPtrTy;
572    bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
573    llvm::Value* IntResult =
574        Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
575    // Then, cast to pointer.
576    return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
577  }
578
579  if (isa<llvm::PointerType>(Src->getType())) {
580    // Must be an ptr to int cast.
581    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
582    return Builder.CreatePtrToInt(Src, DstTy, "conv");
583  }
584
585  // A scalar can be splatted to an extended vector of the same element type
586  if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
587    // Cast the scalar to element type
588    QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
589    llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
590
591    // Insert the element in element zero of an undef vector
592    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
593    llvm::Value *Idx = Builder.getInt32(0);
594    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
595
596    // Splat the element across to all elements
597    llvm::SmallVector<llvm::Constant*, 16> Args;
598    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
599    for (unsigned i = 0; i != NumElements; ++i)
600      Args.push_back(Builder.getInt32(0));
601
602    llvm::Constant *Mask = llvm::ConstantVector::get(Args);
603    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
604    return Yay;
605  }
606
607  // Allow bitcast from vector to integer/fp of the same size.
608  if (isa<llvm::VectorType>(Src->getType()) ||
609      isa<llvm::VectorType>(DstTy))
610    return Builder.CreateBitCast(Src, DstTy, "conv");
611
612  // Finally, we have the arithmetic types: real int/float.
613  if (isa<llvm::IntegerType>(Src->getType())) {
614    bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
615    if (isa<llvm::IntegerType>(DstTy))
616      return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
617    else if (InputSigned)
618      return Builder.CreateSIToFP(Src, DstTy, "conv");
619    else
620      return Builder.CreateUIToFP(Src, DstTy, "conv");
621  }
622
623  assert(Src->getType()->isFloatingPointTy() && "Unknown real conversion");
624  if (isa<llvm::IntegerType>(DstTy)) {
625    if (DstType->isSignedIntegerOrEnumerationType())
626      return Builder.CreateFPToSI(Src, DstTy, "conv");
627    else
628      return Builder.CreateFPToUI(Src, DstTy, "conv");
629  }
630
631  assert(DstTy->isFloatingPointTy() && "Unknown real conversion");
632  if (DstTy->getTypeID() < Src->getType()->getTypeID())
633    return Builder.CreateFPTrunc(Src, DstTy, "conv");
634  else
635    return Builder.CreateFPExt(Src, DstTy, "conv");
636}
637
638/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
639/// type to the specified destination type, where the destination type is an
640/// LLVM scalar type.
641Value *ScalarExprEmitter::
642EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
643                              QualType SrcTy, QualType DstTy) {
644  // Get the source element type.
645  SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
646
647  // Handle conversions to bool first, they are special: comparisons against 0.
648  if (DstTy->isBooleanType()) {
649    //  Complex != 0  -> (Real != 0) | (Imag != 0)
650    Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
651    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
652    return Builder.CreateOr(Src.first, Src.second, "tobool");
653  }
654
655  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
656  // the imaginary part of the complex value is discarded and the value of the
657  // real part is converted according to the conversion rules for the
658  // corresponding real type.
659  return EmitScalarConversion(Src.first, SrcTy, DstTy);
660}
661
662Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
663  if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>())
664    return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
665
666  return llvm::Constant::getNullValue(ConvertType(Ty));
667}
668
669//===----------------------------------------------------------------------===//
670//                            Visitor Methods
671//===----------------------------------------------------------------------===//
672
673Value *ScalarExprEmitter::VisitExpr(Expr *E) {
674  CGF.ErrorUnsupported(E, "scalar expression");
675  if (E->getType()->isVoidType())
676    return 0;
677  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
678}
679
680Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
681  // Vector Mask Case
682  if (E->getNumSubExprs() == 2 ||
683      (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
684    Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
685    Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
686    Value *Mask;
687
688    const llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
689    unsigned LHSElts = LTy->getNumElements();
690
691    if (E->getNumSubExprs() == 3) {
692      Mask = CGF.EmitScalarExpr(E->getExpr(2));
693
694      // Shuffle LHS & RHS into one input vector.
695      llvm::SmallVector<llvm::Constant*, 32> concat;
696      for (unsigned i = 0; i != LHSElts; ++i) {
697        concat.push_back(Builder.getInt32(2*i));
698        concat.push_back(Builder.getInt32(2*i+1));
699      }
700
701      Value* CV = llvm::ConstantVector::get(concat);
702      LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
703      LHSElts *= 2;
704    } else {
705      Mask = RHS;
706    }
707
708    const llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
709    llvm::Constant* EltMask;
710
711    // Treat vec3 like vec4.
712    if ((LHSElts == 6) && (E->getNumSubExprs() == 3))
713      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
714                                       (1 << llvm::Log2_32(LHSElts+2))-1);
715    else if ((LHSElts == 3) && (E->getNumSubExprs() == 2))
716      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
717                                       (1 << llvm::Log2_32(LHSElts+1))-1);
718    else
719      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
720                                       (1 << llvm::Log2_32(LHSElts))-1);
721
722    // Mask off the high bits of each shuffle index.
723    llvm::SmallVector<llvm::Constant *, 32> MaskV;
724    for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i)
725      MaskV.push_back(EltMask);
726
727    Value* MaskBits = llvm::ConstantVector::get(MaskV);
728    Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
729
730    // newv = undef
731    // mask = mask & maskbits
732    // for each elt
733    //   n = extract mask i
734    //   x = extract val n
735    //   newv = insert newv, x, i
736    const llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
737                                                        MTy->getNumElements());
738    Value* NewV = llvm::UndefValue::get(RTy);
739    for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
740      Value *Indx = Builder.getInt32(i);
741      Indx = Builder.CreateExtractElement(Mask, Indx, "shuf_idx");
742      Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext");
743
744      // Handle vec3 special since the index will be off by one for the RHS.
745      if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) {
746        Value *cmpIndx, *newIndx;
747        cmpIndx = Builder.CreateICmpUGT(Indx, Builder.getInt32(3),
748                                        "cmp_shuf_idx");
749        newIndx = Builder.CreateSub(Indx, Builder.getInt32(1), "shuf_idx_adj");
750        Indx = Builder.CreateSelect(cmpIndx, newIndx, Indx, "sel_shuf_idx");
751      }
752      Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
753      NewV = Builder.CreateInsertElement(NewV, VExt, Indx, "shuf_ins");
754    }
755    return NewV;
756  }
757
758  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
759  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
760
761  // Handle vec3 special since the index will be off by one for the RHS.
762  const llvm::VectorType *VTy = cast<llvm::VectorType>(V1->getType());
763  llvm::SmallVector<llvm::Constant*, 32> indices;
764  for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
765    unsigned Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
766    if (VTy->getNumElements() == 3 && Idx > 3)
767      Idx -= 1;
768    indices.push_back(Builder.getInt32(Idx));
769  }
770
771  Value *SV = llvm::ConstantVector::get(indices);
772  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
773}
774Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
775  Expr::EvalResult Result;
776  if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
777    if (E->isArrow())
778      CGF.EmitScalarExpr(E->getBase());
779    else
780      EmitLValue(E->getBase());
781    return Builder.getInt(Result.Val.getInt());
782  }
783
784  // Emit debug info for aggregate now, if it was delayed to reduce
785  // debug info size.
786  CGDebugInfo *DI = CGF.getDebugInfo();
787  if (DI && CGF.CGM.getCodeGenOpts().LimitDebugInfo) {
788    QualType PQTy = E->getBase()->IgnoreParenImpCasts()->getType();
789    if (const PointerType * PTy = dyn_cast<PointerType>(PQTy))
790      if (FieldDecl *M = dyn_cast<FieldDecl>(E->getMemberDecl()))
791        DI->getOrCreateRecordType(PTy->getPointeeType(),
792                                  M->getParent()->getLocation());
793  }
794  return EmitLoadOfLValue(E);
795}
796
797Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
798  TestAndClearIgnoreResultAssign();
799
800  // Emit subscript expressions in rvalue context's.  For most cases, this just
801  // loads the lvalue formed by the subscript expr.  However, we have to be
802  // careful, because the base of a vector subscript is occasionally an rvalue,
803  // so we can't get it as an lvalue.
804  if (!E->getBase()->getType()->isVectorType())
805    return EmitLoadOfLValue(E);
806
807  // Handle the vector case.  The base must be a vector, the index must be an
808  // integer value.
809  Value *Base = Visit(E->getBase());
810  Value *Idx  = Visit(E->getIdx());
811  bool IdxSigned = E->getIdx()->getType()->isSignedIntegerOrEnumerationType();
812  Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast");
813  return Builder.CreateExtractElement(Base, Idx, "vecext");
814}
815
816static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
817                                  unsigned Off, const llvm::Type *I32Ty) {
818  int MV = SVI->getMaskValue(Idx);
819  if (MV == -1)
820    return llvm::UndefValue::get(I32Ty);
821  return llvm::ConstantInt::get(I32Ty, Off+MV);
822}
823
824Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
825  bool Ignore = TestAndClearIgnoreResultAssign();
826  (void)Ignore;
827  assert (Ignore == false && "init list ignored");
828  unsigned NumInitElements = E->getNumInits();
829
830  if (E->hadArrayRangeDesignator())
831    CGF.ErrorUnsupported(E, "GNU array range designator extension");
832
833  const llvm::VectorType *VType =
834    dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
835
836  // We have a scalar in braces. Just use the first element.
837  if (!VType)
838    return Visit(E->getInit(0));
839
840  unsigned ResElts = VType->getNumElements();
841
842  // Loop over initializers collecting the Value for each, and remembering
843  // whether the source was swizzle (ExtVectorElementExpr).  This will allow
844  // us to fold the shuffle for the swizzle into the shuffle for the vector
845  // initializer, since LLVM optimizers generally do not want to touch
846  // shuffles.
847  unsigned CurIdx = 0;
848  bool VIsUndefShuffle = false;
849  llvm::Value *V = llvm::UndefValue::get(VType);
850  for (unsigned i = 0; i != NumInitElements; ++i) {
851    Expr *IE = E->getInit(i);
852    Value *Init = Visit(IE);
853    llvm::SmallVector<llvm::Constant*, 16> Args;
854
855    const llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
856
857    // Handle scalar elements.  If the scalar initializer is actually one
858    // element of a different vector of the same width, use shuffle instead of
859    // extract+insert.
860    if (!VVT) {
861      if (isa<ExtVectorElementExpr>(IE)) {
862        llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
863
864        if (EI->getVectorOperandType()->getNumElements() == ResElts) {
865          llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
866          Value *LHS = 0, *RHS = 0;
867          if (CurIdx == 0) {
868            // insert into undef -> shuffle (src, undef)
869            Args.push_back(C);
870            for (unsigned j = 1; j != ResElts; ++j)
871              Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
872
873            LHS = EI->getVectorOperand();
874            RHS = V;
875            VIsUndefShuffle = true;
876          } else if (VIsUndefShuffle) {
877            // insert into undefshuffle && size match -> shuffle (v, src)
878            llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
879            for (unsigned j = 0; j != CurIdx; ++j)
880              Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
881            Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
882            for (unsigned j = CurIdx + 1; j != ResElts; ++j)
883              Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
884
885            LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
886            RHS = EI->getVectorOperand();
887            VIsUndefShuffle = false;
888          }
889          if (!Args.empty()) {
890            llvm::Constant *Mask = llvm::ConstantVector::get(Args);
891            V = Builder.CreateShuffleVector(LHS, RHS, Mask);
892            ++CurIdx;
893            continue;
894          }
895        }
896      }
897      V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
898                                      "vecinit");
899      VIsUndefShuffle = false;
900      ++CurIdx;
901      continue;
902    }
903
904    unsigned InitElts = VVT->getNumElements();
905
906    // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
907    // input is the same width as the vector being constructed, generate an
908    // optimized shuffle of the swizzle input into the result.
909    unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
910    if (isa<ExtVectorElementExpr>(IE)) {
911      llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
912      Value *SVOp = SVI->getOperand(0);
913      const llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
914
915      if (OpTy->getNumElements() == ResElts) {
916        for (unsigned j = 0; j != CurIdx; ++j) {
917          // If the current vector initializer is a shuffle with undef, merge
918          // this shuffle directly into it.
919          if (VIsUndefShuffle) {
920            Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
921                                      CGF.Int32Ty));
922          } else {
923            Args.push_back(Builder.getInt32(j));
924          }
925        }
926        for (unsigned j = 0, je = InitElts; j != je; ++j)
927          Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
928        for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
929          Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
930
931        if (VIsUndefShuffle)
932          V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
933
934        Init = SVOp;
935      }
936    }
937
938    // Extend init to result vector length, and then shuffle its contribution
939    // to the vector initializer into V.
940    if (Args.empty()) {
941      for (unsigned j = 0; j != InitElts; ++j)
942        Args.push_back(Builder.getInt32(j));
943      for (unsigned j = InitElts; j != ResElts; ++j)
944        Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
945      llvm::Constant *Mask = llvm::ConstantVector::get(Args);
946      Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
947                                         Mask, "vext");
948
949      Args.clear();
950      for (unsigned j = 0; j != CurIdx; ++j)
951        Args.push_back(Builder.getInt32(j));
952      for (unsigned j = 0; j != InitElts; ++j)
953        Args.push_back(Builder.getInt32(j+Offset));
954      for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
955        Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
956    }
957
958    // If V is undef, make sure it ends up on the RHS of the shuffle to aid
959    // merging subsequent shuffles into this one.
960    if (CurIdx == 0)
961      std::swap(V, Init);
962    llvm::Constant *Mask = llvm::ConstantVector::get(Args);
963    V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
964    VIsUndefShuffle = isa<llvm::UndefValue>(Init);
965    CurIdx += InitElts;
966  }
967
968  // FIXME: evaluate codegen vs. shuffling against constant null vector.
969  // Emit remaining default initializers.
970  const llvm::Type *EltTy = VType->getElementType();
971
972  // Emit remaining default initializers
973  for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
974    Value *Idx = Builder.getInt32(CurIdx);
975    llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
976    V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
977  }
978  return V;
979}
980
981static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
982  const Expr *E = CE->getSubExpr();
983
984  if (CE->getCastKind() == CK_UncheckedDerivedToBase)
985    return false;
986
987  if (isa<CXXThisExpr>(E)) {
988    // We always assume that 'this' is never null.
989    return false;
990  }
991
992  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
993    // And that glvalue casts are never null.
994    if (ICE->getValueKind() != VK_RValue)
995      return false;
996  }
997
998  return true;
999}
1000
1001// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1002// have to handle a more broad range of conversions than explicit casts, as they
1003// handle things like function to ptr-to-function decay etc.
1004Value *ScalarExprEmitter::EmitCastExpr(CastExpr *CE) {
1005  Expr *E = CE->getSubExpr();
1006  QualType DestTy = CE->getType();
1007  CastKind Kind = CE->getCastKind();
1008
1009  if (!DestTy->isVoidType())
1010    TestAndClearIgnoreResultAssign();
1011
1012  // Since almost all cast kinds apply to scalars, this switch doesn't have
1013  // a default case, so the compiler will warn on a missing case.  The cases
1014  // are in the same order as in the CastKind enum.
1015  switch (Kind) {
1016  case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1017
1018  case CK_LValueBitCast:
1019  case CK_ObjCObjectLValueCast: {
1020    Value *V = EmitLValue(E).getAddress();
1021    V = Builder.CreateBitCast(V,
1022                          ConvertType(CGF.getContext().getPointerType(DestTy)));
1023    return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), DestTy);
1024  }
1025
1026  case CK_AnyPointerToObjCPointerCast:
1027  case CK_AnyPointerToBlockPointerCast:
1028  case CK_BitCast: {
1029    Value *Src = Visit(const_cast<Expr*>(E));
1030    return Builder.CreateBitCast(Src, ConvertType(DestTy));
1031  }
1032  case CK_NoOp:
1033  case CK_UserDefinedConversion:
1034    return Visit(const_cast<Expr*>(E));
1035
1036  case CK_BaseToDerived: {
1037    const CXXRecordDecl *DerivedClassDecl =
1038      DestTy->getCXXRecordDeclForPointerType();
1039
1040    return CGF.GetAddressOfDerivedClass(Visit(E), DerivedClassDecl,
1041                                        CE->path_begin(), CE->path_end(),
1042                                        ShouldNullCheckClassCastValue(CE));
1043  }
1044  case CK_UncheckedDerivedToBase:
1045  case CK_DerivedToBase: {
1046    const RecordType *DerivedClassTy =
1047      E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
1048    CXXRecordDecl *DerivedClassDecl =
1049      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
1050
1051    return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
1052                                     CE->path_begin(), CE->path_end(),
1053                                     ShouldNullCheckClassCastValue(CE));
1054  }
1055  case CK_Dynamic: {
1056    Value *V = Visit(const_cast<Expr*>(E));
1057    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1058    return CGF.EmitDynamicCast(V, DCE);
1059  }
1060
1061  case CK_ArrayToPointerDecay: {
1062    assert(E->getType()->isArrayType() &&
1063           "Array to pointer decay must have array source type!");
1064
1065    Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
1066
1067    // Note that VLA pointers are always decayed, so we don't need to do
1068    // anything here.
1069    if (!E->getType()->isVariableArrayType()) {
1070      assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
1071      assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
1072                                 ->getElementType()) &&
1073             "Expected pointer to array");
1074      V = Builder.CreateStructGEP(V, 0, "arraydecay");
1075    }
1076
1077    return V;
1078  }
1079  case CK_FunctionToPointerDecay:
1080    return EmitLValue(E).getAddress();
1081
1082  case CK_NullToPointer:
1083    if (MustVisitNullValue(E))
1084      (void) Visit(E);
1085
1086    return llvm::ConstantPointerNull::get(
1087                               cast<llvm::PointerType>(ConvertType(DestTy)));
1088
1089  case CK_NullToMemberPointer: {
1090    if (MustVisitNullValue(E))
1091      (void) Visit(E);
1092
1093    const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1094    return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1095  }
1096
1097  case CK_BaseToDerivedMemberPointer:
1098  case CK_DerivedToBaseMemberPointer: {
1099    Value *Src = Visit(E);
1100
1101    // Note that the AST doesn't distinguish between checked and
1102    // unchecked member pointer conversions, so we always have to
1103    // implement checked conversions here.  This is inefficient when
1104    // actual control flow may be required in order to perform the
1105    // check, which it is for data member pointers (but not member
1106    // function pointers on Itanium and ARM).
1107    return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1108  }
1109
1110  case CK_FloatingRealToComplex:
1111  case CK_FloatingComplexCast:
1112  case CK_IntegralRealToComplex:
1113  case CK_IntegralComplexCast:
1114  case CK_IntegralComplexToFloatingComplex:
1115  case CK_FloatingComplexToIntegralComplex:
1116  case CK_ConstructorConversion:
1117  case CK_ToUnion:
1118    llvm_unreachable("scalar cast to non-scalar value");
1119    break;
1120
1121  case CK_GetObjCProperty: {
1122    assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1123    assert(E->isGLValue() && E->getObjectKind() == OK_ObjCProperty &&
1124           "CK_GetObjCProperty for non-lvalue or non-ObjCProperty");
1125    RValue RV = CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getType());
1126    return RV.getScalarVal();
1127  }
1128
1129  case CK_LValueToRValue:
1130    assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1131    assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1132    return Visit(const_cast<Expr*>(E));
1133
1134  case CK_IntegralToPointer: {
1135    Value *Src = Visit(const_cast<Expr*>(E));
1136
1137    // First, convert to the correct width so that we control the kind of
1138    // extension.
1139    const llvm::Type *MiddleTy = CGF.IntPtrTy;
1140    bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1141    llvm::Value* IntResult =
1142      Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1143
1144    return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1145  }
1146  case CK_PointerToIntegral: {
1147    Value *Src = Visit(const_cast<Expr*>(E));
1148
1149    // Handle conversion to bool correctly.
1150    if (DestTy->isBooleanType())
1151      return EmitScalarConversion(Src, E->getType(), DestTy);
1152
1153    return Builder.CreatePtrToInt(Src, ConvertType(DestTy));
1154  }
1155  case CK_ToVoid: {
1156    CGF.EmitIgnoredExpr(E);
1157    return 0;
1158  }
1159  case CK_VectorSplat: {
1160    const llvm::Type *DstTy = ConvertType(DestTy);
1161    Value *Elt = Visit(const_cast<Expr*>(E));
1162
1163    // Insert the element in element zero of an undef vector
1164    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
1165    llvm::Value *Idx = Builder.getInt32(0);
1166    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
1167
1168    // Splat the element across to all elements
1169    llvm::SmallVector<llvm::Constant*, 16> Args;
1170    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1171    llvm::Constant *Zero = Builder.getInt32(0);
1172    for (unsigned i = 0; i < NumElements; i++)
1173      Args.push_back(Zero);
1174
1175    llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1176    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
1177    return Yay;
1178  }
1179
1180  case CK_IntegralCast:
1181  case CK_IntegralToFloating:
1182  case CK_FloatingToIntegral:
1183  case CK_FloatingCast:
1184    return EmitScalarConversion(Visit(E), E->getType(), DestTy);
1185
1186  case CK_IntegralToBoolean:
1187    return EmitIntToBoolConversion(Visit(E));
1188  case CK_PointerToBoolean:
1189    return EmitPointerToBoolConversion(Visit(E));
1190  case CK_FloatingToBoolean:
1191    return EmitFloatToBoolConversion(Visit(E));
1192  case CK_MemberPointerToBoolean: {
1193    llvm::Value *MemPtr = Visit(E);
1194    const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1195    return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1196  }
1197
1198  case CK_FloatingComplexToReal:
1199  case CK_IntegralComplexToReal:
1200    return CGF.EmitComplexExpr(E, false, true).first;
1201
1202  case CK_FloatingComplexToBoolean:
1203  case CK_IntegralComplexToBoolean: {
1204    CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1205
1206    // TODO: kill this function off, inline appropriate case here
1207    return EmitComplexToScalarConversion(V, E->getType(), DestTy);
1208  }
1209
1210  }
1211
1212  llvm_unreachable("unknown scalar cast");
1213  return 0;
1214}
1215
1216Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1217  CodeGenFunction::StmtExprEvaluation eval(CGF);
1218  return CGF.EmitCompoundStmt(*E->getSubStmt(), !E->getType()->isVoidType())
1219    .getScalarVal();
1220}
1221
1222Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
1223  LValue LV = CGF.EmitBlockDeclRefLValue(E);
1224  return CGF.EmitLoadOfLValue(LV, E->getType()).getScalarVal();
1225}
1226
1227//===----------------------------------------------------------------------===//
1228//                             Unary Operators
1229//===----------------------------------------------------------------------===//
1230
1231llvm::Value *ScalarExprEmitter::
1232EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
1233                                llvm::Value *InVal,
1234                                llvm::Value *NextVal, bool IsInc) {
1235  switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1236  case LangOptions::SOB_Undefined:
1237    return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1238    break;
1239  case LangOptions::SOB_Defined:
1240    return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1241    break;
1242  case LangOptions::SOB_Trapping:
1243    BinOpInfo BinOp;
1244    BinOp.LHS = InVal;
1245    BinOp.RHS = NextVal;
1246    BinOp.Ty = E->getType();
1247    BinOp.Opcode = BO_Add;
1248    BinOp.E = E;
1249    return EmitOverflowCheckedBinOp(BinOp);
1250    break;
1251  }
1252  assert(false && "Unknown SignedOverflowBehaviorTy");
1253  return 0;
1254}
1255
1256llvm::Value *
1257ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1258                                           bool isInc, bool isPre) {
1259
1260  QualType type = E->getSubExpr()->getType();
1261  llvm::Value *value = EmitLoadOfLValue(LV, type);
1262  llvm::Value *input = value;
1263
1264  int amount = (isInc ? 1 : -1);
1265
1266  // Special case of integer increment that we have to check first: bool++.
1267  // Due to promotion rules, we get:
1268  //   bool++ -> bool = bool + 1
1269  //          -> bool = (int)bool + 1
1270  //          -> bool = ((int)bool + 1 != 0)
1271  // An interesting aspect of this is that increment is always true.
1272  // Decrement does not have this property.
1273  if (isInc && type->isBooleanType()) {
1274    value = Builder.getTrue();
1275
1276  // Most common case by far: integer increment.
1277  } else if (type->isIntegerType()) {
1278
1279    llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1280
1281    // Note that signed integer inc/dec with width less than int can't
1282    // overflow because of promotion rules; we're just eliding a few steps here.
1283    if (type->isSignedIntegerOrEnumerationType() &&
1284        value->getType()->getPrimitiveSizeInBits() >=
1285            CGF.CGM.IntTy->getBitWidth())
1286      value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc);
1287    else
1288      value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1289
1290  // Next most common: pointer increment.
1291  } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1292    QualType type = ptr->getPointeeType();
1293
1294    // VLA types don't have constant size.
1295    if (type->isVariableArrayType()) {
1296      llvm::Value *vlaSize =
1297        CGF.GetVLASize(CGF.getContext().getAsVariableArrayType(type));
1298      value = CGF.EmitCastToVoidPtr(value);
1299      if (!isInc) vlaSize = Builder.CreateNSWNeg(vlaSize, "vla.negsize");
1300      if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1301        value = Builder.CreateGEP(value, vlaSize, "vla.inc");
1302      else
1303        value = Builder.CreateInBoundsGEP(value, vlaSize, "vla.inc");
1304      value = Builder.CreateBitCast(value, input->getType());
1305
1306    // Arithmetic on function pointers (!) is just +-1.
1307    } else if (type->isFunctionType()) {
1308      llvm::Value *amt = Builder.getInt32(amount);
1309
1310      value = CGF.EmitCastToVoidPtr(value);
1311      if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1312        value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1313      else
1314        value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1315      value = Builder.CreateBitCast(value, input->getType());
1316
1317    // For everything else, we can just do a simple increment.
1318    } else {
1319      llvm::Value *amt = Builder.getInt32(amount);
1320      if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1321        value = Builder.CreateGEP(value, amt, "incdec.ptr");
1322      else
1323        value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1324    }
1325
1326  // Vector increment/decrement.
1327  } else if (type->isVectorType()) {
1328    if (type->hasIntegerRepresentation()) {
1329      llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1330
1331      value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1332    } else {
1333      value = Builder.CreateFAdd(
1334                  value,
1335                  llvm::ConstantFP::get(value->getType(), amount),
1336                  isInc ? "inc" : "dec");
1337    }
1338
1339  // Floating point.
1340  } else if (type->isRealFloatingType()) {
1341    // Add the inc/dec to the real part.
1342    llvm::Value *amt;
1343    if (value->getType()->isFloatTy())
1344      amt = llvm::ConstantFP::get(VMContext,
1345                                  llvm::APFloat(static_cast<float>(amount)));
1346    else if (value->getType()->isDoubleTy())
1347      amt = llvm::ConstantFP::get(VMContext,
1348                                  llvm::APFloat(static_cast<double>(amount)));
1349    else {
1350      llvm::APFloat F(static_cast<float>(amount));
1351      bool ignored;
1352      F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
1353                &ignored);
1354      amt = llvm::ConstantFP::get(VMContext, F);
1355    }
1356    value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1357
1358  // Objective-C pointer types.
1359  } else {
1360    const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1361    value = CGF.EmitCastToVoidPtr(value);
1362
1363    CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1364    if (!isInc) size = -size;
1365    llvm::Value *sizeValue =
1366      llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1367
1368    if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1369      value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1370    else
1371      value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1372    value = Builder.CreateBitCast(value, input->getType());
1373  }
1374
1375  // Store the updated result through the lvalue.
1376  if (LV.isBitField())
1377    CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, type, &value);
1378  else
1379    CGF.EmitStoreThroughLValue(RValue::get(value), LV, type);
1380
1381  // If this is a postinc, return the value read from memory, otherwise use the
1382  // updated value.
1383  return isPre ? value : input;
1384}
1385
1386
1387
1388Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1389  TestAndClearIgnoreResultAssign();
1390  // Emit unary minus with EmitSub so we handle overflow cases etc.
1391  BinOpInfo BinOp;
1392  BinOp.RHS = Visit(E->getSubExpr());
1393
1394  if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1395    BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1396  else
1397    BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1398  BinOp.Ty = E->getType();
1399  BinOp.Opcode = BO_Sub;
1400  BinOp.E = E;
1401  return EmitSub(BinOp);
1402}
1403
1404Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1405  TestAndClearIgnoreResultAssign();
1406  Value *Op = Visit(E->getSubExpr());
1407  return Builder.CreateNot(Op, "neg");
1408}
1409
1410Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1411  // Compare operand to zero.
1412  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1413
1414  // Invert value.
1415  // TODO: Could dynamically modify easy computations here.  For example, if
1416  // the operand is an icmp ne, turn into icmp eq.
1417  BoolVal = Builder.CreateNot(BoolVal, "lnot");
1418
1419  // ZExt result to the expr type.
1420  return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1421}
1422
1423Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1424  // Try folding the offsetof to a constant.
1425  Expr::EvalResult EvalResult;
1426  if (E->Evaluate(EvalResult, CGF.getContext()))
1427    return Builder.getInt(EvalResult.Val.getInt());
1428
1429  // Loop over the components of the offsetof to compute the value.
1430  unsigned n = E->getNumComponents();
1431  const llvm::Type* ResultType = ConvertType(E->getType());
1432  llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1433  QualType CurrentType = E->getTypeSourceInfo()->getType();
1434  for (unsigned i = 0; i != n; ++i) {
1435    OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1436    llvm::Value *Offset = 0;
1437    switch (ON.getKind()) {
1438    case OffsetOfExpr::OffsetOfNode::Array: {
1439      // Compute the index
1440      Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1441      llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1442      bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
1443      Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1444
1445      // Save the element type
1446      CurrentType =
1447          CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1448
1449      // Compute the element size
1450      llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1451          CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1452
1453      // Multiply out to compute the result
1454      Offset = Builder.CreateMul(Idx, ElemSize);
1455      break;
1456    }
1457
1458    case OffsetOfExpr::OffsetOfNode::Field: {
1459      FieldDecl *MemberDecl = ON.getField();
1460      RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1461      const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1462
1463      // Compute the index of the field in its parent.
1464      unsigned i = 0;
1465      // FIXME: It would be nice if we didn't have to loop here!
1466      for (RecordDecl::field_iterator Field = RD->field_begin(),
1467                                      FieldEnd = RD->field_end();
1468           Field != FieldEnd; (void)++Field, ++i) {
1469        if (*Field == MemberDecl)
1470          break;
1471      }
1472      assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1473
1474      // Compute the offset to the field
1475      int64_t OffsetInt = RL.getFieldOffset(i) /
1476                          CGF.getContext().getCharWidth();
1477      Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1478
1479      // Save the element type.
1480      CurrentType = MemberDecl->getType();
1481      break;
1482    }
1483
1484    case OffsetOfExpr::OffsetOfNode::Identifier:
1485      llvm_unreachable("dependent __builtin_offsetof");
1486
1487    case OffsetOfExpr::OffsetOfNode::Base: {
1488      if (ON.getBase()->isVirtual()) {
1489        CGF.ErrorUnsupported(E, "virtual base in offsetof");
1490        continue;
1491      }
1492
1493      RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1494      const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1495
1496      // Save the element type.
1497      CurrentType = ON.getBase()->getType();
1498
1499      // Compute the offset to the base.
1500      const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1501      CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1502      int64_t OffsetInt = RL.getBaseClassOffsetInBits(BaseRD) /
1503                          CGF.getContext().getCharWidth();
1504      Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1505      break;
1506    }
1507    }
1508    Result = Builder.CreateAdd(Result, Offset);
1509  }
1510  return Result;
1511}
1512
1513/// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
1514/// argument of the sizeof expression as an integer.
1515Value *
1516ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
1517                              const UnaryExprOrTypeTraitExpr *E) {
1518  QualType TypeToSize = E->getTypeOfArgument();
1519  if (E->getKind() == UETT_SizeOf) {
1520    if (const VariableArrayType *VAT =
1521          CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1522      if (E->isArgumentType()) {
1523        // sizeof(type) - make sure to emit the VLA size.
1524        CGF.EmitVLASize(TypeToSize);
1525      } else {
1526        // C99 6.5.3.4p2: If the argument is an expression of type
1527        // VLA, it is evaluated.
1528        CGF.EmitIgnoredExpr(E->getArgumentExpr());
1529      }
1530
1531      return CGF.GetVLASize(VAT);
1532    }
1533  }
1534
1535  // If this isn't sizeof(vla), the result must be constant; use the constant
1536  // folding logic so we don't have to duplicate it here.
1537  Expr::EvalResult Result;
1538  E->Evaluate(Result, CGF.getContext());
1539  return Builder.getInt(Result.Val.getInt());
1540}
1541
1542Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1543  Expr *Op = E->getSubExpr();
1544  if (Op->getType()->isAnyComplexType()) {
1545    // If it's an l-value, load through the appropriate subobject l-value.
1546    // Note that we have to ask E because Op might be an l-value that
1547    // this won't work for, e.g. an Obj-C property.
1548    if (E->isGLValue())
1549      return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getType())
1550                .getScalarVal();
1551
1552    // Otherwise, calculate and project.
1553    return CGF.EmitComplexExpr(Op, false, true).first;
1554  }
1555
1556  return Visit(Op);
1557}
1558
1559Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1560  Expr *Op = E->getSubExpr();
1561  if (Op->getType()->isAnyComplexType()) {
1562    // If it's an l-value, load through the appropriate subobject l-value.
1563    // Note that we have to ask E because Op might be an l-value that
1564    // this won't work for, e.g. an Obj-C property.
1565    if (Op->isGLValue())
1566      return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getType())
1567                .getScalarVal();
1568
1569    // Otherwise, calculate and project.
1570    return CGF.EmitComplexExpr(Op, true, false).second;
1571  }
1572
1573  // __imag on a scalar returns zero.  Emit the subexpr to ensure side
1574  // effects are evaluated, but not the actual value.
1575  CGF.EmitScalarExpr(Op, true);
1576  return llvm::Constant::getNullValue(ConvertType(E->getType()));
1577}
1578
1579//===----------------------------------------------------------------------===//
1580//                           Binary Operators
1581//===----------------------------------------------------------------------===//
1582
1583BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1584  TestAndClearIgnoreResultAssign();
1585  BinOpInfo Result;
1586  Result.LHS = Visit(E->getLHS());
1587  Result.RHS = Visit(E->getRHS());
1588  Result.Ty  = E->getType();
1589  Result.Opcode = E->getOpcode();
1590  Result.E = E;
1591  return Result;
1592}
1593
1594LValue ScalarExprEmitter::EmitCompoundAssignLValue(
1595                                              const CompoundAssignOperator *E,
1596                        Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
1597                                                   Value *&Result) {
1598  QualType LHSTy = E->getLHS()->getType();
1599  BinOpInfo OpInfo;
1600
1601  if (E->getComputationResultType()->isAnyComplexType()) {
1602    // This needs to go through the complex expression emitter, but it's a tad
1603    // complicated to do that... I'm leaving it out for now.  (Note that we do
1604    // actually need the imaginary part of the RHS for multiplication and
1605    // division.)
1606    CGF.ErrorUnsupported(E, "complex compound assignment");
1607    Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1608    return LValue();
1609  }
1610
1611  // Emit the RHS first.  __block variables need to have the rhs evaluated
1612  // first, plus this should improve codegen a little.
1613  OpInfo.RHS = Visit(E->getRHS());
1614  OpInfo.Ty = E->getComputationResultType();
1615  OpInfo.Opcode = E->getOpcode();
1616  OpInfo.E = E;
1617  // Load/convert the LHS.
1618  LValue LHSLV = EmitCheckedLValue(E->getLHS());
1619  OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
1620  OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
1621                                    E->getComputationLHSType());
1622
1623  // Expand the binary operator.
1624  Result = (this->*Func)(OpInfo);
1625
1626  // Convert the result back to the LHS type.
1627  Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
1628
1629  // Store the result value into the LHS lvalue. Bit-fields are handled
1630  // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
1631  // 'An assignment expression has the value of the left operand after the
1632  // assignment...'.
1633  if (LHSLV.isBitField())
1634    CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy,
1635                                       &Result);
1636  else
1637    CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
1638
1639  return LHSLV;
1640}
1641
1642Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
1643                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
1644  bool Ignore = TestAndClearIgnoreResultAssign();
1645  Value *RHS;
1646  LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
1647
1648  // If the result is clearly ignored, return now.
1649  if (Ignore)
1650    return 0;
1651
1652  // The result of an assignment in C is the assigned r-value.
1653  if (!CGF.getContext().getLangOptions().CPlusPlus)
1654    return RHS;
1655
1656  // Objective-C property assignment never reloads the value following a store.
1657  if (LHS.isPropertyRef())
1658    return RHS;
1659
1660  // If the lvalue is non-volatile, return the computed value of the assignment.
1661  if (!LHS.isVolatileQualified())
1662    return RHS;
1663
1664  // Otherwise, reload the value.
1665  return EmitLoadOfLValue(LHS, E->getType());
1666}
1667
1668void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
1669     					    const BinOpInfo &Ops,
1670				     	    llvm::Value *Zero, bool isDiv) {
1671  llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1672  llvm::BasicBlock *contBB =
1673    CGF.createBasicBlock(isDiv ? "div.cont" : "rem.cont", CGF.CurFn);
1674
1675  const llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
1676
1677  if (Ops.Ty->hasSignedIntegerRepresentation()) {
1678    llvm::Value *IntMin =
1679      Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
1680    llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
1681
1682    llvm::Value *Cond1 = Builder.CreateICmpEQ(Ops.RHS, Zero);
1683    llvm::Value *LHSCmp = Builder.CreateICmpEQ(Ops.LHS, IntMin);
1684    llvm::Value *RHSCmp = Builder.CreateICmpEQ(Ops.RHS, NegOne);
1685    llvm::Value *Cond2 = Builder.CreateAnd(LHSCmp, RHSCmp, "and");
1686    Builder.CreateCondBr(Builder.CreateOr(Cond1, Cond2, "or"),
1687                         overflowBB, contBB);
1688  } else {
1689    CGF.Builder.CreateCondBr(Builder.CreateICmpEQ(Ops.RHS, Zero),
1690                             overflowBB, contBB);
1691  }
1692  EmitOverflowBB(overflowBB);
1693  Builder.SetInsertPoint(contBB);
1694}
1695
1696Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
1697  if (isTrapvOverflowBehavior()) {
1698    llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1699
1700    if (Ops.Ty->isIntegerType())
1701      EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
1702    else if (Ops.Ty->isRealFloatingType()) {
1703      llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow",
1704                                                          CGF.CurFn);
1705      llvm::BasicBlock *DivCont = CGF.createBasicBlock("div.cont", CGF.CurFn);
1706      CGF.Builder.CreateCondBr(Builder.CreateFCmpOEQ(Ops.RHS, Zero),
1707                               overflowBB, DivCont);
1708      EmitOverflowBB(overflowBB);
1709      Builder.SetInsertPoint(DivCont);
1710    }
1711  }
1712  if (Ops.LHS->getType()->isFPOrFPVectorTy())
1713    return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
1714  else if (Ops.Ty->hasUnsignedIntegerRepresentation())
1715    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
1716  else
1717    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
1718}
1719
1720Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
1721  // Rem in C can't be a floating point type: C99 6.5.5p2.
1722  if (isTrapvOverflowBehavior()) {
1723    llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1724
1725    if (Ops.Ty->isIntegerType())
1726      EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
1727  }
1728
1729  if (Ops.Ty->hasUnsignedIntegerRepresentation())
1730    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
1731  else
1732    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
1733}
1734
1735Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
1736  unsigned IID;
1737  unsigned OpID = 0;
1738
1739  switch (Ops.Opcode) {
1740  case BO_Add:
1741  case BO_AddAssign:
1742    OpID = 1;
1743    IID = llvm::Intrinsic::sadd_with_overflow;
1744    break;
1745  case BO_Sub:
1746  case BO_SubAssign:
1747    OpID = 2;
1748    IID = llvm::Intrinsic::ssub_with_overflow;
1749    break;
1750  case BO_Mul:
1751  case BO_MulAssign:
1752    OpID = 3;
1753    IID = llvm::Intrinsic::smul_with_overflow;
1754    break;
1755  default:
1756    assert(false && "Unsupported operation for overflow detection");
1757    IID = 0;
1758  }
1759  OpID <<= 1;
1760  OpID |= 1;
1761
1762  const llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
1763
1764  llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, &opTy, 1);
1765
1766  Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
1767  Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
1768  Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
1769
1770  // Branch in case of overflow.
1771  llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
1772  llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1773  llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn);
1774
1775  Builder.CreateCondBr(overflow, overflowBB, continueBB);
1776
1777  // Handle overflow with llvm.trap.
1778  const std::string *handlerName =
1779    &CGF.getContext().getLangOptions().OverflowHandler;
1780  if (handlerName->empty()) {
1781    EmitOverflowBB(overflowBB);
1782    Builder.SetInsertPoint(continueBB);
1783    return result;
1784  }
1785
1786  // If an overflow handler is set, then we want to call it and then use its
1787  // result, if it returns.
1788  Builder.SetInsertPoint(overflowBB);
1789
1790  // Get the overflow handler.
1791  const llvm::Type *Int8Ty = llvm::Type::getInt8Ty(VMContext);
1792  const llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
1793  llvm::FunctionType *handlerTy =
1794      llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
1795  llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
1796
1797  // Sign extend the args to 64-bit, so that we can use the same handler for
1798  // all types of overflow.
1799  llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
1800  llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
1801
1802  // Call the handler with the two arguments, the operation, and the size of
1803  // the result.
1804  llvm::Value *handlerResult = Builder.CreateCall4(handler, lhs, rhs,
1805      Builder.getInt8(OpID),
1806      Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()));
1807
1808  // Truncate the result back to the desired size.
1809  handlerResult = Builder.CreateTrunc(handlerResult, opTy);
1810  Builder.CreateBr(continueBB);
1811
1812  Builder.SetInsertPoint(continueBB);
1813  llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
1814  phi->addIncoming(result, initialBB);
1815  phi->addIncoming(handlerResult, overflowBB);
1816
1817  return phi;
1818}
1819
1820Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
1821  if (!Ops.Ty->isAnyPointerType()) {
1822    if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
1823      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1824      case LangOptions::SOB_Undefined:
1825        return Builder.CreateNSWAdd(Ops.LHS, Ops.RHS, "add");
1826      case LangOptions::SOB_Defined:
1827        return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
1828      case LangOptions::SOB_Trapping:
1829        return EmitOverflowCheckedBinOp(Ops);
1830      }
1831    }
1832
1833    if (Ops.LHS->getType()->isFPOrFPVectorTy())
1834      return Builder.CreateFAdd(Ops.LHS, Ops.RHS, "add");
1835
1836    return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
1837  }
1838
1839  // Must have binary (not unary) expr here.  Unary pointer decrement doesn't
1840  // use this path.
1841  const BinaryOperator *BinOp = cast<BinaryOperator>(Ops.E);
1842
1843  if (Ops.Ty->isPointerType() &&
1844      Ops.Ty->getAs<PointerType>()->isVariableArrayType()) {
1845    // The amount of the addition needs to account for the VLA size
1846    CGF.ErrorUnsupported(BinOp, "VLA pointer addition");
1847  }
1848
1849  Value *Ptr, *Idx;
1850  Expr *IdxExp;
1851  const PointerType *PT = BinOp->getLHS()->getType()->getAs<PointerType>();
1852  const ObjCObjectPointerType *OPT =
1853    BinOp->getLHS()->getType()->getAs<ObjCObjectPointerType>();
1854  if (PT || OPT) {
1855    Ptr = Ops.LHS;
1856    Idx = Ops.RHS;
1857    IdxExp = BinOp->getRHS();
1858  } else {  // int + pointer
1859    PT = BinOp->getRHS()->getType()->getAs<PointerType>();
1860    OPT = BinOp->getRHS()->getType()->getAs<ObjCObjectPointerType>();
1861    assert((PT || OPT) && "Invalid add expr");
1862    Ptr = Ops.RHS;
1863    Idx = Ops.LHS;
1864    IdxExp = BinOp->getLHS();
1865  }
1866
1867  unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1868  if (Width < CGF.PointerWidthInBits) {
1869    // Zero or sign extend the pointer value based on whether the index is
1870    // signed or not.
1871    const llvm::Type *IdxType = CGF.IntPtrTy;
1872    if (IdxExp->getType()->isSignedIntegerOrEnumerationType())
1873      Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1874    else
1875      Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1876  }
1877  const QualType ElementType = PT ? PT->getPointeeType() : OPT->getPointeeType();
1878  // Handle interface types, which are not represented with a concrete type.
1879  if (const ObjCObjectType *OIT = ElementType->getAs<ObjCObjectType>()) {
1880    llvm::Value *InterfaceSize =
1881      llvm::ConstantInt::get(Idx->getType(),
1882          CGF.getContext().getTypeSizeInChars(OIT).getQuantity());
1883    Idx = Builder.CreateMul(Idx, InterfaceSize);
1884    const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1885    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1886    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1887    return Builder.CreateBitCast(Res, Ptr->getType());
1888  }
1889
1890  // Explicitly handle GNU void* and function pointer arithmetic extensions. The
1891  // GNU void* casts amount to no-ops since our void* type is i8*, but this is
1892  // future proof.
1893  if (ElementType->isVoidType() || ElementType->isFunctionType()) {
1894    const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1895    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1896    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1897    return Builder.CreateBitCast(Res, Ptr->getType());
1898  }
1899
1900  if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1901    return Builder.CreateGEP(Ptr, Idx, "add.ptr");
1902  return Builder.CreateInBoundsGEP(Ptr, Idx, "add.ptr");
1903}
1904
1905Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
1906  if (!isa<llvm::PointerType>(Ops.LHS->getType())) {
1907    if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
1908      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1909      case LangOptions::SOB_Undefined:
1910        return Builder.CreateNSWSub(Ops.LHS, Ops.RHS, "sub");
1911      case LangOptions::SOB_Defined:
1912        return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
1913      case LangOptions::SOB_Trapping:
1914        return EmitOverflowCheckedBinOp(Ops);
1915      }
1916    }
1917
1918    if (Ops.LHS->getType()->isFPOrFPVectorTy())
1919      return Builder.CreateFSub(Ops.LHS, Ops.RHS, "sub");
1920
1921    return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
1922  }
1923
1924  // Must have binary (not unary) expr here.  Unary pointer increment doesn't
1925  // use this path.
1926  const BinaryOperator *BinOp = cast<BinaryOperator>(Ops.E);
1927
1928  if (BinOp->getLHS()->getType()->isPointerType() &&
1929      BinOp->getLHS()->getType()->getAs<PointerType>()->isVariableArrayType()) {
1930    // The amount of the addition needs to account for the VLA size for
1931    // ptr-int
1932    // The amount of the division needs to account for the VLA size for
1933    // ptr-ptr.
1934    CGF.ErrorUnsupported(BinOp, "VLA pointer subtraction");
1935  }
1936
1937  const QualType LHSType = BinOp->getLHS()->getType();
1938  const QualType LHSElementType = LHSType->getPointeeType();
1939  if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
1940    // pointer - int
1941    Value *Idx = Ops.RHS;
1942    unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1943    if (Width < CGF.PointerWidthInBits) {
1944      // Zero or sign extend the pointer value based on whether the index is
1945      // signed or not.
1946      const llvm::Type *IdxType = CGF.IntPtrTy;
1947      if (BinOp->getRHS()->getType()->isSignedIntegerOrEnumerationType())
1948        Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1949      else
1950        Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1951    }
1952    Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
1953
1954    // Handle interface types, which are not represented with a concrete type.
1955    if (const ObjCObjectType *OIT = LHSElementType->getAs<ObjCObjectType>()) {
1956      llvm::Value *InterfaceSize =
1957        llvm::ConstantInt::get(Idx->getType(),
1958                               CGF.getContext().
1959                                 getTypeSizeInChars(OIT).getQuantity());
1960      Idx = Builder.CreateMul(Idx, InterfaceSize);
1961      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1962      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1963      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "add.ptr");
1964      return Builder.CreateBitCast(Res, Ops.LHS->getType());
1965    }
1966
1967    // Explicitly handle GNU void* and function pointer arithmetic
1968    // extensions. The GNU void* casts amount to no-ops since our void* type is
1969    // i8*, but this is future proof.
1970    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1971      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1972      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1973      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "sub.ptr");
1974      return Builder.CreateBitCast(Res, Ops.LHS->getType());
1975    }
1976
1977    if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1978      return Builder.CreateGEP(Ops.LHS, Idx, "sub.ptr");
1979    return Builder.CreateInBoundsGEP(Ops.LHS, Idx, "sub.ptr");
1980  }
1981
1982  // pointer - pointer
1983  Value *LHS = Ops.LHS;
1984  Value *RHS = Ops.RHS;
1985
1986  CharUnits ElementSize;
1987
1988  // Handle GCC extension for pointer arithmetic on void* and function pointer
1989  // types.
1990  if (LHSElementType->isVoidType() || LHSElementType->isFunctionType())
1991    ElementSize = CharUnits::One();
1992  else
1993    ElementSize = CGF.getContext().getTypeSizeInChars(LHSElementType);
1994
1995  const llvm::Type *ResultType = ConvertType(Ops.Ty);
1996  LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
1997  RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1998  Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
1999
2000  // Optimize out the shift for element size of 1.
2001  if (ElementSize.isOne())
2002    return BytesBetween;
2003
2004  // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2005  // pointer difference in C is only defined in the case where both operands
2006  // are pointing to elements of an array.
2007  Value *BytesPerElt =
2008      llvm::ConstantInt::get(ResultType, ElementSize.getQuantity());
2009  return Builder.CreateExactSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
2010}
2011
2012Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2013  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2014  // RHS to the same size as the LHS.
2015  Value *RHS = Ops.RHS;
2016  if (Ops.LHS->getType() != RHS->getType())
2017    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2018
2019  if (CGF.CatchUndefined
2020      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
2021    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
2022    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2023    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
2024                                 llvm::ConstantInt::get(RHS->getType(), Width)),
2025                             Cont, CGF.getTrapBB());
2026    CGF.EmitBlock(Cont);
2027  }
2028
2029  return Builder.CreateShl(Ops.LHS, RHS, "shl");
2030}
2031
2032Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2033  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2034  // RHS to the same size as the LHS.
2035  Value *RHS = Ops.RHS;
2036  if (Ops.LHS->getType() != RHS->getType())
2037    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2038
2039  if (CGF.CatchUndefined
2040      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
2041    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
2042    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2043    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
2044                                 llvm::ConstantInt::get(RHS->getType(), Width)),
2045                             Cont, CGF.getTrapBB());
2046    CGF.EmitBlock(Cont);
2047  }
2048
2049  if (Ops.Ty->hasUnsignedIntegerRepresentation())
2050    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2051  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2052}
2053
2054enum IntrinsicType { VCMPEQ, VCMPGT };
2055// return corresponding comparison intrinsic for given vector type
2056static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2057                                        BuiltinType::Kind ElemKind) {
2058  switch (ElemKind) {
2059  default: assert(0 && "unexpected element type");
2060  case BuiltinType::Char_U:
2061  case BuiltinType::UChar:
2062    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2063                            llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2064    break;
2065  case BuiltinType::Char_S:
2066  case BuiltinType::SChar:
2067    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2068                            llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2069    break;
2070  case BuiltinType::UShort:
2071    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2072                            llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2073    break;
2074  case BuiltinType::Short:
2075    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2076                            llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2077    break;
2078  case BuiltinType::UInt:
2079  case BuiltinType::ULong:
2080    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2081                            llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2082    break;
2083  case BuiltinType::Int:
2084  case BuiltinType::Long:
2085    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2086                            llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2087    break;
2088  case BuiltinType::Float:
2089    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2090                            llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2091    break;
2092  }
2093  return llvm::Intrinsic::not_intrinsic;
2094}
2095
2096Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
2097                                      unsigned SICmpOpc, unsigned FCmpOpc) {
2098  TestAndClearIgnoreResultAssign();
2099  Value *Result;
2100  QualType LHSTy = E->getLHS()->getType();
2101  if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2102    assert(E->getOpcode() == BO_EQ ||
2103           E->getOpcode() == BO_NE);
2104    Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2105    Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2106    Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2107                   CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2108  } else if (!LHSTy->isAnyComplexType()) {
2109    Value *LHS = Visit(E->getLHS());
2110    Value *RHS = Visit(E->getRHS());
2111
2112    // If AltiVec, the comparison results in a numeric type, so we use
2113    // intrinsics comparing vectors and giving 0 or 1 as a result
2114    if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2115      // constants for mapping CR6 register bits to predicate result
2116      enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2117
2118      llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2119
2120      // in several cases vector arguments order will be reversed
2121      Value *FirstVecArg = LHS,
2122            *SecondVecArg = RHS;
2123
2124      QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2125      const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2126      BuiltinType::Kind ElementKind = BTy->getKind();
2127
2128      switch(E->getOpcode()) {
2129      default: assert(0 && "is not a comparison operation");
2130      case BO_EQ:
2131        CR6 = CR6_LT;
2132        ID = GetIntrinsic(VCMPEQ, ElementKind);
2133        break;
2134      case BO_NE:
2135        CR6 = CR6_EQ;
2136        ID = GetIntrinsic(VCMPEQ, ElementKind);
2137        break;
2138      case BO_LT:
2139        CR6 = CR6_LT;
2140        ID = GetIntrinsic(VCMPGT, ElementKind);
2141        std::swap(FirstVecArg, SecondVecArg);
2142        break;
2143      case BO_GT:
2144        CR6 = CR6_LT;
2145        ID = GetIntrinsic(VCMPGT, ElementKind);
2146        break;
2147      case BO_LE:
2148        if (ElementKind == BuiltinType::Float) {
2149          CR6 = CR6_LT;
2150          ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2151          std::swap(FirstVecArg, SecondVecArg);
2152        }
2153        else {
2154          CR6 = CR6_EQ;
2155          ID = GetIntrinsic(VCMPGT, ElementKind);
2156        }
2157        break;
2158      case BO_GE:
2159        if (ElementKind == BuiltinType::Float) {
2160          CR6 = CR6_LT;
2161          ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2162        }
2163        else {
2164          CR6 = CR6_EQ;
2165          ID = GetIntrinsic(VCMPGT, ElementKind);
2166          std::swap(FirstVecArg, SecondVecArg);
2167        }
2168        break;
2169      }
2170
2171      Value *CR6Param = Builder.getInt32(CR6);
2172      llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2173      Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, "");
2174      return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2175    }
2176
2177    if (LHS->getType()->isFPOrFPVectorTy()) {
2178      Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
2179                                  LHS, RHS, "cmp");
2180    } else if (LHSTy->hasSignedIntegerRepresentation()) {
2181      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
2182                                  LHS, RHS, "cmp");
2183    } else {
2184      // Unsigned integers and pointers.
2185      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2186                                  LHS, RHS, "cmp");
2187    }
2188
2189    // If this is a vector comparison, sign extend the result to the appropriate
2190    // vector integer type and return it (don't convert to bool).
2191    if (LHSTy->isVectorType())
2192      return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2193
2194  } else {
2195    // Complex Comparison: can only be an equality comparison.
2196    CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
2197    CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
2198
2199    QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
2200
2201    Value *ResultR, *ResultI;
2202    if (CETy->isRealFloatingType()) {
2203      ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2204                                   LHS.first, RHS.first, "cmp.r");
2205      ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2206                                   LHS.second, RHS.second, "cmp.i");
2207    } else {
2208      // Complex comparisons can only be equality comparisons.  As such, signed
2209      // and unsigned opcodes are the same.
2210      ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2211                                   LHS.first, RHS.first, "cmp.r");
2212      ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2213                                   LHS.second, RHS.second, "cmp.i");
2214    }
2215
2216    if (E->getOpcode() == BO_EQ) {
2217      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2218    } else {
2219      assert(E->getOpcode() == BO_NE &&
2220             "Complex comparison other than == or != ?");
2221      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2222    }
2223  }
2224
2225  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2226}
2227
2228Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2229  bool Ignore = TestAndClearIgnoreResultAssign();
2230
2231  // __block variables need to have the rhs evaluated first, plus this should
2232  // improve codegen just a little.
2233  Value *RHS = Visit(E->getRHS());
2234  LValue LHS = EmitCheckedLValue(E->getLHS());
2235
2236  // Store the value into the LHS.  Bit-fields are handled specially
2237  // because the result is altered by the store, i.e., [C99 6.5.16p1]
2238  // 'An assignment expression has the value of the left operand after
2239  // the assignment...'.
2240  if (LHS.isBitField())
2241    CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(),
2242                                       &RHS);
2243  else
2244    CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
2245
2246  // If the result is clearly ignored, return now.
2247  if (Ignore)
2248    return 0;
2249
2250  // The result of an assignment in C is the assigned r-value.
2251  if (!CGF.getContext().getLangOptions().CPlusPlus)
2252    return RHS;
2253
2254  // Objective-C property assignment never reloads the value following a store.
2255  if (LHS.isPropertyRef())
2256    return RHS;
2257
2258  // If the lvalue is non-volatile, return the computed value of the assignment.
2259  if (!LHS.isVolatileQualified())
2260    return RHS;
2261
2262  // Otherwise, reload the value.
2263  return EmitLoadOfLValue(LHS, E->getType());
2264}
2265
2266Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
2267  const llvm::Type *ResTy = ConvertType(E->getType());
2268
2269  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
2270  // If we have 1 && X, just emit X without inserting the control flow.
2271  bool LHSCondVal;
2272  if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2273    if (LHSCondVal) { // If we have 1 && X, just emit X.
2274      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2275      // ZExt result to int or bool.
2276      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
2277    }
2278
2279    // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
2280    if (!CGF.ContainsLabel(E->getRHS()))
2281      return llvm::Constant::getNullValue(ResTy);
2282  }
2283
2284  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
2285  llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
2286
2287  CodeGenFunction::ConditionalEvaluation eval(CGF);
2288
2289  // Branch on the LHS first.  If it is false, go to the failure (cont) block.
2290  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
2291
2292  // Any edges into the ContBlock are now from an (indeterminate number of)
2293  // edges from this first condition.  All of these values will be false.  Start
2294  // setting up the PHI node in the Cont Block for this.
2295  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2296                                            "", ContBlock);
2297  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2298       PI != PE; ++PI)
2299    PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
2300
2301  eval.begin(CGF);
2302  CGF.EmitBlock(RHSBlock);
2303  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2304  eval.end(CGF);
2305
2306  // Reaquire the RHS block, as there may be subblocks inserted.
2307  RHSBlock = Builder.GetInsertBlock();
2308
2309  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2310  // into the phi node for the edge with the value of RHSCond.
2311  if (CGF.getDebugInfo())
2312    // There is no need to emit line number for unconditional branch.
2313    Builder.SetCurrentDebugLocation(llvm::DebugLoc());
2314  CGF.EmitBlock(ContBlock);
2315  PN->addIncoming(RHSCond, RHSBlock);
2316
2317  // ZExt result to int.
2318  return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
2319}
2320
2321Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
2322  const llvm::Type *ResTy = ConvertType(E->getType());
2323
2324  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
2325  // If we have 0 || X, just emit X without inserting the control flow.
2326  bool LHSCondVal;
2327  if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2328    if (!LHSCondVal) { // If we have 0 || X, just emit X.
2329      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2330      // ZExt result to int or bool.
2331      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
2332    }
2333
2334    // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
2335    if (!CGF.ContainsLabel(E->getRHS()))
2336      return llvm::ConstantInt::get(ResTy, 1);
2337  }
2338
2339  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
2340  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
2341
2342  CodeGenFunction::ConditionalEvaluation eval(CGF);
2343
2344  // Branch on the LHS first.  If it is true, go to the success (cont) block.
2345  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
2346
2347  // Any edges into the ContBlock are now from an (indeterminate number of)
2348  // edges from this first condition.  All of these values will be true.  Start
2349  // setting up the PHI node in the Cont Block for this.
2350  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2351                                            "", ContBlock);
2352  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2353       PI != PE; ++PI)
2354    PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
2355
2356  eval.begin(CGF);
2357
2358  // Emit the RHS condition as a bool value.
2359  CGF.EmitBlock(RHSBlock);
2360  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2361
2362  eval.end(CGF);
2363
2364  // Reaquire the RHS block, as there may be subblocks inserted.
2365  RHSBlock = Builder.GetInsertBlock();
2366
2367  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2368  // into the phi node for the edge with the value of RHSCond.
2369  CGF.EmitBlock(ContBlock);
2370  PN->addIncoming(RHSCond, RHSBlock);
2371
2372  // ZExt result to int.
2373  return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
2374}
2375
2376Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
2377  CGF.EmitIgnoredExpr(E->getLHS());
2378  CGF.EnsureInsertPoint();
2379  return Visit(E->getRHS());
2380}
2381
2382//===----------------------------------------------------------------------===//
2383//                             Other Operators
2384//===----------------------------------------------------------------------===//
2385
2386/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
2387/// expression is cheap enough and side-effect-free enough to evaluate
2388/// unconditionally instead of conditionally.  This is used to convert control
2389/// flow into selects in some cases.
2390static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
2391                                                   CodeGenFunction &CGF) {
2392  E = E->IgnoreParens();
2393
2394  // Anything that is an integer or floating point constant is fine.
2395  if (E->isConstantInitializer(CGF.getContext(), false))
2396    return true;
2397
2398  // Non-volatile automatic variables too, to get "cond ? X : Y" where
2399  // X and Y are local variables.
2400  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
2401    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2402      if (VD->hasLocalStorage() && !(CGF.getContext()
2403                                     .getCanonicalType(VD->getType())
2404                                     .isVolatileQualified()))
2405        return true;
2406
2407  return false;
2408}
2409
2410
2411Value *ScalarExprEmitter::
2412VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
2413  TestAndClearIgnoreResultAssign();
2414
2415  // Bind the common expression if necessary.
2416  CodeGenFunction::OpaqueValueMapping binding(CGF, E);
2417
2418  Expr *condExpr = E->getCond();
2419  Expr *lhsExpr = E->getTrueExpr();
2420  Expr *rhsExpr = E->getFalseExpr();
2421
2422  // If the condition constant folds and can be elided, try to avoid emitting
2423  // the condition and the dead arm.
2424  bool CondExprBool;
2425  if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2426    Expr *live = lhsExpr, *dead = rhsExpr;
2427    if (!CondExprBool) std::swap(live, dead);
2428
2429    // If the dead side doesn't have labels we need, and if the Live side isn't
2430    // the gnu missing ?: extension (which we could handle, but don't bother
2431    // to), just emit the Live part.
2432    if (!CGF.ContainsLabel(dead))
2433      return Visit(live);
2434  }
2435
2436  // OpenCL: If the condition is a vector, we can treat this condition like
2437  // the select function.
2438  if (CGF.getContext().getLangOptions().OpenCL
2439      && condExpr->getType()->isVectorType()) {
2440    llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
2441    llvm::Value *LHS = Visit(lhsExpr);
2442    llvm::Value *RHS = Visit(rhsExpr);
2443
2444    const llvm::Type *condType = ConvertType(condExpr->getType());
2445    const llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
2446
2447    unsigned numElem = vecTy->getNumElements();
2448    const llvm::Type *elemType = vecTy->getElementType();
2449
2450    std::vector<llvm::Constant*> Zvals;
2451    for (unsigned i = 0; i < numElem; ++i)
2452      Zvals.push_back(llvm::ConstantInt::get(elemType, 0));
2453
2454    llvm::Value *zeroVec = llvm::ConstantVector::get(Zvals);
2455    llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
2456    llvm::Value *tmp = Builder.CreateSExt(TestMSB,
2457                                          llvm::VectorType::get(elemType,
2458                                                                numElem),
2459                                          "sext");
2460    llvm::Value *tmp2 = Builder.CreateNot(tmp);
2461
2462    // Cast float to int to perform ANDs if necessary.
2463    llvm::Value *RHSTmp = RHS;
2464    llvm::Value *LHSTmp = LHS;
2465    bool wasCast = false;
2466    const llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
2467    if (rhsVTy->getElementType()->isFloatTy()) {
2468      RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
2469      LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
2470      wasCast = true;
2471    }
2472
2473    llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
2474    llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
2475    llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
2476    if (wasCast)
2477      tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
2478
2479    return tmp5;
2480  }
2481
2482  // If this is a really simple expression (like x ? 4 : 5), emit this as a
2483  // select instead of as control flow.  We can only do this if it is cheap and
2484  // safe to evaluate the LHS and RHS unconditionally.
2485  if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
2486      isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
2487    llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
2488    llvm::Value *LHS = Visit(lhsExpr);
2489    llvm::Value *RHS = Visit(rhsExpr);
2490    return Builder.CreateSelect(CondV, LHS, RHS, "cond");
2491  }
2492
2493  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
2494  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
2495  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
2496
2497  CodeGenFunction::ConditionalEvaluation eval(CGF);
2498  CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock);
2499
2500  CGF.EmitBlock(LHSBlock);
2501  eval.begin(CGF);
2502  Value *LHS = Visit(lhsExpr);
2503  eval.end(CGF);
2504
2505  LHSBlock = Builder.GetInsertBlock();
2506  Builder.CreateBr(ContBlock);
2507
2508  CGF.EmitBlock(RHSBlock);
2509  eval.begin(CGF);
2510  Value *RHS = Visit(rhsExpr);
2511  eval.end(CGF);
2512
2513  RHSBlock = Builder.GetInsertBlock();
2514  CGF.EmitBlock(ContBlock);
2515
2516  // If the LHS or RHS is a throw expression, it will be legitimately null.
2517  if (!LHS)
2518    return RHS;
2519  if (!RHS)
2520    return LHS;
2521
2522  // Create a PHI node for the real part.
2523  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
2524  PN->addIncoming(LHS, LHSBlock);
2525  PN->addIncoming(RHS, RHSBlock);
2526  return PN;
2527}
2528
2529Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
2530  return Visit(E->getChosenSubExpr(CGF.getContext()));
2531}
2532
2533Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
2534  llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
2535  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
2536
2537  // If EmitVAArg fails, we fall back to the LLVM instruction.
2538  if (!ArgPtr)
2539    return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
2540
2541  // FIXME Volatility.
2542  return Builder.CreateLoad(ArgPtr);
2543}
2544
2545Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
2546  return CGF.EmitBlockLiteral(block);
2547}
2548
2549Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
2550  Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
2551  const llvm::Type * DstTy = ConvertType(E->getDstType());
2552
2553  // Going from vec4->vec3 or vec3->vec4 is a special case and requires
2554  // a shuffle vector instead of a bitcast.
2555  const llvm::Type *SrcTy = Src->getType();
2556  if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
2557    unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
2558    unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
2559    if ((numElementsDst == 3 && numElementsSrc == 4)
2560        || (numElementsDst == 4 && numElementsSrc == 3)) {
2561
2562
2563      // In the case of going from int4->float3, a bitcast is needed before
2564      // doing a shuffle.
2565      const llvm::Type *srcElemTy =
2566      cast<llvm::VectorType>(SrcTy)->getElementType();
2567      const llvm::Type *dstElemTy =
2568      cast<llvm::VectorType>(DstTy)->getElementType();
2569
2570      if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
2571          || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
2572        // Create a float type of the same size as the source or destination.
2573        const llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
2574                                                                 numElementsSrc);
2575
2576        Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
2577      }
2578
2579      llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
2580
2581      llvm::SmallVector<llvm::Constant*, 3> Args;
2582      Args.push_back(Builder.getInt32(0));
2583      Args.push_back(Builder.getInt32(1));
2584      Args.push_back(Builder.getInt32(2));
2585
2586      if (numElementsDst == 4)
2587        Args.push_back(llvm::UndefValue::get(
2588                                             llvm::Type::getInt32Ty(CGF.getLLVMContext())));
2589
2590      llvm::Constant *Mask = llvm::ConstantVector::get(Args);
2591
2592      return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
2593    }
2594  }
2595
2596  return Builder.CreateBitCast(Src, DstTy, "astype");
2597}
2598
2599//===----------------------------------------------------------------------===//
2600//                         Entry Point into this File
2601//===----------------------------------------------------------------------===//
2602
2603/// EmitScalarExpr - Emit the computation of the specified expression of scalar
2604/// type, ignoring the result.
2605Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
2606  assert(E && !hasAggregateLLVMType(E->getType()) &&
2607         "Invalid scalar expression to emit");
2608
2609  if (isa<CXXDefaultArgExpr>(E))
2610    disableDebugInfo();
2611  Value *V = ScalarExprEmitter(*this, IgnoreResultAssign)
2612    .Visit(const_cast<Expr*>(E));
2613  if (isa<CXXDefaultArgExpr>(E))
2614    enableDebugInfo();
2615  return V;
2616}
2617
2618/// EmitScalarConversion - Emit a conversion from the specified type to the
2619/// specified destination type, both of which are LLVM scalar types.
2620Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
2621                                             QualType DstTy) {
2622  assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
2623         "Invalid scalar expression to emit");
2624  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
2625}
2626
2627/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
2628/// type to the specified destination type, where the destination type is an
2629/// LLVM scalar type.
2630Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
2631                                                      QualType SrcTy,
2632                                                      QualType DstTy) {
2633  assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
2634         "Invalid complex -> scalar conversion");
2635  return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
2636                                                                DstTy);
2637}
2638
2639
2640llvm::Value *CodeGenFunction::
2641EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2642                        bool isInc, bool isPre) {
2643  return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
2644}
2645
2646LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
2647  llvm::Value *V;
2648  // object->isa or (*object).isa
2649  // Generate code as for: *(Class*)object
2650  // build Class* type
2651  const llvm::Type *ClassPtrTy = ConvertType(E->getType());
2652
2653  Expr *BaseExpr = E->getBase();
2654  if (BaseExpr->isRValue()) {
2655    V = CreateTempAlloca(ClassPtrTy, "resval");
2656    llvm::Value *Src = EmitScalarExpr(BaseExpr);
2657    Builder.CreateStore(Src, V);
2658    V = ScalarExprEmitter(*this).EmitLoadOfLValue(
2659      MakeAddrLValue(V, E->getType()), E->getType());
2660  } else {
2661    if (E->isArrow())
2662      V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
2663    else
2664      V = EmitLValue(BaseExpr).getAddress();
2665  }
2666
2667  // build Class* type
2668  ClassPtrTy = ClassPtrTy->getPointerTo();
2669  V = Builder.CreateBitCast(V, ClassPtrTy);
2670  return MakeAddrLValue(V, E->getType());
2671}
2672
2673
2674LValue CodeGenFunction::EmitCompoundAssignmentLValue(
2675                                            const CompoundAssignOperator *E) {
2676  ScalarExprEmitter Scalar(*this);
2677  Value *Result = 0;
2678  switch (E->getOpcode()) {
2679#define COMPOUND_OP(Op)                                                       \
2680    case BO_##Op##Assign:                                                     \
2681      return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
2682                                             Result)
2683  COMPOUND_OP(Mul);
2684  COMPOUND_OP(Div);
2685  COMPOUND_OP(Rem);
2686  COMPOUND_OP(Add);
2687  COMPOUND_OP(Sub);
2688  COMPOUND_OP(Shl);
2689  COMPOUND_OP(Shr);
2690  COMPOUND_OP(And);
2691  COMPOUND_OP(Xor);
2692  COMPOUND_OP(Or);
2693#undef COMPOUND_OP
2694
2695  case BO_PtrMemD:
2696  case BO_PtrMemI:
2697  case BO_Mul:
2698  case BO_Div:
2699  case BO_Rem:
2700  case BO_Add:
2701  case BO_Sub:
2702  case BO_Shl:
2703  case BO_Shr:
2704  case BO_LT:
2705  case BO_GT:
2706  case BO_LE:
2707  case BO_GE:
2708  case BO_EQ:
2709  case BO_NE:
2710  case BO_And:
2711  case BO_Xor:
2712  case BO_Or:
2713  case BO_LAnd:
2714  case BO_LOr:
2715  case BO_Assign:
2716  case BO_Comma:
2717    assert(false && "Not valid compound assignment operators");
2718    break;
2719  }
2720
2721  llvm_unreachable("Unhandled compound assignment operator");
2722}
2723