CGExprScalar.cpp revision 212904
1193326Sed//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2193326Sed//
3193326Sed//                     The LLVM Compiler Infrastructure
4193326Sed//
5193326Sed// This file is distributed under the University of Illinois Open Source
6193326Sed// License. See LICENSE.TXT for details.
7193326Sed//
8193326Sed//===----------------------------------------------------------------------===//
9193326Sed//
10193326Sed// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11193326Sed//
12193326Sed//===----------------------------------------------------------------------===//
13193326Sed
14193326Sed#include "CodeGenFunction.h"
15212904Sdim#include "CGCXXABI.h"
16198092Srdivacky#include "CGObjCRuntime.h"
17193326Sed#include "CodeGenModule.h"
18193326Sed#include "clang/AST/ASTContext.h"
19193326Sed#include "clang/AST/DeclObjC.h"
20193326Sed#include "clang/AST/RecordLayout.h"
21193326Sed#include "clang/AST/StmtVisitor.h"
22193326Sed#include "clang/Basic/TargetInfo.h"
23193326Sed#include "llvm/Constants.h"
24193326Sed#include "llvm/Function.h"
25193326Sed#include "llvm/GlobalVariable.h"
26193326Sed#include "llvm/Intrinsics.h"
27193326Sed#include "llvm/Module.h"
28193326Sed#include "llvm/Support/CFG.h"
29193326Sed#include "llvm/Target/TargetData.h"
30193326Sed#include <cstdarg>
31193326Sed
32193326Sedusing namespace clang;
33193326Sedusing namespace CodeGen;
34193326Sedusing llvm::Value;
35193326Sed
36193326Sed//===----------------------------------------------------------------------===//
37193326Sed//                         Scalar Expression Emitter
38193326Sed//===----------------------------------------------------------------------===//
39193326Sed
40193326Sedstruct BinOpInfo {
41193326Sed  Value *LHS;
42193326Sed  Value *RHS;
43193326Sed  QualType Ty;  // Computation Type.
44210299Sed  BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
45210299Sed  const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
46193326Sed};
47193326Sed
48193326Sednamespace {
49199990Srdivackyclass ScalarExprEmitter
50193326Sed  : public StmtVisitor<ScalarExprEmitter, Value*> {
51193326Sed  CodeGenFunction &CGF;
52193326Sed  CGBuilderTy &Builder;
53193326Sed  bool IgnoreResultAssign;
54198092Srdivacky  llvm::LLVMContext &VMContext;
55193326Sedpublic:
56193326Sed
57193326Sed  ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
58198092Srdivacky    : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
59198092Srdivacky      VMContext(cgf.getLLVMContext()) {
60193326Sed  }
61198092Srdivacky
62193326Sed  //===--------------------------------------------------------------------===//
63193326Sed  //                               Utilities
64193326Sed  //===--------------------------------------------------------------------===//
65193326Sed
66193326Sed  bool TestAndClearIgnoreResultAssign() {
67198092Srdivacky    bool I = IgnoreResultAssign;
68198092Srdivacky    IgnoreResultAssign = false;
69198092Srdivacky    return I;
70198092Srdivacky  }
71193326Sed
72193326Sed  const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
73193326Sed  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
74201361Srdivacky  LValue EmitCheckedLValue(const Expr *E) { return CGF.EmitCheckedLValue(E); }
75193326Sed
76193326Sed  Value *EmitLoadOfLValue(LValue LV, QualType T) {
77193326Sed    return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
78193326Sed  }
79198092Srdivacky
80193326Sed  /// EmitLoadOfLValue - Given an expression with complex type that represents a
81193326Sed  /// value l-value, this method emits the address of the l-value, then loads
82193326Sed  /// and returns the result.
83193326Sed  Value *EmitLoadOfLValue(const Expr *E) {
84201361Srdivacky    return EmitLoadOfLValue(EmitCheckedLValue(E), E->getType());
85193326Sed  }
86198092Srdivacky
87193326Sed  /// EmitConversionToBool - Convert the specified expression value to a
88193326Sed  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
89193326Sed  Value *EmitConversionToBool(Value *Src, QualType DstTy);
90198092Srdivacky
91193326Sed  /// EmitScalarConversion - Emit a conversion from the specified type to the
92193326Sed  /// specified destination type, both of which are LLVM scalar types.
93193326Sed  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
94193326Sed
95193326Sed  /// EmitComplexToScalarConversion - Emit a conversion from the specified
96198092Srdivacky  /// complex type to the specified destination type, where the destination type
97198092Srdivacky  /// is an LLVM scalar type.
98193326Sed  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
99193326Sed                                       QualType SrcTy, QualType DstTy);
100193326Sed
101208600Srdivacky  /// EmitNullValue - Emit a value that corresponds to null for the given type.
102208600Srdivacky  Value *EmitNullValue(QualType Ty);
103208600Srdivacky
104193326Sed  //===--------------------------------------------------------------------===//
105193326Sed  //                            Visitor Methods
106193326Sed  //===--------------------------------------------------------------------===//
107193326Sed
108193326Sed  Value *VisitStmt(Stmt *S) {
109193326Sed    S->dump(CGF.getContext().getSourceManager());
110193326Sed    assert(0 && "Stmt can't have complex result type!");
111193326Sed    return 0;
112193326Sed  }
113193326Sed  Value *VisitExpr(Expr *S);
114198398Srdivacky
115193326Sed  Value *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); }
116193326Sed
117193326Sed  // Leaves.
118193326Sed  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
119198092Srdivacky    return llvm::ConstantInt::get(VMContext, E->getValue());
120193326Sed  }
121193326Sed  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
122198092Srdivacky    return llvm::ConstantFP::get(VMContext, E->getValue());
123193326Sed  }
124193326Sed  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
125193326Sed    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
126193326Sed  }
127193326Sed  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
128193326Sed    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
129193326Sed  }
130210299Sed  Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
131208600Srdivacky    return EmitNullValue(E->getType());
132193326Sed  }
133193326Sed  Value *VisitGNUNullExpr(const GNUNullExpr *E) {
134208600Srdivacky    return EmitNullValue(E->getType());
135193326Sed  }
136193326Sed  Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
137193326Sed    return llvm::ConstantInt::get(ConvertType(E->getType()),
138193326Sed                                  CGF.getContext().typesAreCompatible(
139193326Sed                                    E->getArgType1(), E->getArgType2()));
140193326Sed  }
141212904Sdim  Value *VisitOffsetOfExpr(OffsetOfExpr *E);
142193326Sed  Value *VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E);
143193326Sed  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
144198893Srdivacky    llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
145198893Srdivacky    return Builder.CreateBitCast(V, ConvertType(E->getType()));
146193326Sed  }
147198092Srdivacky
148193326Sed  // l-values.
149193326Sed  Value *VisitDeclRefExpr(DeclRefExpr *E) {
150199990Srdivacky    Expr::EvalResult Result;
151199990Srdivacky    if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
152199990Srdivacky      assert(!Result.HasSideEffects && "Constant declref with side-effect?!");
153212904Sdim      llvm::ConstantInt *CI
154212904Sdim        = llvm::ConstantInt::get(VMContext, Result.Val.getInt());
155212904Sdim      CGF.EmitDeclRefExprDbgValue(E, CI);
156212904Sdim      return CI;
157199990Srdivacky    }
158193326Sed    return EmitLoadOfLValue(E);
159193326Sed  }
160198092Srdivacky  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
161198092Srdivacky    return CGF.EmitObjCSelectorExpr(E);
162193326Sed  }
163198092Srdivacky  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
164198092Srdivacky    return CGF.EmitObjCProtocolExpr(E);
165193326Sed  }
166198092Srdivacky  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
167193326Sed    return EmitLoadOfLValue(E);
168193326Sed  }
169193326Sed  Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
170193326Sed    return EmitLoadOfLValue(E);
171193326Sed  }
172198092Srdivacky  Value *VisitObjCImplicitSetterGetterRefExpr(
173198092Srdivacky                        ObjCImplicitSetterGetterRefExpr *E) {
174193326Sed    return EmitLoadOfLValue(E);
175193326Sed  }
176193326Sed  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
177193326Sed    return CGF.EmitObjCMessageExpr(E).getScalarVal();
178193326Sed  }
179193326Sed
180200583Srdivacky  Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
181200583Srdivacky    LValue LV = CGF.EmitObjCIsaExpr(E);
182200583Srdivacky    Value *V = CGF.EmitLoadOfLValue(LV, E->getType()).getScalarVal();
183200583Srdivacky    return V;
184200583Srdivacky  }
185200583Srdivacky
186193326Sed  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
187193326Sed  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
188199990Srdivacky  Value *VisitMemberExpr(MemberExpr *E);
189193326Sed  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
190193326Sed  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
191193326Sed    return EmitLoadOfLValue(E);
192193326Sed  }
193198092Srdivacky
194198398Srdivacky  Value *VisitInitListExpr(InitListExpr *E);
195198092Srdivacky
196193326Sed  Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
197208600Srdivacky    return CGF.CGM.EmitNullConstant(E->getType());
198193326Sed  }
199199990Srdivacky  Value *VisitCastExpr(CastExpr *E) {
200193326Sed    // Make sure to evaluate VLA bounds now so that we have them for later.
201193326Sed    if (E->getType()->isVariablyModifiedType())
202193326Sed      CGF.EmitVLASize(E->getType());
203193326Sed
204198092Srdivacky    return EmitCastExpr(E);
205193326Sed  }
206199990Srdivacky  Value *EmitCastExpr(CastExpr *E);
207193326Sed
208193326Sed  Value *VisitCallExpr(const CallExpr *E) {
209193326Sed    if (E->getCallReturnType()->isReferenceType())
210193326Sed      return EmitLoadOfLValue(E);
211198092Srdivacky
212193326Sed    return CGF.EmitCallExpr(E).getScalarVal();
213193326Sed  }
214193326Sed
215193326Sed  Value *VisitStmtExpr(const StmtExpr *E);
216193326Sed
217193326Sed  Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
218198092Srdivacky
219193326Sed  // Unary Operators.
220210299Sed  Value *VisitUnaryPostDec(const UnaryOperator *E) {
221202379Srdivacky    LValue LV = EmitLValue(E->getSubExpr());
222210299Sed    return EmitScalarPrePostIncDec(E, LV, false, false);
223202379Srdivacky  }
224193326Sed  Value *VisitUnaryPostInc(const UnaryOperator *E) {
225210299Sed    LValue LV = EmitLValue(E->getSubExpr());
226210299Sed    return EmitScalarPrePostIncDec(E, LV, true, false);
227193326Sed  }
228193326Sed  Value *VisitUnaryPreDec(const UnaryOperator *E) {
229210299Sed    LValue LV = EmitLValue(E->getSubExpr());
230210299Sed    return EmitScalarPrePostIncDec(E, LV, false, true);
231193326Sed  }
232193326Sed  Value *VisitUnaryPreInc(const UnaryOperator *E) {
233210299Sed    LValue LV = EmitLValue(E->getSubExpr());
234210299Sed    return EmitScalarPrePostIncDec(E, LV, true, true);
235193326Sed  }
236210299Sed
237210299Sed  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
238210299Sed                                       bool isInc, bool isPre);
239210299Sed
240210299Sed
241193326Sed  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
242212904Sdim    // If the sub-expression is an instance member reference,
243212904Sdim    // EmitDeclRefLValue will magically emit it with the appropriate
244212904Sdim    // value as the "address".
245193326Sed    return EmitLValue(E->getSubExpr()).getAddress();
246193326Sed  }
247193326Sed  Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
248193326Sed  Value *VisitUnaryPlus(const UnaryOperator *E) {
249193326Sed    // This differs from gcc, though, most likely due to a bug in gcc.
250193326Sed    TestAndClearIgnoreResultAssign();
251193326Sed    return Visit(E->getSubExpr());
252193326Sed  }
253193326Sed  Value *VisitUnaryMinus    (const UnaryOperator *E);
254193326Sed  Value *VisitUnaryNot      (const UnaryOperator *E);
255193326Sed  Value *VisitUnaryLNot     (const UnaryOperator *E);
256193326Sed  Value *VisitUnaryReal     (const UnaryOperator *E);
257193326Sed  Value *VisitUnaryImag     (const UnaryOperator *E);
258193326Sed  Value *VisitUnaryExtension(const UnaryOperator *E) {
259193326Sed    return Visit(E->getSubExpr());
260193326Sed  }
261207619Srdivacky
262193326Sed  // C++
263193326Sed  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
264193326Sed    return Visit(DAE->getExpr());
265193326Sed  }
266193326Sed  Value *VisitCXXThisExpr(CXXThisExpr *TE) {
267193326Sed    return CGF.LoadCXXThis();
268198092Srdivacky  }
269198092Srdivacky
270193326Sed  Value *VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) {
271193326Sed    return CGF.EmitCXXExprWithTemporaries(E).getScalarVal();
272193326Sed  }
273193326Sed  Value *VisitCXXNewExpr(const CXXNewExpr *E) {
274193326Sed    return CGF.EmitCXXNewExpr(E);
275193326Sed  }
276198092Srdivacky  Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
277198092Srdivacky    CGF.EmitCXXDeleteExpr(E);
278198092Srdivacky    return 0;
279198092Srdivacky  }
280200583Srdivacky  Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
281200583Srdivacky    return llvm::ConstantInt::get(Builder.getInt1Ty(),
282200583Srdivacky                                  E->EvaluateTrait(CGF.getContext()));
283200583Srdivacky  }
284198092Srdivacky
285198092Srdivacky  Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
286198092Srdivacky    // C++ [expr.pseudo]p1:
287198092Srdivacky    //   The result shall only be used as the operand for the function call
288198092Srdivacky    //   operator (), and the result of such a call has type void. The only
289198092Srdivacky    //   effect is the evaluation of the postfix-expression before the dot or
290198092Srdivacky    //   arrow.
291198092Srdivacky    CGF.EmitScalarExpr(E->getBase());
292198092Srdivacky    return 0;
293198092Srdivacky  }
294198092Srdivacky
295198092Srdivacky  Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
296208600Srdivacky    return EmitNullValue(E->getType());
297198092Srdivacky  }
298198893Srdivacky
299198893Srdivacky  Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
300198893Srdivacky    CGF.EmitCXXThrowExpr(E);
301198893Srdivacky    return 0;
302198893Srdivacky  }
303198893Srdivacky
304193326Sed  // Binary Operators.
305193326Sed  Value *EmitMul(const BinOpInfo &Ops) {
306212904Sdim    if (Ops.Ty->hasSignedIntegerRepresentation()) {
307210299Sed      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
308210299Sed      case LangOptions::SOB_Undefined:
309210299Sed        return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
310210299Sed      case LangOptions::SOB_Defined:
311210299Sed        return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
312210299Sed      case LangOptions::SOB_Trapping:
313210299Sed        return EmitOverflowCheckedBinOp(Ops);
314210299Sed      }
315210299Sed    }
316210299Sed
317203955Srdivacky    if (Ops.LHS->getType()->isFPOrFPVectorTy())
318194613Sed      return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
319193326Sed    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
320193326Sed  }
321193326Sed  /// Create a binary op that checks for overflow.
322193326Sed  /// Currently only supports +, - and *.
323193326Sed  Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
324193326Sed  Value *EmitDiv(const BinOpInfo &Ops);
325193326Sed  Value *EmitRem(const BinOpInfo &Ops);
326193326Sed  Value *EmitAdd(const BinOpInfo &Ops);
327193326Sed  Value *EmitSub(const BinOpInfo &Ops);
328193326Sed  Value *EmitShl(const BinOpInfo &Ops);
329193326Sed  Value *EmitShr(const BinOpInfo &Ops);
330193326Sed  Value *EmitAnd(const BinOpInfo &Ops) {
331193326Sed    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
332193326Sed  }
333193326Sed  Value *EmitXor(const BinOpInfo &Ops) {
334193326Sed    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
335193326Sed  }
336193326Sed  Value *EmitOr (const BinOpInfo &Ops) {
337193326Sed    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
338193326Sed  }
339193326Sed
340193326Sed  BinOpInfo EmitBinOps(const BinaryOperator *E);
341207619Srdivacky  LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
342207619Srdivacky                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
343210299Sed                                  Value *&Result);
344207619Srdivacky
345193326Sed  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
346193326Sed                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
347193326Sed
348193326Sed  // Binary operators and binary compound assignment operators.
349193326Sed#define HANDLEBINOP(OP) \
350193326Sed  Value *VisitBin ## OP(const BinaryOperator *E) {                         \
351193326Sed    return Emit ## OP(EmitBinOps(E));                                      \
352193326Sed  }                                                                        \
353193326Sed  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
354193326Sed    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
355193326Sed  }
356201361Srdivacky  HANDLEBINOP(Mul)
357201361Srdivacky  HANDLEBINOP(Div)
358201361Srdivacky  HANDLEBINOP(Rem)
359201361Srdivacky  HANDLEBINOP(Add)
360201361Srdivacky  HANDLEBINOP(Sub)
361201361Srdivacky  HANDLEBINOP(Shl)
362201361Srdivacky  HANDLEBINOP(Shr)
363201361Srdivacky  HANDLEBINOP(And)
364201361Srdivacky  HANDLEBINOP(Xor)
365201361Srdivacky  HANDLEBINOP(Or)
366193326Sed#undef HANDLEBINOP
367193326Sed
368193326Sed  // Comparisons.
369193326Sed  Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
370193326Sed                     unsigned SICmpOpc, unsigned FCmpOpc);
371193326Sed#define VISITCOMP(CODE, UI, SI, FP) \
372193326Sed    Value *VisitBin##CODE(const BinaryOperator *E) { \
373193326Sed      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
374193326Sed                         llvm::FCmpInst::FP); }
375201361Srdivacky  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
376201361Srdivacky  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
377201361Srdivacky  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
378201361Srdivacky  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
379201361Srdivacky  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
380201361Srdivacky  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
381193326Sed#undef VISITCOMP
382198092Srdivacky
383193326Sed  Value *VisitBinAssign     (const BinaryOperator *E);
384193326Sed
385193326Sed  Value *VisitBinLAnd       (const BinaryOperator *E);
386193326Sed  Value *VisitBinLOr        (const BinaryOperator *E);
387193326Sed  Value *VisitBinComma      (const BinaryOperator *E);
388193326Sed
389199482Srdivacky  Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
390199482Srdivacky  Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
391199482Srdivacky
392193326Sed  // Other Operators.
393193326Sed  Value *VisitBlockExpr(const BlockExpr *BE);
394193326Sed  Value *VisitConditionalOperator(const ConditionalOperator *CO);
395193326Sed  Value *VisitChooseExpr(ChooseExpr *CE);
396193326Sed  Value *VisitVAArgExpr(VAArgExpr *VE);
397193326Sed  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
398193326Sed    return CGF.EmitObjCStringLiteral(E);
399193326Sed  }
400193326Sed};
401193326Sed}  // end anonymous namespace.
402193326Sed
403193326Sed//===----------------------------------------------------------------------===//
404193326Sed//                                Utilities
405193326Sed//===----------------------------------------------------------------------===//
406193326Sed
407193326Sed/// EmitConversionToBool - Convert the specified expression value to a
408193326Sed/// boolean (i1) truth value.  This is equivalent to "Val != 0".
409193326SedValue *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
410198398Srdivacky  assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
411198092Srdivacky
412193326Sed  if (SrcType->isRealFloatingType()) {
413193326Sed    // Compare against 0.0 for fp scalars.
414193326Sed    llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
415193326Sed    return Builder.CreateFCmpUNE(Src, Zero, "tobool");
416193326Sed  }
417198092Srdivacky
418212904Sdim  if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
419212904Sdim    return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
420198092Srdivacky
421193326Sed  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
422193326Sed         "Unknown scalar type to convert");
423198092Srdivacky
424193326Sed  // Because of the type rules of C, we often end up computing a logical value,
425193326Sed  // then zero extending it to int, then wanting it as a logical value again.
426193326Sed  // Optimize this common case.
427193326Sed  if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) {
428198092Srdivacky    if (ZI->getOperand(0)->getType() ==
429198092Srdivacky        llvm::Type::getInt1Ty(CGF.getLLVMContext())) {
430193326Sed      Value *Result = ZI->getOperand(0);
431193326Sed      // If there aren't any more uses, zap the instruction to save space.
432193326Sed      // Note that there can be more uses, for example if this
433193326Sed      // is the result of an assignment.
434193326Sed      if (ZI->use_empty())
435193326Sed        ZI->eraseFromParent();
436193326Sed      return Result;
437193326Sed    }
438193326Sed  }
439198092Srdivacky
440193326Sed  // Compare against an integer or pointer null.
441193326Sed  llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
442193326Sed  return Builder.CreateICmpNE(Src, Zero, "tobool");
443193326Sed}
444193326Sed
445193326Sed/// EmitScalarConversion - Emit a conversion from the specified type to the
446193326Sed/// specified destination type, both of which are LLVM scalar types.
447193326SedValue *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
448193326Sed                                               QualType DstType) {
449193326Sed  SrcType = CGF.getContext().getCanonicalType(SrcType);
450193326Sed  DstType = CGF.getContext().getCanonicalType(DstType);
451193326Sed  if (SrcType == DstType) return Src;
452198092Srdivacky
453193326Sed  if (DstType->isVoidType()) return 0;
454193326Sed
455193326Sed  // Handle conversions to bool first, they are special: comparisons against 0.
456193326Sed  if (DstType->isBooleanType())
457193326Sed    return EmitConversionToBool(Src, SrcType);
458198092Srdivacky
459193326Sed  const llvm::Type *DstTy = ConvertType(DstType);
460193326Sed
461193326Sed  // Ignore conversions like int -> uint.
462193326Sed  if (Src->getType() == DstTy)
463193326Sed    return Src;
464193326Sed
465198092Srdivacky  // Handle pointer conversions next: pointers can only be converted to/from
466198092Srdivacky  // other pointers and integers. Check for pointer types in terms of LLVM, as
467198092Srdivacky  // some native types (like Obj-C id) may map to a pointer type.
468193326Sed  if (isa<llvm::PointerType>(DstTy)) {
469193326Sed    // The source value may be an integer, or a pointer.
470193326Sed    if (isa<llvm::PointerType>(Src->getType()))
471193326Sed      return Builder.CreateBitCast(Src, DstTy, "conv");
472198092Srdivacky
473193326Sed    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
474193326Sed    // First, convert to the correct width so that we control the kind of
475193326Sed    // extension.
476210299Sed    const llvm::Type *MiddleTy = CGF.IntPtrTy;
477193326Sed    bool InputSigned = SrcType->isSignedIntegerType();
478193326Sed    llvm::Value* IntResult =
479193326Sed        Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
480193326Sed    // Then, cast to pointer.
481193326Sed    return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
482193326Sed  }
483198092Srdivacky
484193326Sed  if (isa<llvm::PointerType>(Src->getType())) {
485193326Sed    // Must be an ptr to int cast.
486193326Sed    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
487193326Sed    return Builder.CreatePtrToInt(Src, DstTy, "conv");
488193326Sed  }
489198092Srdivacky
490193326Sed  // A scalar can be splatted to an extended vector of the same element type
491198092Srdivacky  if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
492193326Sed    // Cast the scalar to element type
493198092Srdivacky    QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
494193326Sed    llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
495193326Sed
496193326Sed    // Insert the element in element zero of an undef vector
497193326Sed    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
498210299Sed    llvm::Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, 0);
499193326Sed    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
500193326Sed
501193326Sed    // Splat the element across to all elements
502193326Sed    llvm::SmallVector<llvm::Constant*, 16> Args;
503193326Sed    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
504193326Sed    for (unsigned i = 0; i < NumElements; i++)
505210299Sed      Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 0));
506198092Srdivacky
507193326Sed    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
508193326Sed    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
509193326Sed    return Yay;
510193326Sed  }
511193326Sed
512193326Sed  // Allow bitcast from vector to integer/fp of the same size.
513193326Sed  if (isa<llvm::VectorType>(Src->getType()) ||
514193326Sed      isa<llvm::VectorType>(DstTy))
515193326Sed    return Builder.CreateBitCast(Src, DstTy, "conv");
516198092Srdivacky
517193326Sed  // Finally, we have the arithmetic types: real int/float.
518193326Sed  if (isa<llvm::IntegerType>(Src->getType())) {
519193326Sed    bool InputSigned = SrcType->isSignedIntegerType();
520193326Sed    if (isa<llvm::IntegerType>(DstTy))
521193326Sed      return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
522193326Sed    else if (InputSigned)
523193326Sed      return Builder.CreateSIToFP(Src, DstTy, "conv");
524193326Sed    else
525193326Sed      return Builder.CreateUIToFP(Src, DstTy, "conv");
526193326Sed  }
527198092Srdivacky
528203955Srdivacky  assert(Src->getType()->isFloatingPointTy() && "Unknown real conversion");
529193326Sed  if (isa<llvm::IntegerType>(DstTy)) {
530193326Sed    if (DstType->isSignedIntegerType())
531193326Sed      return Builder.CreateFPToSI(Src, DstTy, "conv");
532193326Sed    else
533193326Sed      return Builder.CreateFPToUI(Src, DstTy, "conv");
534193326Sed  }
535193326Sed
536203955Srdivacky  assert(DstTy->isFloatingPointTy() && "Unknown real conversion");
537193326Sed  if (DstTy->getTypeID() < Src->getType()->getTypeID())
538193326Sed    return Builder.CreateFPTrunc(Src, DstTy, "conv");
539193326Sed  else
540193326Sed    return Builder.CreateFPExt(Src, DstTy, "conv");
541193326Sed}
542193326Sed
543198092Srdivacky/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
544198092Srdivacky/// type to the specified destination type, where the destination type is an
545198092Srdivacky/// LLVM scalar type.
546193326SedValue *ScalarExprEmitter::
547193326SedEmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
548193326Sed                              QualType SrcTy, QualType DstTy) {
549193326Sed  // Get the source element type.
550198092Srdivacky  SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
551198092Srdivacky
552193326Sed  // Handle conversions to bool first, they are special: comparisons against 0.
553193326Sed  if (DstTy->isBooleanType()) {
554193326Sed    //  Complex != 0  -> (Real != 0) | (Imag != 0)
555193326Sed    Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
556193326Sed    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
557193326Sed    return Builder.CreateOr(Src.first, Src.second, "tobool");
558193326Sed  }
559198092Srdivacky
560193326Sed  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
561193326Sed  // the imaginary part of the complex value is discarded and the value of the
562193326Sed  // real part is converted according to the conversion rules for the
563198092Srdivacky  // corresponding real type.
564193326Sed  return EmitScalarConversion(Src.first, SrcTy, DstTy);
565193326Sed}
566193326Sed
567208600SrdivackyValue *ScalarExprEmitter::EmitNullValue(QualType Ty) {
568212904Sdim  if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>())
569212904Sdim    return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
570193326Sed
571212904Sdim  return llvm::Constant::getNullValue(ConvertType(Ty));
572208600Srdivacky}
573208600Srdivacky
574193326Sed//===----------------------------------------------------------------------===//
575193326Sed//                            Visitor Methods
576193326Sed//===----------------------------------------------------------------------===//
577193326Sed
578193326SedValue *ScalarExprEmitter::VisitExpr(Expr *E) {
579193326Sed  CGF.ErrorUnsupported(E, "scalar expression");
580193326Sed  if (E->getType()->isVoidType())
581193326Sed    return 0;
582193326Sed  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
583193326Sed}
584193326Sed
585193326SedValue *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
586210299Sed  // Vector Mask Case
587210299Sed  if (E->getNumSubExprs() == 2 ||
588210299Sed      (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
589210299Sed    Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
590210299Sed    Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
591210299Sed    Value *Mask;
592210299Sed
593210299Sed    const llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
594210299Sed    unsigned LHSElts = LTy->getNumElements();
595210299Sed
596210299Sed    if (E->getNumSubExprs() == 3) {
597210299Sed      Mask = CGF.EmitScalarExpr(E->getExpr(2));
598210299Sed
599210299Sed      // Shuffle LHS & RHS into one input vector.
600210299Sed      llvm::SmallVector<llvm::Constant*, 32> concat;
601210299Sed      for (unsigned i = 0; i != LHSElts; ++i) {
602210299Sed        concat.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 2*i));
603210299Sed        concat.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 2*i+1));
604210299Sed      }
605210299Sed
606210299Sed      Value* CV = llvm::ConstantVector::get(concat.begin(), concat.size());
607210299Sed      LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
608210299Sed      LHSElts *= 2;
609210299Sed    } else {
610210299Sed      Mask = RHS;
611210299Sed    }
612210299Sed
613210299Sed    const llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
614210299Sed    llvm::Constant* EltMask;
615210299Sed
616210299Sed    // Treat vec3 like vec4.
617210299Sed    if ((LHSElts == 6) && (E->getNumSubExprs() == 3))
618210299Sed      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
619210299Sed                                       (1 << llvm::Log2_32(LHSElts+2))-1);
620210299Sed    else if ((LHSElts == 3) && (E->getNumSubExprs() == 2))
621210299Sed      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
622210299Sed                                       (1 << llvm::Log2_32(LHSElts+1))-1);
623210299Sed    else
624210299Sed      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
625210299Sed                                       (1 << llvm::Log2_32(LHSElts))-1);
626210299Sed
627210299Sed    // Mask off the high bits of each shuffle index.
628210299Sed    llvm::SmallVector<llvm::Constant *, 32> MaskV;
629210299Sed    for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i)
630210299Sed      MaskV.push_back(EltMask);
631210299Sed
632210299Sed    Value* MaskBits = llvm::ConstantVector::get(MaskV.begin(), MaskV.size());
633210299Sed    Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
634210299Sed
635210299Sed    // newv = undef
636210299Sed    // mask = mask & maskbits
637210299Sed    // for each elt
638210299Sed    //   n = extract mask i
639210299Sed    //   x = extract val n
640210299Sed    //   newv = insert newv, x, i
641210299Sed    const llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
642210299Sed                                                        MTy->getNumElements());
643210299Sed    Value* NewV = llvm::UndefValue::get(RTy);
644210299Sed    for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
645210299Sed      Value *Indx = llvm::ConstantInt::get(CGF.Int32Ty, i);
646210299Sed      Indx = Builder.CreateExtractElement(Mask, Indx, "shuf_idx");
647210299Sed      Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext");
648210299Sed
649210299Sed      // Handle vec3 special since the index will be off by one for the RHS.
650210299Sed      if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) {
651210299Sed        Value *cmpIndx, *newIndx;
652210299Sed        cmpIndx = Builder.CreateICmpUGT(Indx,
653210299Sed                                        llvm::ConstantInt::get(CGF.Int32Ty, 3),
654210299Sed                                        "cmp_shuf_idx");
655210299Sed        newIndx = Builder.CreateSub(Indx, llvm::ConstantInt::get(CGF.Int32Ty,1),
656210299Sed                                    "shuf_idx_adj");
657210299Sed        Indx = Builder.CreateSelect(cmpIndx, newIndx, Indx, "sel_shuf_idx");
658210299Sed      }
659210299Sed      Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
660210299Sed      NewV = Builder.CreateInsertElement(NewV, VExt, Indx, "shuf_ins");
661210299Sed    }
662210299Sed    return NewV;
663210299Sed  }
664210299Sed
665210299Sed  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
666210299Sed  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
667210299Sed
668210299Sed  // Handle vec3 special since the index will be off by one for the RHS.
669193326Sed  llvm::SmallVector<llvm::Constant*, 32> indices;
670193326Sed  for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
671210299Sed    llvm::Constant *C = cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i)));
672210299Sed    const llvm::VectorType *VTy = cast<llvm::VectorType>(V1->getType());
673210299Sed    if (VTy->getNumElements() == 3) {
674210299Sed      if (llvm::ConstantInt *CI = dyn_cast<llvm::ConstantInt>(C)) {
675210299Sed        uint64_t cVal = CI->getZExtValue();
676210299Sed        if (cVal > 3) {
677210299Sed          C = llvm::ConstantInt::get(C->getType(), cVal-1);
678210299Sed        }
679210299Sed      }
680210299Sed    }
681210299Sed    indices.push_back(C);
682193326Sed  }
683210299Sed
684193326Sed  Value* SV = llvm::ConstantVector::get(indices.begin(), indices.size());
685193326Sed  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
686193326Sed}
687199990SrdivackyValue *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
688199990Srdivacky  Expr::EvalResult Result;
689199990Srdivacky  if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
690199990Srdivacky    if (E->isArrow())
691199990Srdivacky      CGF.EmitScalarExpr(E->getBase());
692199990Srdivacky    else
693199990Srdivacky      EmitLValue(E->getBase());
694199990Srdivacky    return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
695199990Srdivacky  }
696199990Srdivacky  return EmitLoadOfLValue(E);
697199990Srdivacky}
698193326Sed
699193326SedValue *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
700193326Sed  TestAndClearIgnoreResultAssign();
701193326Sed
702193326Sed  // Emit subscript expressions in rvalue context's.  For most cases, this just
703193326Sed  // loads the lvalue formed by the subscript expr.  However, we have to be
704193326Sed  // careful, because the base of a vector subscript is occasionally an rvalue,
705193326Sed  // so we can't get it as an lvalue.
706193326Sed  if (!E->getBase()->getType()->isVectorType())
707193326Sed    return EmitLoadOfLValue(E);
708198092Srdivacky
709193326Sed  // Handle the vector case.  The base must be a vector, the index must be an
710193326Sed  // integer value.
711193326Sed  Value *Base = Visit(E->getBase());
712193326Sed  Value *Idx  = Visit(E->getIdx());
713193326Sed  bool IdxSigned = E->getIdx()->getType()->isSignedIntegerType();
714210299Sed  Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast");
715193326Sed  return Builder.CreateExtractElement(Base, Idx, "vecext");
716193326Sed}
717193326Sed
718198398Srdivackystatic llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
719198398Srdivacky                                  unsigned Off, const llvm::Type *I32Ty) {
720198398Srdivacky  int MV = SVI->getMaskValue(Idx);
721198398Srdivacky  if (MV == -1)
722198398Srdivacky    return llvm::UndefValue::get(I32Ty);
723198398Srdivacky  return llvm::ConstantInt::get(I32Ty, Off+MV);
724198398Srdivacky}
725198398Srdivacky
726198398SrdivackyValue *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
727198398Srdivacky  bool Ignore = TestAndClearIgnoreResultAssign();
728198398Srdivacky  (void)Ignore;
729198398Srdivacky  assert (Ignore == false && "init list ignored");
730198398Srdivacky  unsigned NumInitElements = E->getNumInits();
731198398Srdivacky
732198398Srdivacky  if (E->hadArrayRangeDesignator())
733198398Srdivacky    CGF.ErrorUnsupported(E, "GNU array range designator extension");
734198398Srdivacky
735198398Srdivacky  const llvm::VectorType *VType =
736198398Srdivacky    dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
737198398Srdivacky
738198398Srdivacky  // We have a scalar in braces. Just use the first element.
739198398Srdivacky  if (!VType)
740198398Srdivacky    return Visit(E->getInit(0));
741198398Srdivacky
742198398Srdivacky  unsigned ResElts = VType->getNumElements();
743198398Srdivacky
744198398Srdivacky  // Loop over initializers collecting the Value for each, and remembering
745198398Srdivacky  // whether the source was swizzle (ExtVectorElementExpr).  This will allow
746198398Srdivacky  // us to fold the shuffle for the swizzle into the shuffle for the vector
747198398Srdivacky  // initializer, since LLVM optimizers generally do not want to touch
748198398Srdivacky  // shuffles.
749198398Srdivacky  unsigned CurIdx = 0;
750198398Srdivacky  bool VIsUndefShuffle = false;
751198398Srdivacky  llvm::Value *V = llvm::UndefValue::get(VType);
752198398Srdivacky  for (unsigned i = 0; i != NumInitElements; ++i) {
753198398Srdivacky    Expr *IE = E->getInit(i);
754198398Srdivacky    Value *Init = Visit(IE);
755198398Srdivacky    llvm::SmallVector<llvm::Constant*, 16> Args;
756198398Srdivacky
757198398Srdivacky    const llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
758198398Srdivacky
759198398Srdivacky    // Handle scalar elements.  If the scalar initializer is actually one
760198398Srdivacky    // element of a different vector of the same width, use shuffle instead of
761198398Srdivacky    // extract+insert.
762198398Srdivacky    if (!VVT) {
763198398Srdivacky      if (isa<ExtVectorElementExpr>(IE)) {
764198398Srdivacky        llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
765198398Srdivacky
766198398Srdivacky        if (EI->getVectorOperandType()->getNumElements() == ResElts) {
767198398Srdivacky          llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
768198398Srdivacky          Value *LHS = 0, *RHS = 0;
769198398Srdivacky          if (CurIdx == 0) {
770198398Srdivacky            // insert into undef -> shuffle (src, undef)
771198398Srdivacky            Args.push_back(C);
772198398Srdivacky            for (unsigned j = 1; j != ResElts; ++j)
773210299Sed              Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
774198398Srdivacky
775198398Srdivacky            LHS = EI->getVectorOperand();
776198398Srdivacky            RHS = V;
777198398Srdivacky            VIsUndefShuffle = true;
778198398Srdivacky          } else if (VIsUndefShuffle) {
779198398Srdivacky            // insert into undefshuffle && size match -> shuffle (v, src)
780198398Srdivacky            llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
781198398Srdivacky            for (unsigned j = 0; j != CurIdx; ++j)
782210299Sed              Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
783210299Sed            Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
784198398Srdivacky                                                  ResElts + C->getZExtValue()));
785198398Srdivacky            for (unsigned j = CurIdx + 1; j != ResElts; ++j)
786210299Sed              Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
787198398Srdivacky
788198398Srdivacky            LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
789198398Srdivacky            RHS = EI->getVectorOperand();
790198398Srdivacky            VIsUndefShuffle = false;
791198398Srdivacky          }
792198398Srdivacky          if (!Args.empty()) {
793198398Srdivacky            llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
794198398Srdivacky            V = Builder.CreateShuffleVector(LHS, RHS, Mask);
795198398Srdivacky            ++CurIdx;
796198398Srdivacky            continue;
797198398Srdivacky          }
798198398Srdivacky        }
799198398Srdivacky      }
800210299Sed      Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, CurIdx);
801198398Srdivacky      V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
802198398Srdivacky      VIsUndefShuffle = false;
803198398Srdivacky      ++CurIdx;
804198398Srdivacky      continue;
805198398Srdivacky    }
806198398Srdivacky
807198398Srdivacky    unsigned InitElts = VVT->getNumElements();
808198398Srdivacky
809198398Srdivacky    // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
810198398Srdivacky    // input is the same width as the vector being constructed, generate an
811198398Srdivacky    // optimized shuffle of the swizzle input into the result.
812198893Srdivacky    unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
813198398Srdivacky    if (isa<ExtVectorElementExpr>(IE)) {
814198398Srdivacky      llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
815198398Srdivacky      Value *SVOp = SVI->getOperand(0);
816198398Srdivacky      const llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
817198398Srdivacky
818198398Srdivacky      if (OpTy->getNumElements() == ResElts) {
819198398Srdivacky        for (unsigned j = 0; j != CurIdx; ++j) {
820198398Srdivacky          // If the current vector initializer is a shuffle with undef, merge
821198398Srdivacky          // this shuffle directly into it.
822198398Srdivacky          if (VIsUndefShuffle) {
823198398Srdivacky            Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
824210299Sed                                      CGF.Int32Ty));
825198398Srdivacky          } else {
826210299Sed            Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j));
827198398Srdivacky          }
828198398Srdivacky        }
829198398Srdivacky        for (unsigned j = 0, je = InitElts; j != je; ++j)
830210299Sed          Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
831198398Srdivacky        for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
832210299Sed          Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
833198398Srdivacky
834198398Srdivacky        if (VIsUndefShuffle)
835198398Srdivacky          V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
836198398Srdivacky
837198398Srdivacky        Init = SVOp;
838198398Srdivacky      }
839198398Srdivacky    }
840198398Srdivacky
841198398Srdivacky    // Extend init to result vector length, and then shuffle its contribution
842198398Srdivacky    // to the vector initializer into V.
843198398Srdivacky    if (Args.empty()) {
844198398Srdivacky      for (unsigned j = 0; j != InitElts; ++j)
845210299Sed        Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j));
846198398Srdivacky      for (unsigned j = InitElts; j != ResElts; ++j)
847210299Sed        Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
848198398Srdivacky      llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
849198398Srdivacky      Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
850198893Srdivacky                                         Mask, "vext");
851198398Srdivacky
852198398Srdivacky      Args.clear();
853198398Srdivacky      for (unsigned j = 0; j != CurIdx; ++j)
854210299Sed        Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j));
855198398Srdivacky      for (unsigned j = 0; j != InitElts; ++j)
856210299Sed        Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j+Offset));
857198398Srdivacky      for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
858210299Sed        Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
859198398Srdivacky    }
860198398Srdivacky
861198398Srdivacky    // If V is undef, make sure it ends up on the RHS of the shuffle to aid
862198398Srdivacky    // merging subsequent shuffles into this one.
863198398Srdivacky    if (CurIdx == 0)
864198398Srdivacky      std::swap(V, Init);
865198398Srdivacky    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
866198398Srdivacky    V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
867198398Srdivacky    VIsUndefShuffle = isa<llvm::UndefValue>(Init);
868198398Srdivacky    CurIdx += InitElts;
869198398Srdivacky  }
870198398Srdivacky
871198398Srdivacky  // FIXME: evaluate codegen vs. shuffling against constant null vector.
872198398Srdivacky  // Emit remaining default initializers.
873198398Srdivacky  const llvm::Type *EltTy = VType->getElementType();
874198398Srdivacky
875198398Srdivacky  // Emit remaining default initializers
876198398Srdivacky  for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
877210299Sed    Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, CurIdx);
878198398Srdivacky    llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
879198398Srdivacky    V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
880198398Srdivacky  }
881198398Srdivacky  return V;
882198398Srdivacky}
883198398Srdivacky
884199990Srdivackystatic bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
885199990Srdivacky  const Expr *E = CE->getSubExpr();
886206084Srdivacky
887212904Sdim  if (CE->getCastKind() == CK_UncheckedDerivedToBase)
888206084Srdivacky    return false;
889199990Srdivacky
890199990Srdivacky  if (isa<CXXThisExpr>(E)) {
891199990Srdivacky    // We always assume that 'this' is never null.
892199990Srdivacky    return false;
893199990Srdivacky  }
894199990Srdivacky
895199990Srdivacky  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
896212904Sdim    // And that glvalue casts are never null.
897212904Sdim    if (ICE->getValueKind() != VK_RValue)
898199990Srdivacky      return false;
899199990Srdivacky  }
900199990Srdivacky
901199990Srdivacky  return true;
902199990Srdivacky}
903199990Srdivacky
904198092Srdivacky// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
905198092Srdivacky// have to handle a more broad range of conversions than explicit casts, as they
906198092Srdivacky// handle things like function to ptr-to-function decay etc.
907199990SrdivackyValue *ScalarExprEmitter::EmitCastExpr(CastExpr *CE) {
908199990Srdivacky  Expr *E = CE->getSubExpr();
909198092Srdivacky  QualType DestTy = CE->getType();
910212904Sdim  CastKind Kind = CE->getCastKind();
911193326Sed
912198092Srdivacky  if (!DestTy->isVoidType())
913198092Srdivacky    TestAndClearIgnoreResultAssign();
914193326Sed
915199990Srdivacky  // Since almost all cast kinds apply to scalars, this switch doesn't have
916199990Srdivacky  // a default case, so the compiler will warn on a missing case.  The cases
917199990Srdivacky  // are in the same order as in the CastKind enum.
918198092Srdivacky  switch (Kind) {
919212904Sdim  case CK_Unknown:
920199990Srdivacky    // FIXME: All casts should have a known kind!
921199482Srdivacky    //assert(0 && "Unknown cast kind!");
922198092Srdivacky    break;
923199482Srdivacky
924212904Sdim  case CK_LValueBitCast:
925212904Sdim  case CK_ObjCObjectLValueCast: {
926210299Sed    Value *V = EmitLValue(E).getAddress();
927210299Sed    V = Builder.CreateBitCast(V,
928210299Sed                          ConvertType(CGF.getContext().getPointerType(DestTy)));
929212904Sdim    return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), DestTy);
930210299Sed  }
931210299Sed
932212904Sdim  case CK_AnyPointerToObjCPointerCast:
933212904Sdim  case CK_AnyPointerToBlockPointerCast:
934212904Sdim  case CK_BitCast: {
935198092Srdivacky    Value *Src = Visit(const_cast<Expr*>(E));
936198092Srdivacky    return Builder.CreateBitCast(Src, ConvertType(DestTy));
937198092Srdivacky  }
938212904Sdim  case CK_NoOp:
939212904Sdim  case CK_UserDefinedConversion:
940199482Srdivacky    return Visit(const_cast<Expr*>(E));
941198092Srdivacky
942212904Sdim  case CK_BaseToDerived: {
943199990Srdivacky    const CXXRecordDecl *DerivedClassDecl =
944199990Srdivacky      DestTy->getCXXRecordDeclForPointerType();
945199990Srdivacky
946207619Srdivacky    return CGF.GetAddressOfDerivedClass(Visit(E), DerivedClassDecl,
947212904Sdim                                        CE->path_begin(), CE->path_end(),
948207619Srdivacky                                        ShouldNullCheckClassCastValue(CE));
949199990Srdivacky  }
950212904Sdim  case CK_UncheckedDerivedToBase:
951212904Sdim  case CK_DerivedToBase: {
952198092Srdivacky    const RecordType *DerivedClassTy =
953198092Srdivacky      E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
954198092Srdivacky    CXXRecordDecl *DerivedClassDecl =
955198092Srdivacky      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
956193326Sed
957207619Srdivacky    return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
958212904Sdim                                     CE->path_begin(), CE->path_end(),
959207619Srdivacky                                     ShouldNullCheckClassCastValue(CE));
960198092Srdivacky  }
961212904Sdim  case CK_Dynamic: {
962199990Srdivacky    Value *V = Visit(const_cast<Expr*>(E));
963199990Srdivacky    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
964199990Srdivacky    return CGF.EmitDynamicCast(V, DCE);
965199990Srdivacky  }
966212904Sdim  case CK_ToUnion:
967199482Srdivacky    assert(0 && "Should be unreachable!");
968199482Srdivacky    break;
969199990Srdivacky
970212904Sdim  case CK_ArrayToPointerDecay: {
971199482Srdivacky    assert(E->getType()->isArrayType() &&
972199482Srdivacky           "Array to pointer decay must have array source type!");
973193326Sed
974199482Srdivacky    Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
975199482Srdivacky
976199482Srdivacky    // Note that VLA pointers are always decayed, so we don't need to do
977199482Srdivacky    // anything here.
978199482Srdivacky    if (!E->getType()->isVariableArrayType()) {
979199482Srdivacky      assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
980199482Srdivacky      assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
981199482Srdivacky                                 ->getElementType()) &&
982199482Srdivacky             "Expected pointer to array");
983199482Srdivacky      V = Builder.CreateStructGEP(V, 0, "arraydecay");
984199482Srdivacky    }
985199482Srdivacky
986199482Srdivacky    return V;
987199482Srdivacky  }
988212904Sdim  case CK_FunctionToPointerDecay:
989199482Srdivacky    return EmitLValue(E).getAddress();
990199482Srdivacky
991212904Sdim  case CK_NullToMemberPointer: {
992212904Sdim    // If the subexpression's type is the C++0x nullptr_t, emit the
993212904Sdim    // subexpression, which may have side effects.
994212904Sdim    if (E->getType()->isNullPtrType())
995212904Sdim      (void) Visit(E);
996199482Srdivacky
997212904Sdim    const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
998212904Sdim    return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
999212904Sdim  }
1000212904Sdim
1001212904Sdim  case CK_BaseToDerivedMemberPointer:
1002212904Sdim  case CK_DerivedToBaseMemberPointer: {
1003199990Srdivacky    Value *Src = Visit(E);
1004210299Sed
1005212904Sdim    // Note that the AST doesn't distinguish between checked and
1006212904Sdim    // unchecked member pointer conversions, so we always have to
1007212904Sdim    // implement checked conversions here.  This is inefficient when
1008212904Sdim    // actual control flow may be required in order to perform the
1009212904Sdim    // check, which it is for data member pointers (but not member
1010212904Sdim    // function pointers on Itanium and ARM).
1011212904Sdim    return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1012199990Srdivacky  }
1013212904Sdim
1014199990Srdivacky
1015212904Sdim  case CK_ConstructorConversion:
1016199990Srdivacky    assert(0 && "Should be unreachable!");
1017199990Srdivacky    break;
1018199990Srdivacky
1019212904Sdim  case CK_IntegralToPointer: {
1020198092Srdivacky    Value *Src = Visit(const_cast<Expr*>(E));
1021212904Sdim
1022198398Srdivacky    // First, convert to the correct width so that we control the kind of
1023198398Srdivacky    // extension.
1024210299Sed    const llvm::Type *MiddleTy = CGF.IntPtrTy;
1025198398Srdivacky    bool InputSigned = E->getType()->isSignedIntegerType();
1026198398Srdivacky    llvm::Value* IntResult =
1027198398Srdivacky      Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1028212904Sdim
1029198398Srdivacky    return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1030198092Srdivacky  }
1031212904Sdim  case CK_PointerToIntegral: {
1032198092Srdivacky    Value *Src = Visit(const_cast<Expr*>(E));
1033212904Sdim
1034212904Sdim    // Handle conversion to bool correctly.
1035212904Sdim    if (DestTy->isBooleanType())
1036212904Sdim      return EmitScalarConversion(Src, E->getType(), DestTy);
1037212904Sdim
1038198092Srdivacky    return Builder.CreatePtrToInt(Src, ConvertType(DestTy));
1039198092Srdivacky  }
1040212904Sdim  case CK_ToVoid: {
1041212904Sdim    if (E->Classify(CGF.getContext()).isGLValue())
1042212904Sdim      CGF.EmitLValue(E);
1043212904Sdim    else
1044212904Sdim      CGF.EmitAnyExpr(E, 0, false, true);
1045199482Srdivacky    return 0;
1046198092Srdivacky  }
1047212904Sdim  case CK_VectorSplat: {
1048199482Srdivacky    const llvm::Type *DstTy = ConvertType(DestTy);
1049199482Srdivacky    Value *Elt = Visit(const_cast<Expr*>(E));
1050199482Srdivacky
1051199482Srdivacky    // Insert the element in element zero of an undef vector
1052199482Srdivacky    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
1053210299Sed    llvm::Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, 0);
1054199482Srdivacky    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
1055199482Srdivacky
1056199482Srdivacky    // Splat the element across to all elements
1057199482Srdivacky    llvm::SmallVector<llvm::Constant*, 16> Args;
1058199482Srdivacky    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1059199482Srdivacky    for (unsigned i = 0; i < NumElements; i++)
1060210299Sed      Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 0));
1061199482Srdivacky
1062199482Srdivacky    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
1063199482Srdivacky    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
1064199482Srdivacky    return Yay;
1065199482Srdivacky  }
1066212904Sdim  case CK_IntegralCast:
1067212904Sdim  case CK_IntegralToFloating:
1068212904Sdim  case CK_FloatingToIntegral:
1069212904Sdim  case CK_FloatingCast:
1070199990Srdivacky    return EmitScalarConversion(Visit(E), E->getType(), DestTy);
1071199482Srdivacky
1072212904Sdim  case CK_MemberPointerToBoolean: {
1073212904Sdim    llvm::Value *MemPtr = Visit(E);
1074212904Sdim    const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1075212904Sdim    return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1076199482Srdivacky  }
1077212904Sdim  }
1078212904Sdim
1079193326Sed  // Handle cases where the source is an non-complex type.
1080198092Srdivacky
1081193326Sed  if (!CGF.hasAggregateLLVMType(E->getType())) {
1082193326Sed    Value *Src = Visit(const_cast<Expr*>(E));
1083193326Sed
1084193326Sed    // Use EmitScalarConversion to perform the conversion.
1085193326Sed    return EmitScalarConversion(Src, E->getType(), DestTy);
1086193326Sed  }
1087198092Srdivacky
1088193326Sed  if (E->getType()->isAnyComplexType()) {
1089193326Sed    // Handle cases where the source is a complex type.
1090193326Sed    bool IgnoreImag = true;
1091193326Sed    bool IgnoreImagAssign = true;
1092193326Sed    bool IgnoreReal = IgnoreResultAssign;
1093193326Sed    bool IgnoreRealAssign = IgnoreResultAssign;
1094193326Sed    if (DestTy->isBooleanType())
1095193326Sed      IgnoreImagAssign = IgnoreImag = false;
1096193326Sed    else if (DestTy->isVoidType()) {
1097193326Sed      IgnoreReal = IgnoreImag = false;
1098193326Sed      IgnoreRealAssign = IgnoreImagAssign = true;
1099193326Sed    }
1100193326Sed    CodeGenFunction::ComplexPairTy V
1101193326Sed      = CGF.EmitComplexExpr(E, IgnoreReal, IgnoreImag, IgnoreRealAssign,
1102193326Sed                            IgnoreImagAssign);
1103193326Sed    return EmitComplexToScalarConversion(V, E->getType(), DestTy);
1104193326Sed  }
1105193326Sed
1106193326Sed  // Okay, this is a cast from an aggregate.  It must be a cast to void.  Just
1107193326Sed  // evaluate the result and return.
1108193326Sed  CGF.EmitAggExpr(E, 0, false, true);
1109193326Sed  return 0;
1110193326Sed}
1111193326Sed
1112193326SedValue *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1113193326Sed  return CGF.EmitCompoundStmt(*E->getSubStmt(),
1114193326Sed                              !E->getType()->isVoidType()).getScalarVal();
1115193326Sed}
1116193326Sed
1117193326SedValue *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
1118198092Srdivacky  llvm::Value *V = CGF.GetAddrOfBlockDecl(E);
1119198092Srdivacky  if (E->getType().isObjCGCWeak())
1120198092Srdivacky    return CGF.CGM.getObjCRuntime().EmitObjCWeakRead(CGF, V);
1121212904Sdim  return CGF.EmitLoadOfScalar(V, false, 0, E->getType());
1122193326Sed}
1123193326Sed
1124193326Sed//===----------------------------------------------------------------------===//
1125193326Sed//                             Unary Operators
1126193326Sed//===----------------------------------------------------------------------===//
1127193326Sed
1128210299Sedllvm::Value *ScalarExprEmitter::
1129210299SedEmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1130210299Sed                        bool isInc, bool isPre) {
1131210299Sed
1132210299Sed  QualType ValTy = E->getSubExpr()->getType();
1133210299Sed  llvm::Value *InVal = EmitLoadOfLValue(LV, ValTy);
1134210299Sed
1135210299Sed  int AmountVal = isInc ? 1 : -1;
1136210299Sed
1137210299Sed  if (ValTy->isPointerType() &&
1138210299Sed      ValTy->getAs<PointerType>()->isVariableArrayType()) {
1139210299Sed    // The amount of the addition/subtraction needs to account for the VLA size
1140210299Sed    CGF.ErrorUnsupported(E, "VLA pointer inc/dec");
1141210299Sed  }
1142210299Sed
1143210299Sed  llvm::Value *NextVal;
1144210299Sed  if (const llvm::PointerType *PT =
1145210299Sed      dyn_cast<llvm::PointerType>(InVal->getType())) {
1146210299Sed    llvm::Constant *Inc = llvm::ConstantInt::get(CGF.Int32Ty, AmountVal);
1147210299Sed    if (!isa<llvm::FunctionType>(PT->getElementType())) {
1148210299Sed      QualType PTEE = ValTy->getPointeeType();
1149210299Sed      if (const ObjCObjectType *OIT = PTEE->getAs<ObjCObjectType>()) {
1150210299Sed        // Handle interface types, which are not represented with a concrete
1151210299Sed        // type.
1152210299Sed        int size = CGF.getContext().getTypeSize(OIT) / 8;
1153210299Sed        if (!isInc)
1154210299Sed          size = -size;
1155210299Sed        Inc = llvm::ConstantInt::get(Inc->getType(), size);
1156210299Sed        const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1157210299Sed        InVal = Builder.CreateBitCast(InVal, i8Ty);
1158210299Sed        NextVal = Builder.CreateGEP(InVal, Inc, "add.ptr");
1159210299Sed        llvm::Value *lhs = LV.getAddress();
1160210299Sed        lhs = Builder.CreateBitCast(lhs, llvm::PointerType::getUnqual(i8Ty));
1161212904Sdim        LV = CGF.MakeAddrLValue(lhs, ValTy);
1162210299Sed      } else
1163210299Sed        NextVal = Builder.CreateInBoundsGEP(InVal, Inc, "ptrincdec");
1164210299Sed    } else {
1165210299Sed      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1166210299Sed      NextVal = Builder.CreateBitCast(InVal, i8Ty, "tmp");
1167210299Sed      NextVal = Builder.CreateGEP(NextVal, Inc, "ptrincdec");
1168210299Sed      NextVal = Builder.CreateBitCast(NextVal, InVal->getType());
1169210299Sed    }
1170210299Sed  } else if (InVal->getType()->isIntegerTy(1) && isInc) {
1171210299Sed    // Bool++ is an interesting case, due to promotion rules, we get:
1172210299Sed    // Bool++ -> Bool = Bool+1 -> Bool = (int)Bool+1 ->
1173210299Sed    // Bool = ((int)Bool+1) != 0
1174210299Sed    // An interesting aspect of this is that increment is always true.
1175210299Sed    // Decrement does not have this property.
1176210299Sed    NextVal = llvm::ConstantInt::getTrue(VMContext);
1177210299Sed  } else if (isa<llvm::IntegerType>(InVal->getType())) {
1178210299Sed    NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal);
1179210299Sed
1180210299Sed    if (!ValTy->isSignedIntegerType())
1181210299Sed      // Unsigned integer inc is always two's complement.
1182210299Sed      NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
1183210299Sed    else {
1184210299Sed      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1185210299Sed      case LangOptions::SOB_Undefined:
1186210299Sed        NextVal = Builder.CreateNSWAdd(InVal, NextVal, isInc ? "inc" : "dec");
1187210299Sed        break;
1188210299Sed      case LangOptions::SOB_Defined:
1189210299Sed        NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
1190210299Sed        break;
1191210299Sed      case LangOptions::SOB_Trapping:
1192210299Sed        BinOpInfo BinOp;
1193210299Sed        BinOp.LHS = InVal;
1194210299Sed        BinOp.RHS = NextVal;
1195210299Sed        BinOp.Ty = E->getType();
1196212904Sdim        BinOp.Opcode = BO_Add;
1197210299Sed        BinOp.E = E;
1198212904Sdim        NextVal = EmitOverflowCheckedBinOp(BinOp);
1199212904Sdim        break;
1200210299Sed      }
1201210299Sed    }
1202210299Sed  } else {
1203210299Sed    // Add the inc/dec to the real part.
1204210299Sed    if (InVal->getType()->isFloatTy())
1205210299Sed      NextVal =
1206210299Sed      llvm::ConstantFP::get(VMContext,
1207210299Sed                            llvm::APFloat(static_cast<float>(AmountVal)));
1208210299Sed    else if (InVal->getType()->isDoubleTy())
1209210299Sed      NextVal =
1210210299Sed      llvm::ConstantFP::get(VMContext,
1211210299Sed                            llvm::APFloat(static_cast<double>(AmountVal)));
1212210299Sed    else {
1213210299Sed      llvm::APFloat F(static_cast<float>(AmountVal));
1214210299Sed      bool ignored;
1215210299Sed      F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
1216210299Sed                &ignored);
1217210299Sed      NextVal = llvm::ConstantFP::get(VMContext, F);
1218210299Sed    }
1219210299Sed    NextVal = Builder.CreateFAdd(InVal, NextVal, isInc ? "inc" : "dec");
1220210299Sed  }
1221210299Sed
1222210299Sed  // Store the updated result through the lvalue.
1223210299Sed  if (LV.isBitField())
1224210299Sed    CGF.EmitStoreThroughBitfieldLValue(RValue::get(NextVal), LV, ValTy, &NextVal);
1225210299Sed  else
1226210299Sed    CGF.EmitStoreThroughLValue(RValue::get(NextVal), LV, ValTy);
1227210299Sed
1228210299Sed  // If this is a postinc, return the value read from memory, otherwise use the
1229210299Sed  // updated value.
1230210299Sed  return isPre ? NextVal : InVal;
1231210299Sed}
1232210299Sed
1233210299Sed
1234210299Sed
1235193326SedValue *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1236193326Sed  TestAndClearIgnoreResultAssign();
1237210299Sed  // Emit unary minus with EmitSub so we handle overflow cases etc.
1238210299Sed  BinOpInfo BinOp;
1239210299Sed  BinOp.RHS = Visit(E->getSubExpr());
1240210299Sed
1241210299Sed  if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1242210299Sed    BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1243210299Sed  else
1244210299Sed    BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1245210299Sed  BinOp.Ty = E->getType();
1246212904Sdim  BinOp.Opcode = BO_Sub;
1247210299Sed  BinOp.E = E;
1248210299Sed  return EmitSub(BinOp);
1249193326Sed}
1250193326Sed
1251193326SedValue *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1252193326Sed  TestAndClearIgnoreResultAssign();
1253193326Sed  Value *Op = Visit(E->getSubExpr());
1254193326Sed  return Builder.CreateNot(Op, "neg");
1255193326Sed}
1256193326Sed
1257193326SedValue *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1258193326Sed  // Compare operand to zero.
1259193326Sed  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1260198092Srdivacky
1261193326Sed  // Invert value.
1262193326Sed  // TODO: Could dynamically modify easy computations here.  For example, if
1263193326Sed  // the operand is an icmp ne, turn into icmp eq.
1264193326Sed  BoolVal = Builder.CreateNot(BoolVal, "lnot");
1265198092Srdivacky
1266193326Sed  // ZExt result to the expr type.
1267193326Sed  return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1268193326Sed}
1269193326Sed
1270212904SdimValue *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1271212904Sdim  // Try folding the offsetof to a constant.
1272212904Sdim  Expr::EvalResult EvalResult;
1273212904Sdim  if (E->Evaluate(EvalResult, CGF.getContext()))
1274212904Sdim    return llvm::ConstantInt::get(VMContext, EvalResult.Val.getInt());
1275212904Sdim
1276212904Sdim  // Loop over the components of the offsetof to compute the value.
1277212904Sdim  unsigned n = E->getNumComponents();
1278212904Sdim  const llvm::Type* ResultType = ConvertType(E->getType());
1279212904Sdim  llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1280212904Sdim  QualType CurrentType = E->getTypeSourceInfo()->getType();
1281212904Sdim  for (unsigned i = 0; i != n; ++i) {
1282212904Sdim    OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1283212904Sdim    llvm::Value *Offset = 0;
1284212904Sdim    switch (ON.getKind()) {
1285212904Sdim    case OffsetOfExpr::OffsetOfNode::Array: {
1286212904Sdim      // Compute the index
1287212904Sdim      Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1288212904Sdim      llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1289212904Sdim      bool IdxSigned = IdxExpr->getType()->isSignedIntegerType();
1290212904Sdim      Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1291212904Sdim
1292212904Sdim      // Save the element type
1293212904Sdim      CurrentType =
1294212904Sdim          CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1295212904Sdim
1296212904Sdim      // Compute the element size
1297212904Sdim      llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1298212904Sdim          CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1299212904Sdim
1300212904Sdim      // Multiply out to compute the result
1301212904Sdim      Offset = Builder.CreateMul(Idx, ElemSize);
1302212904Sdim      break;
1303212904Sdim    }
1304212904Sdim
1305212904Sdim    case OffsetOfExpr::OffsetOfNode::Field: {
1306212904Sdim      FieldDecl *MemberDecl = ON.getField();
1307212904Sdim      RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1308212904Sdim      const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1309212904Sdim
1310212904Sdim      // Compute the index of the field in its parent.
1311212904Sdim      unsigned i = 0;
1312212904Sdim      // FIXME: It would be nice if we didn't have to loop here!
1313212904Sdim      for (RecordDecl::field_iterator Field = RD->field_begin(),
1314212904Sdim                                      FieldEnd = RD->field_end();
1315212904Sdim           Field != FieldEnd; (void)++Field, ++i) {
1316212904Sdim        if (*Field == MemberDecl)
1317212904Sdim          break;
1318212904Sdim      }
1319212904Sdim      assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1320212904Sdim
1321212904Sdim      // Compute the offset to the field
1322212904Sdim      int64_t OffsetInt = RL.getFieldOffset(i) /
1323212904Sdim                          CGF.getContext().getCharWidth();
1324212904Sdim      Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1325212904Sdim
1326212904Sdim      // Save the element type.
1327212904Sdim      CurrentType = MemberDecl->getType();
1328212904Sdim      break;
1329212904Sdim    }
1330212904Sdim
1331212904Sdim    case OffsetOfExpr::OffsetOfNode::Identifier:
1332212904Sdim      llvm_unreachable("dependent __builtin_offsetof");
1333212904Sdim
1334212904Sdim    case OffsetOfExpr::OffsetOfNode::Base: {
1335212904Sdim      if (ON.getBase()->isVirtual()) {
1336212904Sdim        CGF.ErrorUnsupported(E, "virtual base in offsetof");
1337212904Sdim        continue;
1338212904Sdim      }
1339212904Sdim
1340212904Sdim      RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1341212904Sdim      const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1342212904Sdim
1343212904Sdim      // Save the element type.
1344212904Sdim      CurrentType = ON.getBase()->getType();
1345212904Sdim
1346212904Sdim      // Compute the offset to the base.
1347212904Sdim      const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1348212904Sdim      CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1349212904Sdim      int64_t OffsetInt = RL.getBaseClassOffset(BaseRD) /
1350212904Sdim                          CGF.getContext().getCharWidth();
1351212904Sdim      Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1352212904Sdim      break;
1353212904Sdim    }
1354212904Sdim    }
1355212904Sdim    Result = Builder.CreateAdd(Result, Offset);
1356212904Sdim  }
1357212904Sdim  return Result;
1358207619Srdivacky}
1359207619Srdivacky
1360193326Sed/// VisitSizeOfAlignOfExpr - Return the size or alignment of the type of
1361193326Sed/// argument of the sizeof expression as an integer.
1362193326SedValue *
1363193326SedScalarExprEmitter::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) {
1364193326Sed  QualType TypeToSize = E->getTypeOfArgument();
1365193326Sed  if (E->isSizeOf()) {
1366198092Srdivacky    if (const VariableArrayType *VAT =
1367193326Sed          CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1368193326Sed      if (E->isArgumentType()) {
1369193326Sed        // sizeof(type) - make sure to emit the VLA size.
1370193326Sed        CGF.EmitVLASize(TypeToSize);
1371193326Sed      } else {
1372193326Sed        // C99 6.5.3.4p2: If the argument is an expression of type
1373193326Sed        // VLA, it is evaluated.
1374193326Sed        CGF.EmitAnyExpr(E->getArgumentExpr());
1375193326Sed      }
1376198092Srdivacky
1377193326Sed      return CGF.GetVLASize(VAT);
1378193326Sed    }
1379193326Sed  }
1380193326Sed
1381198092Srdivacky  // If this isn't sizeof(vla), the result must be constant; use the constant
1382198092Srdivacky  // folding logic so we don't have to duplicate it here.
1383193326Sed  Expr::EvalResult Result;
1384193326Sed  E->Evaluate(Result, CGF.getContext());
1385198092Srdivacky  return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
1386193326Sed}
1387193326Sed
1388193326SedValue *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1389193326Sed  Expr *Op = E->getSubExpr();
1390193326Sed  if (Op->getType()->isAnyComplexType())
1391193326Sed    return CGF.EmitComplexExpr(Op, false, true, false, true).first;
1392193326Sed  return Visit(Op);
1393193326Sed}
1394193326SedValue *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1395193326Sed  Expr *Op = E->getSubExpr();
1396193326Sed  if (Op->getType()->isAnyComplexType())
1397193326Sed    return CGF.EmitComplexExpr(Op, true, false, true, false).second;
1398198092Srdivacky
1399193326Sed  // __imag on a scalar returns zero.  Emit the subexpr to ensure side
1400193326Sed  // effects are evaluated, but not the actual value.
1401193326Sed  if (E->isLvalue(CGF.getContext()) == Expr::LV_Valid)
1402193326Sed    CGF.EmitLValue(Op);
1403193326Sed  else
1404193326Sed    CGF.EmitScalarExpr(Op, true);
1405193326Sed  return llvm::Constant::getNullValue(ConvertType(E->getType()));
1406193326Sed}
1407193326Sed
1408193326Sed//===----------------------------------------------------------------------===//
1409193326Sed//                           Binary Operators
1410193326Sed//===----------------------------------------------------------------------===//
1411193326Sed
1412193326SedBinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1413193326Sed  TestAndClearIgnoreResultAssign();
1414193326Sed  BinOpInfo Result;
1415193326Sed  Result.LHS = Visit(E->getLHS());
1416193326Sed  Result.RHS = Visit(E->getRHS());
1417193326Sed  Result.Ty  = E->getType();
1418210299Sed  Result.Opcode = E->getOpcode();
1419193326Sed  Result.E = E;
1420193326Sed  return Result;
1421193326Sed}
1422193326Sed
1423207619SrdivackyLValue ScalarExprEmitter::EmitCompoundAssignLValue(
1424207619Srdivacky                                              const CompoundAssignOperator *E,
1425207619Srdivacky                        Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
1426210299Sed                                                   Value *&Result) {
1427201361Srdivacky  QualType LHSTy = E->getLHS()->getType();
1428193326Sed  BinOpInfo OpInfo;
1429207619Srdivacky
1430193326Sed  if (E->getComputationResultType()->isAnyComplexType()) {
1431198092Srdivacky    // This needs to go through the complex expression emitter, but it's a tad
1432198092Srdivacky    // complicated to do that... I'm leaving it out for now.  (Note that we do
1433198092Srdivacky    // actually need the imaginary part of the RHS for multiplication and
1434198092Srdivacky    // division.)
1435193326Sed    CGF.ErrorUnsupported(E, "complex compound assignment");
1436210299Sed    Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1437207619Srdivacky    return LValue();
1438193326Sed  }
1439207619Srdivacky
1440193326Sed  // Emit the RHS first.  __block variables need to have the rhs evaluated
1441193326Sed  // first, plus this should improve codegen a little.
1442193326Sed  OpInfo.RHS = Visit(E->getRHS());
1443193326Sed  OpInfo.Ty = E->getComputationResultType();
1444210299Sed  OpInfo.Opcode = E->getOpcode();
1445193326Sed  OpInfo.E = E;
1446193326Sed  // Load/convert the LHS.
1447201361Srdivacky  LValue LHSLV = EmitCheckedLValue(E->getLHS());
1448193326Sed  OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
1449193326Sed  OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
1450193326Sed                                    E->getComputationLHSType());
1451207619Srdivacky
1452193326Sed  // Expand the binary operator.
1453210299Sed  Result = (this->*Func)(OpInfo);
1454207619Srdivacky
1455193326Sed  // Convert the result back to the LHS type.
1456193326Sed  Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
1457207619Srdivacky
1458198092Srdivacky  // Store the result value into the LHS lvalue. Bit-fields are handled
1459198092Srdivacky  // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
1460198092Srdivacky  // 'An assignment expression has the value of the left operand after the
1461198092Srdivacky  // assignment...'.
1462210299Sed  if (LHSLV.isBitField())
1463210299Sed    CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy,
1464210299Sed                                       &Result);
1465210299Sed  else
1466193326Sed    CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
1467210299Sed
1468207619Srdivacky  return LHSLV;
1469207619Srdivacky}
1470207619Srdivacky
1471207619SrdivackyValue *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
1472207619Srdivacky                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
1473207619Srdivacky  bool Ignore = TestAndClearIgnoreResultAssign();
1474210299Sed  Value *RHS;
1475210299Sed  LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
1476210299Sed
1477210299Sed  // If the result is clearly ignored, return now.
1478193326Sed  if (Ignore)
1479193326Sed    return 0;
1480210299Sed
1481210299Sed  // Objective-C property assignment never reloads the value following a store.
1482210299Sed  if (LHS.isPropertyRef() || LHS.isKVCRef())
1483210299Sed    return RHS;
1484210299Sed
1485210299Sed  // If the lvalue is non-volatile, return the computed value of the assignment.
1486210299Sed  if (!LHS.isVolatileQualified())
1487210299Sed    return RHS;
1488210299Sed
1489210299Sed  // Otherwise, reload the value.
1490210299Sed  return EmitLoadOfLValue(LHS, E->getType());
1491193326Sed}
1492193326Sed
1493193326Sed
1494193326SedValue *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
1495203955Srdivacky  if (Ops.LHS->getType()->isFPOrFPVectorTy())
1496193326Sed    return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
1497212904Sdim  else if (Ops.Ty->hasUnsignedIntegerRepresentation())
1498193326Sed    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
1499193326Sed  else
1500193326Sed    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
1501193326Sed}
1502193326Sed
1503193326SedValue *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
1504193326Sed  // Rem in C can't be a floating point type: C99 6.5.5p2.
1505193326Sed  if (Ops.Ty->isUnsignedIntegerType())
1506193326Sed    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
1507193326Sed  else
1508193326Sed    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
1509193326Sed}
1510193326Sed
1511193326SedValue *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
1512193326Sed  unsigned IID;
1513193326Sed  unsigned OpID = 0;
1514193326Sed
1515210299Sed  switch (Ops.Opcode) {
1516212904Sdim  case BO_Add:
1517212904Sdim  case BO_AddAssign:
1518193326Sed    OpID = 1;
1519193326Sed    IID = llvm::Intrinsic::sadd_with_overflow;
1520193326Sed    break;
1521212904Sdim  case BO_Sub:
1522212904Sdim  case BO_SubAssign:
1523193326Sed    OpID = 2;
1524193326Sed    IID = llvm::Intrinsic::ssub_with_overflow;
1525193326Sed    break;
1526212904Sdim  case BO_Mul:
1527212904Sdim  case BO_MulAssign:
1528193326Sed    OpID = 3;
1529193326Sed    IID = llvm::Intrinsic::smul_with_overflow;
1530193326Sed    break;
1531193326Sed  default:
1532193326Sed    assert(false && "Unsupported operation for overflow detection");
1533193326Sed    IID = 0;
1534193326Sed  }
1535193326Sed  OpID <<= 1;
1536193326Sed  OpID |= 1;
1537193326Sed
1538193326Sed  const llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
1539193326Sed
1540193326Sed  llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, &opTy, 1);
1541193326Sed
1542193326Sed  Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
1543193326Sed  Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
1544193326Sed  Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
1545193326Sed
1546193326Sed  // Branch in case of overflow.
1547212904Sdim  llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1548212904Sdim  llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn);
1549193326Sed
1550193326Sed  Builder.CreateCondBr(overflow, overflowBB, continueBB);
1551193326Sed
1552212904Sdim  // Handle overflow with llvm.trap.
1553212904Sdim  // TODO: it would be better to generate one of these blocks per function.
1554193326Sed  Builder.SetInsertPoint(overflowBB);
1555212904Sdim  llvm::Function *Trap = CGF.CGM.getIntrinsic(llvm::Intrinsic::trap);
1556212904Sdim  Builder.CreateCall(Trap);
1557212904Sdim  Builder.CreateUnreachable();
1558212904Sdim
1559212904Sdim  // Continue on.
1560193326Sed  Builder.SetInsertPoint(continueBB);
1561212904Sdim  return result;
1562193326Sed}
1563193326Sed
1564193326SedValue *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
1565198092Srdivacky  if (!Ops.Ty->isAnyPointerType()) {
1566212904Sdim    if (Ops.Ty->hasSignedIntegerRepresentation()) {
1567210299Sed      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1568210299Sed      case LangOptions::SOB_Undefined:
1569210299Sed        return Builder.CreateNSWAdd(Ops.LHS, Ops.RHS, "add");
1570210299Sed      case LangOptions::SOB_Defined:
1571210299Sed        return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
1572210299Sed      case LangOptions::SOB_Trapping:
1573210299Sed        return EmitOverflowCheckedBinOp(Ops);
1574210299Sed      }
1575210299Sed    }
1576210299Sed
1577203955Srdivacky    if (Ops.LHS->getType()->isFPOrFPVectorTy())
1578194613Sed      return Builder.CreateFAdd(Ops.LHS, Ops.RHS, "add");
1579198092Srdivacky
1580193326Sed    return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
1581193326Sed  }
1582193326Sed
1583210299Sed  // Must have binary (not unary) expr here.  Unary pointer decrement doesn't
1584210299Sed  // use this path.
1585210299Sed  const BinaryOperator *BinOp = cast<BinaryOperator>(Ops.E);
1586210299Sed
1587198092Srdivacky  if (Ops.Ty->isPointerType() &&
1588198092Srdivacky      Ops.Ty->getAs<PointerType>()->isVariableArrayType()) {
1589193326Sed    // The amount of the addition needs to account for the VLA size
1590210299Sed    CGF.ErrorUnsupported(BinOp, "VLA pointer addition");
1591193326Sed  }
1592210299Sed
1593193326Sed  Value *Ptr, *Idx;
1594193326Sed  Expr *IdxExp;
1595210299Sed  const PointerType *PT = BinOp->getLHS()->getType()->getAs<PointerType>();
1596198092Srdivacky  const ObjCObjectPointerType *OPT =
1597210299Sed    BinOp->getLHS()->getType()->getAs<ObjCObjectPointerType>();
1598198092Srdivacky  if (PT || OPT) {
1599193326Sed    Ptr = Ops.LHS;
1600193326Sed    Idx = Ops.RHS;
1601210299Sed    IdxExp = BinOp->getRHS();
1602198092Srdivacky  } else {  // int + pointer
1603210299Sed    PT = BinOp->getRHS()->getType()->getAs<PointerType>();
1604210299Sed    OPT = BinOp->getRHS()->getType()->getAs<ObjCObjectPointerType>();
1605198092Srdivacky    assert((PT || OPT) && "Invalid add expr");
1606193326Sed    Ptr = Ops.RHS;
1607193326Sed    Idx = Ops.LHS;
1608210299Sed    IdxExp = BinOp->getLHS();
1609193326Sed  }
1610193326Sed
1611193326Sed  unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1612193326Sed  if (Width < CGF.LLVMPointerWidth) {
1613193326Sed    // Zero or sign extend the pointer value based on whether the index is
1614193326Sed    // signed or not.
1615210299Sed    const llvm::Type *IdxType = CGF.IntPtrTy;
1616193326Sed    if (IdxExp->getType()->isSignedIntegerType())
1617193326Sed      Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1618193326Sed    else
1619193326Sed      Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1620193326Sed  }
1621198092Srdivacky  const QualType ElementType = PT ? PT->getPointeeType() : OPT->getPointeeType();
1622198092Srdivacky  // Handle interface types, which are not represented with a concrete type.
1623208600Srdivacky  if (const ObjCObjectType *OIT = ElementType->getAs<ObjCObjectType>()) {
1624198092Srdivacky    llvm::Value *InterfaceSize =
1625193326Sed      llvm::ConstantInt::get(Idx->getType(),
1626202379Srdivacky          CGF.getContext().getTypeSizeInChars(OIT).getQuantity());
1627193326Sed    Idx = Builder.CreateMul(Idx, InterfaceSize);
1628198092Srdivacky    const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1629193326Sed    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1630193326Sed    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1631193326Sed    return Builder.CreateBitCast(Res, Ptr->getType());
1632198092Srdivacky  }
1633193326Sed
1634198092Srdivacky  // Explicitly handle GNU void* and function pointer arithmetic extensions. The
1635198092Srdivacky  // GNU void* casts amount to no-ops since our void* type is i8*, but this is
1636198092Srdivacky  // future proof.
1637193326Sed  if (ElementType->isVoidType() || ElementType->isFunctionType()) {
1638198092Srdivacky    const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1639193326Sed    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1640193326Sed    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1641193326Sed    return Builder.CreateBitCast(Res, Ptr->getType());
1642198092Srdivacky  }
1643198092Srdivacky
1644198092Srdivacky  return Builder.CreateInBoundsGEP(Ptr, Idx, "add.ptr");
1645193326Sed}
1646193326Sed
1647193326SedValue *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
1648193326Sed  if (!isa<llvm::PointerType>(Ops.LHS->getType())) {
1649212904Sdim    if (Ops.Ty->hasSignedIntegerRepresentation()) {
1650210299Sed      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1651210299Sed      case LangOptions::SOB_Undefined:
1652210299Sed        return Builder.CreateNSWSub(Ops.LHS, Ops.RHS, "sub");
1653210299Sed      case LangOptions::SOB_Defined:
1654210299Sed        return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
1655210299Sed      case LangOptions::SOB_Trapping:
1656210299Sed        return EmitOverflowCheckedBinOp(Ops);
1657210299Sed      }
1658210299Sed    }
1659210299Sed
1660203955Srdivacky    if (Ops.LHS->getType()->isFPOrFPVectorTy())
1661194613Sed      return Builder.CreateFSub(Ops.LHS, Ops.RHS, "sub");
1662206084Srdivacky
1663193326Sed    return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
1664193326Sed  }
1665193326Sed
1666210299Sed  // Must have binary (not unary) expr here.  Unary pointer increment doesn't
1667210299Sed  // use this path.
1668210299Sed  const BinaryOperator *BinOp = cast<BinaryOperator>(Ops.E);
1669210299Sed
1670210299Sed  if (BinOp->getLHS()->getType()->isPointerType() &&
1671210299Sed      BinOp->getLHS()->getType()->getAs<PointerType>()->isVariableArrayType()) {
1672193326Sed    // The amount of the addition needs to account for the VLA size for
1673193326Sed    // ptr-int
1674193326Sed    // The amount of the division needs to account for the VLA size for
1675193326Sed    // ptr-ptr.
1676210299Sed    CGF.ErrorUnsupported(BinOp, "VLA pointer subtraction");
1677193326Sed  }
1678193326Sed
1679210299Sed  const QualType LHSType = BinOp->getLHS()->getType();
1680198092Srdivacky  const QualType LHSElementType = LHSType->getPointeeType();
1681193326Sed  if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
1682193326Sed    // pointer - int
1683193326Sed    Value *Idx = Ops.RHS;
1684193326Sed    unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1685193326Sed    if (Width < CGF.LLVMPointerWidth) {
1686193326Sed      // Zero or sign extend the pointer value based on whether the index is
1687193326Sed      // signed or not.
1688210299Sed      const llvm::Type *IdxType = CGF.IntPtrTy;
1689210299Sed      if (BinOp->getRHS()->getType()->isSignedIntegerType())
1690193326Sed        Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1691193326Sed      else
1692193326Sed        Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1693193326Sed    }
1694193326Sed    Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
1695193326Sed
1696198092Srdivacky    // Handle interface types, which are not represented with a concrete type.
1697208600Srdivacky    if (const ObjCObjectType *OIT = LHSElementType->getAs<ObjCObjectType>()) {
1698198092Srdivacky      llvm::Value *InterfaceSize =
1699193326Sed        llvm::ConstantInt::get(Idx->getType(),
1700202379Srdivacky                               CGF.getContext().
1701202379Srdivacky                                 getTypeSizeInChars(OIT).getQuantity());
1702193326Sed      Idx = Builder.CreateMul(Idx, InterfaceSize);
1703198092Srdivacky      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1704193326Sed      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1705193326Sed      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "add.ptr");
1706193326Sed      return Builder.CreateBitCast(Res, Ops.LHS->getType());
1707198092Srdivacky    }
1708193326Sed
1709193326Sed    // Explicitly handle GNU void* and function pointer arithmetic
1710198092Srdivacky    // extensions. The GNU void* casts amount to no-ops since our void* type is
1711198092Srdivacky    // i8*, but this is future proof.
1712193326Sed    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1713198092Srdivacky      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1714193326Sed      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1715193326Sed      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "sub.ptr");
1716193326Sed      return Builder.CreateBitCast(Res, Ops.LHS->getType());
1717198092Srdivacky    }
1718198092Srdivacky
1719198092Srdivacky    return Builder.CreateInBoundsGEP(Ops.LHS, Idx, "sub.ptr");
1720193326Sed  } else {
1721193326Sed    // pointer - pointer
1722193326Sed    Value *LHS = Ops.LHS;
1723193326Sed    Value *RHS = Ops.RHS;
1724198092Srdivacky
1725202379Srdivacky    CharUnits ElementSize;
1726193326Sed
1727193326Sed    // Handle GCC extension for pointer arithmetic on void* and function pointer
1728193326Sed    // types.
1729193326Sed    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1730202379Srdivacky      ElementSize = CharUnits::One();
1731193326Sed    } else {
1732202379Srdivacky      ElementSize = CGF.getContext().getTypeSizeInChars(LHSElementType);
1733193326Sed    }
1734198092Srdivacky
1735193326Sed    const llvm::Type *ResultType = ConvertType(Ops.Ty);
1736193326Sed    LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
1737193326Sed    RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1738193326Sed    Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
1739198092Srdivacky
1740193326Sed    // Optimize out the shift for element size of 1.
1741202379Srdivacky    if (ElementSize.isOne())
1742193326Sed      return BytesBetween;
1743198092Srdivacky
1744198092Srdivacky    // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
1745198092Srdivacky    // pointer difference in C is only defined in the case where both operands
1746198092Srdivacky    // are pointing to elements of an array.
1747202379Srdivacky    Value *BytesPerElt =
1748202379Srdivacky        llvm::ConstantInt::get(ResultType, ElementSize.getQuantity());
1749198092Srdivacky    return Builder.CreateExactSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
1750193326Sed  }
1751193326Sed}
1752193326Sed
1753193326SedValue *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
1754193326Sed  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1755193326Sed  // RHS to the same size as the LHS.
1756193326Sed  Value *RHS = Ops.RHS;
1757193326Sed  if (Ops.LHS->getType() != RHS->getType())
1758193326Sed    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1759198092Srdivacky
1760200583Srdivacky  if (CGF.CatchUndefined
1761200583Srdivacky      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
1762200583Srdivacky    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
1763200583Srdivacky    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
1764200583Srdivacky    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
1765200583Srdivacky                                 llvm::ConstantInt::get(RHS->getType(), Width)),
1766200583Srdivacky                             Cont, CGF.getTrapBB());
1767200583Srdivacky    CGF.EmitBlock(Cont);
1768200583Srdivacky  }
1769200583Srdivacky
1770193326Sed  return Builder.CreateShl(Ops.LHS, RHS, "shl");
1771193326Sed}
1772193326Sed
1773193326SedValue *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
1774193326Sed  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1775193326Sed  // RHS to the same size as the LHS.
1776193326Sed  Value *RHS = Ops.RHS;
1777193326Sed  if (Ops.LHS->getType() != RHS->getType())
1778193326Sed    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1779198092Srdivacky
1780200583Srdivacky  if (CGF.CatchUndefined
1781200583Srdivacky      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
1782200583Srdivacky    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
1783200583Srdivacky    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
1784200583Srdivacky    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
1785200583Srdivacky                                 llvm::ConstantInt::get(RHS->getType(), Width)),
1786200583Srdivacky                             Cont, CGF.getTrapBB());
1787200583Srdivacky    CGF.EmitBlock(Cont);
1788200583Srdivacky  }
1789200583Srdivacky
1790212904Sdim  if (Ops.Ty->hasUnsignedIntegerRepresentation())
1791193326Sed    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
1792193326Sed  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
1793193326Sed}
1794193326Sed
1795193326SedValue *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
1796193326Sed                                      unsigned SICmpOpc, unsigned FCmpOpc) {
1797193326Sed  TestAndClearIgnoreResultAssign();
1798193326Sed  Value *Result;
1799193326Sed  QualType LHSTy = E->getLHS()->getType();
1800212904Sdim  if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
1801212904Sdim    assert(E->getOpcode() == BO_EQ ||
1802212904Sdim           E->getOpcode() == BO_NE);
1803212904Sdim    Value *LHS = CGF.EmitScalarExpr(E->getLHS());
1804212904Sdim    Value *RHS = CGF.EmitScalarExpr(E->getRHS());
1805212904Sdim    Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
1806212904Sdim                   CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
1807200583Srdivacky  } else if (!LHSTy->isAnyComplexType()) {
1808193326Sed    Value *LHS = Visit(E->getLHS());
1809193326Sed    Value *RHS = Visit(E->getRHS());
1810198092Srdivacky
1811203955Srdivacky    if (LHS->getType()->isFPOrFPVectorTy()) {
1812193326Sed      Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
1813193326Sed                                  LHS, RHS, "cmp");
1814212904Sdim    } else if (LHSTy->hasSignedIntegerRepresentation()) {
1815193326Sed      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
1816193326Sed                                  LHS, RHS, "cmp");
1817193326Sed    } else {
1818193326Sed      // Unsigned integers and pointers.
1819193326Sed      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1820193326Sed                                  LHS, RHS, "cmp");
1821193326Sed    }
1822198092Srdivacky
1823198092Srdivacky    // If this is a vector comparison, sign extend the result to the appropriate
1824198092Srdivacky    // vector integer type and return it (don't convert to bool).
1825198092Srdivacky    if (LHSTy->isVectorType())
1826198092Srdivacky      return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1827198092Srdivacky
1828193326Sed  } else {
1829193326Sed    // Complex Comparison: can only be an equality comparison.
1830193326Sed    CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
1831193326Sed    CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
1832198092Srdivacky
1833198092Srdivacky    QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
1834198092Srdivacky
1835193326Sed    Value *ResultR, *ResultI;
1836193326Sed    if (CETy->isRealFloatingType()) {
1837193326Sed      ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1838193326Sed                                   LHS.first, RHS.first, "cmp.r");
1839193326Sed      ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1840193326Sed                                   LHS.second, RHS.second, "cmp.i");
1841193326Sed    } else {
1842193326Sed      // Complex comparisons can only be equality comparisons.  As such, signed
1843193326Sed      // and unsigned opcodes are the same.
1844193326Sed      ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1845193326Sed                                   LHS.first, RHS.first, "cmp.r");
1846193326Sed      ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1847193326Sed                                   LHS.second, RHS.second, "cmp.i");
1848193326Sed    }
1849198092Srdivacky
1850212904Sdim    if (E->getOpcode() == BO_EQ) {
1851193326Sed      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
1852193326Sed    } else {
1853212904Sdim      assert(E->getOpcode() == BO_NE &&
1854193326Sed             "Complex comparison other than == or != ?");
1855193326Sed      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
1856193326Sed    }
1857193326Sed  }
1858193326Sed
1859193326Sed  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
1860193326Sed}
1861193326Sed
1862193326SedValue *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1863193326Sed  bool Ignore = TestAndClearIgnoreResultAssign();
1864193326Sed
1865193326Sed  // __block variables need to have the rhs evaluated first, plus this should
1866193326Sed  // improve codegen just a little.
1867193326Sed  Value *RHS = Visit(E->getRHS());
1868201361Srdivacky  LValue LHS = EmitCheckedLValue(E->getLHS());
1869198092Srdivacky
1870193326Sed  // Store the value into the LHS.  Bit-fields are handled specially
1871193326Sed  // because the result is altered by the store, i.e., [C99 6.5.16p1]
1872193326Sed  // 'An assignment expression has the value of the left operand after
1873193326Sed  // the assignment...'.
1874210299Sed  if (LHS.isBitField())
1875210299Sed    CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(),
1876210299Sed                                       &RHS);
1877210299Sed  else
1878193326Sed    CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
1879210299Sed
1880210299Sed  // If the result is clearly ignored, return now.
1881193326Sed  if (Ignore)
1882193326Sed    return 0;
1883210299Sed
1884210299Sed  // Objective-C property assignment never reloads the value following a store.
1885210299Sed  if (LHS.isPropertyRef() || LHS.isKVCRef())
1886210299Sed    return RHS;
1887210299Sed
1888210299Sed  // If the lvalue is non-volatile, return the computed value of the assignment.
1889210299Sed  if (!LHS.isVolatileQualified())
1890210299Sed    return RHS;
1891210299Sed
1892210299Sed  // Otherwise, reload the value.
1893193326Sed  return EmitLoadOfLValue(LHS, E->getType());
1894193326Sed}
1895193326Sed
1896193326SedValue *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
1897198398Srdivacky  const llvm::Type *ResTy = ConvertType(E->getType());
1898198398Srdivacky
1899193326Sed  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
1900193326Sed  // If we have 1 && X, just emit X without inserting the control flow.
1901193326Sed  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1902193326Sed    if (Cond == 1) { // If we have 1 && X, just emit X.
1903193326Sed      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1904198398Srdivacky      // ZExt result to int or bool.
1905198398Srdivacky      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
1906193326Sed    }
1907198092Srdivacky
1908198398Srdivacky    // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
1909193326Sed    if (!CGF.ContainsLabel(E->getRHS()))
1910198398Srdivacky      return llvm::Constant::getNullValue(ResTy);
1911193326Sed  }
1912198092Srdivacky
1913193326Sed  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
1914193326Sed  llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
1915193326Sed
1916193326Sed  // Branch on the LHS first.  If it is false, go to the failure (cont) block.
1917193326Sed  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
1918193326Sed
1919193326Sed  // Any edges into the ContBlock are now from an (indeterminate number of)
1920193326Sed  // edges from this first condition.  All of these values will be false.  Start
1921193326Sed  // setting up the PHI node in the Cont Block for this.
1922198092Srdivacky  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
1923198092Srdivacky                                            "", ContBlock);
1924193326Sed  PN->reserveOperandSpace(2);  // Normal case, two inputs.
1925193326Sed  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1926193326Sed       PI != PE; ++PI)
1927198092Srdivacky    PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
1928198092Srdivacky
1929203955Srdivacky  CGF.BeginConditionalBranch();
1930193326Sed  CGF.EmitBlock(RHSBlock);
1931193326Sed  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1932203955Srdivacky  CGF.EndConditionalBranch();
1933198092Srdivacky
1934193326Sed  // Reaquire the RHS block, as there may be subblocks inserted.
1935193326Sed  RHSBlock = Builder.GetInsertBlock();
1936193326Sed
1937193326Sed  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
1938193326Sed  // into the phi node for the edge with the value of RHSCond.
1939193326Sed  CGF.EmitBlock(ContBlock);
1940193326Sed  PN->addIncoming(RHSCond, RHSBlock);
1941198092Srdivacky
1942193326Sed  // ZExt result to int.
1943198398Srdivacky  return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
1944193326Sed}
1945193326Sed
1946193326SedValue *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
1947198398Srdivacky  const llvm::Type *ResTy = ConvertType(E->getType());
1948198398Srdivacky
1949193326Sed  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
1950193326Sed  // If we have 0 || X, just emit X without inserting the control flow.
1951193326Sed  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1952193326Sed    if (Cond == -1) { // If we have 0 || X, just emit X.
1953193326Sed      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1954198398Srdivacky      // ZExt result to int or bool.
1955198398Srdivacky      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
1956193326Sed    }
1957198092Srdivacky
1958198398Srdivacky    // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
1959193326Sed    if (!CGF.ContainsLabel(E->getRHS()))
1960198398Srdivacky      return llvm::ConstantInt::get(ResTy, 1);
1961193326Sed  }
1962198092Srdivacky
1963193326Sed  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
1964193326Sed  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
1965198092Srdivacky
1966193326Sed  // Branch on the LHS first.  If it is true, go to the success (cont) block.
1967193326Sed  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
1968193326Sed
1969193326Sed  // Any edges into the ContBlock are now from an (indeterminate number of)
1970193326Sed  // edges from this first condition.  All of these values will be true.  Start
1971193326Sed  // setting up the PHI node in the Cont Block for this.
1972198092Srdivacky  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
1973198092Srdivacky                                            "", ContBlock);
1974193326Sed  PN->reserveOperandSpace(2);  // Normal case, two inputs.
1975193326Sed  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1976193326Sed       PI != PE; ++PI)
1977198092Srdivacky    PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
1978193326Sed
1979203955Srdivacky  CGF.BeginConditionalBranch();
1980193576Sed
1981193326Sed  // Emit the RHS condition as a bool value.
1982193326Sed  CGF.EmitBlock(RHSBlock);
1983193326Sed  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1984198092Srdivacky
1985203955Srdivacky  CGF.EndConditionalBranch();
1986198092Srdivacky
1987193326Sed  // Reaquire the RHS block, as there may be subblocks inserted.
1988193326Sed  RHSBlock = Builder.GetInsertBlock();
1989198092Srdivacky
1990193326Sed  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
1991193326Sed  // into the phi node for the edge with the value of RHSCond.
1992193326Sed  CGF.EmitBlock(ContBlock);
1993193326Sed  PN->addIncoming(RHSCond, RHSBlock);
1994198092Srdivacky
1995193326Sed  // ZExt result to int.
1996198398Srdivacky  return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
1997193326Sed}
1998193326Sed
1999193326SedValue *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
2000193326Sed  CGF.EmitStmt(E->getLHS());
2001193326Sed  CGF.EnsureInsertPoint();
2002193326Sed  return Visit(E->getRHS());
2003193326Sed}
2004193326Sed
2005193326Sed//===----------------------------------------------------------------------===//
2006193326Sed//                             Other Operators
2007193326Sed//===----------------------------------------------------------------------===//
2008193326Sed
2009193326Sed/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
2010193326Sed/// expression is cheap enough and side-effect-free enough to evaluate
2011193326Sed/// unconditionally instead of conditionally.  This is used to convert control
2012193326Sed/// flow into selects in some cases.
2013198893Srdivackystatic bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
2014198893Srdivacky                                                   CodeGenFunction &CGF) {
2015193326Sed  if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
2016198893Srdivacky    return isCheapEnoughToEvaluateUnconditionally(PE->getSubExpr(), CGF);
2017198092Srdivacky
2018193326Sed  // TODO: Allow anything we can constant fold to an integer or fp constant.
2019193326Sed  if (isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) ||
2020193326Sed      isa<FloatingLiteral>(E))
2021193326Sed    return true;
2022198092Srdivacky
2023193326Sed  // Non-volatile automatic variables too, to get "cond ? X : Y" where
2024193326Sed  // X and Y are local variables.
2025193326Sed  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
2026193326Sed    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2027198893Srdivacky      if (VD->hasLocalStorage() && !(CGF.getContext()
2028198893Srdivacky                                     .getCanonicalType(VD->getType())
2029198893Srdivacky                                     .isVolatileQualified()))
2030193326Sed        return true;
2031198092Srdivacky
2032193326Sed  return false;
2033193326Sed}
2034193326Sed
2035193326Sed
2036193326SedValue *ScalarExprEmitter::
2037193326SedVisitConditionalOperator(const ConditionalOperator *E) {
2038193326Sed  TestAndClearIgnoreResultAssign();
2039193326Sed  // If the condition constant folds and can be elided, try to avoid emitting
2040193326Sed  // the condition and the dead arm.
2041193326Sed  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getCond())){
2042193326Sed    Expr *Live = E->getLHS(), *Dead = E->getRHS();
2043193326Sed    if (Cond == -1)
2044193326Sed      std::swap(Live, Dead);
2045198092Srdivacky
2046193326Sed    // If the dead side doesn't have labels we need, and if the Live side isn't
2047193326Sed    // the gnu missing ?: extension (which we could handle, but don't bother
2048193326Sed    // to), just emit the Live part.
2049193326Sed    if ((!Dead || !CGF.ContainsLabel(Dead)) &&  // No labels in dead part
2050193326Sed        Live)                                   // Live part isn't missing.
2051193326Sed      return Visit(Live);
2052193326Sed  }
2053198092Srdivacky
2054198092Srdivacky
2055193326Sed  // If this is a really simple expression (like x ? 4 : 5), emit this as a
2056193326Sed  // select instead of as control flow.  We can only do this if it is cheap and
2057193326Sed  // safe to evaluate the LHS and RHS unconditionally.
2058198893Srdivacky  if (E->getLHS() && isCheapEnoughToEvaluateUnconditionally(E->getLHS(),
2059198893Srdivacky                                                            CGF) &&
2060198893Srdivacky      isCheapEnoughToEvaluateUnconditionally(E->getRHS(), CGF)) {
2061193326Sed    llvm::Value *CondV = CGF.EvaluateExprAsBool(E->getCond());
2062193326Sed    llvm::Value *LHS = Visit(E->getLHS());
2063193326Sed    llvm::Value *RHS = Visit(E->getRHS());
2064193326Sed    return Builder.CreateSelect(CondV, LHS, RHS, "cond");
2065193326Sed  }
2066198092Srdivacky
2067212904Sdim  if (!E->getLHS() && CGF.getContext().getLangOptions().CPlusPlus) {
2068212904Sdim    // Does not support GNU missing condition extension in C++ yet (see #7726)
2069212904Sdim    CGF.ErrorUnsupported(E, "conditional operator with missing LHS");
2070212904Sdim    return llvm::UndefValue::get(ConvertType(E->getType()));
2071212904Sdim  }
2072212904Sdim
2073193326Sed  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
2074193326Sed  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
2075193326Sed  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
2076193326Sed  Value *CondVal = 0;
2077193326Sed
2078198092Srdivacky  // If we don't have the GNU missing condition extension, emit a branch on bool
2079198092Srdivacky  // the normal way.
2080193326Sed  if (E->getLHS()) {
2081193326Sed    // Otherwise, just use EmitBranchOnBoolExpr to get small and simple code for
2082193326Sed    // the branch on bool.
2083193326Sed    CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
2084193326Sed  } else {
2085193326Sed    // Otherwise, for the ?: extension, evaluate the conditional and then
2086193326Sed    // convert it to bool the hard way.  We do this explicitly because we need
2087193326Sed    // the unconverted value for the missing middle value of the ?:.
2088193326Sed    CondVal = CGF.EmitScalarExpr(E->getCond());
2089198092Srdivacky
2090193326Sed    // In some cases, EmitScalarConversion will delete the "CondVal" expression
2091193326Sed    // if there are no extra uses (an optimization).  Inhibit this by making an
2092193326Sed    // extra dead use, because we're going to add a use of CondVal later.  We
2093193326Sed    // don't use the builder for this, because we don't want it to get optimized
2094193326Sed    // away.  This leaves dead code, but the ?: extension isn't common.
2095193326Sed    new llvm::BitCastInst(CondVal, CondVal->getType(), "dummy?:holder",
2096193326Sed                          Builder.GetInsertBlock());
2097198092Srdivacky
2098193326Sed    Value *CondBoolVal =
2099193326Sed      CGF.EmitScalarConversion(CondVal, E->getCond()->getType(),
2100193326Sed                               CGF.getContext().BoolTy);
2101193326Sed    Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock);
2102193326Sed  }
2103193576Sed
2104203955Srdivacky  CGF.BeginConditionalBranch();
2105193326Sed  CGF.EmitBlock(LHSBlock);
2106198092Srdivacky
2107193326Sed  // Handle the GNU extension for missing LHS.
2108193326Sed  Value *LHS;
2109193326Sed  if (E->getLHS())
2110193326Sed    LHS = Visit(E->getLHS());
2111193326Sed  else    // Perform promotions, to handle cases like "short ?: int"
2112193326Sed    LHS = EmitScalarConversion(CondVal, E->getCond()->getType(), E->getType());
2113198092Srdivacky
2114203955Srdivacky  CGF.EndConditionalBranch();
2115193326Sed  LHSBlock = Builder.GetInsertBlock();
2116193326Sed  CGF.EmitBranch(ContBlock);
2117198092Srdivacky
2118203955Srdivacky  CGF.BeginConditionalBranch();
2119193326Sed  CGF.EmitBlock(RHSBlock);
2120198092Srdivacky
2121193326Sed  Value *RHS = Visit(E->getRHS());
2122203955Srdivacky  CGF.EndConditionalBranch();
2123193326Sed  RHSBlock = Builder.GetInsertBlock();
2124193326Sed  CGF.EmitBranch(ContBlock);
2125198092Srdivacky
2126193326Sed  CGF.EmitBlock(ContBlock);
2127198092Srdivacky
2128200583Srdivacky  // If the LHS or RHS is a throw expression, it will be legitimately null.
2129200583Srdivacky  if (!LHS)
2130200583Srdivacky    return RHS;
2131200583Srdivacky  if (!RHS)
2132200583Srdivacky    return LHS;
2133198092Srdivacky
2134193326Sed  // Create a PHI node for the real part.
2135193326Sed  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
2136193326Sed  PN->reserveOperandSpace(2);
2137193326Sed  PN->addIncoming(LHS, LHSBlock);
2138193326Sed  PN->addIncoming(RHS, RHSBlock);
2139193326Sed  return PN;
2140193326Sed}
2141193326Sed
2142193326SedValue *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
2143193326Sed  return Visit(E->getChosenSubExpr(CGF.getContext()));
2144193326Sed}
2145193326Sed
2146193326SedValue *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
2147193326Sed  llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
2148193326Sed  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
2149193326Sed
2150193326Sed  // If EmitVAArg fails, we fall back to the LLVM instruction.
2151198092Srdivacky  if (!ArgPtr)
2152193326Sed    return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
2153193326Sed
2154193326Sed  // FIXME Volatility.
2155193326Sed  return Builder.CreateLoad(ArgPtr);
2156193326Sed}
2157193326Sed
2158193326SedValue *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *BE) {
2159193326Sed  return CGF.BuildBlockLiteralTmp(BE);
2160193326Sed}
2161193326Sed
2162193326Sed//===----------------------------------------------------------------------===//
2163193326Sed//                         Entry Point into this File
2164193326Sed//===----------------------------------------------------------------------===//
2165193326Sed
2166198092Srdivacky/// EmitScalarExpr - Emit the computation of the specified expression of scalar
2167198092Srdivacky/// type, ignoring the result.
2168193326SedValue *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
2169193326Sed  assert(E && !hasAggregateLLVMType(E->getType()) &&
2170193326Sed         "Invalid scalar expression to emit");
2171198092Srdivacky
2172193326Sed  return ScalarExprEmitter(*this, IgnoreResultAssign)
2173193326Sed    .Visit(const_cast<Expr*>(E));
2174193326Sed}
2175193326Sed
2176193326Sed/// EmitScalarConversion - Emit a conversion from the specified type to the
2177193326Sed/// specified destination type, both of which are LLVM scalar types.
2178193326SedValue *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
2179193326Sed                                             QualType DstTy) {
2180193326Sed  assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
2181193326Sed         "Invalid scalar expression to emit");
2182193326Sed  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
2183193326Sed}
2184193326Sed
2185198092Srdivacky/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
2186198092Srdivacky/// type to the specified destination type, where the destination type is an
2187198092Srdivacky/// LLVM scalar type.
2188193326SedValue *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
2189193326Sed                                                      QualType SrcTy,
2190193326Sed                                                      QualType DstTy) {
2191193326Sed  assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
2192193326Sed         "Invalid complex -> scalar conversion");
2193193326Sed  return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
2194193326Sed                                                                DstTy);
2195193326Sed}
2196193326Sed
2197210299Sed
2198210299Sedllvm::Value *CodeGenFunction::
2199210299SedEmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2200210299Sed                        bool isInc, bool isPre) {
2201210299Sed  return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
2202210299Sed}
2203210299Sed
2204200583SrdivackyLValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
2205200583Srdivacky  llvm::Value *V;
2206200583Srdivacky  // object->isa or (*object).isa
2207200583Srdivacky  // Generate code as for: *(Class*)object
2208203955Srdivacky  // build Class* type
2209203955Srdivacky  const llvm::Type *ClassPtrTy = ConvertType(E->getType());
2210203955Srdivacky
2211200583Srdivacky  Expr *BaseExpr = E->getBase();
2212203955Srdivacky  if (BaseExpr->isLvalue(getContext()) != Expr::LV_Valid) {
2213203955Srdivacky    V = CreateTempAlloca(ClassPtrTy, "resval");
2214203955Srdivacky    llvm::Value *Src = EmitScalarExpr(BaseExpr);
2215203955Srdivacky    Builder.CreateStore(Src, V);
2216212904Sdim    V = ScalarExprEmitter(*this).EmitLoadOfLValue(
2217212904Sdim      MakeAddrLValue(V, E->getType()), E->getType());
2218212904Sdim  } else {
2219212904Sdim    if (E->isArrow())
2220212904Sdim      V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
2221212904Sdim    else
2222212904Sdim      V = EmitLValue(BaseExpr).getAddress();
2223203955Srdivacky  }
2224200583Srdivacky
2225200583Srdivacky  // build Class* type
2226200583Srdivacky  ClassPtrTy = ClassPtrTy->getPointerTo();
2227200583Srdivacky  V = Builder.CreateBitCast(V, ClassPtrTy);
2228212904Sdim  return MakeAddrLValue(V, E->getType());
2229200583Srdivacky}
2230200583Srdivacky
2231207619Srdivacky
2232207619SrdivackyLValue CodeGenFunction::EmitCompoundAssignOperatorLValue(
2233207619Srdivacky                                            const CompoundAssignOperator *E) {
2234207619Srdivacky  ScalarExprEmitter Scalar(*this);
2235210299Sed  Value *Result = 0;
2236207619Srdivacky  switch (E->getOpcode()) {
2237207619Srdivacky#define COMPOUND_OP(Op)                                                       \
2238212904Sdim    case BO_##Op##Assign:                                                     \
2239207619Srdivacky      return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
2240210299Sed                                             Result)
2241207619Srdivacky  COMPOUND_OP(Mul);
2242207619Srdivacky  COMPOUND_OP(Div);
2243207619Srdivacky  COMPOUND_OP(Rem);
2244207619Srdivacky  COMPOUND_OP(Add);
2245207619Srdivacky  COMPOUND_OP(Sub);
2246207619Srdivacky  COMPOUND_OP(Shl);
2247207619Srdivacky  COMPOUND_OP(Shr);
2248207619Srdivacky  COMPOUND_OP(And);
2249207619Srdivacky  COMPOUND_OP(Xor);
2250207619Srdivacky  COMPOUND_OP(Or);
2251207619Srdivacky#undef COMPOUND_OP
2252207619Srdivacky
2253212904Sdim  case BO_PtrMemD:
2254212904Sdim  case BO_PtrMemI:
2255212904Sdim  case BO_Mul:
2256212904Sdim  case BO_Div:
2257212904Sdim  case BO_Rem:
2258212904Sdim  case BO_Add:
2259212904Sdim  case BO_Sub:
2260212904Sdim  case BO_Shl:
2261212904Sdim  case BO_Shr:
2262212904Sdim  case BO_LT:
2263212904Sdim  case BO_GT:
2264212904Sdim  case BO_LE:
2265212904Sdim  case BO_GE:
2266212904Sdim  case BO_EQ:
2267212904Sdim  case BO_NE:
2268212904Sdim  case BO_And:
2269212904Sdim  case BO_Xor:
2270212904Sdim  case BO_Or:
2271212904Sdim  case BO_LAnd:
2272212904Sdim  case BO_LOr:
2273212904Sdim  case BO_Assign:
2274212904Sdim  case BO_Comma:
2275207619Srdivacky    assert(false && "Not valid compound assignment operators");
2276207619Srdivacky    break;
2277207619Srdivacky  }
2278207619Srdivacky
2279207619Srdivacky  llvm_unreachable("Unhandled compound assignment operator");
2280207619Srdivacky}
2281