CGExprScalar.cpp revision 202379
1193326Sed//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2193326Sed//
3193326Sed//                     The LLVM Compiler Infrastructure
4193326Sed//
5193326Sed// This file is distributed under the University of Illinois Open Source
6193326Sed// License. See LICENSE.TXT for details.
7193326Sed//
8193326Sed//===----------------------------------------------------------------------===//
9193326Sed//
10193326Sed// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11193326Sed//
12193326Sed//===----------------------------------------------------------------------===//
13193326Sed
14193326Sed#include "CodeGenFunction.h"
15198092Srdivacky#include "CGObjCRuntime.h"
16193326Sed#include "CodeGenModule.h"
17193326Sed#include "clang/AST/ASTContext.h"
18193326Sed#include "clang/AST/DeclObjC.h"
19193326Sed#include "clang/AST/RecordLayout.h"
20193326Sed#include "clang/AST/StmtVisitor.h"
21193326Sed#include "clang/Basic/TargetInfo.h"
22193326Sed#include "llvm/Constants.h"
23193326Sed#include "llvm/Function.h"
24193326Sed#include "llvm/GlobalVariable.h"
25193326Sed#include "llvm/Intrinsics.h"
26193326Sed#include "llvm/Module.h"
27193326Sed#include "llvm/Support/CFG.h"
28193326Sed#include "llvm/Target/TargetData.h"
29193326Sed#include <cstdarg>
30193326Sed
31193326Sedusing namespace clang;
32193326Sedusing namespace CodeGen;
33193326Sedusing llvm::Value;
34193326Sed
35193326Sed//===----------------------------------------------------------------------===//
36193326Sed//                         Scalar Expression Emitter
37193326Sed//===----------------------------------------------------------------------===//
38193326Sed
39193326Sedstruct BinOpInfo {
40193326Sed  Value *LHS;
41193326Sed  Value *RHS;
42193326Sed  QualType Ty;  // Computation Type.
43193326Sed  const BinaryOperator *E;
44193326Sed};
45193326Sed
46193326Sednamespace {
47199990Srdivackyclass ScalarExprEmitter
48193326Sed  : public StmtVisitor<ScalarExprEmitter, Value*> {
49193326Sed  CodeGenFunction &CGF;
50193326Sed  CGBuilderTy &Builder;
51193326Sed  bool IgnoreResultAssign;
52198092Srdivacky  llvm::LLVMContext &VMContext;
53193326Sedpublic:
54193326Sed
55193326Sed  ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
56198092Srdivacky    : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
57198092Srdivacky      VMContext(cgf.getLLVMContext()) {
58193326Sed  }
59198092Srdivacky
60193326Sed  //===--------------------------------------------------------------------===//
61193326Sed  //                               Utilities
62193326Sed  //===--------------------------------------------------------------------===//
63193326Sed
64193326Sed  bool TestAndClearIgnoreResultAssign() {
65198092Srdivacky    bool I = IgnoreResultAssign;
66198092Srdivacky    IgnoreResultAssign = false;
67198092Srdivacky    return I;
68198092Srdivacky  }
69193326Sed
70193326Sed  const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
71193326Sed  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
72201361Srdivacky  LValue EmitCheckedLValue(const Expr *E) { return CGF.EmitCheckedLValue(E); }
73193326Sed
74193326Sed  Value *EmitLoadOfLValue(LValue LV, QualType T) {
75193326Sed    return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
76193326Sed  }
77198092Srdivacky
78193326Sed  /// EmitLoadOfLValue - Given an expression with complex type that represents a
79193326Sed  /// value l-value, this method emits the address of the l-value, then loads
80193326Sed  /// and returns the result.
81193326Sed  Value *EmitLoadOfLValue(const Expr *E) {
82201361Srdivacky    return EmitLoadOfLValue(EmitCheckedLValue(E), E->getType());
83193326Sed  }
84198092Srdivacky
85193326Sed  /// EmitConversionToBool - Convert the specified expression value to a
86193326Sed  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
87193326Sed  Value *EmitConversionToBool(Value *Src, QualType DstTy);
88198092Srdivacky
89193326Sed  /// EmitScalarConversion - Emit a conversion from the specified type to the
90193326Sed  /// specified destination type, both of which are LLVM scalar types.
91193326Sed  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
92193326Sed
93193326Sed  /// EmitComplexToScalarConversion - Emit a conversion from the specified
94198092Srdivacky  /// complex type to the specified destination type, where the destination type
95198092Srdivacky  /// is an LLVM scalar type.
96193326Sed  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
97193326Sed                                       QualType SrcTy, QualType DstTy);
98193326Sed
99193326Sed  //===--------------------------------------------------------------------===//
100193326Sed  //                            Visitor Methods
101193326Sed  //===--------------------------------------------------------------------===//
102193326Sed
103193326Sed  Value *VisitStmt(Stmt *S) {
104193326Sed    S->dump(CGF.getContext().getSourceManager());
105193326Sed    assert(0 && "Stmt can't have complex result type!");
106193326Sed    return 0;
107193326Sed  }
108193326Sed  Value *VisitExpr(Expr *S);
109198398Srdivacky
110193326Sed  Value *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); }
111193326Sed
112193326Sed  // Leaves.
113193326Sed  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
114198092Srdivacky    return llvm::ConstantInt::get(VMContext, E->getValue());
115193326Sed  }
116193326Sed  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
117198092Srdivacky    return llvm::ConstantFP::get(VMContext, E->getValue());
118193326Sed  }
119193326Sed  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
120193326Sed    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
121193326Sed  }
122193326Sed  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
123193326Sed    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
124193326Sed  }
125193326Sed  Value *VisitCXXZeroInitValueExpr(const CXXZeroInitValueExpr *E) {
126193326Sed    return llvm::Constant::getNullValue(ConvertType(E->getType()));
127193326Sed  }
128193326Sed  Value *VisitGNUNullExpr(const GNUNullExpr *E) {
129193326Sed    return llvm::Constant::getNullValue(ConvertType(E->getType()));
130193326Sed  }
131193326Sed  Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
132193326Sed    return llvm::ConstantInt::get(ConvertType(E->getType()),
133193326Sed                                  CGF.getContext().typesAreCompatible(
134193326Sed                                    E->getArgType1(), E->getArgType2()));
135193326Sed  }
136193326Sed  Value *VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E);
137193326Sed  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
138198893Srdivacky    llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
139198893Srdivacky    return Builder.CreateBitCast(V, ConvertType(E->getType()));
140193326Sed  }
141198092Srdivacky
142193326Sed  // l-values.
143193326Sed  Value *VisitDeclRefExpr(DeclRefExpr *E) {
144199990Srdivacky    Expr::EvalResult Result;
145199990Srdivacky    if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
146199990Srdivacky      assert(!Result.HasSideEffects && "Constant declref with side-effect?!");
147199990Srdivacky      return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
148199990Srdivacky    }
149193326Sed    return EmitLoadOfLValue(E);
150193326Sed  }
151198092Srdivacky  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
152198092Srdivacky    return CGF.EmitObjCSelectorExpr(E);
153193326Sed  }
154198092Srdivacky  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
155198092Srdivacky    return CGF.EmitObjCProtocolExpr(E);
156193326Sed  }
157198092Srdivacky  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
158193326Sed    return EmitLoadOfLValue(E);
159193326Sed  }
160193326Sed  Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
161193326Sed    return EmitLoadOfLValue(E);
162193326Sed  }
163198092Srdivacky  Value *VisitObjCImplicitSetterGetterRefExpr(
164198092Srdivacky                        ObjCImplicitSetterGetterRefExpr *E) {
165193326Sed    return EmitLoadOfLValue(E);
166193326Sed  }
167193326Sed  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
168193326Sed    return CGF.EmitObjCMessageExpr(E).getScalarVal();
169193326Sed  }
170193326Sed
171200583Srdivacky  Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
172200583Srdivacky    LValue LV = CGF.EmitObjCIsaExpr(E);
173200583Srdivacky    Value *V = CGF.EmitLoadOfLValue(LV, E->getType()).getScalarVal();
174200583Srdivacky    return V;
175200583Srdivacky  }
176200583Srdivacky
177193326Sed  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
178193326Sed  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
179199990Srdivacky  Value *VisitMemberExpr(MemberExpr *E);
180193326Sed  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
181193326Sed  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
182193326Sed    return EmitLoadOfLValue(E);
183193326Sed  }
184198092Srdivacky
185198398Srdivacky  Value *VisitInitListExpr(InitListExpr *E);
186198092Srdivacky
187193326Sed  Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
188193326Sed    return llvm::Constant::getNullValue(ConvertType(E->getType()));
189193326Sed  }
190199990Srdivacky  Value *VisitCastExpr(CastExpr *E) {
191193326Sed    // Make sure to evaluate VLA bounds now so that we have them for later.
192193326Sed    if (E->getType()->isVariablyModifiedType())
193193326Sed      CGF.EmitVLASize(E->getType());
194193326Sed
195198092Srdivacky    return EmitCastExpr(E);
196193326Sed  }
197199990Srdivacky  Value *EmitCastExpr(CastExpr *E);
198193326Sed
199193326Sed  Value *VisitCallExpr(const CallExpr *E) {
200193326Sed    if (E->getCallReturnType()->isReferenceType())
201193326Sed      return EmitLoadOfLValue(E);
202198092Srdivacky
203193326Sed    return CGF.EmitCallExpr(E).getScalarVal();
204193326Sed  }
205193326Sed
206193326Sed  Value *VisitStmtExpr(const StmtExpr *E);
207193326Sed
208193326Sed  Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
209198092Srdivacky
210193326Sed  // Unary Operators.
211202379Srdivacky  Value *VisitPrePostIncDec(const UnaryOperator *E, bool isInc, bool isPre) {
212202379Srdivacky    LValue LV = EmitLValue(E->getSubExpr());
213202379Srdivacky    return CGF.EmitScalarPrePostIncDec(E, LV, isInc, isPre);
214202379Srdivacky  }
215193326Sed  Value *VisitUnaryPostDec(const UnaryOperator *E) {
216193326Sed    return VisitPrePostIncDec(E, false, false);
217193326Sed  }
218193326Sed  Value *VisitUnaryPostInc(const UnaryOperator *E) {
219193326Sed    return VisitPrePostIncDec(E, true, false);
220193326Sed  }
221193326Sed  Value *VisitUnaryPreDec(const UnaryOperator *E) {
222193326Sed    return VisitPrePostIncDec(E, false, true);
223193326Sed  }
224193326Sed  Value *VisitUnaryPreInc(const UnaryOperator *E) {
225193326Sed    return VisitPrePostIncDec(E, true, true);
226193326Sed  }
227193326Sed  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
228193326Sed    return EmitLValue(E->getSubExpr()).getAddress();
229193326Sed  }
230193326Sed  Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
231193326Sed  Value *VisitUnaryPlus(const UnaryOperator *E) {
232193326Sed    // This differs from gcc, though, most likely due to a bug in gcc.
233193326Sed    TestAndClearIgnoreResultAssign();
234193326Sed    return Visit(E->getSubExpr());
235193326Sed  }
236193326Sed  Value *VisitUnaryMinus    (const UnaryOperator *E);
237193326Sed  Value *VisitUnaryNot      (const UnaryOperator *E);
238193326Sed  Value *VisitUnaryLNot     (const UnaryOperator *E);
239193326Sed  Value *VisitUnaryReal     (const UnaryOperator *E);
240193326Sed  Value *VisitUnaryImag     (const UnaryOperator *E);
241193326Sed  Value *VisitUnaryExtension(const UnaryOperator *E) {
242193326Sed    return Visit(E->getSubExpr());
243193326Sed  }
244193326Sed  Value *VisitUnaryOffsetOf(const UnaryOperator *E);
245198092Srdivacky
246193326Sed  // C++
247193326Sed  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
248193326Sed    return Visit(DAE->getExpr());
249193326Sed  }
250193326Sed  Value *VisitCXXThisExpr(CXXThisExpr *TE) {
251193326Sed    return CGF.LoadCXXThis();
252198092Srdivacky  }
253198092Srdivacky
254193326Sed  Value *VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) {
255193326Sed    return CGF.EmitCXXExprWithTemporaries(E).getScalarVal();
256193326Sed  }
257193326Sed  Value *VisitCXXNewExpr(const CXXNewExpr *E) {
258193326Sed    return CGF.EmitCXXNewExpr(E);
259193326Sed  }
260198092Srdivacky  Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
261198092Srdivacky    CGF.EmitCXXDeleteExpr(E);
262198092Srdivacky    return 0;
263198092Srdivacky  }
264200583Srdivacky  Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
265200583Srdivacky    return llvm::ConstantInt::get(Builder.getInt1Ty(),
266200583Srdivacky                                  E->EvaluateTrait(CGF.getContext()));
267200583Srdivacky  }
268198092Srdivacky
269198092Srdivacky  Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
270198092Srdivacky    // C++ [expr.pseudo]p1:
271198092Srdivacky    //   The result shall only be used as the operand for the function call
272198092Srdivacky    //   operator (), and the result of such a call has type void. The only
273198092Srdivacky    //   effect is the evaluation of the postfix-expression before the dot or
274198092Srdivacky    //   arrow.
275198092Srdivacky    CGF.EmitScalarExpr(E->getBase());
276198092Srdivacky    return 0;
277198092Srdivacky  }
278198092Srdivacky
279198092Srdivacky  Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
280198092Srdivacky    return llvm::Constant::getNullValue(ConvertType(E->getType()));
281198092Srdivacky  }
282198893Srdivacky
283198893Srdivacky  Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
284198893Srdivacky    CGF.EmitCXXThrowExpr(E);
285198893Srdivacky    return 0;
286198893Srdivacky  }
287198893Srdivacky
288193326Sed  // Binary Operators.
289193326Sed  Value *EmitMul(const BinOpInfo &Ops) {
290193326Sed    if (CGF.getContext().getLangOptions().OverflowChecking
291193326Sed        && Ops.Ty->isSignedIntegerType())
292193326Sed      return EmitOverflowCheckedBinOp(Ops);
293194613Sed    if (Ops.LHS->getType()->isFPOrFPVector())
294194613Sed      return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
295193326Sed    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
296193326Sed  }
297193326Sed  /// Create a binary op that checks for overflow.
298193326Sed  /// Currently only supports +, - and *.
299193326Sed  Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
300193326Sed  Value *EmitDiv(const BinOpInfo &Ops);
301193326Sed  Value *EmitRem(const BinOpInfo &Ops);
302193326Sed  Value *EmitAdd(const BinOpInfo &Ops);
303193326Sed  Value *EmitSub(const BinOpInfo &Ops);
304193326Sed  Value *EmitShl(const BinOpInfo &Ops);
305193326Sed  Value *EmitShr(const BinOpInfo &Ops);
306193326Sed  Value *EmitAnd(const BinOpInfo &Ops) {
307193326Sed    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
308193326Sed  }
309193326Sed  Value *EmitXor(const BinOpInfo &Ops) {
310193326Sed    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
311193326Sed  }
312193326Sed  Value *EmitOr (const BinOpInfo &Ops) {
313193326Sed    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
314193326Sed  }
315193326Sed
316193326Sed  BinOpInfo EmitBinOps(const BinaryOperator *E);
317193326Sed  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
318193326Sed                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
319193326Sed
320193326Sed  // Binary operators and binary compound assignment operators.
321193326Sed#define HANDLEBINOP(OP) \
322193326Sed  Value *VisitBin ## OP(const BinaryOperator *E) {                         \
323193326Sed    return Emit ## OP(EmitBinOps(E));                                      \
324193326Sed  }                                                                        \
325193326Sed  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
326193326Sed    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
327193326Sed  }
328201361Srdivacky  HANDLEBINOP(Mul)
329201361Srdivacky  HANDLEBINOP(Div)
330201361Srdivacky  HANDLEBINOP(Rem)
331201361Srdivacky  HANDLEBINOP(Add)
332201361Srdivacky  HANDLEBINOP(Sub)
333201361Srdivacky  HANDLEBINOP(Shl)
334201361Srdivacky  HANDLEBINOP(Shr)
335201361Srdivacky  HANDLEBINOP(And)
336201361Srdivacky  HANDLEBINOP(Xor)
337201361Srdivacky  HANDLEBINOP(Or)
338193326Sed#undef HANDLEBINOP
339193326Sed
340193326Sed  // Comparisons.
341193326Sed  Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
342193326Sed                     unsigned SICmpOpc, unsigned FCmpOpc);
343193326Sed#define VISITCOMP(CODE, UI, SI, FP) \
344193326Sed    Value *VisitBin##CODE(const BinaryOperator *E) { \
345193326Sed      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
346193326Sed                         llvm::FCmpInst::FP); }
347201361Srdivacky  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
348201361Srdivacky  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
349201361Srdivacky  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
350201361Srdivacky  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
351201361Srdivacky  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
352201361Srdivacky  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
353193326Sed#undef VISITCOMP
354198092Srdivacky
355193326Sed  Value *VisitBinAssign     (const BinaryOperator *E);
356193326Sed
357193326Sed  Value *VisitBinLAnd       (const BinaryOperator *E);
358193326Sed  Value *VisitBinLOr        (const BinaryOperator *E);
359193326Sed  Value *VisitBinComma      (const BinaryOperator *E);
360193326Sed
361199482Srdivacky  Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
362199482Srdivacky  Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
363199482Srdivacky
364193326Sed  // Other Operators.
365193326Sed  Value *VisitBlockExpr(const BlockExpr *BE);
366193326Sed  Value *VisitConditionalOperator(const ConditionalOperator *CO);
367193326Sed  Value *VisitChooseExpr(ChooseExpr *CE);
368193326Sed  Value *VisitVAArgExpr(VAArgExpr *VE);
369193326Sed  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
370193326Sed    return CGF.EmitObjCStringLiteral(E);
371193326Sed  }
372193326Sed};
373193326Sed}  // end anonymous namespace.
374193326Sed
375193326Sed//===----------------------------------------------------------------------===//
376193326Sed//                                Utilities
377193326Sed//===----------------------------------------------------------------------===//
378193326Sed
379193326Sed/// EmitConversionToBool - Convert the specified expression value to a
380193326Sed/// boolean (i1) truth value.  This is equivalent to "Val != 0".
381193326SedValue *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
382198398Srdivacky  assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
383198092Srdivacky
384193326Sed  if (SrcType->isRealFloatingType()) {
385193326Sed    // Compare against 0.0 for fp scalars.
386193326Sed    llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
387193326Sed    return Builder.CreateFCmpUNE(Src, Zero, "tobool");
388193326Sed  }
389198092Srdivacky
390198092Srdivacky  if (SrcType->isMemberPointerType()) {
391198092Srdivacky    // FIXME: This is ABI specific.
392198092Srdivacky
393198092Srdivacky    // Compare against -1.
394198092Srdivacky    llvm::Value *NegativeOne = llvm::Constant::getAllOnesValue(Src->getType());
395198092Srdivacky    return Builder.CreateICmpNE(Src, NegativeOne, "tobool");
396198092Srdivacky  }
397198092Srdivacky
398193326Sed  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
399193326Sed         "Unknown scalar type to convert");
400198092Srdivacky
401193326Sed  // Because of the type rules of C, we often end up computing a logical value,
402193326Sed  // then zero extending it to int, then wanting it as a logical value again.
403193326Sed  // Optimize this common case.
404193326Sed  if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) {
405198092Srdivacky    if (ZI->getOperand(0)->getType() ==
406198092Srdivacky        llvm::Type::getInt1Ty(CGF.getLLVMContext())) {
407193326Sed      Value *Result = ZI->getOperand(0);
408193326Sed      // If there aren't any more uses, zap the instruction to save space.
409193326Sed      // Note that there can be more uses, for example if this
410193326Sed      // is the result of an assignment.
411193326Sed      if (ZI->use_empty())
412193326Sed        ZI->eraseFromParent();
413193326Sed      return Result;
414193326Sed    }
415193326Sed  }
416198092Srdivacky
417193326Sed  // Compare against an integer or pointer null.
418193326Sed  llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
419193326Sed  return Builder.CreateICmpNE(Src, Zero, "tobool");
420193326Sed}
421193326Sed
422193326Sed/// EmitScalarConversion - Emit a conversion from the specified type to the
423193326Sed/// specified destination type, both of which are LLVM scalar types.
424193326SedValue *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
425193326Sed                                               QualType DstType) {
426193326Sed  SrcType = CGF.getContext().getCanonicalType(SrcType);
427193326Sed  DstType = CGF.getContext().getCanonicalType(DstType);
428193326Sed  if (SrcType == DstType) return Src;
429198092Srdivacky
430193326Sed  if (DstType->isVoidType()) return 0;
431193326Sed
432198092Srdivacky  llvm::LLVMContext &VMContext = CGF.getLLVMContext();
433198092Srdivacky
434193326Sed  // Handle conversions to bool first, they are special: comparisons against 0.
435193326Sed  if (DstType->isBooleanType())
436193326Sed    return EmitConversionToBool(Src, SrcType);
437198092Srdivacky
438193326Sed  const llvm::Type *DstTy = ConvertType(DstType);
439193326Sed
440193326Sed  // Ignore conversions like int -> uint.
441193326Sed  if (Src->getType() == DstTy)
442193326Sed    return Src;
443193326Sed
444198092Srdivacky  // Handle pointer conversions next: pointers can only be converted to/from
445198092Srdivacky  // other pointers and integers. Check for pointer types in terms of LLVM, as
446198092Srdivacky  // some native types (like Obj-C id) may map to a pointer type.
447193326Sed  if (isa<llvm::PointerType>(DstTy)) {
448193326Sed    // The source value may be an integer, or a pointer.
449193326Sed    if (isa<llvm::PointerType>(Src->getType()))
450193326Sed      return Builder.CreateBitCast(Src, DstTy, "conv");
451198092Srdivacky
452193326Sed    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
453193326Sed    // First, convert to the correct width so that we control the kind of
454193326Sed    // extension.
455198092Srdivacky    const llvm::Type *MiddleTy =
456198092Srdivacky          llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
457193326Sed    bool InputSigned = SrcType->isSignedIntegerType();
458193326Sed    llvm::Value* IntResult =
459193326Sed        Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
460193326Sed    // Then, cast to pointer.
461193326Sed    return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
462193326Sed  }
463198092Srdivacky
464193326Sed  if (isa<llvm::PointerType>(Src->getType())) {
465193326Sed    // Must be an ptr to int cast.
466193326Sed    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
467193326Sed    return Builder.CreatePtrToInt(Src, DstTy, "conv");
468193326Sed  }
469198092Srdivacky
470193326Sed  // A scalar can be splatted to an extended vector of the same element type
471198092Srdivacky  if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
472193326Sed    // Cast the scalar to element type
473198092Srdivacky    QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
474193326Sed    llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
475193326Sed
476193326Sed    // Insert the element in element zero of an undef vector
477193326Sed    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
478198092Srdivacky    llvm::Value *Idx =
479198092Srdivacky        llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 0);
480193326Sed    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
481193326Sed
482193326Sed    // Splat the element across to all elements
483193326Sed    llvm::SmallVector<llvm::Constant*, 16> Args;
484193326Sed    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
485193326Sed    for (unsigned i = 0; i < NumElements; i++)
486198092Srdivacky      Args.push_back(llvm::ConstantInt::get(
487198092Srdivacky                                        llvm::Type::getInt32Ty(VMContext), 0));
488198092Srdivacky
489193326Sed    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
490193326Sed    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
491193326Sed    return Yay;
492193326Sed  }
493193326Sed
494193326Sed  // Allow bitcast from vector to integer/fp of the same size.
495193326Sed  if (isa<llvm::VectorType>(Src->getType()) ||
496193326Sed      isa<llvm::VectorType>(DstTy))
497193326Sed    return Builder.CreateBitCast(Src, DstTy, "conv");
498198092Srdivacky
499193326Sed  // Finally, we have the arithmetic types: real int/float.
500193326Sed  if (isa<llvm::IntegerType>(Src->getType())) {
501193326Sed    bool InputSigned = SrcType->isSignedIntegerType();
502193326Sed    if (isa<llvm::IntegerType>(DstTy))
503193326Sed      return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
504193326Sed    else if (InputSigned)
505193326Sed      return Builder.CreateSIToFP(Src, DstTy, "conv");
506193326Sed    else
507193326Sed      return Builder.CreateUIToFP(Src, DstTy, "conv");
508193326Sed  }
509198092Srdivacky
510193326Sed  assert(Src->getType()->isFloatingPoint() && "Unknown real conversion");
511193326Sed  if (isa<llvm::IntegerType>(DstTy)) {
512193326Sed    if (DstType->isSignedIntegerType())
513193326Sed      return Builder.CreateFPToSI(Src, DstTy, "conv");
514193326Sed    else
515193326Sed      return Builder.CreateFPToUI(Src, DstTy, "conv");
516193326Sed  }
517193326Sed
518193326Sed  assert(DstTy->isFloatingPoint() && "Unknown real conversion");
519193326Sed  if (DstTy->getTypeID() < Src->getType()->getTypeID())
520193326Sed    return Builder.CreateFPTrunc(Src, DstTy, "conv");
521193326Sed  else
522193326Sed    return Builder.CreateFPExt(Src, DstTy, "conv");
523193326Sed}
524193326Sed
525198092Srdivacky/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
526198092Srdivacky/// type to the specified destination type, where the destination type is an
527198092Srdivacky/// LLVM scalar type.
528193326SedValue *ScalarExprEmitter::
529193326SedEmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
530193326Sed                              QualType SrcTy, QualType DstTy) {
531193326Sed  // Get the source element type.
532198092Srdivacky  SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
533198092Srdivacky
534193326Sed  // Handle conversions to bool first, they are special: comparisons against 0.
535193326Sed  if (DstTy->isBooleanType()) {
536193326Sed    //  Complex != 0  -> (Real != 0) | (Imag != 0)
537193326Sed    Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
538193326Sed    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
539193326Sed    return Builder.CreateOr(Src.first, Src.second, "tobool");
540193326Sed  }
541198092Srdivacky
542193326Sed  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
543193326Sed  // the imaginary part of the complex value is discarded and the value of the
544193326Sed  // real part is converted according to the conversion rules for the
545198092Srdivacky  // corresponding real type.
546193326Sed  return EmitScalarConversion(Src.first, SrcTy, DstTy);
547193326Sed}
548193326Sed
549193326Sed
550193326Sed//===----------------------------------------------------------------------===//
551193326Sed//                            Visitor Methods
552193326Sed//===----------------------------------------------------------------------===//
553193326Sed
554193326SedValue *ScalarExprEmitter::VisitExpr(Expr *E) {
555193326Sed  CGF.ErrorUnsupported(E, "scalar expression");
556193326Sed  if (E->getType()->isVoidType())
557193326Sed    return 0;
558193326Sed  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
559193326Sed}
560193326Sed
561193326SedValue *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
562193326Sed  llvm::SmallVector<llvm::Constant*, 32> indices;
563193326Sed  for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
564193326Sed    indices.push_back(cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i))));
565193326Sed  }
566193326Sed  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
567193326Sed  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
568193326Sed  Value* SV = llvm::ConstantVector::get(indices.begin(), indices.size());
569193326Sed  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
570193326Sed}
571199990SrdivackyValue *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
572199990Srdivacky  Expr::EvalResult Result;
573199990Srdivacky  if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
574199990Srdivacky    if (E->isArrow())
575199990Srdivacky      CGF.EmitScalarExpr(E->getBase());
576199990Srdivacky    else
577199990Srdivacky      EmitLValue(E->getBase());
578199990Srdivacky    return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
579199990Srdivacky  }
580199990Srdivacky  return EmitLoadOfLValue(E);
581199990Srdivacky}
582193326Sed
583193326SedValue *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
584193326Sed  TestAndClearIgnoreResultAssign();
585193326Sed
586193326Sed  // Emit subscript expressions in rvalue context's.  For most cases, this just
587193326Sed  // loads the lvalue formed by the subscript expr.  However, we have to be
588193326Sed  // careful, because the base of a vector subscript is occasionally an rvalue,
589193326Sed  // so we can't get it as an lvalue.
590193326Sed  if (!E->getBase()->getType()->isVectorType())
591193326Sed    return EmitLoadOfLValue(E);
592198092Srdivacky
593193326Sed  // Handle the vector case.  The base must be a vector, the index must be an
594193326Sed  // integer value.
595193326Sed  Value *Base = Visit(E->getBase());
596193326Sed  Value *Idx  = Visit(E->getIdx());
597193326Sed  bool IdxSigned = E->getIdx()->getType()->isSignedIntegerType();
598198092Srdivacky  Idx = Builder.CreateIntCast(Idx,
599198092Srdivacky                              llvm::Type::getInt32Ty(CGF.getLLVMContext()),
600198092Srdivacky                              IdxSigned,
601193326Sed                              "vecidxcast");
602193326Sed  return Builder.CreateExtractElement(Base, Idx, "vecext");
603193326Sed}
604193326Sed
605198398Srdivackystatic llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
606198398Srdivacky                                  unsigned Off, const llvm::Type *I32Ty) {
607198398Srdivacky  int MV = SVI->getMaskValue(Idx);
608198398Srdivacky  if (MV == -1)
609198398Srdivacky    return llvm::UndefValue::get(I32Ty);
610198398Srdivacky  return llvm::ConstantInt::get(I32Ty, Off+MV);
611198398Srdivacky}
612198398Srdivacky
613198398SrdivackyValue *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
614198398Srdivacky  bool Ignore = TestAndClearIgnoreResultAssign();
615198398Srdivacky  (void)Ignore;
616198398Srdivacky  assert (Ignore == false && "init list ignored");
617198398Srdivacky  unsigned NumInitElements = E->getNumInits();
618198398Srdivacky
619198398Srdivacky  if (E->hadArrayRangeDesignator())
620198398Srdivacky    CGF.ErrorUnsupported(E, "GNU array range designator extension");
621198398Srdivacky
622198398Srdivacky  const llvm::VectorType *VType =
623198398Srdivacky    dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
624198398Srdivacky
625198398Srdivacky  // We have a scalar in braces. Just use the first element.
626198398Srdivacky  if (!VType)
627198398Srdivacky    return Visit(E->getInit(0));
628198398Srdivacky
629198398Srdivacky  unsigned ResElts = VType->getNumElements();
630198398Srdivacky  const llvm::Type *I32Ty = llvm::Type::getInt32Ty(CGF.getLLVMContext());
631198398Srdivacky
632198398Srdivacky  // Loop over initializers collecting the Value for each, and remembering
633198398Srdivacky  // whether the source was swizzle (ExtVectorElementExpr).  This will allow
634198398Srdivacky  // us to fold the shuffle for the swizzle into the shuffle for the vector
635198398Srdivacky  // initializer, since LLVM optimizers generally do not want to touch
636198398Srdivacky  // shuffles.
637198398Srdivacky  unsigned CurIdx = 0;
638198398Srdivacky  bool VIsUndefShuffle = false;
639198398Srdivacky  llvm::Value *V = llvm::UndefValue::get(VType);
640198398Srdivacky  for (unsigned i = 0; i != NumInitElements; ++i) {
641198398Srdivacky    Expr *IE = E->getInit(i);
642198398Srdivacky    Value *Init = Visit(IE);
643198398Srdivacky    llvm::SmallVector<llvm::Constant*, 16> Args;
644198398Srdivacky
645198398Srdivacky    const llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
646198398Srdivacky
647198398Srdivacky    // Handle scalar elements.  If the scalar initializer is actually one
648198398Srdivacky    // element of a different vector of the same width, use shuffle instead of
649198398Srdivacky    // extract+insert.
650198398Srdivacky    if (!VVT) {
651198398Srdivacky      if (isa<ExtVectorElementExpr>(IE)) {
652198398Srdivacky        llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
653198398Srdivacky
654198398Srdivacky        if (EI->getVectorOperandType()->getNumElements() == ResElts) {
655198398Srdivacky          llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
656198398Srdivacky          Value *LHS = 0, *RHS = 0;
657198398Srdivacky          if (CurIdx == 0) {
658198398Srdivacky            // insert into undef -> shuffle (src, undef)
659198398Srdivacky            Args.push_back(C);
660198398Srdivacky            for (unsigned j = 1; j != ResElts; ++j)
661198398Srdivacky              Args.push_back(llvm::UndefValue::get(I32Ty));
662198398Srdivacky
663198398Srdivacky            LHS = EI->getVectorOperand();
664198398Srdivacky            RHS = V;
665198398Srdivacky            VIsUndefShuffle = true;
666198398Srdivacky          } else if (VIsUndefShuffle) {
667198398Srdivacky            // insert into undefshuffle && size match -> shuffle (v, src)
668198398Srdivacky            llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
669198398Srdivacky            for (unsigned j = 0; j != CurIdx; ++j)
670198398Srdivacky              Args.push_back(getMaskElt(SVV, j, 0, I32Ty));
671198398Srdivacky            Args.push_back(llvm::ConstantInt::get(I32Ty,
672198398Srdivacky                                                  ResElts + C->getZExtValue()));
673198398Srdivacky            for (unsigned j = CurIdx + 1; j != ResElts; ++j)
674198398Srdivacky              Args.push_back(llvm::UndefValue::get(I32Ty));
675198398Srdivacky
676198398Srdivacky            LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
677198398Srdivacky            RHS = EI->getVectorOperand();
678198398Srdivacky            VIsUndefShuffle = false;
679198398Srdivacky          }
680198398Srdivacky          if (!Args.empty()) {
681198398Srdivacky            llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
682198398Srdivacky            V = Builder.CreateShuffleVector(LHS, RHS, Mask);
683198398Srdivacky            ++CurIdx;
684198398Srdivacky            continue;
685198398Srdivacky          }
686198398Srdivacky        }
687198398Srdivacky      }
688198398Srdivacky      Value *Idx = llvm::ConstantInt::get(I32Ty, CurIdx);
689198398Srdivacky      V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
690198398Srdivacky      VIsUndefShuffle = false;
691198398Srdivacky      ++CurIdx;
692198398Srdivacky      continue;
693198398Srdivacky    }
694198398Srdivacky
695198398Srdivacky    unsigned InitElts = VVT->getNumElements();
696198398Srdivacky
697198398Srdivacky    // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
698198398Srdivacky    // input is the same width as the vector being constructed, generate an
699198398Srdivacky    // optimized shuffle of the swizzle input into the result.
700198893Srdivacky    unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
701198398Srdivacky    if (isa<ExtVectorElementExpr>(IE)) {
702198398Srdivacky      llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
703198398Srdivacky      Value *SVOp = SVI->getOperand(0);
704198398Srdivacky      const llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
705198398Srdivacky
706198398Srdivacky      if (OpTy->getNumElements() == ResElts) {
707198398Srdivacky        for (unsigned j = 0; j != CurIdx; ++j) {
708198398Srdivacky          // If the current vector initializer is a shuffle with undef, merge
709198398Srdivacky          // this shuffle directly into it.
710198398Srdivacky          if (VIsUndefShuffle) {
711198398Srdivacky            Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
712198398Srdivacky                                      I32Ty));
713198398Srdivacky          } else {
714198398Srdivacky            Args.push_back(llvm::ConstantInt::get(I32Ty, j));
715198398Srdivacky          }
716198398Srdivacky        }
717198398Srdivacky        for (unsigned j = 0, je = InitElts; j != je; ++j)
718198398Srdivacky          Args.push_back(getMaskElt(SVI, j, Offset, I32Ty));
719198398Srdivacky        for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
720198398Srdivacky          Args.push_back(llvm::UndefValue::get(I32Ty));
721198398Srdivacky
722198398Srdivacky        if (VIsUndefShuffle)
723198398Srdivacky          V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
724198398Srdivacky
725198398Srdivacky        Init = SVOp;
726198398Srdivacky      }
727198398Srdivacky    }
728198398Srdivacky
729198398Srdivacky    // Extend init to result vector length, and then shuffle its contribution
730198398Srdivacky    // to the vector initializer into V.
731198398Srdivacky    if (Args.empty()) {
732198398Srdivacky      for (unsigned j = 0; j != InitElts; ++j)
733198398Srdivacky        Args.push_back(llvm::ConstantInt::get(I32Ty, j));
734198398Srdivacky      for (unsigned j = InitElts; j != ResElts; ++j)
735198398Srdivacky        Args.push_back(llvm::UndefValue::get(I32Ty));
736198398Srdivacky      llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
737198398Srdivacky      Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
738198893Srdivacky                                         Mask, "vext");
739198398Srdivacky
740198398Srdivacky      Args.clear();
741198398Srdivacky      for (unsigned j = 0; j != CurIdx; ++j)
742198398Srdivacky        Args.push_back(llvm::ConstantInt::get(I32Ty, j));
743198398Srdivacky      for (unsigned j = 0; j != InitElts; ++j)
744198893Srdivacky        Args.push_back(llvm::ConstantInt::get(I32Ty, j+Offset));
745198398Srdivacky      for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
746198398Srdivacky        Args.push_back(llvm::UndefValue::get(I32Ty));
747198398Srdivacky    }
748198398Srdivacky
749198398Srdivacky    // If V is undef, make sure it ends up on the RHS of the shuffle to aid
750198398Srdivacky    // merging subsequent shuffles into this one.
751198398Srdivacky    if (CurIdx == 0)
752198398Srdivacky      std::swap(V, Init);
753198398Srdivacky    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
754198398Srdivacky    V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
755198398Srdivacky    VIsUndefShuffle = isa<llvm::UndefValue>(Init);
756198398Srdivacky    CurIdx += InitElts;
757198398Srdivacky  }
758198398Srdivacky
759198398Srdivacky  // FIXME: evaluate codegen vs. shuffling against constant null vector.
760198398Srdivacky  // Emit remaining default initializers.
761198398Srdivacky  const llvm::Type *EltTy = VType->getElementType();
762198398Srdivacky
763198398Srdivacky  // Emit remaining default initializers
764198398Srdivacky  for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
765198398Srdivacky    Value *Idx = llvm::ConstantInt::get(I32Ty, CurIdx);
766198398Srdivacky    llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
767198398Srdivacky    V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
768198398Srdivacky  }
769198398Srdivacky  return V;
770198398Srdivacky}
771198398Srdivacky
772199990Srdivackystatic bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
773199990Srdivacky  const Expr *E = CE->getSubExpr();
774199990Srdivacky
775199990Srdivacky  if (isa<CXXThisExpr>(E)) {
776199990Srdivacky    // We always assume that 'this' is never null.
777199990Srdivacky    return false;
778199990Srdivacky  }
779199990Srdivacky
780199990Srdivacky  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
781199990Srdivacky    // And that lvalue casts are never null.
782199990Srdivacky    if (ICE->isLvalueCast())
783199990Srdivacky      return false;
784199990Srdivacky  }
785199990Srdivacky
786199990Srdivacky  return true;
787199990Srdivacky}
788199990Srdivacky
789198092Srdivacky// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
790198092Srdivacky// have to handle a more broad range of conversions than explicit casts, as they
791198092Srdivacky// handle things like function to ptr-to-function decay etc.
792199990SrdivackyValue *ScalarExprEmitter::EmitCastExpr(CastExpr *CE) {
793199990Srdivacky  Expr *E = CE->getSubExpr();
794198092Srdivacky  QualType DestTy = CE->getType();
795198092Srdivacky  CastExpr::CastKind Kind = CE->getCastKind();
796193326Sed
797198092Srdivacky  if (!DestTy->isVoidType())
798198092Srdivacky    TestAndClearIgnoreResultAssign();
799193326Sed
800199990Srdivacky  // Since almost all cast kinds apply to scalars, this switch doesn't have
801199990Srdivacky  // a default case, so the compiler will warn on a missing case.  The cases
802199990Srdivacky  // are in the same order as in the CastKind enum.
803198092Srdivacky  switch (Kind) {
804198092Srdivacky  case CastExpr::CK_Unknown:
805199990Srdivacky    // FIXME: All casts should have a known kind!
806199482Srdivacky    //assert(0 && "Unknown cast kind!");
807198092Srdivacky    break;
808199482Srdivacky
809200583Srdivacky  case CastExpr::CK_AnyPointerToObjCPointerCast:
810200583Srdivacky  case CastExpr::CK_AnyPointerToBlockPointerCast:
811198092Srdivacky  case CastExpr::CK_BitCast: {
812198092Srdivacky    Value *Src = Visit(const_cast<Expr*>(E));
813198092Srdivacky    return Builder.CreateBitCast(Src, ConvertType(DestTy));
814198092Srdivacky  }
815199482Srdivacky  case CastExpr::CK_NoOp:
816201361Srdivacky  case CastExpr::CK_UserDefinedConversion:
817199482Srdivacky    return Visit(const_cast<Expr*>(E));
818198092Srdivacky
819199990Srdivacky  case CastExpr::CK_BaseToDerived: {
820199990Srdivacky    const CXXRecordDecl *BaseClassDecl =
821199990Srdivacky      E->getType()->getCXXRecordDeclForPointerType();
822199990Srdivacky    const CXXRecordDecl *DerivedClassDecl =
823199990Srdivacky      DestTy->getCXXRecordDeclForPointerType();
824199990Srdivacky
825199990Srdivacky    Value *Src = Visit(const_cast<Expr*>(E));
826199990Srdivacky
827199990Srdivacky    bool NullCheckValue = ShouldNullCheckClassCastValue(CE);
828199990Srdivacky    return CGF.GetAddressOfDerivedClass(Src, BaseClassDecl, DerivedClassDecl,
829199990Srdivacky                                        NullCheckValue);
830199990Srdivacky  }
831198092Srdivacky  case CastExpr::CK_DerivedToBase: {
832198092Srdivacky    const RecordType *DerivedClassTy =
833198092Srdivacky      E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
834198092Srdivacky    CXXRecordDecl *DerivedClassDecl =
835198092Srdivacky      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
836193326Sed
837198092Srdivacky    const RecordType *BaseClassTy =
838198092Srdivacky      DestTy->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
839198092Srdivacky    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseClassTy->getDecl());
840198092Srdivacky
841198092Srdivacky    Value *Src = Visit(const_cast<Expr*>(E));
842193326Sed
843199990Srdivacky    bool NullCheckValue = ShouldNullCheckClassCastValue(CE);
844199990Srdivacky    return CGF.GetAddressOfBaseClass(Src, DerivedClassDecl, BaseClassDecl,
845199990Srdivacky                                     NullCheckValue);
846198092Srdivacky  }
847199990Srdivacky  case CastExpr::CK_Dynamic: {
848199990Srdivacky    Value *V = Visit(const_cast<Expr*>(E));
849199990Srdivacky    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
850199990Srdivacky    return CGF.EmitDynamicCast(V, DCE);
851199990Srdivacky  }
852199990Srdivacky  case CastExpr::CK_ToUnion:
853199482Srdivacky    assert(0 && "Should be unreachable!");
854199482Srdivacky    break;
855199990Srdivacky
856199482Srdivacky  case CastExpr::CK_ArrayToPointerDecay: {
857199482Srdivacky    assert(E->getType()->isArrayType() &&
858199482Srdivacky           "Array to pointer decay must have array source type!");
859193326Sed
860199482Srdivacky    Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
861199482Srdivacky
862199482Srdivacky    // Note that VLA pointers are always decayed, so we don't need to do
863199482Srdivacky    // anything here.
864199482Srdivacky    if (!E->getType()->isVariableArrayType()) {
865199482Srdivacky      assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
866199482Srdivacky      assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
867199482Srdivacky                                 ->getElementType()) &&
868199482Srdivacky             "Expected pointer to array");
869199482Srdivacky      V = Builder.CreateStructGEP(V, 0, "arraydecay");
870199482Srdivacky    }
871199482Srdivacky
872199482Srdivacky    return V;
873199482Srdivacky  }
874199482Srdivacky  case CastExpr::CK_FunctionToPointerDecay:
875199482Srdivacky    return EmitLValue(E).getAddress();
876199482Srdivacky
877199482Srdivacky  case CastExpr::CK_NullToMemberPointer:
878199482Srdivacky    return CGF.CGM.EmitNullConstant(DestTy);
879199482Srdivacky
880199990Srdivacky  case CastExpr::CK_BaseToDerivedMemberPointer:
881199990Srdivacky  case CastExpr::CK_DerivedToBaseMemberPointer: {
882199990Srdivacky    Value *Src = Visit(E);
883199990Srdivacky
884199990Srdivacky    // See if we need to adjust the pointer.
885199990Srdivacky    const CXXRecordDecl *BaseDecl =
886199990Srdivacky      cast<CXXRecordDecl>(E->getType()->getAs<MemberPointerType>()->
887199990Srdivacky                          getClass()->getAs<RecordType>()->getDecl());
888199990Srdivacky    const CXXRecordDecl *DerivedDecl =
889199990Srdivacky      cast<CXXRecordDecl>(CE->getType()->getAs<MemberPointerType>()->
890199990Srdivacky                          getClass()->getAs<RecordType>()->getDecl());
891199990Srdivacky    if (CE->getCastKind() == CastExpr::CK_DerivedToBaseMemberPointer)
892199990Srdivacky      std::swap(DerivedDecl, BaseDecl);
893199990Srdivacky
894199990Srdivacky    llvm::Constant *Adj = CGF.CGM.GetCXXBaseClassOffset(DerivedDecl, BaseDecl);
895199990Srdivacky    if (Adj) {
896199990Srdivacky      if (CE->getCastKind() == CastExpr::CK_DerivedToBaseMemberPointer)
897199990Srdivacky        Src = Builder.CreateSub(Src, Adj, "adj");
898199990Srdivacky      else
899199990Srdivacky        Src = Builder.CreateAdd(Src, Adj, "adj");
900199990Srdivacky    }
901199990Srdivacky    return Src;
902199990Srdivacky  }
903199990Srdivacky
904199990Srdivacky  case CastExpr::CK_ConstructorConversion:
905199990Srdivacky    assert(0 && "Should be unreachable!");
906199990Srdivacky    break;
907199990Srdivacky
908198092Srdivacky  case CastExpr::CK_IntegralToPointer: {
909198092Srdivacky    Value *Src = Visit(const_cast<Expr*>(E));
910198398Srdivacky
911198398Srdivacky    // First, convert to the correct width so that we control the kind of
912198398Srdivacky    // extension.
913198398Srdivacky    const llvm::Type *MiddleTy =
914198398Srdivacky      llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
915198398Srdivacky    bool InputSigned = E->getType()->isSignedIntegerType();
916198398Srdivacky    llvm::Value* IntResult =
917198398Srdivacky      Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
918198398Srdivacky
919198398Srdivacky    return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
920198092Srdivacky  }
921198092Srdivacky  case CastExpr::CK_PointerToIntegral: {
922198092Srdivacky    Value *Src = Visit(const_cast<Expr*>(E));
923198092Srdivacky    return Builder.CreatePtrToInt(Src, ConvertType(DestTy));
924198092Srdivacky  }
925199482Srdivacky  case CastExpr::CK_ToVoid: {
926199482Srdivacky    CGF.EmitAnyExpr(E, 0, false, true);
927199482Srdivacky    return 0;
928198092Srdivacky  }
929199482Srdivacky  case CastExpr::CK_VectorSplat: {
930199482Srdivacky    const llvm::Type *DstTy = ConvertType(DestTy);
931199482Srdivacky    Value *Elt = Visit(const_cast<Expr*>(E));
932199482Srdivacky
933199482Srdivacky    // Insert the element in element zero of an undef vector
934199482Srdivacky    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
935199482Srdivacky    llvm::Value *Idx =
936199482Srdivacky        llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 0);
937199482Srdivacky    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
938199482Srdivacky
939199482Srdivacky    // Splat the element across to all elements
940199482Srdivacky    llvm::SmallVector<llvm::Constant*, 16> Args;
941199482Srdivacky    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
942199482Srdivacky    for (unsigned i = 0; i < NumElements; i++)
943199482Srdivacky      Args.push_back(llvm::ConstantInt::get(
944199482Srdivacky                                        llvm::Type::getInt32Ty(VMContext), 0));
945199482Srdivacky
946199482Srdivacky    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
947199482Srdivacky    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
948199482Srdivacky    return Yay;
949199482Srdivacky  }
950199990Srdivacky  case CastExpr::CK_IntegralCast:
951199990Srdivacky  case CastExpr::CK_IntegralToFloating:
952199990Srdivacky  case CastExpr::CK_FloatingToIntegral:
953199990Srdivacky  case CastExpr::CK_FloatingCast:
954199990Srdivacky    return EmitScalarConversion(Visit(E), E->getType(), DestTy);
955199482Srdivacky
956200583Srdivacky  case CastExpr::CK_MemberPointerToBoolean:
957200583Srdivacky    return CGF.EvaluateExprAsBool(E);
958199482Srdivacky  }
959199482Srdivacky
960193326Sed  // Handle cases where the source is an non-complex type.
961198092Srdivacky
962193326Sed  if (!CGF.hasAggregateLLVMType(E->getType())) {
963193326Sed    Value *Src = Visit(const_cast<Expr*>(E));
964193326Sed
965193326Sed    // Use EmitScalarConversion to perform the conversion.
966193326Sed    return EmitScalarConversion(Src, E->getType(), DestTy);
967193326Sed  }
968198092Srdivacky
969193326Sed  if (E->getType()->isAnyComplexType()) {
970193326Sed    // Handle cases where the source is a complex type.
971193326Sed    bool IgnoreImag = true;
972193326Sed    bool IgnoreImagAssign = true;
973193326Sed    bool IgnoreReal = IgnoreResultAssign;
974193326Sed    bool IgnoreRealAssign = IgnoreResultAssign;
975193326Sed    if (DestTy->isBooleanType())
976193326Sed      IgnoreImagAssign = IgnoreImag = false;
977193326Sed    else if (DestTy->isVoidType()) {
978193326Sed      IgnoreReal = IgnoreImag = false;
979193326Sed      IgnoreRealAssign = IgnoreImagAssign = true;
980193326Sed    }
981193326Sed    CodeGenFunction::ComplexPairTy V
982193326Sed      = CGF.EmitComplexExpr(E, IgnoreReal, IgnoreImag, IgnoreRealAssign,
983193326Sed                            IgnoreImagAssign);
984193326Sed    return EmitComplexToScalarConversion(V, E->getType(), DestTy);
985193326Sed  }
986193326Sed
987193326Sed  // Okay, this is a cast from an aggregate.  It must be a cast to void.  Just
988193326Sed  // evaluate the result and return.
989193326Sed  CGF.EmitAggExpr(E, 0, false, true);
990193326Sed  return 0;
991193326Sed}
992193326Sed
993193326SedValue *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
994193326Sed  return CGF.EmitCompoundStmt(*E->getSubStmt(),
995193326Sed                              !E->getType()->isVoidType()).getScalarVal();
996193326Sed}
997193326Sed
998193326SedValue *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
999198092Srdivacky  llvm::Value *V = CGF.GetAddrOfBlockDecl(E);
1000198092Srdivacky  if (E->getType().isObjCGCWeak())
1001198092Srdivacky    return CGF.CGM.getObjCRuntime().EmitObjCWeakRead(CGF, V);
1002199990Srdivacky  return Builder.CreateLoad(V, "tmp");
1003193326Sed}
1004193326Sed
1005193326Sed//===----------------------------------------------------------------------===//
1006193326Sed//                             Unary Operators
1007193326Sed//===----------------------------------------------------------------------===//
1008193326Sed
1009193326SedValue *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1010193326Sed  TestAndClearIgnoreResultAssign();
1011193326Sed  Value *Op = Visit(E->getSubExpr());
1012194613Sed  if (Op->getType()->isFPOrFPVector())
1013194613Sed    return Builder.CreateFNeg(Op, "neg");
1014193326Sed  return Builder.CreateNeg(Op, "neg");
1015193326Sed}
1016193326Sed
1017193326SedValue *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1018193326Sed  TestAndClearIgnoreResultAssign();
1019193326Sed  Value *Op = Visit(E->getSubExpr());
1020193326Sed  return Builder.CreateNot(Op, "neg");
1021193326Sed}
1022193326Sed
1023193326SedValue *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1024193326Sed  // Compare operand to zero.
1025193326Sed  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1026198092Srdivacky
1027193326Sed  // Invert value.
1028193326Sed  // TODO: Could dynamically modify easy computations here.  For example, if
1029193326Sed  // the operand is an icmp ne, turn into icmp eq.
1030193326Sed  BoolVal = Builder.CreateNot(BoolVal, "lnot");
1031198092Srdivacky
1032193326Sed  // ZExt result to the expr type.
1033193326Sed  return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1034193326Sed}
1035193326Sed
1036193326Sed/// VisitSizeOfAlignOfExpr - Return the size or alignment of the type of
1037193326Sed/// argument of the sizeof expression as an integer.
1038193326SedValue *
1039193326SedScalarExprEmitter::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) {
1040193326Sed  QualType TypeToSize = E->getTypeOfArgument();
1041193326Sed  if (E->isSizeOf()) {
1042198092Srdivacky    if (const VariableArrayType *VAT =
1043193326Sed          CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1044193326Sed      if (E->isArgumentType()) {
1045193326Sed        // sizeof(type) - make sure to emit the VLA size.
1046193326Sed        CGF.EmitVLASize(TypeToSize);
1047193326Sed      } else {
1048193326Sed        // C99 6.5.3.4p2: If the argument is an expression of type
1049193326Sed        // VLA, it is evaluated.
1050193326Sed        CGF.EmitAnyExpr(E->getArgumentExpr());
1051193326Sed      }
1052198092Srdivacky
1053193326Sed      return CGF.GetVLASize(VAT);
1054193326Sed    }
1055193326Sed  }
1056193326Sed
1057198092Srdivacky  // If this isn't sizeof(vla), the result must be constant; use the constant
1058198092Srdivacky  // folding logic so we don't have to duplicate it here.
1059193326Sed  Expr::EvalResult Result;
1060193326Sed  E->Evaluate(Result, CGF.getContext());
1061198092Srdivacky  return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
1062193326Sed}
1063193326Sed
1064193326SedValue *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1065193326Sed  Expr *Op = E->getSubExpr();
1066193326Sed  if (Op->getType()->isAnyComplexType())
1067193326Sed    return CGF.EmitComplexExpr(Op, false, true, false, true).first;
1068193326Sed  return Visit(Op);
1069193326Sed}
1070193326SedValue *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1071193326Sed  Expr *Op = E->getSubExpr();
1072193326Sed  if (Op->getType()->isAnyComplexType())
1073193326Sed    return CGF.EmitComplexExpr(Op, true, false, true, false).second;
1074198092Srdivacky
1075193326Sed  // __imag on a scalar returns zero.  Emit the subexpr to ensure side
1076193326Sed  // effects are evaluated, but not the actual value.
1077193326Sed  if (E->isLvalue(CGF.getContext()) == Expr::LV_Valid)
1078193326Sed    CGF.EmitLValue(Op);
1079193326Sed  else
1080193326Sed    CGF.EmitScalarExpr(Op, true);
1081193326Sed  return llvm::Constant::getNullValue(ConvertType(E->getType()));
1082193326Sed}
1083193326Sed
1084198092SrdivackyValue *ScalarExprEmitter::VisitUnaryOffsetOf(const UnaryOperator *E) {
1085193326Sed  Value* ResultAsPtr = EmitLValue(E->getSubExpr()).getAddress();
1086193326Sed  const llvm::Type* ResultType = ConvertType(E->getType());
1087193326Sed  return Builder.CreatePtrToInt(ResultAsPtr, ResultType, "offsetof");
1088193326Sed}
1089193326Sed
1090193326Sed//===----------------------------------------------------------------------===//
1091193326Sed//                           Binary Operators
1092193326Sed//===----------------------------------------------------------------------===//
1093193326Sed
1094193326SedBinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1095193326Sed  TestAndClearIgnoreResultAssign();
1096193326Sed  BinOpInfo Result;
1097193326Sed  Result.LHS = Visit(E->getLHS());
1098193326Sed  Result.RHS = Visit(E->getRHS());
1099193326Sed  Result.Ty  = E->getType();
1100193326Sed  Result.E = E;
1101193326Sed  return Result;
1102193326Sed}
1103193326Sed
1104193326SedValue *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
1105193326Sed                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
1106193326Sed  bool Ignore = TestAndClearIgnoreResultAssign();
1107201361Srdivacky  QualType LHSTy = E->getLHS()->getType();
1108193326Sed
1109193326Sed  BinOpInfo OpInfo;
1110193326Sed
1111193326Sed  if (E->getComputationResultType()->isAnyComplexType()) {
1112198092Srdivacky    // This needs to go through the complex expression emitter, but it's a tad
1113198092Srdivacky    // complicated to do that... I'm leaving it out for now.  (Note that we do
1114198092Srdivacky    // actually need the imaginary part of the RHS for multiplication and
1115198092Srdivacky    // division.)
1116193326Sed    CGF.ErrorUnsupported(E, "complex compound assignment");
1117193326Sed    return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1118193326Sed  }
1119193326Sed
1120193326Sed  // Emit the RHS first.  __block variables need to have the rhs evaluated
1121193326Sed  // first, plus this should improve codegen a little.
1122193326Sed  OpInfo.RHS = Visit(E->getRHS());
1123193326Sed  OpInfo.Ty = E->getComputationResultType();
1124193326Sed  OpInfo.E = E;
1125193326Sed  // Load/convert the LHS.
1126201361Srdivacky  LValue LHSLV = EmitCheckedLValue(E->getLHS());
1127193326Sed  OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
1128193326Sed  OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
1129193326Sed                                    E->getComputationLHSType());
1130198092Srdivacky
1131193326Sed  // Expand the binary operator.
1132193326Sed  Value *Result = (this->*Func)(OpInfo);
1133198092Srdivacky
1134193326Sed  // Convert the result back to the LHS type.
1135193326Sed  Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
1136193326Sed
1137198092Srdivacky  // Store the result value into the LHS lvalue. Bit-fields are handled
1138198092Srdivacky  // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
1139198092Srdivacky  // 'An assignment expression has the value of the left operand after the
1140198092Srdivacky  // assignment...'.
1141193326Sed  if (LHSLV.isBitfield()) {
1142193326Sed    if (!LHSLV.isVolatileQualified()) {
1143193326Sed      CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy,
1144193326Sed                                         &Result);
1145193326Sed      return Result;
1146193326Sed    } else
1147193326Sed      CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy);
1148193326Sed  } else
1149193326Sed    CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
1150193326Sed  if (Ignore)
1151193326Sed    return 0;
1152193326Sed  return EmitLoadOfLValue(LHSLV, E->getType());
1153193326Sed}
1154193326Sed
1155193326Sed
1156193326SedValue *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
1157193326Sed  if (Ops.LHS->getType()->isFPOrFPVector())
1158193326Sed    return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
1159193326Sed  else if (Ops.Ty->isUnsignedIntegerType())
1160193326Sed    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
1161193326Sed  else
1162193326Sed    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
1163193326Sed}
1164193326Sed
1165193326SedValue *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
1166193326Sed  // Rem in C can't be a floating point type: C99 6.5.5p2.
1167193326Sed  if (Ops.Ty->isUnsignedIntegerType())
1168193326Sed    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
1169193326Sed  else
1170193326Sed    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
1171193326Sed}
1172193326Sed
1173193326SedValue *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
1174193326Sed  unsigned IID;
1175193326Sed  unsigned OpID = 0;
1176193326Sed
1177193326Sed  switch (Ops.E->getOpcode()) {
1178193326Sed  case BinaryOperator::Add:
1179193326Sed  case BinaryOperator::AddAssign:
1180193326Sed    OpID = 1;
1181193326Sed    IID = llvm::Intrinsic::sadd_with_overflow;
1182193326Sed    break;
1183193326Sed  case BinaryOperator::Sub:
1184193326Sed  case BinaryOperator::SubAssign:
1185193326Sed    OpID = 2;
1186193326Sed    IID = llvm::Intrinsic::ssub_with_overflow;
1187193326Sed    break;
1188193326Sed  case BinaryOperator::Mul:
1189193326Sed  case BinaryOperator::MulAssign:
1190193326Sed    OpID = 3;
1191193326Sed    IID = llvm::Intrinsic::smul_with_overflow;
1192193326Sed    break;
1193193326Sed  default:
1194193326Sed    assert(false && "Unsupported operation for overflow detection");
1195193326Sed    IID = 0;
1196193326Sed  }
1197193326Sed  OpID <<= 1;
1198193326Sed  OpID |= 1;
1199193326Sed
1200193326Sed  const llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
1201193326Sed
1202193326Sed  llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, &opTy, 1);
1203193326Sed
1204193326Sed  Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
1205193326Sed  Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
1206193326Sed  Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
1207193326Sed
1208193326Sed  // Branch in case of overflow.
1209193326Sed  llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
1210193326Sed  llvm::BasicBlock *overflowBB =
1211193326Sed    CGF.createBasicBlock("overflow", CGF.CurFn);
1212193326Sed  llvm::BasicBlock *continueBB =
1213193326Sed    CGF.createBasicBlock("overflow.continue", CGF.CurFn);
1214193326Sed
1215193326Sed  Builder.CreateCondBr(overflow, overflowBB, continueBB);
1216193326Sed
1217193326Sed  // Handle overflow
1218193326Sed
1219193326Sed  Builder.SetInsertPoint(overflowBB);
1220193326Sed
1221193326Sed  // Handler is:
1222198092Srdivacky  // long long *__overflow_handler)(long long a, long long b, char op,
1223193326Sed  // char width)
1224193326Sed  std::vector<const llvm::Type*> handerArgTypes;
1225198092Srdivacky  handerArgTypes.push_back(llvm::Type::getInt64Ty(VMContext));
1226198092Srdivacky  handerArgTypes.push_back(llvm::Type::getInt64Ty(VMContext));
1227198092Srdivacky  handerArgTypes.push_back(llvm::Type::getInt8Ty(VMContext));
1228198092Srdivacky  handerArgTypes.push_back(llvm::Type::getInt8Ty(VMContext));
1229198092Srdivacky  llvm::FunctionType *handlerTy = llvm::FunctionType::get(
1230198092Srdivacky      llvm::Type::getInt64Ty(VMContext), handerArgTypes, false);
1231193326Sed  llvm::Value *handlerFunction =
1232193326Sed    CGF.CGM.getModule().getOrInsertGlobal("__overflow_handler",
1233193326Sed        llvm::PointerType::getUnqual(handlerTy));
1234193326Sed  handlerFunction = Builder.CreateLoad(handlerFunction);
1235193326Sed
1236193326Sed  llvm::Value *handlerResult = Builder.CreateCall4(handlerFunction,
1237198092Srdivacky      Builder.CreateSExt(Ops.LHS, llvm::Type::getInt64Ty(VMContext)),
1238198092Srdivacky      Builder.CreateSExt(Ops.RHS, llvm::Type::getInt64Ty(VMContext)),
1239198092Srdivacky      llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext), OpID),
1240198092Srdivacky      llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext),
1241193326Sed        cast<llvm::IntegerType>(opTy)->getBitWidth()));
1242193326Sed
1243193326Sed  handlerResult = Builder.CreateTrunc(handlerResult, opTy);
1244193326Sed
1245193326Sed  Builder.CreateBr(continueBB);
1246198092Srdivacky
1247193326Sed  // Set up the continuation
1248193326Sed  Builder.SetInsertPoint(continueBB);
1249193326Sed  // Get the correct result
1250193326Sed  llvm::PHINode *phi = Builder.CreatePHI(opTy);
1251193326Sed  phi->reserveOperandSpace(2);
1252193326Sed  phi->addIncoming(result, initialBB);
1253193326Sed  phi->addIncoming(handlerResult, overflowBB);
1254193326Sed
1255193326Sed  return phi;
1256193326Sed}
1257193326Sed
1258193326SedValue *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
1259198092Srdivacky  if (!Ops.Ty->isAnyPointerType()) {
1260194613Sed    if (CGF.getContext().getLangOptions().OverflowChecking &&
1261194613Sed        Ops.Ty->isSignedIntegerType())
1262193326Sed      return EmitOverflowCheckedBinOp(Ops);
1263198092Srdivacky
1264194613Sed    if (Ops.LHS->getType()->isFPOrFPVector())
1265194613Sed      return Builder.CreateFAdd(Ops.LHS, Ops.RHS, "add");
1266198092Srdivacky
1267198092Srdivacky    // Signed integer overflow is undefined behavior.
1268198092Srdivacky    if (Ops.Ty->isSignedIntegerType())
1269198092Srdivacky      return Builder.CreateNSWAdd(Ops.LHS, Ops.RHS, "add");
1270198092Srdivacky
1271193326Sed    return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
1272193326Sed  }
1273193326Sed
1274198092Srdivacky  if (Ops.Ty->isPointerType() &&
1275198092Srdivacky      Ops.Ty->getAs<PointerType>()->isVariableArrayType()) {
1276193326Sed    // The amount of the addition needs to account for the VLA size
1277193326Sed    CGF.ErrorUnsupported(Ops.E, "VLA pointer addition");
1278193326Sed  }
1279193326Sed  Value *Ptr, *Idx;
1280193326Sed  Expr *IdxExp;
1281198092Srdivacky  const PointerType *PT = Ops.E->getLHS()->getType()->getAs<PointerType>();
1282198092Srdivacky  const ObjCObjectPointerType *OPT =
1283198092Srdivacky    Ops.E->getLHS()->getType()->getAs<ObjCObjectPointerType>();
1284198092Srdivacky  if (PT || OPT) {
1285193326Sed    Ptr = Ops.LHS;
1286193326Sed    Idx = Ops.RHS;
1287193326Sed    IdxExp = Ops.E->getRHS();
1288198092Srdivacky  } else {  // int + pointer
1289198092Srdivacky    PT = Ops.E->getRHS()->getType()->getAs<PointerType>();
1290198092Srdivacky    OPT = Ops.E->getRHS()->getType()->getAs<ObjCObjectPointerType>();
1291198092Srdivacky    assert((PT || OPT) && "Invalid add expr");
1292193326Sed    Ptr = Ops.RHS;
1293193326Sed    Idx = Ops.LHS;
1294193326Sed    IdxExp = Ops.E->getLHS();
1295193326Sed  }
1296193326Sed
1297193326Sed  unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1298193326Sed  if (Width < CGF.LLVMPointerWidth) {
1299193326Sed    // Zero or sign extend the pointer value based on whether the index is
1300193326Sed    // signed or not.
1301198092Srdivacky    const llvm::Type *IdxType =
1302198092Srdivacky        llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
1303193326Sed    if (IdxExp->getType()->isSignedIntegerType())
1304193326Sed      Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1305193326Sed    else
1306193326Sed      Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1307193326Sed  }
1308198092Srdivacky  const QualType ElementType = PT ? PT->getPointeeType() : OPT->getPointeeType();
1309198092Srdivacky  // Handle interface types, which are not represented with a concrete type.
1310193326Sed  if (const ObjCInterfaceType *OIT = dyn_cast<ObjCInterfaceType>(ElementType)) {
1311198092Srdivacky    llvm::Value *InterfaceSize =
1312193326Sed      llvm::ConstantInt::get(Idx->getType(),
1313202379Srdivacky          CGF.getContext().getTypeSizeInChars(OIT).getQuantity());
1314193326Sed    Idx = Builder.CreateMul(Idx, InterfaceSize);
1315198092Srdivacky    const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1316193326Sed    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1317193326Sed    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1318193326Sed    return Builder.CreateBitCast(Res, Ptr->getType());
1319198092Srdivacky  }
1320193326Sed
1321198092Srdivacky  // Explicitly handle GNU void* and function pointer arithmetic extensions. The
1322198092Srdivacky  // GNU void* casts amount to no-ops since our void* type is i8*, but this is
1323198092Srdivacky  // future proof.
1324193326Sed  if (ElementType->isVoidType() || ElementType->isFunctionType()) {
1325198092Srdivacky    const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1326193326Sed    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1327193326Sed    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1328193326Sed    return Builder.CreateBitCast(Res, Ptr->getType());
1329198092Srdivacky  }
1330198092Srdivacky
1331198092Srdivacky  return Builder.CreateInBoundsGEP(Ptr, Idx, "add.ptr");
1332193326Sed}
1333193326Sed
1334193326SedValue *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
1335193326Sed  if (!isa<llvm::PointerType>(Ops.LHS->getType())) {
1336193326Sed    if (CGF.getContext().getLangOptions().OverflowChecking
1337193326Sed        && Ops.Ty->isSignedIntegerType())
1338193326Sed      return EmitOverflowCheckedBinOp(Ops);
1339194613Sed
1340194613Sed    if (Ops.LHS->getType()->isFPOrFPVector())
1341194613Sed      return Builder.CreateFSub(Ops.LHS, Ops.RHS, "sub");
1342193326Sed    return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
1343193326Sed  }
1344193326Sed
1345198092Srdivacky  if (Ops.E->getLHS()->getType()->isPointerType() &&
1346198092Srdivacky      Ops.E->getLHS()->getType()->getAs<PointerType>()->isVariableArrayType()) {
1347193326Sed    // The amount of the addition needs to account for the VLA size for
1348193326Sed    // ptr-int
1349193326Sed    // The amount of the division needs to account for the VLA size for
1350193326Sed    // ptr-ptr.
1351193326Sed    CGF.ErrorUnsupported(Ops.E, "VLA pointer subtraction");
1352193326Sed  }
1353193326Sed
1354193326Sed  const QualType LHSType = Ops.E->getLHS()->getType();
1355198092Srdivacky  const QualType LHSElementType = LHSType->getPointeeType();
1356193326Sed  if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
1357193326Sed    // pointer - int
1358193326Sed    Value *Idx = Ops.RHS;
1359193326Sed    unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1360193326Sed    if (Width < CGF.LLVMPointerWidth) {
1361193326Sed      // Zero or sign extend the pointer value based on whether the index is
1362193326Sed      // signed or not.
1363198092Srdivacky      const llvm::Type *IdxType =
1364198092Srdivacky          llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
1365193326Sed      if (Ops.E->getRHS()->getType()->isSignedIntegerType())
1366193326Sed        Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1367193326Sed      else
1368193326Sed        Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1369193326Sed    }
1370193326Sed    Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
1371193326Sed
1372198092Srdivacky    // Handle interface types, which are not represented with a concrete type.
1373198092Srdivacky    if (const ObjCInterfaceType *OIT =
1374193326Sed        dyn_cast<ObjCInterfaceType>(LHSElementType)) {
1375198092Srdivacky      llvm::Value *InterfaceSize =
1376193326Sed        llvm::ConstantInt::get(Idx->getType(),
1377202379Srdivacky                               CGF.getContext().
1378202379Srdivacky                                 getTypeSizeInChars(OIT).getQuantity());
1379193326Sed      Idx = Builder.CreateMul(Idx, InterfaceSize);
1380198092Srdivacky      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1381193326Sed      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1382193326Sed      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "add.ptr");
1383193326Sed      return Builder.CreateBitCast(Res, Ops.LHS->getType());
1384198092Srdivacky    }
1385193326Sed
1386193326Sed    // Explicitly handle GNU void* and function pointer arithmetic
1387198092Srdivacky    // extensions. The GNU void* casts amount to no-ops since our void* type is
1388198092Srdivacky    // i8*, but this is future proof.
1389193326Sed    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1390198092Srdivacky      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1391193326Sed      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1392193326Sed      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "sub.ptr");
1393193326Sed      return Builder.CreateBitCast(Res, Ops.LHS->getType());
1394198092Srdivacky    }
1395198092Srdivacky
1396198092Srdivacky    return Builder.CreateInBoundsGEP(Ops.LHS, Idx, "sub.ptr");
1397193326Sed  } else {
1398193326Sed    // pointer - pointer
1399193326Sed    Value *LHS = Ops.LHS;
1400193326Sed    Value *RHS = Ops.RHS;
1401198092Srdivacky
1402202379Srdivacky    CharUnits ElementSize;
1403193326Sed
1404193326Sed    // Handle GCC extension for pointer arithmetic on void* and function pointer
1405193326Sed    // types.
1406193326Sed    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1407202379Srdivacky      ElementSize = CharUnits::One();
1408193326Sed    } else {
1409202379Srdivacky      ElementSize = CGF.getContext().getTypeSizeInChars(LHSElementType);
1410193326Sed    }
1411198092Srdivacky
1412193326Sed    const llvm::Type *ResultType = ConvertType(Ops.Ty);
1413193326Sed    LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
1414193326Sed    RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1415193326Sed    Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
1416198092Srdivacky
1417193326Sed    // Optimize out the shift for element size of 1.
1418202379Srdivacky    if (ElementSize.isOne())
1419193326Sed      return BytesBetween;
1420198092Srdivacky
1421198092Srdivacky    // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
1422198092Srdivacky    // pointer difference in C is only defined in the case where both operands
1423198092Srdivacky    // are pointing to elements of an array.
1424202379Srdivacky    Value *BytesPerElt =
1425202379Srdivacky        llvm::ConstantInt::get(ResultType, ElementSize.getQuantity());
1426198092Srdivacky    return Builder.CreateExactSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
1427193326Sed  }
1428193326Sed}
1429193326Sed
1430193326SedValue *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
1431193326Sed  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1432193326Sed  // RHS to the same size as the LHS.
1433193326Sed  Value *RHS = Ops.RHS;
1434193326Sed  if (Ops.LHS->getType() != RHS->getType())
1435193326Sed    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1436198092Srdivacky
1437200583Srdivacky  if (CGF.CatchUndefined
1438200583Srdivacky      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
1439200583Srdivacky    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
1440200583Srdivacky    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
1441200583Srdivacky    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
1442200583Srdivacky                                 llvm::ConstantInt::get(RHS->getType(), Width)),
1443200583Srdivacky                             Cont, CGF.getTrapBB());
1444200583Srdivacky    CGF.EmitBlock(Cont);
1445200583Srdivacky  }
1446200583Srdivacky
1447193326Sed  return Builder.CreateShl(Ops.LHS, RHS, "shl");
1448193326Sed}
1449193326Sed
1450193326SedValue *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
1451193326Sed  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1452193326Sed  // RHS to the same size as the LHS.
1453193326Sed  Value *RHS = Ops.RHS;
1454193326Sed  if (Ops.LHS->getType() != RHS->getType())
1455193326Sed    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1456198092Srdivacky
1457200583Srdivacky  if (CGF.CatchUndefined
1458200583Srdivacky      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
1459200583Srdivacky    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
1460200583Srdivacky    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
1461200583Srdivacky    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
1462200583Srdivacky                                 llvm::ConstantInt::get(RHS->getType(), Width)),
1463200583Srdivacky                             Cont, CGF.getTrapBB());
1464200583Srdivacky    CGF.EmitBlock(Cont);
1465200583Srdivacky  }
1466200583Srdivacky
1467193326Sed  if (Ops.Ty->isUnsignedIntegerType())
1468193326Sed    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
1469193326Sed  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
1470193326Sed}
1471193326Sed
1472193326SedValue *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
1473193326Sed                                      unsigned SICmpOpc, unsigned FCmpOpc) {
1474193326Sed  TestAndClearIgnoreResultAssign();
1475193326Sed  Value *Result;
1476193326Sed  QualType LHSTy = E->getLHS()->getType();
1477200583Srdivacky  if (LHSTy->isMemberFunctionPointerType()) {
1478200583Srdivacky    Value *LHSPtr = CGF.EmitAnyExprToTemp(E->getLHS()).getAggregateAddr();
1479200583Srdivacky    Value *RHSPtr = CGF.EmitAnyExprToTemp(E->getRHS()).getAggregateAddr();
1480200583Srdivacky    llvm::Value *LHSFunc = Builder.CreateStructGEP(LHSPtr, 0);
1481200583Srdivacky    LHSFunc = Builder.CreateLoad(LHSFunc);
1482200583Srdivacky    llvm::Value *RHSFunc = Builder.CreateStructGEP(RHSPtr, 0);
1483200583Srdivacky    RHSFunc = Builder.CreateLoad(RHSFunc);
1484200583Srdivacky    Value *ResultF = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1485200583Srdivacky                                        LHSFunc, RHSFunc, "cmp.func");
1486200583Srdivacky    Value *NullPtr = llvm::Constant::getNullValue(LHSFunc->getType());
1487200583Srdivacky    Value *ResultNull = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1488200583Srdivacky                                           LHSFunc, NullPtr, "cmp.null");
1489200583Srdivacky    llvm::Value *LHSAdj = Builder.CreateStructGEP(LHSPtr, 1);
1490200583Srdivacky    LHSAdj = Builder.CreateLoad(LHSAdj);
1491200583Srdivacky    llvm::Value *RHSAdj = Builder.CreateStructGEP(RHSPtr, 1);
1492200583Srdivacky    RHSAdj = Builder.CreateLoad(RHSAdj);
1493200583Srdivacky    Value *ResultA = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1494200583Srdivacky                                        LHSAdj, RHSAdj, "cmp.adj");
1495200583Srdivacky    if (E->getOpcode() == BinaryOperator::EQ) {
1496200583Srdivacky      Result = Builder.CreateOr(ResultNull, ResultA, "or.na");
1497200583Srdivacky      Result = Builder.CreateAnd(Result, ResultF, "and.f");
1498200583Srdivacky    } else {
1499200583Srdivacky      assert(E->getOpcode() == BinaryOperator::NE &&
1500200583Srdivacky             "Member pointer comparison other than == or != ?");
1501200583Srdivacky      Result = Builder.CreateAnd(ResultNull, ResultA, "and.na");
1502200583Srdivacky      Result = Builder.CreateOr(Result, ResultF, "or.f");
1503200583Srdivacky    }
1504200583Srdivacky  } else if (!LHSTy->isAnyComplexType()) {
1505193326Sed    Value *LHS = Visit(E->getLHS());
1506193326Sed    Value *RHS = Visit(E->getRHS());
1507198092Srdivacky
1508198092Srdivacky    if (LHS->getType()->isFPOrFPVector()) {
1509193326Sed      Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
1510193326Sed                                  LHS, RHS, "cmp");
1511193326Sed    } else if (LHSTy->isSignedIntegerType()) {
1512193326Sed      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
1513193326Sed                                  LHS, RHS, "cmp");
1514193326Sed    } else {
1515193326Sed      // Unsigned integers and pointers.
1516193326Sed      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1517193326Sed                                  LHS, RHS, "cmp");
1518193326Sed    }
1519198092Srdivacky
1520198092Srdivacky    // If this is a vector comparison, sign extend the result to the appropriate
1521198092Srdivacky    // vector integer type and return it (don't convert to bool).
1522198092Srdivacky    if (LHSTy->isVectorType())
1523198092Srdivacky      return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1524198092Srdivacky
1525193326Sed  } else {
1526193326Sed    // Complex Comparison: can only be an equality comparison.
1527193326Sed    CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
1528193326Sed    CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
1529198092Srdivacky
1530198092Srdivacky    QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
1531198092Srdivacky
1532193326Sed    Value *ResultR, *ResultI;
1533193326Sed    if (CETy->isRealFloatingType()) {
1534193326Sed      ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1535193326Sed                                   LHS.first, RHS.first, "cmp.r");
1536193326Sed      ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1537193326Sed                                   LHS.second, RHS.second, "cmp.i");
1538193326Sed    } else {
1539193326Sed      // Complex comparisons can only be equality comparisons.  As such, signed
1540193326Sed      // and unsigned opcodes are the same.
1541193326Sed      ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1542193326Sed                                   LHS.first, RHS.first, "cmp.r");
1543193326Sed      ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1544193326Sed                                   LHS.second, RHS.second, "cmp.i");
1545193326Sed    }
1546198092Srdivacky
1547193326Sed    if (E->getOpcode() == BinaryOperator::EQ) {
1548193326Sed      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
1549193326Sed    } else {
1550193326Sed      assert(E->getOpcode() == BinaryOperator::NE &&
1551193326Sed             "Complex comparison other than == or != ?");
1552193326Sed      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
1553193326Sed    }
1554193326Sed  }
1555193326Sed
1556193326Sed  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
1557193326Sed}
1558193326Sed
1559193326SedValue *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1560193326Sed  bool Ignore = TestAndClearIgnoreResultAssign();
1561193326Sed
1562193326Sed  // __block variables need to have the rhs evaluated first, plus this should
1563193326Sed  // improve codegen just a little.
1564193326Sed  Value *RHS = Visit(E->getRHS());
1565201361Srdivacky  LValue LHS = EmitCheckedLValue(E->getLHS());
1566198092Srdivacky
1567193326Sed  // Store the value into the LHS.  Bit-fields are handled specially
1568193326Sed  // because the result is altered by the store, i.e., [C99 6.5.16p1]
1569193326Sed  // 'An assignment expression has the value of the left operand after
1570193326Sed  // the assignment...'.
1571193326Sed  if (LHS.isBitfield()) {
1572193326Sed    if (!LHS.isVolatileQualified()) {
1573193326Sed      CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(),
1574193326Sed                                         &RHS);
1575193326Sed      return RHS;
1576193326Sed    } else
1577193326Sed      CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType());
1578193326Sed  } else
1579193326Sed    CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
1580193326Sed  if (Ignore)
1581193326Sed    return 0;
1582193326Sed  return EmitLoadOfLValue(LHS, E->getType());
1583193326Sed}
1584193326Sed
1585193326SedValue *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
1586198398Srdivacky  const llvm::Type *ResTy = ConvertType(E->getType());
1587198398Srdivacky
1588193326Sed  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
1589193326Sed  // If we have 1 && X, just emit X without inserting the control flow.
1590193326Sed  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1591193326Sed    if (Cond == 1) { // If we have 1 && X, just emit X.
1592193326Sed      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1593198398Srdivacky      // ZExt result to int or bool.
1594198398Srdivacky      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
1595193326Sed    }
1596198092Srdivacky
1597198398Srdivacky    // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
1598193326Sed    if (!CGF.ContainsLabel(E->getRHS()))
1599198398Srdivacky      return llvm::Constant::getNullValue(ResTy);
1600193326Sed  }
1601198092Srdivacky
1602193326Sed  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
1603193326Sed  llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
1604193326Sed
1605193326Sed  // Branch on the LHS first.  If it is false, go to the failure (cont) block.
1606193326Sed  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
1607193326Sed
1608193326Sed  // Any edges into the ContBlock are now from an (indeterminate number of)
1609193326Sed  // edges from this first condition.  All of these values will be false.  Start
1610193326Sed  // setting up the PHI node in the Cont Block for this.
1611198092Srdivacky  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
1612198092Srdivacky                                            "", ContBlock);
1613193326Sed  PN->reserveOperandSpace(2);  // Normal case, two inputs.
1614193326Sed  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1615193326Sed       PI != PE; ++PI)
1616198092Srdivacky    PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
1617198092Srdivacky
1618199990Srdivacky  CGF.StartConditionalBranch();
1619193326Sed  CGF.EmitBlock(RHSBlock);
1620193326Sed  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1621199990Srdivacky  CGF.FinishConditionalBranch();
1622198092Srdivacky
1623193326Sed  // Reaquire the RHS block, as there may be subblocks inserted.
1624193326Sed  RHSBlock = Builder.GetInsertBlock();
1625193326Sed
1626193326Sed  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
1627193326Sed  // into the phi node for the edge with the value of RHSCond.
1628193326Sed  CGF.EmitBlock(ContBlock);
1629193326Sed  PN->addIncoming(RHSCond, RHSBlock);
1630198092Srdivacky
1631193326Sed  // ZExt result to int.
1632198398Srdivacky  return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
1633193326Sed}
1634193326Sed
1635193326SedValue *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
1636198398Srdivacky  const llvm::Type *ResTy = ConvertType(E->getType());
1637198398Srdivacky
1638193326Sed  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
1639193326Sed  // If we have 0 || X, just emit X without inserting the control flow.
1640193326Sed  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1641193326Sed    if (Cond == -1) { // If we have 0 || X, just emit X.
1642193326Sed      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1643198398Srdivacky      // ZExt result to int or bool.
1644198398Srdivacky      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
1645193326Sed    }
1646198092Srdivacky
1647198398Srdivacky    // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
1648193326Sed    if (!CGF.ContainsLabel(E->getRHS()))
1649198398Srdivacky      return llvm::ConstantInt::get(ResTy, 1);
1650193326Sed  }
1651198092Srdivacky
1652193326Sed  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
1653193326Sed  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
1654198092Srdivacky
1655193326Sed  // Branch on the LHS first.  If it is true, go to the success (cont) block.
1656193326Sed  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
1657193326Sed
1658193326Sed  // Any edges into the ContBlock are now from an (indeterminate number of)
1659193326Sed  // edges from this first condition.  All of these values will be true.  Start
1660193326Sed  // setting up the PHI node in the Cont Block for this.
1661198092Srdivacky  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
1662198092Srdivacky                                            "", ContBlock);
1663193326Sed  PN->reserveOperandSpace(2);  // Normal case, two inputs.
1664193326Sed  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1665193326Sed       PI != PE; ++PI)
1666198092Srdivacky    PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
1667193326Sed
1668199990Srdivacky  CGF.StartConditionalBranch();
1669193576Sed
1670193326Sed  // Emit the RHS condition as a bool value.
1671193326Sed  CGF.EmitBlock(RHSBlock);
1672193326Sed  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1673198092Srdivacky
1674199990Srdivacky  CGF.FinishConditionalBranch();
1675198092Srdivacky
1676193326Sed  // Reaquire the RHS block, as there may be subblocks inserted.
1677193326Sed  RHSBlock = Builder.GetInsertBlock();
1678198092Srdivacky
1679193326Sed  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
1680193326Sed  // into the phi node for the edge with the value of RHSCond.
1681193326Sed  CGF.EmitBlock(ContBlock);
1682193326Sed  PN->addIncoming(RHSCond, RHSBlock);
1683198092Srdivacky
1684193326Sed  // ZExt result to int.
1685198398Srdivacky  return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
1686193326Sed}
1687193326Sed
1688193326SedValue *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
1689193326Sed  CGF.EmitStmt(E->getLHS());
1690193326Sed  CGF.EnsureInsertPoint();
1691193326Sed  return Visit(E->getRHS());
1692193326Sed}
1693193326Sed
1694193326Sed//===----------------------------------------------------------------------===//
1695193326Sed//                             Other Operators
1696193326Sed//===----------------------------------------------------------------------===//
1697193326Sed
1698193326Sed/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
1699193326Sed/// expression is cheap enough and side-effect-free enough to evaluate
1700193326Sed/// unconditionally instead of conditionally.  This is used to convert control
1701193326Sed/// flow into selects in some cases.
1702198893Srdivackystatic bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
1703198893Srdivacky                                                   CodeGenFunction &CGF) {
1704193326Sed  if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
1705198893Srdivacky    return isCheapEnoughToEvaluateUnconditionally(PE->getSubExpr(), CGF);
1706198092Srdivacky
1707193326Sed  // TODO: Allow anything we can constant fold to an integer or fp constant.
1708193326Sed  if (isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) ||
1709193326Sed      isa<FloatingLiteral>(E))
1710193326Sed    return true;
1711198092Srdivacky
1712193326Sed  // Non-volatile automatic variables too, to get "cond ? X : Y" where
1713193326Sed  // X and Y are local variables.
1714193326Sed  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
1715193326Sed    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
1716198893Srdivacky      if (VD->hasLocalStorage() && !(CGF.getContext()
1717198893Srdivacky                                     .getCanonicalType(VD->getType())
1718198893Srdivacky                                     .isVolatileQualified()))
1719193326Sed        return true;
1720198092Srdivacky
1721193326Sed  return false;
1722193326Sed}
1723193326Sed
1724193326Sed
1725193326SedValue *ScalarExprEmitter::
1726193326SedVisitConditionalOperator(const ConditionalOperator *E) {
1727193326Sed  TestAndClearIgnoreResultAssign();
1728193326Sed  // If the condition constant folds and can be elided, try to avoid emitting
1729193326Sed  // the condition and the dead arm.
1730193326Sed  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getCond())){
1731193326Sed    Expr *Live = E->getLHS(), *Dead = E->getRHS();
1732193326Sed    if (Cond == -1)
1733193326Sed      std::swap(Live, Dead);
1734198092Srdivacky
1735193326Sed    // If the dead side doesn't have labels we need, and if the Live side isn't
1736193326Sed    // the gnu missing ?: extension (which we could handle, but don't bother
1737193326Sed    // to), just emit the Live part.
1738193326Sed    if ((!Dead || !CGF.ContainsLabel(Dead)) &&  // No labels in dead part
1739193326Sed        Live)                                   // Live part isn't missing.
1740193326Sed      return Visit(Live);
1741193326Sed  }
1742198092Srdivacky
1743198092Srdivacky
1744193326Sed  // If this is a really simple expression (like x ? 4 : 5), emit this as a
1745193326Sed  // select instead of as control flow.  We can only do this if it is cheap and
1746193326Sed  // safe to evaluate the LHS and RHS unconditionally.
1747198893Srdivacky  if (E->getLHS() && isCheapEnoughToEvaluateUnconditionally(E->getLHS(),
1748198893Srdivacky                                                            CGF) &&
1749198893Srdivacky      isCheapEnoughToEvaluateUnconditionally(E->getRHS(), CGF)) {
1750193326Sed    llvm::Value *CondV = CGF.EvaluateExprAsBool(E->getCond());
1751193326Sed    llvm::Value *LHS = Visit(E->getLHS());
1752193326Sed    llvm::Value *RHS = Visit(E->getRHS());
1753193326Sed    return Builder.CreateSelect(CondV, LHS, RHS, "cond");
1754193326Sed  }
1755198092Srdivacky
1756198092Srdivacky
1757193326Sed  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1758193326Sed  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1759193326Sed  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1760193326Sed  Value *CondVal = 0;
1761193326Sed
1762198092Srdivacky  // If we don't have the GNU missing condition extension, emit a branch on bool
1763198092Srdivacky  // the normal way.
1764193326Sed  if (E->getLHS()) {
1765193326Sed    // Otherwise, just use EmitBranchOnBoolExpr to get small and simple code for
1766193326Sed    // the branch on bool.
1767193326Sed    CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
1768193326Sed  } else {
1769193326Sed    // Otherwise, for the ?: extension, evaluate the conditional and then
1770193326Sed    // convert it to bool the hard way.  We do this explicitly because we need
1771193326Sed    // the unconverted value for the missing middle value of the ?:.
1772193326Sed    CondVal = CGF.EmitScalarExpr(E->getCond());
1773198092Srdivacky
1774193326Sed    // In some cases, EmitScalarConversion will delete the "CondVal" expression
1775193326Sed    // if there are no extra uses (an optimization).  Inhibit this by making an
1776193326Sed    // extra dead use, because we're going to add a use of CondVal later.  We
1777193326Sed    // don't use the builder for this, because we don't want it to get optimized
1778193326Sed    // away.  This leaves dead code, but the ?: extension isn't common.
1779193326Sed    new llvm::BitCastInst(CondVal, CondVal->getType(), "dummy?:holder",
1780193326Sed                          Builder.GetInsertBlock());
1781198092Srdivacky
1782193326Sed    Value *CondBoolVal =
1783193326Sed      CGF.EmitScalarConversion(CondVal, E->getCond()->getType(),
1784193326Sed                               CGF.getContext().BoolTy);
1785193326Sed    Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock);
1786193326Sed  }
1787193576Sed
1788199990Srdivacky  CGF.StartConditionalBranch();
1789193326Sed  CGF.EmitBlock(LHSBlock);
1790198092Srdivacky
1791193326Sed  // Handle the GNU extension for missing LHS.
1792193326Sed  Value *LHS;
1793193326Sed  if (E->getLHS())
1794193326Sed    LHS = Visit(E->getLHS());
1795193326Sed  else    // Perform promotions, to handle cases like "short ?: int"
1796193326Sed    LHS = EmitScalarConversion(CondVal, E->getCond()->getType(), E->getType());
1797198092Srdivacky
1798199990Srdivacky  CGF.FinishConditionalBranch();
1799193326Sed  LHSBlock = Builder.GetInsertBlock();
1800193326Sed  CGF.EmitBranch(ContBlock);
1801198092Srdivacky
1802199990Srdivacky  CGF.StartConditionalBranch();
1803193326Sed  CGF.EmitBlock(RHSBlock);
1804198092Srdivacky
1805193326Sed  Value *RHS = Visit(E->getRHS());
1806199990Srdivacky  CGF.FinishConditionalBranch();
1807193326Sed  RHSBlock = Builder.GetInsertBlock();
1808193326Sed  CGF.EmitBranch(ContBlock);
1809198092Srdivacky
1810193326Sed  CGF.EmitBlock(ContBlock);
1811198092Srdivacky
1812200583Srdivacky  // If the LHS or RHS is a throw expression, it will be legitimately null.
1813200583Srdivacky  if (!LHS)
1814200583Srdivacky    return RHS;
1815200583Srdivacky  if (!RHS)
1816200583Srdivacky    return LHS;
1817198092Srdivacky
1818193326Sed  // Create a PHI node for the real part.
1819193326Sed  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
1820193326Sed  PN->reserveOperandSpace(2);
1821193326Sed  PN->addIncoming(LHS, LHSBlock);
1822193326Sed  PN->addIncoming(RHS, RHSBlock);
1823193326Sed  return PN;
1824193326Sed}
1825193326Sed
1826193326SedValue *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
1827193326Sed  return Visit(E->getChosenSubExpr(CGF.getContext()));
1828193326Sed}
1829193326Sed
1830193326SedValue *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1831193326Sed  llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
1832193326Sed  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
1833193326Sed
1834193326Sed  // If EmitVAArg fails, we fall back to the LLVM instruction.
1835198092Srdivacky  if (!ArgPtr)
1836193326Sed    return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
1837193326Sed
1838193326Sed  // FIXME Volatility.
1839193326Sed  return Builder.CreateLoad(ArgPtr);
1840193326Sed}
1841193326Sed
1842193326SedValue *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *BE) {
1843193326Sed  return CGF.BuildBlockLiteralTmp(BE);
1844193326Sed}
1845193326Sed
1846193326Sed//===----------------------------------------------------------------------===//
1847193326Sed//                         Entry Point into this File
1848193326Sed//===----------------------------------------------------------------------===//
1849193326Sed
1850198092Srdivacky/// EmitScalarExpr - Emit the computation of the specified expression of scalar
1851198092Srdivacky/// type, ignoring the result.
1852193326SedValue *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
1853193326Sed  assert(E && !hasAggregateLLVMType(E->getType()) &&
1854193326Sed         "Invalid scalar expression to emit");
1855198092Srdivacky
1856193326Sed  return ScalarExprEmitter(*this, IgnoreResultAssign)
1857193326Sed    .Visit(const_cast<Expr*>(E));
1858193326Sed}
1859193326Sed
1860193326Sed/// EmitScalarConversion - Emit a conversion from the specified type to the
1861193326Sed/// specified destination type, both of which are LLVM scalar types.
1862193326SedValue *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
1863193326Sed                                             QualType DstTy) {
1864193326Sed  assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
1865193326Sed         "Invalid scalar expression to emit");
1866193326Sed  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
1867193326Sed}
1868193326Sed
1869198092Srdivacky/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
1870198092Srdivacky/// type to the specified destination type, where the destination type is an
1871198092Srdivacky/// LLVM scalar type.
1872193326SedValue *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
1873193326Sed                                                      QualType SrcTy,
1874193326Sed                                                      QualType DstTy) {
1875193326Sed  assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
1876193326Sed         "Invalid complex -> scalar conversion");
1877193326Sed  return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
1878193326Sed                                                                DstTy);
1879193326Sed}
1880193326Sed
1881200583SrdivackyLValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
1882200583Srdivacky  llvm::Value *V;
1883200583Srdivacky  // object->isa or (*object).isa
1884200583Srdivacky  // Generate code as for: *(Class*)object
1885200583Srdivacky  Expr *BaseExpr = E->getBase();
1886200583Srdivacky  if (E->isArrow())
1887200583Srdivacky    V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
1888200583Srdivacky  else
1889200583Srdivacky    V  = EmitLValue(BaseExpr).getAddress();
1890200583Srdivacky
1891200583Srdivacky  // build Class* type
1892200583Srdivacky  const llvm::Type *ClassPtrTy = ConvertType(E->getType());
1893200583Srdivacky  ClassPtrTy = ClassPtrTy->getPointerTo();
1894200583Srdivacky  V = Builder.CreateBitCast(V, ClassPtrTy);
1895200583Srdivacky  LValue LV = LValue::MakeAddr(V, MakeQualifiers(E->getType()));
1896200583Srdivacky  return LV;
1897200583Srdivacky}
1898200583Srdivacky
1899