CGExprScalar.cpp revision 203955
1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CGObjCRuntime.h"
16#include "CodeGenModule.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/RecordLayout.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Basic/TargetInfo.h"
22#include "llvm/Constants.h"
23#include "llvm/Function.h"
24#include "llvm/GlobalVariable.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/Module.h"
27#include "llvm/Support/CFG.h"
28#include "llvm/Target/TargetData.h"
29#include <cstdarg>
30
31using namespace clang;
32using namespace CodeGen;
33using llvm::Value;
34
35//===----------------------------------------------------------------------===//
36//                         Scalar Expression Emitter
37//===----------------------------------------------------------------------===//
38
39struct BinOpInfo {
40  Value *LHS;
41  Value *RHS;
42  QualType Ty;  // Computation Type.
43  const BinaryOperator *E;
44};
45
46namespace {
47class ScalarExprEmitter
48  : public StmtVisitor<ScalarExprEmitter, Value*> {
49  CodeGenFunction &CGF;
50  CGBuilderTy &Builder;
51  bool IgnoreResultAssign;
52  llvm::LLVMContext &VMContext;
53public:
54
55  ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
56    : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
57      VMContext(cgf.getLLVMContext()) {
58  }
59
60  //===--------------------------------------------------------------------===//
61  //                               Utilities
62  //===--------------------------------------------------------------------===//
63
64  bool TestAndClearIgnoreResultAssign() {
65    bool I = IgnoreResultAssign;
66    IgnoreResultAssign = false;
67    return I;
68  }
69
70  const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
71  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
72  LValue EmitCheckedLValue(const Expr *E) { return CGF.EmitCheckedLValue(E); }
73
74  Value *EmitLoadOfLValue(LValue LV, QualType T) {
75    return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
76  }
77
78  /// EmitLoadOfLValue - Given an expression with complex type that represents a
79  /// value l-value, this method emits the address of the l-value, then loads
80  /// and returns the result.
81  Value *EmitLoadOfLValue(const Expr *E) {
82    return EmitLoadOfLValue(EmitCheckedLValue(E), E->getType());
83  }
84
85  /// EmitConversionToBool - Convert the specified expression value to a
86  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
87  Value *EmitConversionToBool(Value *Src, QualType DstTy);
88
89  /// EmitScalarConversion - Emit a conversion from the specified type to the
90  /// specified destination type, both of which are LLVM scalar types.
91  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
92
93  /// EmitComplexToScalarConversion - Emit a conversion from the specified
94  /// complex type to the specified destination type, where the destination type
95  /// is an LLVM scalar type.
96  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
97                                       QualType SrcTy, QualType DstTy);
98
99  //===--------------------------------------------------------------------===//
100  //                            Visitor Methods
101  //===--------------------------------------------------------------------===//
102
103  Value *VisitStmt(Stmt *S) {
104    S->dump(CGF.getContext().getSourceManager());
105    assert(0 && "Stmt can't have complex result type!");
106    return 0;
107  }
108  Value *VisitExpr(Expr *S);
109
110  Value *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); }
111
112  // Leaves.
113  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
114    return llvm::ConstantInt::get(VMContext, E->getValue());
115  }
116  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
117    return llvm::ConstantFP::get(VMContext, E->getValue());
118  }
119  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
120    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
121  }
122  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
123    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
124  }
125  Value *VisitCXXZeroInitValueExpr(const CXXZeroInitValueExpr *E) {
126    return llvm::Constant::getNullValue(ConvertType(E->getType()));
127  }
128  Value *VisitGNUNullExpr(const GNUNullExpr *E) {
129    return llvm::Constant::getNullValue(ConvertType(E->getType()));
130  }
131  Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
132    return llvm::ConstantInt::get(ConvertType(E->getType()),
133                                  CGF.getContext().typesAreCompatible(
134                                    E->getArgType1(), E->getArgType2()));
135  }
136  Value *VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E);
137  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
138    llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
139    return Builder.CreateBitCast(V, ConvertType(E->getType()));
140  }
141
142  // l-values.
143  Value *VisitDeclRefExpr(DeclRefExpr *E) {
144    Expr::EvalResult Result;
145    if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
146      assert(!Result.HasSideEffects && "Constant declref with side-effect?!");
147      return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
148    }
149    return EmitLoadOfLValue(E);
150  }
151  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
152    return CGF.EmitObjCSelectorExpr(E);
153  }
154  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
155    return CGF.EmitObjCProtocolExpr(E);
156  }
157  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
158    return EmitLoadOfLValue(E);
159  }
160  Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
161    return EmitLoadOfLValue(E);
162  }
163  Value *VisitObjCImplicitSetterGetterRefExpr(
164                        ObjCImplicitSetterGetterRefExpr *E) {
165    return EmitLoadOfLValue(E);
166  }
167  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
168    return CGF.EmitObjCMessageExpr(E).getScalarVal();
169  }
170
171  Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
172    LValue LV = CGF.EmitObjCIsaExpr(E);
173    Value *V = CGF.EmitLoadOfLValue(LV, E->getType()).getScalarVal();
174    return V;
175  }
176
177  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
178  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
179  Value *VisitMemberExpr(MemberExpr *E);
180  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
181  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
182    return EmitLoadOfLValue(E);
183  }
184
185  Value *VisitInitListExpr(InitListExpr *E);
186
187  Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
188    return llvm::Constant::getNullValue(ConvertType(E->getType()));
189  }
190  Value *VisitCastExpr(CastExpr *E) {
191    // Make sure to evaluate VLA bounds now so that we have them for later.
192    if (E->getType()->isVariablyModifiedType())
193      CGF.EmitVLASize(E->getType());
194
195    return EmitCastExpr(E);
196  }
197  Value *EmitCastExpr(CastExpr *E);
198
199  Value *VisitCallExpr(const CallExpr *E) {
200    if (E->getCallReturnType()->isReferenceType())
201      return EmitLoadOfLValue(E);
202
203    return CGF.EmitCallExpr(E).getScalarVal();
204  }
205
206  Value *VisitStmtExpr(const StmtExpr *E);
207
208  Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
209
210  // Unary Operators.
211  Value *VisitPrePostIncDec(const UnaryOperator *E, bool isInc, bool isPre) {
212    LValue LV = EmitLValue(E->getSubExpr());
213    return CGF.EmitScalarPrePostIncDec(E, LV, isInc, isPre);
214  }
215  Value *VisitUnaryPostDec(const UnaryOperator *E) {
216    return VisitPrePostIncDec(E, false, false);
217  }
218  Value *VisitUnaryPostInc(const UnaryOperator *E) {
219    return VisitPrePostIncDec(E, true, false);
220  }
221  Value *VisitUnaryPreDec(const UnaryOperator *E) {
222    return VisitPrePostIncDec(E, false, true);
223  }
224  Value *VisitUnaryPreInc(const UnaryOperator *E) {
225    return VisitPrePostIncDec(E, true, true);
226  }
227  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
228    return EmitLValue(E->getSubExpr()).getAddress();
229  }
230  Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
231  Value *VisitUnaryPlus(const UnaryOperator *E) {
232    // This differs from gcc, though, most likely due to a bug in gcc.
233    TestAndClearIgnoreResultAssign();
234    return Visit(E->getSubExpr());
235  }
236  Value *VisitUnaryMinus    (const UnaryOperator *E);
237  Value *VisitUnaryNot      (const UnaryOperator *E);
238  Value *VisitUnaryLNot     (const UnaryOperator *E);
239  Value *VisitUnaryReal     (const UnaryOperator *E);
240  Value *VisitUnaryImag     (const UnaryOperator *E);
241  Value *VisitUnaryExtension(const UnaryOperator *E) {
242    return Visit(E->getSubExpr());
243  }
244  Value *VisitUnaryOffsetOf(const UnaryOperator *E);
245
246  // C++
247  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
248    return Visit(DAE->getExpr());
249  }
250  Value *VisitCXXThisExpr(CXXThisExpr *TE) {
251    return CGF.LoadCXXThis();
252  }
253
254  Value *VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) {
255    return CGF.EmitCXXExprWithTemporaries(E).getScalarVal();
256  }
257  Value *VisitCXXNewExpr(const CXXNewExpr *E) {
258    return CGF.EmitCXXNewExpr(E);
259  }
260  Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
261    CGF.EmitCXXDeleteExpr(E);
262    return 0;
263  }
264  Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
265    return llvm::ConstantInt::get(Builder.getInt1Ty(),
266                                  E->EvaluateTrait(CGF.getContext()));
267  }
268
269  Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
270    // C++ [expr.pseudo]p1:
271    //   The result shall only be used as the operand for the function call
272    //   operator (), and the result of such a call has type void. The only
273    //   effect is the evaluation of the postfix-expression before the dot or
274    //   arrow.
275    CGF.EmitScalarExpr(E->getBase());
276    return 0;
277  }
278
279  Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
280    return llvm::Constant::getNullValue(ConvertType(E->getType()));
281  }
282
283  Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
284    CGF.EmitCXXThrowExpr(E);
285    return 0;
286  }
287
288  // Binary Operators.
289  Value *EmitMul(const BinOpInfo &Ops) {
290    if (CGF.getContext().getLangOptions().OverflowChecking
291        && Ops.Ty->isSignedIntegerType())
292      return EmitOverflowCheckedBinOp(Ops);
293    if (Ops.LHS->getType()->isFPOrFPVectorTy())
294      return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
295    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
296  }
297  /// Create a binary op that checks for overflow.
298  /// Currently only supports +, - and *.
299  Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
300  Value *EmitDiv(const BinOpInfo &Ops);
301  Value *EmitRem(const BinOpInfo &Ops);
302  Value *EmitAdd(const BinOpInfo &Ops);
303  Value *EmitSub(const BinOpInfo &Ops);
304  Value *EmitShl(const BinOpInfo &Ops);
305  Value *EmitShr(const BinOpInfo &Ops);
306  Value *EmitAnd(const BinOpInfo &Ops) {
307    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
308  }
309  Value *EmitXor(const BinOpInfo &Ops) {
310    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
311  }
312  Value *EmitOr (const BinOpInfo &Ops) {
313    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
314  }
315
316  BinOpInfo EmitBinOps(const BinaryOperator *E);
317  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
318                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
319
320  // Binary operators and binary compound assignment operators.
321#define HANDLEBINOP(OP) \
322  Value *VisitBin ## OP(const BinaryOperator *E) {                         \
323    return Emit ## OP(EmitBinOps(E));                                      \
324  }                                                                        \
325  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
326    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
327  }
328  HANDLEBINOP(Mul)
329  HANDLEBINOP(Div)
330  HANDLEBINOP(Rem)
331  HANDLEBINOP(Add)
332  HANDLEBINOP(Sub)
333  HANDLEBINOP(Shl)
334  HANDLEBINOP(Shr)
335  HANDLEBINOP(And)
336  HANDLEBINOP(Xor)
337  HANDLEBINOP(Or)
338#undef HANDLEBINOP
339
340  // Comparisons.
341  Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
342                     unsigned SICmpOpc, unsigned FCmpOpc);
343#define VISITCOMP(CODE, UI, SI, FP) \
344    Value *VisitBin##CODE(const BinaryOperator *E) { \
345      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
346                         llvm::FCmpInst::FP); }
347  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
348  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
349  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
350  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
351  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
352  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
353#undef VISITCOMP
354
355  Value *VisitBinAssign     (const BinaryOperator *E);
356
357  Value *VisitBinLAnd       (const BinaryOperator *E);
358  Value *VisitBinLOr        (const BinaryOperator *E);
359  Value *VisitBinComma      (const BinaryOperator *E);
360
361  Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
362  Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
363
364  // Other Operators.
365  Value *VisitBlockExpr(const BlockExpr *BE);
366  Value *VisitConditionalOperator(const ConditionalOperator *CO);
367  Value *VisitChooseExpr(ChooseExpr *CE);
368  Value *VisitVAArgExpr(VAArgExpr *VE);
369  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
370    return CGF.EmitObjCStringLiteral(E);
371  }
372};
373}  // end anonymous namespace.
374
375//===----------------------------------------------------------------------===//
376//                                Utilities
377//===----------------------------------------------------------------------===//
378
379/// EmitConversionToBool - Convert the specified expression value to a
380/// boolean (i1) truth value.  This is equivalent to "Val != 0".
381Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
382  assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
383
384  if (SrcType->isRealFloatingType()) {
385    // Compare against 0.0 for fp scalars.
386    llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
387    return Builder.CreateFCmpUNE(Src, Zero, "tobool");
388  }
389
390  if (SrcType->isMemberPointerType()) {
391    // Compare against -1.
392    llvm::Value *NegativeOne = llvm::Constant::getAllOnesValue(Src->getType());
393    return Builder.CreateICmpNE(Src, NegativeOne, "tobool");
394  }
395
396  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
397         "Unknown scalar type to convert");
398
399  // Because of the type rules of C, we often end up computing a logical value,
400  // then zero extending it to int, then wanting it as a logical value again.
401  // Optimize this common case.
402  if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) {
403    if (ZI->getOperand(0)->getType() ==
404        llvm::Type::getInt1Ty(CGF.getLLVMContext())) {
405      Value *Result = ZI->getOperand(0);
406      // If there aren't any more uses, zap the instruction to save space.
407      // Note that there can be more uses, for example if this
408      // is the result of an assignment.
409      if (ZI->use_empty())
410        ZI->eraseFromParent();
411      return Result;
412    }
413  }
414
415  // Compare against an integer or pointer null.
416  llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
417  return Builder.CreateICmpNE(Src, Zero, "tobool");
418}
419
420/// EmitScalarConversion - Emit a conversion from the specified type to the
421/// specified destination type, both of which are LLVM scalar types.
422Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
423                                               QualType DstType) {
424  SrcType = CGF.getContext().getCanonicalType(SrcType);
425  DstType = CGF.getContext().getCanonicalType(DstType);
426  if (SrcType == DstType) return Src;
427
428  if (DstType->isVoidType()) return 0;
429
430  llvm::LLVMContext &VMContext = CGF.getLLVMContext();
431
432  // Handle conversions to bool first, they are special: comparisons against 0.
433  if (DstType->isBooleanType())
434    return EmitConversionToBool(Src, SrcType);
435
436  const llvm::Type *DstTy = ConvertType(DstType);
437
438  // Ignore conversions like int -> uint.
439  if (Src->getType() == DstTy)
440    return Src;
441
442  // Handle pointer conversions next: pointers can only be converted to/from
443  // other pointers and integers. Check for pointer types in terms of LLVM, as
444  // some native types (like Obj-C id) may map to a pointer type.
445  if (isa<llvm::PointerType>(DstTy)) {
446    // The source value may be an integer, or a pointer.
447    if (isa<llvm::PointerType>(Src->getType()))
448      return Builder.CreateBitCast(Src, DstTy, "conv");
449
450    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
451    // First, convert to the correct width so that we control the kind of
452    // extension.
453    const llvm::Type *MiddleTy =
454          llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
455    bool InputSigned = SrcType->isSignedIntegerType();
456    llvm::Value* IntResult =
457        Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
458    // Then, cast to pointer.
459    return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
460  }
461
462  if (isa<llvm::PointerType>(Src->getType())) {
463    // Must be an ptr to int cast.
464    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
465    return Builder.CreatePtrToInt(Src, DstTy, "conv");
466  }
467
468  // A scalar can be splatted to an extended vector of the same element type
469  if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
470    // Cast the scalar to element type
471    QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
472    llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
473
474    // Insert the element in element zero of an undef vector
475    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
476    llvm::Value *Idx =
477        llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 0);
478    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
479
480    // Splat the element across to all elements
481    llvm::SmallVector<llvm::Constant*, 16> Args;
482    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
483    for (unsigned i = 0; i < NumElements; i++)
484      Args.push_back(llvm::ConstantInt::get(
485                                        llvm::Type::getInt32Ty(VMContext), 0));
486
487    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
488    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
489    return Yay;
490  }
491
492  // Allow bitcast from vector to integer/fp of the same size.
493  if (isa<llvm::VectorType>(Src->getType()) ||
494      isa<llvm::VectorType>(DstTy))
495    return Builder.CreateBitCast(Src, DstTy, "conv");
496
497  // Finally, we have the arithmetic types: real int/float.
498  if (isa<llvm::IntegerType>(Src->getType())) {
499    bool InputSigned = SrcType->isSignedIntegerType();
500    if (isa<llvm::IntegerType>(DstTy))
501      return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
502    else if (InputSigned)
503      return Builder.CreateSIToFP(Src, DstTy, "conv");
504    else
505      return Builder.CreateUIToFP(Src, DstTy, "conv");
506  }
507
508  assert(Src->getType()->isFloatingPointTy() && "Unknown real conversion");
509  if (isa<llvm::IntegerType>(DstTy)) {
510    if (DstType->isSignedIntegerType())
511      return Builder.CreateFPToSI(Src, DstTy, "conv");
512    else
513      return Builder.CreateFPToUI(Src, DstTy, "conv");
514  }
515
516  assert(DstTy->isFloatingPointTy() && "Unknown real conversion");
517  if (DstTy->getTypeID() < Src->getType()->getTypeID())
518    return Builder.CreateFPTrunc(Src, DstTy, "conv");
519  else
520    return Builder.CreateFPExt(Src, DstTy, "conv");
521}
522
523/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
524/// type to the specified destination type, where the destination type is an
525/// LLVM scalar type.
526Value *ScalarExprEmitter::
527EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
528                              QualType SrcTy, QualType DstTy) {
529  // Get the source element type.
530  SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
531
532  // Handle conversions to bool first, they are special: comparisons against 0.
533  if (DstTy->isBooleanType()) {
534    //  Complex != 0  -> (Real != 0) | (Imag != 0)
535    Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
536    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
537    return Builder.CreateOr(Src.first, Src.second, "tobool");
538  }
539
540  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
541  // the imaginary part of the complex value is discarded and the value of the
542  // real part is converted according to the conversion rules for the
543  // corresponding real type.
544  return EmitScalarConversion(Src.first, SrcTy, DstTy);
545}
546
547
548//===----------------------------------------------------------------------===//
549//                            Visitor Methods
550//===----------------------------------------------------------------------===//
551
552Value *ScalarExprEmitter::VisitExpr(Expr *E) {
553  CGF.ErrorUnsupported(E, "scalar expression");
554  if (E->getType()->isVoidType())
555    return 0;
556  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
557}
558
559Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
560  llvm::SmallVector<llvm::Constant*, 32> indices;
561  for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
562    indices.push_back(cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i))));
563  }
564  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
565  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
566  Value* SV = llvm::ConstantVector::get(indices.begin(), indices.size());
567  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
568}
569Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
570  Expr::EvalResult Result;
571  if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
572    if (E->isArrow())
573      CGF.EmitScalarExpr(E->getBase());
574    else
575      EmitLValue(E->getBase());
576    return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
577  }
578  return EmitLoadOfLValue(E);
579}
580
581Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
582  TestAndClearIgnoreResultAssign();
583
584  // Emit subscript expressions in rvalue context's.  For most cases, this just
585  // loads the lvalue formed by the subscript expr.  However, we have to be
586  // careful, because the base of a vector subscript is occasionally an rvalue,
587  // so we can't get it as an lvalue.
588  if (!E->getBase()->getType()->isVectorType())
589    return EmitLoadOfLValue(E);
590
591  // Handle the vector case.  The base must be a vector, the index must be an
592  // integer value.
593  Value *Base = Visit(E->getBase());
594  Value *Idx  = Visit(E->getIdx());
595  bool IdxSigned = E->getIdx()->getType()->isSignedIntegerType();
596  Idx = Builder.CreateIntCast(Idx,
597                              llvm::Type::getInt32Ty(CGF.getLLVMContext()),
598                              IdxSigned,
599                              "vecidxcast");
600  return Builder.CreateExtractElement(Base, Idx, "vecext");
601}
602
603static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
604                                  unsigned Off, const llvm::Type *I32Ty) {
605  int MV = SVI->getMaskValue(Idx);
606  if (MV == -1)
607    return llvm::UndefValue::get(I32Ty);
608  return llvm::ConstantInt::get(I32Ty, Off+MV);
609}
610
611Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
612  bool Ignore = TestAndClearIgnoreResultAssign();
613  (void)Ignore;
614  assert (Ignore == false && "init list ignored");
615  unsigned NumInitElements = E->getNumInits();
616
617  if (E->hadArrayRangeDesignator())
618    CGF.ErrorUnsupported(E, "GNU array range designator extension");
619
620  const llvm::VectorType *VType =
621    dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
622
623  // We have a scalar in braces. Just use the first element.
624  if (!VType)
625    return Visit(E->getInit(0));
626
627  unsigned ResElts = VType->getNumElements();
628  const llvm::Type *I32Ty = llvm::Type::getInt32Ty(CGF.getLLVMContext());
629
630  // Loop over initializers collecting the Value for each, and remembering
631  // whether the source was swizzle (ExtVectorElementExpr).  This will allow
632  // us to fold the shuffle for the swizzle into the shuffle for the vector
633  // initializer, since LLVM optimizers generally do not want to touch
634  // shuffles.
635  unsigned CurIdx = 0;
636  bool VIsUndefShuffle = false;
637  llvm::Value *V = llvm::UndefValue::get(VType);
638  for (unsigned i = 0; i != NumInitElements; ++i) {
639    Expr *IE = E->getInit(i);
640    Value *Init = Visit(IE);
641    llvm::SmallVector<llvm::Constant*, 16> Args;
642
643    const llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
644
645    // Handle scalar elements.  If the scalar initializer is actually one
646    // element of a different vector of the same width, use shuffle instead of
647    // extract+insert.
648    if (!VVT) {
649      if (isa<ExtVectorElementExpr>(IE)) {
650        llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
651
652        if (EI->getVectorOperandType()->getNumElements() == ResElts) {
653          llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
654          Value *LHS = 0, *RHS = 0;
655          if (CurIdx == 0) {
656            // insert into undef -> shuffle (src, undef)
657            Args.push_back(C);
658            for (unsigned j = 1; j != ResElts; ++j)
659              Args.push_back(llvm::UndefValue::get(I32Ty));
660
661            LHS = EI->getVectorOperand();
662            RHS = V;
663            VIsUndefShuffle = true;
664          } else if (VIsUndefShuffle) {
665            // insert into undefshuffle && size match -> shuffle (v, src)
666            llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
667            for (unsigned j = 0; j != CurIdx; ++j)
668              Args.push_back(getMaskElt(SVV, j, 0, I32Ty));
669            Args.push_back(llvm::ConstantInt::get(I32Ty,
670                                                  ResElts + C->getZExtValue()));
671            for (unsigned j = CurIdx + 1; j != ResElts; ++j)
672              Args.push_back(llvm::UndefValue::get(I32Ty));
673
674            LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
675            RHS = EI->getVectorOperand();
676            VIsUndefShuffle = false;
677          }
678          if (!Args.empty()) {
679            llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
680            V = Builder.CreateShuffleVector(LHS, RHS, Mask);
681            ++CurIdx;
682            continue;
683          }
684        }
685      }
686      Value *Idx = llvm::ConstantInt::get(I32Ty, CurIdx);
687      V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
688      VIsUndefShuffle = false;
689      ++CurIdx;
690      continue;
691    }
692
693    unsigned InitElts = VVT->getNumElements();
694
695    // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
696    // input is the same width as the vector being constructed, generate an
697    // optimized shuffle of the swizzle input into the result.
698    unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
699    if (isa<ExtVectorElementExpr>(IE)) {
700      llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
701      Value *SVOp = SVI->getOperand(0);
702      const llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
703
704      if (OpTy->getNumElements() == ResElts) {
705        for (unsigned j = 0; j != CurIdx; ++j) {
706          // If the current vector initializer is a shuffle with undef, merge
707          // this shuffle directly into it.
708          if (VIsUndefShuffle) {
709            Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
710                                      I32Ty));
711          } else {
712            Args.push_back(llvm::ConstantInt::get(I32Ty, j));
713          }
714        }
715        for (unsigned j = 0, je = InitElts; j != je; ++j)
716          Args.push_back(getMaskElt(SVI, j, Offset, I32Ty));
717        for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
718          Args.push_back(llvm::UndefValue::get(I32Ty));
719
720        if (VIsUndefShuffle)
721          V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
722
723        Init = SVOp;
724      }
725    }
726
727    // Extend init to result vector length, and then shuffle its contribution
728    // to the vector initializer into V.
729    if (Args.empty()) {
730      for (unsigned j = 0; j != InitElts; ++j)
731        Args.push_back(llvm::ConstantInt::get(I32Ty, j));
732      for (unsigned j = InitElts; j != ResElts; ++j)
733        Args.push_back(llvm::UndefValue::get(I32Ty));
734      llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
735      Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
736                                         Mask, "vext");
737
738      Args.clear();
739      for (unsigned j = 0; j != CurIdx; ++j)
740        Args.push_back(llvm::ConstantInt::get(I32Ty, j));
741      for (unsigned j = 0; j != InitElts; ++j)
742        Args.push_back(llvm::ConstantInt::get(I32Ty, j+Offset));
743      for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
744        Args.push_back(llvm::UndefValue::get(I32Ty));
745    }
746
747    // If V is undef, make sure it ends up on the RHS of the shuffle to aid
748    // merging subsequent shuffles into this one.
749    if (CurIdx == 0)
750      std::swap(V, Init);
751    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
752    V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
753    VIsUndefShuffle = isa<llvm::UndefValue>(Init);
754    CurIdx += InitElts;
755  }
756
757  // FIXME: evaluate codegen vs. shuffling against constant null vector.
758  // Emit remaining default initializers.
759  const llvm::Type *EltTy = VType->getElementType();
760
761  // Emit remaining default initializers
762  for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
763    Value *Idx = llvm::ConstantInt::get(I32Ty, CurIdx);
764    llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
765    V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
766  }
767  return V;
768}
769
770static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
771  const Expr *E = CE->getSubExpr();
772
773  if (isa<CXXThisExpr>(E)) {
774    // We always assume that 'this' is never null.
775    return false;
776  }
777
778  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
779    // And that lvalue casts are never null.
780    if (ICE->isLvalueCast())
781      return false;
782  }
783
784  return true;
785}
786
787// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
788// have to handle a more broad range of conversions than explicit casts, as they
789// handle things like function to ptr-to-function decay etc.
790Value *ScalarExprEmitter::EmitCastExpr(CastExpr *CE) {
791  Expr *E = CE->getSubExpr();
792  QualType DestTy = CE->getType();
793  CastExpr::CastKind Kind = CE->getCastKind();
794
795  if (!DestTy->isVoidType())
796    TestAndClearIgnoreResultAssign();
797
798  // Since almost all cast kinds apply to scalars, this switch doesn't have
799  // a default case, so the compiler will warn on a missing case.  The cases
800  // are in the same order as in the CastKind enum.
801  switch (Kind) {
802  case CastExpr::CK_Unknown:
803    // FIXME: All casts should have a known kind!
804    //assert(0 && "Unknown cast kind!");
805    break;
806
807  case CastExpr::CK_AnyPointerToObjCPointerCast:
808  case CastExpr::CK_AnyPointerToBlockPointerCast:
809  case CastExpr::CK_BitCast: {
810    Value *Src = Visit(const_cast<Expr*>(E));
811    return Builder.CreateBitCast(Src, ConvertType(DestTy));
812  }
813  case CastExpr::CK_NoOp:
814  case CastExpr::CK_UserDefinedConversion:
815    return Visit(const_cast<Expr*>(E));
816
817  case CastExpr::CK_BaseToDerived: {
818    const CXXRecordDecl *BaseClassDecl =
819      E->getType()->getCXXRecordDeclForPointerType();
820    const CXXRecordDecl *DerivedClassDecl =
821      DestTy->getCXXRecordDeclForPointerType();
822
823    Value *Src = Visit(const_cast<Expr*>(E));
824
825    bool NullCheckValue = ShouldNullCheckClassCastValue(CE);
826    return CGF.GetAddressOfDerivedClass(Src, BaseClassDecl, DerivedClassDecl,
827                                        NullCheckValue);
828  }
829  case CastExpr::CK_DerivedToBase: {
830    const RecordType *DerivedClassTy =
831      E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
832    CXXRecordDecl *DerivedClassDecl =
833      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
834
835    const RecordType *BaseClassTy =
836      DestTy->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
837    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseClassTy->getDecl());
838
839    Value *Src = Visit(const_cast<Expr*>(E));
840
841    bool NullCheckValue = ShouldNullCheckClassCastValue(CE);
842    return CGF.GetAddressOfBaseClass(Src, DerivedClassDecl, BaseClassDecl,
843                                     NullCheckValue);
844  }
845  case CastExpr::CK_Dynamic: {
846    Value *V = Visit(const_cast<Expr*>(E));
847    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
848    return CGF.EmitDynamicCast(V, DCE);
849  }
850  case CastExpr::CK_ToUnion:
851    assert(0 && "Should be unreachable!");
852    break;
853
854  case CastExpr::CK_ArrayToPointerDecay: {
855    assert(E->getType()->isArrayType() &&
856           "Array to pointer decay must have array source type!");
857
858    Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
859
860    // Note that VLA pointers are always decayed, so we don't need to do
861    // anything here.
862    if (!E->getType()->isVariableArrayType()) {
863      assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
864      assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
865                                 ->getElementType()) &&
866             "Expected pointer to array");
867      V = Builder.CreateStructGEP(V, 0, "arraydecay");
868    }
869
870    return V;
871  }
872  case CastExpr::CK_FunctionToPointerDecay:
873    return EmitLValue(E).getAddress();
874
875  case CastExpr::CK_NullToMemberPointer:
876    return CGF.CGM.EmitNullConstant(DestTy);
877
878  case CastExpr::CK_BaseToDerivedMemberPointer:
879  case CastExpr::CK_DerivedToBaseMemberPointer: {
880    Value *Src = Visit(E);
881
882    // See if we need to adjust the pointer.
883    const CXXRecordDecl *BaseDecl =
884      cast<CXXRecordDecl>(E->getType()->getAs<MemberPointerType>()->
885                          getClass()->getAs<RecordType>()->getDecl());
886    const CXXRecordDecl *DerivedDecl =
887      cast<CXXRecordDecl>(CE->getType()->getAs<MemberPointerType>()->
888                          getClass()->getAs<RecordType>()->getDecl());
889    if (CE->getCastKind() == CastExpr::CK_DerivedToBaseMemberPointer)
890      std::swap(DerivedDecl, BaseDecl);
891
892    if (llvm::Constant *Adj =
893          CGF.CGM.GetNonVirtualBaseClassOffset(DerivedDecl, BaseDecl)) {
894      if (CE->getCastKind() == CastExpr::CK_DerivedToBaseMemberPointer)
895        Src = Builder.CreateSub(Src, Adj, "adj");
896      else
897        Src = Builder.CreateAdd(Src, Adj, "adj");
898    }
899    return Src;
900  }
901
902  case CastExpr::CK_ConstructorConversion:
903    assert(0 && "Should be unreachable!");
904    break;
905
906  case CastExpr::CK_IntegralToPointer: {
907    Value *Src = Visit(const_cast<Expr*>(E));
908
909    // First, convert to the correct width so that we control the kind of
910    // extension.
911    const llvm::Type *MiddleTy =
912      llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
913    bool InputSigned = E->getType()->isSignedIntegerType();
914    llvm::Value* IntResult =
915      Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
916
917    return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
918  }
919  case CastExpr::CK_PointerToIntegral: {
920    Value *Src = Visit(const_cast<Expr*>(E));
921    return Builder.CreatePtrToInt(Src, ConvertType(DestTy));
922  }
923  case CastExpr::CK_ToVoid: {
924    CGF.EmitAnyExpr(E, 0, false, true);
925    return 0;
926  }
927  case CastExpr::CK_VectorSplat: {
928    const llvm::Type *DstTy = ConvertType(DestTy);
929    Value *Elt = Visit(const_cast<Expr*>(E));
930
931    // Insert the element in element zero of an undef vector
932    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
933    llvm::Value *Idx =
934        llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 0);
935    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
936
937    // Splat the element across to all elements
938    llvm::SmallVector<llvm::Constant*, 16> Args;
939    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
940    for (unsigned i = 0; i < NumElements; i++)
941      Args.push_back(llvm::ConstantInt::get(
942                                        llvm::Type::getInt32Ty(VMContext), 0));
943
944    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
945    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
946    return Yay;
947  }
948  case CastExpr::CK_IntegralCast:
949  case CastExpr::CK_IntegralToFloating:
950  case CastExpr::CK_FloatingToIntegral:
951  case CastExpr::CK_FloatingCast:
952    return EmitScalarConversion(Visit(E), E->getType(), DestTy);
953
954  case CastExpr::CK_MemberPointerToBoolean:
955    return CGF.EvaluateExprAsBool(E);
956  }
957
958  // Handle cases where the source is an non-complex type.
959
960  if (!CGF.hasAggregateLLVMType(E->getType())) {
961    Value *Src = Visit(const_cast<Expr*>(E));
962
963    // Use EmitScalarConversion to perform the conversion.
964    return EmitScalarConversion(Src, E->getType(), DestTy);
965  }
966
967  if (E->getType()->isAnyComplexType()) {
968    // Handle cases where the source is a complex type.
969    bool IgnoreImag = true;
970    bool IgnoreImagAssign = true;
971    bool IgnoreReal = IgnoreResultAssign;
972    bool IgnoreRealAssign = IgnoreResultAssign;
973    if (DestTy->isBooleanType())
974      IgnoreImagAssign = IgnoreImag = false;
975    else if (DestTy->isVoidType()) {
976      IgnoreReal = IgnoreImag = false;
977      IgnoreRealAssign = IgnoreImagAssign = true;
978    }
979    CodeGenFunction::ComplexPairTy V
980      = CGF.EmitComplexExpr(E, IgnoreReal, IgnoreImag, IgnoreRealAssign,
981                            IgnoreImagAssign);
982    return EmitComplexToScalarConversion(V, E->getType(), DestTy);
983  }
984
985  // Okay, this is a cast from an aggregate.  It must be a cast to void.  Just
986  // evaluate the result and return.
987  CGF.EmitAggExpr(E, 0, false, true);
988  return 0;
989}
990
991Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
992  return CGF.EmitCompoundStmt(*E->getSubStmt(),
993                              !E->getType()->isVoidType()).getScalarVal();
994}
995
996Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
997  llvm::Value *V = CGF.GetAddrOfBlockDecl(E);
998  if (E->getType().isObjCGCWeak())
999    return CGF.CGM.getObjCRuntime().EmitObjCWeakRead(CGF, V);
1000  return Builder.CreateLoad(V, "tmp");
1001}
1002
1003//===----------------------------------------------------------------------===//
1004//                             Unary Operators
1005//===----------------------------------------------------------------------===//
1006
1007Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1008  TestAndClearIgnoreResultAssign();
1009  Value *Op = Visit(E->getSubExpr());
1010  if (Op->getType()->isFPOrFPVectorTy())
1011    return Builder.CreateFNeg(Op, "neg");
1012  return Builder.CreateNeg(Op, "neg");
1013}
1014
1015Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1016  TestAndClearIgnoreResultAssign();
1017  Value *Op = Visit(E->getSubExpr());
1018  return Builder.CreateNot(Op, "neg");
1019}
1020
1021Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1022  // Compare operand to zero.
1023  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1024
1025  // Invert value.
1026  // TODO: Could dynamically modify easy computations here.  For example, if
1027  // the operand is an icmp ne, turn into icmp eq.
1028  BoolVal = Builder.CreateNot(BoolVal, "lnot");
1029
1030  // ZExt result to the expr type.
1031  return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1032}
1033
1034/// VisitSizeOfAlignOfExpr - Return the size or alignment of the type of
1035/// argument of the sizeof expression as an integer.
1036Value *
1037ScalarExprEmitter::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) {
1038  QualType TypeToSize = E->getTypeOfArgument();
1039  if (E->isSizeOf()) {
1040    if (const VariableArrayType *VAT =
1041          CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1042      if (E->isArgumentType()) {
1043        // sizeof(type) - make sure to emit the VLA size.
1044        CGF.EmitVLASize(TypeToSize);
1045      } else {
1046        // C99 6.5.3.4p2: If the argument is an expression of type
1047        // VLA, it is evaluated.
1048        CGF.EmitAnyExpr(E->getArgumentExpr());
1049      }
1050
1051      return CGF.GetVLASize(VAT);
1052    }
1053  }
1054
1055  // If this isn't sizeof(vla), the result must be constant; use the constant
1056  // folding logic so we don't have to duplicate it here.
1057  Expr::EvalResult Result;
1058  E->Evaluate(Result, CGF.getContext());
1059  return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
1060}
1061
1062Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1063  Expr *Op = E->getSubExpr();
1064  if (Op->getType()->isAnyComplexType())
1065    return CGF.EmitComplexExpr(Op, false, true, false, true).first;
1066  return Visit(Op);
1067}
1068Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1069  Expr *Op = E->getSubExpr();
1070  if (Op->getType()->isAnyComplexType())
1071    return CGF.EmitComplexExpr(Op, true, false, true, false).second;
1072
1073  // __imag on a scalar returns zero.  Emit the subexpr to ensure side
1074  // effects are evaluated, but not the actual value.
1075  if (E->isLvalue(CGF.getContext()) == Expr::LV_Valid)
1076    CGF.EmitLValue(Op);
1077  else
1078    CGF.EmitScalarExpr(Op, true);
1079  return llvm::Constant::getNullValue(ConvertType(E->getType()));
1080}
1081
1082Value *ScalarExprEmitter::VisitUnaryOffsetOf(const UnaryOperator *E) {
1083  Value* ResultAsPtr = EmitLValue(E->getSubExpr()).getAddress();
1084  const llvm::Type* ResultType = ConvertType(E->getType());
1085  return Builder.CreatePtrToInt(ResultAsPtr, ResultType, "offsetof");
1086}
1087
1088//===----------------------------------------------------------------------===//
1089//                           Binary Operators
1090//===----------------------------------------------------------------------===//
1091
1092BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1093  TestAndClearIgnoreResultAssign();
1094  BinOpInfo Result;
1095  Result.LHS = Visit(E->getLHS());
1096  Result.RHS = Visit(E->getRHS());
1097  Result.Ty  = E->getType();
1098  Result.E = E;
1099  return Result;
1100}
1101
1102Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
1103                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
1104  bool Ignore = TestAndClearIgnoreResultAssign();
1105  QualType LHSTy = E->getLHS()->getType();
1106
1107  BinOpInfo OpInfo;
1108
1109  if (E->getComputationResultType()->isAnyComplexType()) {
1110    // This needs to go through the complex expression emitter, but it's a tad
1111    // complicated to do that... I'm leaving it out for now.  (Note that we do
1112    // actually need the imaginary part of the RHS for multiplication and
1113    // division.)
1114    CGF.ErrorUnsupported(E, "complex compound assignment");
1115    return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1116  }
1117
1118  // Emit the RHS first.  __block variables need to have the rhs evaluated
1119  // first, plus this should improve codegen a little.
1120  OpInfo.RHS = Visit(E->getRHS());
1121  OpInfo.Ty = E->getComputationResultType();
1122  OpInfo.E = E;
1123  // Load/convert the LHS.
1124  LValue LHSLV = EmitCheckedLValue(E->getLHS());
1125  OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
1126  OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
1127                                    E->getComputationLHSType());
1128
1129  // Expand the binary operator.
1130  Value *Result = (this->*Func)(OpInfo);
1131
1132  // Convert the result back to the LHS type.
1133  Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
1134
1135  // Store the result value into the LHS lvalue. Bit-fields are handled
1136  // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
1137  // 'An assignment expression has the value of the left operand after the
1138  // assignment...'.
1139  if (LHSLV.isBitfield()) {
1140    if (!LHSLV.isVolatileQualified()) {
1141      CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy,
1142                                         &Result);
1143      return Result;
1144    } else
1145      CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy);
1146  } else
1147    CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
1148  if (Ignore)
1149    return 0;
1150  return EmitLoadOfLValue(LHSLV, E->getType());
1151}
1152
1153
1154Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
1155  if (Ops.LHS->getType()->isFPOrFPVectorTy())
1156    return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
1157  else if (Ops.Ty->isUnsignedIntegerType())
1158    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
1159  else
1160    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
1161}
1162
1163Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
1164  // Rem in C can't be a floating point type: C99 6.5.5p2.
1165  if (Ops.Ty->isUnsignedIntegerType())
1166    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
1167  else
1168    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
1169}
1170
1171Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
1172  unsigned IID;
1173  unsigned OpID = 0;
1174
1175  switch (Ops.E->getOpcode()) {
1176  case BinaryOperator::Add:
1177  case BinaryOperator::AddAssign:
1178    OpID = 1;
1179    IID = llvm::Intrinsic::sadd_with_overflow;
1180    break;
1181  case BinaryOperator::Sub:
1182  case BinaryOperator::SubAssign:
1183    OpID = 2;
1184    IID = llvm::Intrinsic::ssub_with_overflow;
1185    break;
1186  case BinaryOperator::Mul:
1187  case BinaryOperator::MulAssign:
1188    OpID = 3;
1189    IID = llvm::Intrinsic::smul_with_overflow;
1190    break;
1191  default:
1192    assert(false && "Unsupported operation for overflow detection");
1193    IID = 0;
1194  }
1195  OpID <<= 1;
1196  OpID |= 1;
1197
1198  const llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
1199
1200  llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, &opTy, 1);
1201
1202  Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
1203  Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
1204  Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
1205
1206  // Branch in case of overflow.
1207  llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
1208  llvm::BasicBlock *overflowBB =
1209    CGF.createBasicBlock("overflow", CGF.CurFn);
1210  llvm::BasicBlock *continueBB =
1211    CGF.createBasicBlock("overflow.continue", CGF.CurFn);
1212
1213  Builder.CreateCondBr(overflow, overflowBB, continueBB);
1214
1215  // Handle overflow
1216
1217  Builder.SetInsertPoint(overflowBB);
1218
1219  // Handler is:
1220  // long long *__overflow_handler)(long long a, long long b, char op,
1221  // char width)
1222  std::vector<const llvm::Type*> handerArgTypes;
1223  handerArgTypes.push_back(llvm::Type::getInt64Ty(VMContext));
1224  handerArgTypes.push_back(llvm::Type::getInt64Ty(VMContext));
1225  handerArgTypes.push_back(llvm::Type::getInt8Ty(VMContext));
1226  handerArgTypes.push_back(llvm::Type::getInt8Ty(VMContext));
1227  llvm::FunctionType *handlerTy = llvm::FunctionType::get(
1228      llvm::Type::getInt64Ty(VMContext), handerArgTypes, false);
1229  llvm::Value *handlerFunction =
1230    CGF.CGM.getModule().getOrInsertGlobal("__overflow_handler",
1231        llvm::PointerType::getUnqual(handlerTy));
1232  handlerFunction = Builder.CreateLoad(handlerFunction);
1233
1234  llvm::Value *handlerResult = Builder.CreateCall4(handlerFunction,
1235      Builder.CreateSExt(Ops.LHS, llvm::Type::getInt64Ty(VMContext)),
1236      Builder.CreateSExt(Ops.RHS, llvm::Type::getInt64Ty(VMContext)),
1237      llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext), OpID),
1238      llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext),
1239        cast<llvm::IntegerType>(opTy)->getBitWidth()));
1240
1241  handlerResult = Builder.CreateTrunc(handlerResult, opTy);
1242
1243  Builder.CreateBr(continueBB);
1244
1245  // Set up the continuation
1246  Builder.SetInsertPoint(continueBB);
1247  // Get the correct result
1248  llvm::PHINode *phi = Builder.CreatePHI(opTy);
1249  phi->reserveOperandSpace(2);
1250  phi->addIncoming(result, initialBB);
1251  phi->addIncoming(handlerResult, overflowBB);
1252
1253  return phi;
1254}
1255
1256Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
1257  if (!Ops.Ty->isAnyPointerType()) {
1258    if (CGF.getContext().getLangOptions().OverflowChecking &&
1259        Ops.Ty->isSignedIntegerType())
1260      return EmitOverflowCheckedBinOp(Ops);
1261
1262    if (Ops.LHS->getType()->isFPOrFPVectorTy())
1263      return Builder.CreateFAdd(Ops.LHS, Ops.RHS, "add");
1264
1265    // Signed integer overflow is undefined behavior.
1266    if (Ops.Ty->isSignedIntegerType())
1267      return Builder.CreateNSWAdd(Ops.LHS, Ops.RHS, "add");
1268
1269    return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
1270  }
1271
1272  if (Ops.Ty->isPointerType() &&
1273      Ops.Ty->getAs<PointerType>()->isVariableArrayType()) {
1274    // The amount of the addition needs to account for the VLA size
1275    CGF.ErrorUnsupported(Ops.E, "VLA pointer addition");
1276  }
1277  Value *Ptr, *Idx;
1278  Expr *IdxExp;
1279  const PointerType *PT = Ops.E->getLHS()->getType()->getAs<PointerType>();
1280  const ObjCObjectPointerType *OPT =
1281    Ops.E->getLHS()->getType()->getAs<ObjCObjectPointerType>();
1282  if (PT || OPT) {
1283    Ptr = Ops.LHS;
1284    Idx = Ops.RHS;
1285    IdxExp = Ops.E->getRHS();
1286  } else {  // int + pointer
1287    PT = Ops.E->getRHS()->getType()->getAs<PointerType>();
1288    OPT = Ops.E->getRHS()->getType()->getAs<ObjCObjectPointerType>();
1289    assert((PT || OPT) && "Invalid add expr");
1290    Ptr = Ops.RHS;
1291    Idx = Ops.LHS;
1292    IdxExp = Ops.E->getLHS();
1293  }
1294
1295  unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1296  if (Width < CGF.LLVMPointerWidth) {
1297    // Zero or sign extend the pointer value based on whether the index is
1298    // signed or not.
1299    const llvm::Type *IdxType =
1300        llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
1301    if (IdxExp->getType()->isSignedIntegerType())
1302      Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1303    else
1304      Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1305  }
1306  const QualType ElementType = PT ? PT->getPointeeType() : OPT->getPointeeType();
1307  // Handle interface types, which are not represented with a concrete type.
1308  if (const ObjCInterfaceType *OIT = dyn_cast<ObjCInterfaceType>(ElementType)) {
1309    llvm::Value *InterfaceSize =
1310      llvm::ConstantInt::get(Idx->getType(),
1311          CGF.getContext().getTypeSizeInChars(OIT).getQuantity());
1312    Idx = Builder.CreateMul(Idx, InterfaceSize);
1313    const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1314    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1315    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1316    return Builder.CreateBitCast(Res, Ptr->getType());
1317  }
1318
1319  // Explicitly handle GNU void* and function pointer arithmetic extensions. The
1320  // GNU void* casts amount to no-ops since our void* type is i8*, but this is
1321  // future proof.
1322  if (ElementType->isVoidType() || ElementType->isFunctionType()) {
1323    const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1324    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1325    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1326    return Builder.CreateBitCast(Res, Ptr->getType());
1327  }
1328
1329  return Builder.CreateInBoundsGEP(Ptr, Idx, "add.ptr");
1330}
1331
1332Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
1333  if (!isa<llvm::PointerType>(Ops.LHS->getType())) {
1334    if (CGF.getContext().getLangOptions().OverflowChecking
1335        && Ops.Ty->isSignedIntegerType())
1336      return EmitOverflowCheckedBinOp(Ops);
1337
1338    if (Ops.LHS->getType()->isFPOrFPVectorTy())
1339      return Builder.CreateFSub(Ops.LHS, Ops.RHS, "sub");
1340    return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
1341  }
1342
1343  if (Ops.E->getLHS()->getType()->isPointerType() &&
1344      Ops.E->getLHS()->getType()->getAs<PointerType>()->isVariableArrayType()) {
1345    // The amount of the addition needs to account for the VLA size for
1346    // ptr-int
1347    // The amount of the division needs to account for the VLA size for
1348    // ptr-ptr.
1349    CGF.ErrorUnsupported(Ops.E, "VLA pointer subtraction");
1350  }
1351
1352  const QualType LHSType = Ops.E->getLHS()->getType();
1353  const QualType LHSElementType = LHSType->getPointeeType();
1354  if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
1355    // pointer - int
1356    Value *Idx = Ops.RHS;
1357    unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1358    if (Width < CGF.LLVMPointerWidth) {
1359      // Zero or sign extend the pointer value based on whether the index is
1360      // signed or not.
1361      const llvm::Type *IdxType =
1362          llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
1363      if (Ops.E->getRHS()->getType()->isSignedIntegerType())
1364        Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1365      else
1366        Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1367    }
1368    Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
1369
1370    // Handle interface types, which are not represented with a concrete type.
1371    if (const ObjCInterfaceType *OIT =
1372        dyn_cast<ObjCInterfaceType>(LHSElementType)) {
1373      llvm::Value *InterfaceSize =
1374        llvm::ConstantInt::get(Idx->getType(),
1375                               CGF.getContext().
1376                                 getTypeSizeInChars(OIT).getQuantity());
1377      Idx = Builder.CreateMul(Idx, InterfaceSize);
1378      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1379      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1380      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "add.ptr");
1381      return Builder.CreateBitCast(Res, Ops.LHS->getType());
1382    }
1383
1384    // Explicitly handle GNU void* and function pointer arithmetic
1385    // extensions. The GNU void* casts amount to no-ops since our void* type is
1386    // i8*, but this is future proof.
1387    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1388      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1389      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1390      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "sub.ptr");
1391      return Builder.CreateBitCast(Res, Ops.LHS->getType());
1392    }
1393
1394    return Builder.CreateInBoundsGEP(Ops.LHS, Idx, "sub.ptr");
1395  } else {
1396    // pointer - pointer
1397    Value *LHS = Ops.LHS;
1398    Value *RHS = Ops.RHS;
1399
1400    CharUnits ElementSize;
1401
1402    // Handle GCC extension for pointer arithmetic on void* and function pointer
1403    // types.
1404    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1405      ElementSize = CharUnits::One();
1406    } else {
1407      ElementSize = CGF.getContext().getTypeSizeInChars(LHSElementType);
1408    }
1409
1410    const llvm::Type *ResultType = ConvertType(Ops.Ty);
1411    LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
1412    RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1413    Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
1414
1415    // Optimize out the shift for element size of 1.
1416    if (ElementSize.isOne())
1417      return BytesBetween;
1418
1419    // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
1420    // pointer difference in C is only defined in the case where both operands
1421    // are pointing to elements of an array.
1422    Value *BytesPerElt =
1423        llvm::ConstantInt::get(ResultType, ElementSize.getQuantity());
1424    return Builder.CreateExactSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
1425  }
1426}
1427
1428Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
1429  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1430  // RHS to the same size as the LHS.
1431  Value *RHS = Ops.RHS;
1432  if (Ops.LHS->getType() != RHS->getType())
1433    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1434
1435  if (CGF.CatchUndefined
1436      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
1437    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
1438    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
1439    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
1440                                 llvm::ConstantInt::get(RHS->getType(), Width)),
1441                             Cont, CGF.getTrapBB());
1442    CGF.EmitBlock(Cont);
1443  }
1444
1445  return Builder.CreateShl(Ops.LHS, RHS, "shl");
1446}
1447
1448Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
1449  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1450  // RHS to the same size as the LHS.
1451  Value *RHS = Ops.RHS;
1452  if (Ops.LHS->getType() != RHS->getType())
1453    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1454
1455  if (CGF.CatchUndefined
1456      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
1457    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
1458    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
1459    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
1460                                 llvm::ConstantInt::get(RHS->getType(), Width)),
1461                             Cont, CGF.getTrapBB());
1462    CGF.EmitBlock(Cont);
1463  }
1464
1465  if (Ops.Ty->isUnsignedIntegerType())
1466    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
1467  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
1468}
1469
1470Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
1471                                      unsigned SICmpOpc, unsigned FCmpOpc) {
1472  TestAndClearIgnoreResultAssign();
1473  Value *Result;
1474  QualType LHSTy = E->getLHS()->getType();
1475  if (LHSTy->isMemberFunctionPointerType()) {
1476    Value *LHSPtr = CGF.EmitAnyExprToTemp(E->getLHS()).getAggregateAddr();
1477    Value *RHSPtr = CGF.EmitAnyExprToTemp(E->getRHS()).getAggregateAddr();
1478    llvm::Value *LHSFunc = Builder.CreateStructGEP(LHSPtr, 0);
1479    LHSFunc = Builder.CreateLoad(LHSFunc);
1480    llvm::Value *RHSFunc = Builder.CreateStructGEP(RHSPtr, 0);
1481    RHSFunc = Builder.CreateLoad(RHSFunc);
1482    Value *ResultF = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1483                                        LHSFunc, RHSFunc, "cmp.func");
1484    Value *NullPtr = llvm::Constant::getNullValue(LHSFunc->getType());
1485    Value *ResultNull = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1486                                           LHSFunc, NullPtr, "cmp.null");
1487    llvm::Value *LHSAdj = Builder.CreateStructGEP(LHSPtr, 1);
1488    LHSAdj = Builder.CreateLoad(LHSAdj);
1489    llvm::Value *RHSAdj = Builder.CreateStructGEP(RHSPtr, 1);
1490    RHSAdj = Builder.CreateLoad(RHSAdj);
1491    Value *ResultA = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1492                                        LHSAdj, RHSAdj, "cmp.adj");
1493    if (E->getOpcode() == BinaryOperator::EQ) {
1494      Result = Builder.CreateOr(ResultNull, ResultA, "or.na");
1495      Result = Builder.CreateAnd(Result, ResultF, "and.f");
1496    } else {
1497      assert(E->getOpcode() == BinaryOperator::NE &&
1498             "Member pointer comparison other than == or != ?");
1499      Result = Builder.CreateAnd(ResultNull, ResultA, "and.na");
1500      Result = Builder.CreateOr(Result, ResultF, "or.f");
1501    }
1502  } else if (!LHSTy->isAnyComplexType()) {
1503    Value *LHS = Visit(E->getLHS());
1504    Value *RHS = Visit(E->getRHS());
1505
1506    if (LHS->getType()->isFPOrFPVectorTy()) {
1507      Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
1508                                  LHS, RHS, "cmp");
1509    } else if (LHSTy->isSignedIntegerType()) {
1510      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
1511                                  LHS, RHS, "cmp");
1512    } else {
1513      // Unsigned integers and pointers.
1514      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1515                                  LHS, RHS, "cmp");
1516    }
1517
1518    // If this is a vector comparison, sign extend the result to the appropriate
1519    // vector integer type and return it (don't convert to bool).
1520    if (LHSTy->isVectorType())
1521      return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1522
1523  } else {
1524    // Complex Comparison: can only be an equality comparison.
1525    CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
1526    CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
1527
1528    QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
1529
1530    Value *ResultR, *ResultI;
1531    if (CETy->isRealFloatingType()) {
1532      ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1533                                   LHS.first, RHS.first, "cmp.r");
1534      ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1535                                   LHS.second, RHS.second, "cmp.i");
1536    } else {
1537      // Complex comparisons can only be equality comparisons.  As such, signed
1538      // and unsigned opcodes are the same.
1539      ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1540                                   LHS.first, RHS.first, "cmp.r");
1541      ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1542                                   LHS.second, RHS.second, "cmp.i");
1543    }
1544
1545    if (E->getOpcode() == BinaryOperator::EQ) {
1546      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
1547    } else {
1548      assert(E->getOpcode() == BinaryOperator::NE &&
1549             "Complex comparison other than == or != ?");
1550      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
1551    }
1552  }
1553
1554  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
1555}
1556
1557Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1558  bool Ignore = TestAndClearIgnoreResultAssign();
1559
1560  // __block variables need to have the rhs evaluated first, plus this should
1561  // improve codegen just a little.
1562  Value *RHS = Visit(E->getRHS());
1563  LValue LHS = EmitCheckedLValue(E->getLHS());
1564
1565  // Store the value into the LHS.  Bit-fields are handled specially
1566  // because the result is altered by the store, i.e., [C99 6.5.16p1]
1567  // 'An assignment expression has the value of the left operand after
1568  // the assignment...'.
1569  if (LHS.isBitfield()) {
1570    if (!LHS.isVolatileQualified()) {
1571      CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(),
1572                                         &RHS);
1573      return RHS;
1574    } else
1575      CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType());
1576  } else
1577    CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
1578  if (Ignore)
1579    return 0;
1580  return EmitLoadOfLValue(LHS, E->getType());
1581}
1582
1583Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
1584  const llvm::Type *ResTy = ConvertType(E->getType());
1585
1586  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
1587  // If we have 1 && X, just emit X without inserting the control flow.
1588  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1589    if (Cond == 1) { // If we have 1 && X, just emit X.
1590      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1591      // ZExt result to int or bool.
1592      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
1593    }
1594
1595    // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
1596    if (!CGF.ContainsLabel(E->getRHS()))
1597      return llvm::Constant::getNullValue(ResTy);
1598  }
1599
1600  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
1601  llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
1602
1603  // Branch on the LHS first.  If it is false, go to the failure (cont) block.
1604  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
1605
1606  // Any edges into the ContBlock are now from an (indeterminate number of)
1607  // edges from this first condition.  All of these values will be false.  Start
1608  // setting up the PHI node in the Cont Block for this.
1609  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
1610                                            "", ContBlock);
1611  PN->reserveOperandSpace(2);  // Normal case, two inputs.
1612  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1613       PI != PE; ++PI)
1614    PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
1615
1616  CGF.BeginConditionalBranch();
1617  CGF.EmitBlock(RHSBlock);
1618  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1619  CGF.EndConditionalBranch();
1620
1621  // Reaquire the RHS block, as there may be subblocks inserted.
1622  RHSBlock = Builder.GetInsertBlock();
1623
1624  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
1625  // into the phi node for the edge with the value of RHSCond.
1626  CGF.EmitBlock(ContBlock);
1627  PN->addIncoming(RHSCond, RHSBlock);
1628
1629  // ZExt result to int.
1630  return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
1631}
1632
1633Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
1634  const llvm::Type *ResTy = ConvertType(E->getType());
1635
1636  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
1637  // If we have 0 || X, just emit X without inserting the control flow.
1638  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1639    if (Cond == -1) { // If we have 0 || X, just emit X.
1640      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1641      // ZExt result to int or bool.
1642      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
1643    }
1644
1645    // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
1646    if (!CGF.ContainsLabel(E->getRHS()))
1647      return llvm::ConstantInt::get(ResTy, 1);
1648  }
1649
1650  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
1651  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
1652
1653  // Branch on the LHS first.  If it is true, go to the success (cont) block.
1654  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
1655
1656  // Any edges into the ContBlock are now from an (indeterminate number of)
1657  // edges from this first condition.  All of these values will be true.  Start
1658  // setting up the PHI node in the Cont Block for this.
1659  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
1660                                            "", ContBlock);
1661  PN->reserveOperandSpace(2);  // Normal case, two inputs.
1662  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1663       PI != PE; ++PI)
1664    PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
1665
1666  CGF.BeginConditionalBranch();
1667
1668  // Emit the RHS condition as a bool value.
1669  CGF.EmitBlock(RHSBlock);
1670  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1671
1672  CGF.EndConditionalBranch();
1673
1674  // Reaquire the RHS block, as there may be subblocks inserted.
1675  RHSBlock = Builder.GetInsertBlock();
1676
1677  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
1678  // into the phi node for the edge with the value of RHSCond.
1679  CGF.EmitBlock(ContBlock);
1680  PN->addIncoming(RHSCond, RHSBlock);
1681
1682  // ZExt result to int.
1683  return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
1684}
1685
1686Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
1687  CGF.EmitStmt(E->getLHS());
1688  CGF.EnsureInsertPoint();
1689  return Visit(E->getRHS());
1690}
1691
1692//===----------------------------------------------------------------------===//
1693//                             Other Operators
1694//===----------------------------------------------------------------------===//
1695
1696/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
1697/// expression is cheap enough and side-effect-free enough to evaluate
1698/// unconditionally instead of conditionally.  This is used to convert control
1699/// flow into selects in some cases.
1700static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
1701                                                   CodeGenFunction &CGF) {
1702  if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
1703    return isCheapEnoughToEvaluateUnconditionally(PE->getSubExpr(), CGF);
1704
1705  // TODO: Allow anything we can constant fold to an integer or fp constant.
1706  if (isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) ||
1707      isa<FloatingLiteral>(E))
1708    return true;
1709
1710  // Non-volatile automatic variables too, to get "cond ? X : Y" where
1711  // X and Y are local variables.
1712  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
1713    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
1714      if (VD->hasLocalStorage() && !(CGF.getContext()
1715                                     .getCanonicalType(VD->getType())
1716                                     .isVolatileQualified()))
1717        return true;
1718
1719  return false;
1720}
1721
1722
1723Value *ScalarExprEmitter::
1724VisitConditionalOperator(const ConditionalOperator *E) {
1725  TestAndClearIgnoreResultAssign();
1726  // If the condition constant folds and can be elided, try to avoid emitting
1727  // the condition and the dead arm.
1728  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getCond())){
1729    Expr *Live = E->getLHS(), *Dead = E->getRHS();
1730    if (Cond == -1)
1731      std::swap(Live, Dead);
1732
1733    // If the dead side doesn't have labels we need, and if the Live side isn't
1734    // the gnu missing ?: extension (which we could handle, but don't bother
1735    // to), just emit the Live part.
1736    if ((!Dead || !CGF.ContainsLabel(Dead)) &&  // No labels in dead part
1737        Live)                                   // Live part isn't missing.
1738      return Visit(Live);
1739  }
1740
1741
1742  // If this is a really simple expression (like x ? 4 : 5), emit this as a
1743  // select instead of as control flow.  We can only do this if it is cheap and
1744  // safe to evaluate the LHS and RHS unconditionally.
1745  if (E->getLHS() && isCheapEnoughToEvaluateUnconditionally(E->getLHS(),
1746                                                            CGF) &&
1747      isCheapEnoughToEvaluateUnconditionally(E->getRHS(), CGF)) {
1748    llvm::Value *CondV = CGF.EvaluateExprAsBool(E->getCond());
1749    llvm::Value *LHS = Visit(E->getLHS());
1750    llvm::Value *RHS = Visit(E->getRHS());
1751    return Builder.CreateSelect(CondV, LHS, RHS, "cond");
1752  }
1753
1754
1755  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1756  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1757  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1758  Value *CondVal = 0;
1759
1760  // If we don't have the GNU missing condition extension, emit a branch on bool
1761  // the normal way.
1762  if (E->getLHS()) {
1763    // Otherwise, just use EmitBranchOnBoolExpr to get small and simple code for
1764    // the branch on bool.
1765    CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
1766  } else {
1767    // Otherwise, for the ?: extension, evaluate the conditional and then
1768    // convert it to bool the hard way.  We do this explicitly because we need
1769    // the unconverted value for the missing middle value of the ?:.
1770    CondVal = CGF.EmitScalarExpr(E->getCond());
1771
1772    // In some cases, EmitScalarConversion will delete the "CondVal" expression
1773    // if there are no extra uses (an optimization).  Inhibit this by making an
1774    // extra dead use, because we're going to add a use of CondVal later.  We
1775    // don't use the builder for this, because we don't want it to get optimized
1776    // away.  This leaves dead code, but the ?: extension isn't common.
1777    new llvm::BitCastInst(CondVal, CondVal->getType(), "dummy?:holder",
1778                          Builder.GetInsertBlock());
1779
1780    Value *CondBoolVal =
1781      CGF.EmitScalarConversion(CondVal, E->getCond()->getType(),
1782                               CGF.getContext().BoolTy);
1783    Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock);
1784  }
1785
1786  CGF.BeginConditionalBranch();
1787  CGF.EmitBlock(LHSBlock);
1788
1789  // Handle the GNU extension for missing LHS.
1790  Value *LHS;
1791  if (E->getLHS())
1792    LHS = Visit(E->getLHS());
1793  else    // Perform promotions, to handle cases like "short ?: int"
1794    LHS = EmitScalarConversion(CondVal, E->getCond()->getType(), E->getType());
1795
1796  CGF.EndConditionalBranch();
1797  LHSBlock = Builder.GetInsertBlock();
1798  CGF.EmitBranch(ContBlock);
1799
1800  CGF.BeginConditionalBranch();
1801  CGF.EmitBlock(RHSBlock);
1802
1803  Value *RHS = Visit(E->getRHS());
1804  CGF.EndConditionalBranch();
1805  RHSBlock = Builder.GetInsertBlock();
1806  CGF.EmitBranch(ContBlock);
1807
1808  CGF.EmitBlock(ContBlock);
1809
1810  // If the LHS or RHS is a throw expression, it will be legitimately null.
1811  if (!LHS)
1812    return RHS;
1813  if (!RHS)
1814    return LHS;
1815
1816  // Create a PHI node for the real part.
1817  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
1818  PN->reserveOperandSpace(2);
1819  PN->addIncoming(LHS, LHSBlock);
1820  PN->addIncoming(RHS, RHSBlock);
1821  return PN;
1822}
1823
1824Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
1825  return Visit(E->getChosenSubExpr(CGF.getContext()));
1826}
1827
1828Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1829  llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
1830  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
1831
1832  // If EmitVAArg fails, we fall back to the LLVM instruction.
1833  if (!ArgPtr)
1834    return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
1835
1836  // FIXME Volatility.
1837  return Builder.CreateLoad(ArgPtr);
1838}
1839
1840Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *BE) {
1841  return CGF.BuildBlockLiteralTmp(BE);
1842}
1843
1844//===----------------------------------------------------------------------===//
1845//                         Entry Point into this File
1846//===----------------------------------------------------------------------===//
1847
1848/// EmitScalarExpr - Emit the computation of the specified expression of scalar
1849/// type, ignoring the result.
1850Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
1851  assert(E && !hasAggregateLLVMType(E->getType()) &&
1852         "Invalid scalar expression to emit");
1853
1854  return ScalarExprEmitter(*this, IgnoreResultAssign)
1855    .Visit(const_cast<Expr*>(E));
1856}
1857
1858/// EmitScalarConversion - Emit a conversion from the specified type to the
1859/// specified destination type, both of which are LLVM scalar types.
1860Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
1861                                             QualType DstTy) {
1862  assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
1863         "Invalid scalar expression to emit");
1864  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
1865}
1866
1867/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
1868/// type to the specified destination type, where the destination type is an
1869/// LLVM scalar type.
1870Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
1871                                                      QualType SrcTy,
1872                                                      QualType DstTy) {
1873  assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
1874         "Invalid complex -> scalar conversion");
1875  return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
1876                                                                DstTy);
1877}
1878
1879LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
1880  llvm::Value *V;
1881  // object->isa or (*object).isa
1882  // Generate code as for: *(Class*)object
1883  // build Class* type
1884  const llvm::Type *ClassPtrTy = ConvertType(E->getType());
1885
1886  Expr *BaseExpr = E->getBase();
1887  if (BaseExpr->isLvalue(getContext()) != Expr::LV_Valid) {
1888    V = CreateTempAlloca(ClassPtrTy, "resval");
1889    llvm::Value *Src = EmitScalarExpr(BaseExpr);
1890    Builder.CreateStore(Src, V);
1891  }
1892  else {
1893      if (E->isArrow())
1894        V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
1895      else
1896        V  = EmitLValue(BaseExpr).getAddress();
1897  }
1898
1899  // build Class* type
1900  ClassPtrTy = ClassPtrTy->getPointerTo();
1901  V = Builder.CreateBitCast(V, ClassPtrTy);
1902  LValue LV = LValue::MakeAddr(V, MakeQualifiers(E->getType()));
1903  return LV;
1904}
1905
1906