CGExprScalar.cpp revision 201361
1193326Sed//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2193326Sed//
3193326Sed//                     The LLVM Compiler Infrastructure
4193326Sed//
5193326Sed// This file is distributed under the University of Illinois Open Source
6193326Sed// License. See LICENSE.TXT for details.
7193326Sed//
8193326Sed//===----------------------------------------------------------------------===//
9193326Sed//
10193326Sed// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11193326Sed//
12193326Sed//===----------------------------------------------------------------------===//
13193326Sed
14193326Sed#include "CodeGenFunction.h"
15198092Srdivacky#include "CGObjCRuntime.h"
16193326Sed#include "CodeGenModule.h"
17193326Sed#include "clang/AST/ASTContext.h"
18193326Sed#include "clang/AST/DeclObjC.h"
19193326Sed#include "clang/AST/RecordLayout.h"
20193326Sed#include "clang/AST/StmtVisitor.h"
21193326Sed#include "clang/Basic/TargetInfo.h"
22193326Sed#include "llvm/Constants.h"
23193326Sed#include "llvm/Function.h"
24193326Sed#include "llvm/GlobalVariable.h"
25193326Sed#include "llvm/Intrinsics.h"
26193326Sed#include "llvm/Module.h"
27193326Sed#include "llvm/Support/CFG.h"
28193326Sed#include "llvm/Target/TargetData.h"
29193326Sed#include <cstdarg>
30193326Sed
31193326Sedusing namespace clang;
32193326Sedusing namespace CodeGen;
33193326Sedusing llvm::Value;
34193326Sed
35193326Sed//===----------------------------------------------------------------------===//
36193326Sed//                         Scalar Expression Emitter
37193326Sed//===----------------------------------------------------------------------===//
38193326Sed
39193326Sedstruct BinOpInfo {
40193326Sed  Value *LHS;
41193326Sed  Value *RHS;
42193326Sed  QualType Ty;  // Computation Type.
43193326Sed  const BinaryOperator *E;
44193326Sed};
45193326Sed
46193326Sednamespace {
47199990Srdivackyclass ScalarExprEmitter
48193326Sed  : public StmtVisitor<ScalarExprEmitter, Value*> {
49193326Sed  CodeGenFunction &CGF;
50193326Sed  CGBuilderTy &Builder;
51193326Sed  bool IgnoreResultAssign;
52198092Srdivacky  llvm::LLVMContext &VMContext;
53193326Sedpublic:
54193326Sed
55193326Sed  ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
56198092Srdivacky    : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
57198092Srdivacky      VMContext(cgf.getLLVMContext()) {
58193326Sed  }
59198092Srdivacky
60193326Sed  //===--------------------------------------------------------------------===//
61193326Sed  //                               Utilities
62193326Sed  //===--------------------------------------------------------------------===//
63193326Sed
64193326Sed  bool TestAndClearIgnoreResultAssign() {
65198092Srdivacky    bool I = IgnoreResultAssign;
66198092Srdivacky    IgnoreResultAssign = false;
67198092Srdivacky    return I;
68198092Srdivacky  }
69193326Sed
70193326Sed  const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
71193326Sed  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
72201361Srdivacky  LValue EmitCheckedLValue(const Expr *E) { return CGF.EmitCheckedLValue(E); }
73193326Sed
74193326Sed  Value *EmitLoadOfLValue(LValue LV, QualType T) {
75193326Sed    return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
76193326Sed  }
77198092Srdivacky
78193326Sed  /// EmitLoadOfLValue - Given an expression with complex type that represents a
79193326Sed  /// value l-value, this method emits the address of the l-value, then loads
80193326Sed  /// and returns the result.
81193326Sed  Value *EmitLoadOfLValue(const Expr *E) {
82201361Srdivacky    return EmitLoadOfLValue(EmitCheckedLValue(E), E->getType());
83193326Sed  }
84198092Srdivacky
85193326Sed  /// EmitConversionToBool - Convert the specified expression value to a
86193326Sed  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
87193326Sed  Value *EmitConversionToBool(Value *Src, QualType DstTy);
88198092Srdivacky
89193326Sed  /// EmitScalarConversion - Emit a conversion from the specified type to the
90193326Sed  /// specified destination type, both of which are LLVM scalar types.
91193326Sed  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
92193326Sed
93193326Sed  /// EmitComplexToScalarConversion - Emit a conversion from the specified
94198092Srdivacky  /// complex type to the specified destination type, where the destination type
95198092Srdivacky  /// is an LLVM scalar type.
96193326Sed  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
97193326Sed                                       QualType SrcTy, QualType DstTy);
98193326Sed
99193326Sed  //===--------------------------------------------------------------------===//
100193326Sed  //                            Visitor Methods
101193326Sed  //===--------------------------------------------------------------------===//
102193326Sed
103193326Sed  Value *VisitStmt(Stmt *S) {
104193326Sed    S->dump(CGF.getContext().getSourceManager());
105193326Sed    assert(0 && "Stmt can't have complex result type!");
106193326Sed    return 0;
107193326Sed  }
108193326Sed  Value *VisitExpr(Expr *S);
109198398Srdivacky
110193326Sed  Value *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); }
111193326Sed
112193326Sed  // Leaves.
113193326Sed  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
114198092Srdivacky    return llvm::ConstantInt::get(VMContext, E->getValue());
115193326Sed  }
116193326Sed  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
117198092Srdivacky    return llvm::ConstantFP::get(VMContext, E->getValue());
118193326Sed  }
119193326Sed  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
120193326Sed    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
121193326Sed  }
122193326Sed  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
123193326Sed    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
124193326Sed  }
125193326Sed  Value *VisitCXXZeroInitValueExpr(const CXXZeroInitValueExpr *E) {
126193326Sed    return llvm::Constant::getNullValue(ConvertType(E->getType()));
127193326Sed  }
128193326Sed  Value *VisitGNUNullExpr(const GNUNullExpr *E) {
129193326Sed    return llvm::Constant::getNullValue(ConvertType(E->getType()));
130193326Sed  }
131193326Sed  Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
132193326Sed    return llvm::ConstantInt::get(ConvertType(E->getType()),
133193326Sed                                  CGF.getContext().typesAreCompatible(
134193326Sed                                    E->getArgType1(), E->getArgType2()));
135193326Sed  }
136193326Sed  Value *VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E);
137193326Sed  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
138198893Srdivacky    llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
139198893Srdivacky    return Builder.CreateBitCast(V, ConvertType(E->getType()));
140193326Sed  }
141198092Srdivacky
142193326Sed  // l-values.
143193326Sed  Value *VisitDeclRefExpr(DeclRefExpr *E) {
144199990Srdivacky    Expr::EvalResult Result;
145199990Srdivacky    if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
146199990Srdivacky      assert(!Result.HasSideEffects && "Constant declref with side-effect?!");
147199990Srdivacky      return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
148199990Srdivacky    }
149193326Sed    return EmitLoadOfLValue(E);
150193326Sed  }
151198092Srdivacky  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
152198092Srdivacky    return CGF.EmitObjCSelectorExpr(E);
153193326Sed  }
154198092Srdivacky  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
155198092Srdivacky    return CGF.EmitObjCProtocolExpr(E);
156193326Sed  }
157198092Srdivacky  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
158193326Sed    return EmitLoadOfLValue(E);
159193326Sed  }
160193326Sed  Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
161193326Sed    return EmitLoadOfLValue(E);
162193326Sed  }
163198092Srdivacky  Value *VisitObjCImplicitSetterGetterRefExpr(
164198092Srdivacky                        ObjCImplicitSetterGetterRefExpr *E) {
165193326Sed    return EmitLoadOfLValue(E);
166193326Sed  }
167193326Sed  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
168193326Sed    return CGF.EmitObjCMessageExpr(E).getScalarVal();
169193326Sed  }
170193326Sed
171200583Srdivacky  Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
172200583Srdivacky    LValue LV = CGF.EmitObjCIsaExpr(E);
173200583Srdivacky    Value *V = CGF.EmitLoadOfLValue(LV, E->getType()).getScalarVal();
174200583Srdivacky    return V;
175200583Srdivacky  }
176200583Srdivacky
177193326Sed  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
178193326Sed  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
179199990Srdivacky  Value *VisitMemberExpr(MemberExpr *E);
180193326Sed  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
181193326Sed  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
182193326Sed    return EmitLoadOfLValue(E);
183193326Sed  }
184193326Sed  Value *VisitStringLiteral(Expr *E)  { return EmitLValue(E).getAddress(); }
185193326Sed  Value *VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
186193326Sed     return EmitLValue(E).getAddress();
187193326Sed  }
188198092Srdivacky
189193326Sed  Value *VisitPredefinedExpr(Expr *E) { return EmitLValue(E).getAddress(); }
190193326Sed
191198398Srdivacky  Value *VisitInitListExpr(InitListExpr *E);
192198092Srdivacky
193193326Sed  Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
194193326Sed    return llvm::Constant::getNullValue(ConvertType(E->getType()));
195193326Sed  }
196199990Srdivacky  Value *VisitCastExpr(CastExpr *E) {
197193326Sed    // Make sure to evaluate VLA bounds now so that we have them for later.
198193326Sed    if (E->getType()->isVariablyModifiedType())
199193326Sed      CGF.EmitVLASize(E->getType());
200193326Sed
201198092Srdivacky    return EmitCastExpr(E);
202193326Sed  }
203199990Srdivacky  Value *EmitCastExpr(CastExpr *E);
204193326Sed
205193326Sed  Value *VisitCallExpr(const CallExpr *E) {
206193326Sed    if (E->getCallReturnType()->isReferenceType())
207193326Sed      return EmitLoadOfLValue(E);
208198092Srdivacky
209193326Sed    return CGF.EmitCallExpr(E).getScalarVal();
210193326Sed  }
211193326Sed
212193326Sed  Value *VisitStmtExpr(const StmtExpr *E);
213193326Sed
214193326Sed  Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
215198092Srdivacky
216193326Sed  // Unary Operators.
217193326Sed  Value *VisitPrePostIncDec(const UnaryOperator *E, bool isInc, bool isPre);
218193326Sed  Value *VisitUnaryPostDec(const UnaryOperator *E) {
219193326Sed    return VisitPrePostIncDec(E, false, false);
220193326Sed  }
221193326Sed  Value *VisitUnaryPostInc(const UnaryOperator *E) {
222193326Sed    return VisitPrePostIncDec(E, true, false);
223193326Sed  }
224193326Sed  Value *VisitUnaryPreDec(const UnaryOperator *E) {
225193326Sed    return VisitPrePostIncDec(E, false, true);
226193326Sed  }
227193326Sed  Value *VisitUnaryPreInc(const UnaryOperator *E) {
228193326Sed    return VisitPrePostIncDec(E, true, true);
229193326Sed  }
230193326Sed  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
231193326Sed    return EmitLValue(E->getSubExpr()).getAddress();
232193326Sed  }
233193326Sed  Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
234193326Sed  Value *VisitUnaryPlus(const UnaryOperator *E) {
235193326Sed    // This differs from gcc, though, most likely due to a bug in gcc.
236193326Sed    TestAndClearIgnoreResultAssign();
237193326Sed    return Visit(E->getSubExpr());
238193326Sed  }
239193326Sed  Value *VisitUnaryMinus    (const UnaryOperator *E);
240193326Sed  Value *VisitUnaryNot      (const UnaryOperator *E);
241193326Sed  Value *VisitUnaryLNot     (const UnaryOperator *E);
242193326Sed  Value *VisitUnaryReal     (const UnaryOperator *E);
243193326Sed  Value *VisitUnaryImag     (const UnaryOperator *E);
244193326Sed  Value *VisitUnaryExtension(const UnaryOperator *E) {
245193326Sed    return Visit(E->getSubExpr());
246193326Sed  }
247193326Sed  Value *VisitUnaryOffsetOf(const UnaryOperator *E);
248198092Srdivacky
249193326Sed  // C++
250193326Sed  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
251193326Sed    return Visit(DAE->getExpr());
252193326Sed  }
253193326Sed  Value *VisitCXXThisExpr(CXXThisExpr *TE) {
254193326Sed    return CGF.LoadCXXThis();
255198092Srdivacky  }
256198092Srdivacky
257193326Sed  Value *VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) {
258193326Sed    return CGF.EmitCXXExprWithTemporaries(E).getScalarVal();
259193326Sed  }
260193326Sed  Value *VisitCXXNewExpr(const CXXNewExpr *E) {
261193326Sed    return CGF.EmitCXXNewExpr(E);
262193326Sed  }
263198092Srdivacky  Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
264198092Srdivacky    CGF.EmitCXXDeleteExpr(E);
265198092Srdivacky    return 0;
266198092Srdivacky  }
267200583Srdivacky  Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
268200583Srdivacky    return llvm::ConstantInt::get(Builder.getInt1Ty(),
269200583Srdivacky                                  E->EvaluateTrait(CGF.getContext()));
270200583Srdivacky  }
271198092Srdivacky
272198092Srdivacky  Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
273198092Srdivacky    // C++ [expr.pseudo]p1:
274198092Srdivacky    //   The result shall only be used as the operand for the function call
275198092Srdivacky    //   operator (), and the result of such a call has type void. The only
276198092Srdivacky    //   effect is the evaluation of the postfix-expression before the dot or
277198092Srdivacky    //   arrow.
278198092Srdivacky    CGF.EmitScalarExpr(E->getBase());
279198092Srdivacky    return 0;
280198092Srdivacky  }
281198092Srdivacky
282198092Srdivacky  Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
283198092Srdivacky    return llvm::Constant::getNullValue(ConvertType(E->getType()));
284198092Srdivacky  }
285198893Srdivacky
286198893Srdivacky  Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
287198893Srdivacky    CGF.EmitCXXThrowExpr(E);
288198893Srdivacky    return 0;
289198893Srdivacky  }
290198893Srdivacky
291193326Sed  // Binary Operators.
292193326Sed  Value *EmitMul(const BinOpInfo &Ops) {
293193326Sed    if (CGF.getContext().getLangOptions().OverflowChecking
294193326Sed        && Ops.Ty->isSignedIntegerType())
295193326Sed      return EmitOverflowCheckedBinOp(Ops);
296194613Sed    if (Ops.LHS->getType()->isFPOrFPVector())
297194613Sed      return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
298193326Sed    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
299193326Sed  }
300193326Sed  /// Create a binary op that checks for overflow.
301193326Sed  /// Currently only supports +, - and *.
302193326Sed  Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
303193326Sed  Value *EmitDiv(const BinOpInfo &Ops);
304193326Sed  Value *EmitRem(const BinOpInfo &Ops);
305193326Sed  Value *EmitAdd(const BinOpInfo &Ops);
306193326Sed  Value *EmitSub(const BinOpInfo &Ops);
307193326Sed  Value *EmitShl(const BinOpInfo &Ops);
308193326Sed  Value *EmitShr(const BinOpInfo &Ops);
309193326Sed  Value *EmitAnd(const BinOpInfo &Ops) {
310193326Sed    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
311193326Sed  }
312193326Sed  Value *EmitXor(const BinOpInfo &Ops) {
313193326Sed    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
314193326Sed  }
315193326Sed  Value *EmitOr (const BinOpInfo &Ops) {
316193326Sed    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
317193326Sed  }
318193326Sed
319193326Sed  BinOpInfo EmitBinOps(const BinaryOperator *E);
320193326Sed  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
321193326Sed                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
322193326Sed
323193326Sed  // Binary operators and binary compound assignment operators.
324193326Sed#define HANDLEBINOP(OP) \
325193326Sed  Value *VisitBin ## OP(const BinaryOperator *E) {                         \
326193326Sed    return Emit ## OP(EmitBinOps(E));                                      \
327193326Sed  }                                                                        \
328193326Sed  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
329193326Sed    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
330193326Sed  }
331201361Srdivacky  HANDLEBINOP(Mul)
332201361Srdivacky  HANDLEBINOP(Div)
333201361Srdivacky  HANDLEBINOP(Rem)
334201361Srdivacky  HANDLEBINOP(Add)
335201361Srdivacky  HANDLEBINOP(Sub)
336201361Srdivacky  HANDLEBINOP(Shl)
337201361Srdivacky  HANDLEBINOP(Shr)
338201361Srdivacky  HANDLEBINOP(And)
339201361Srdivacky  HANDLEBINOP(Xor)
340201361Srdivacky  HANDLEBINOP(Or)
341193326Sed#undef HANDLEBINOP
342193326Sed
343193326Sed  // Comparisons.
344193326Sed  Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
345193326Sed                     unsigned SICmpOpc, unsigned FCmpOpc);
346193326Sed#define VISITCOMP(CODE, UI, SI, FP) \
347193326Sed    Value *VisitBin##CODE(const BinaryOperator *E) { \
348193326Sed      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
349193326Sed                         llvm::FCmpInst::FP); }
350201361Srdivacky  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
351201361Srdivacky  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
352201361Srdivacky  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
353201361Srdivacky  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
354201361Srdivacky  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
355201361Srdivacky  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
356193326Sed#undef VISITCOMP
357198092Srdivacky
358193326Sed  Value *VisitBinAssign     (const BinaryOperator *E);
359193326Sed
360193326Sed  Value *VisitBinLAnd       (const BinaryOperator *E);
361193326Sed  Value *VisitBinLOr        (const BinaryOperator *E);
362193326Sed  Value *VisitBinComma      (const BinaryOperator *E);
363193326Sed
364199482Srdivacky  Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
365199482Srdivacky  Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
366199482Srdivacky
367193326Sed  // Other Operators.
368193326Sed  Value *VisitBlockExpr(const BlockExpr *BE);
369193326Sed  Value *VisitConditionalOperator(const ConditionalOperator *CO);
370193326Sed  Value *VisitChooseExpr(ChooseExpr *CE);
371193326Sed  Value *VisitVAArgExpr(VAArgExpr *VE);
372193326Sed  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
373193326Sed    return CGF.EmitObjCStringLiteral(E);
374193326Sed  }
375193326Sed};
376193326Sed}  // end anonymous namespace.
377193326Sed
378193326Sed//===----------------------------------------------------------------------===//
379193326Sed//                                Utilities
380193326Sed//===----------------------------------------------------------------------===//
381193326Sed
382193326Sed/// EmitConversionToBool - Convert the specified expression value to a
383193326Sed/// boolean (i1) truth value.  This is equivalent to "Val != 0".
384193326SedValue *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
385198398Srdivacky  assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
386198092Srdivacky
387193326Sed  if (SrcType->isRealFloatingType()) {
388193326Sed    // Compare against 0.0 for fp scalars.
389193326Sed    llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
390193326Sed    return Builder.CreateFCmpUNE(Src, Zero, "tobool");
391193326Sed  }
392198092Srdivacky
393198092Srdivacky  if (SrcType->isMemberPointerType()) {
394198092Srdivacky    // FIXME: This is ABI specific.
395198092Srdivacky
396198092Srdivacky    // Compare against -1.
397198092Srdivacky    llvm::Value *NegativeOne = llvm::Constant::getAllOnesValue(Src->getType());
398198092Srdivacky    return Builder.CreateICmpNE(Src, NegativeOne, "tobool");
399198092Srdivacky  }
400198092Srdivacky
401193326Sed  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
402193326Sed         "Unknown scalar type to convert");
403198092Srdivacky
404193326Sed  // Because of the type rules of C, we often end up computing a logical value,
405193326Sed  // then zero extending it to int, then wanting it as a logical value again.
406193326Sed  // Optimize this common case.
407193326Sed  if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) {
408198092Srdivacky    if (ZI->getOperand(0)->getType() ==
409198092Srdivacky        llvm::Type::getInt1Ty(CGF.getLLVMContext())) {
410193326Sed      Value *Result = ZI->getOperand(0);
411193326Sed      // If there aren't any more uses, zap the instruction to save space.
412193326Sed      // Note that there can be more uses, for example if this
413193326Sed      // is the result of an assignment.
414193326Sed      if (ZI->use_empty())
415193326Sed        ZI->eraseFromParent();
416193326Sed      return Result;
417193326Sed    }
418193326Sed  }
419198092Srdivacky
420193326Sed  // Compare against an integer or pointer null.
421193326Sed  llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
422193326Sed  return Builder.CreateICmpNE(Src, Zero, "tobool");
423193326Sed}
424193326Sed
425193326Sed/// EmitScalarConversion - Emit a conversion from the specified type to the
426193326Sed/// specified destination type, both of which are LLVM scalar types.
427193326SedValue *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
428193326Sed                                               QualType DstType) {
429193326Sed  SrcType = CGF.getContext().getCanonicalType(SrcType);
430193326Sed  DstType = CGF.getContext().getCanonicalType(DstType);
431193326Sed  if (SrcType == DstType) return Src;
432198092Srdivacky
433193326Sed  if (DstType->isVoidType()) return 0;
434193326Sed
435198092Srdivacky  llvm::LLVMContext &VMContext = CGF.getLLVMContext();
436198092Srdivacky
437193326Sed  // Handle conversions to bool first, they are special: comparisons against 0.
438193326Sed  if (DstType->isBooleanType())
439193326Sed    return EmitConversionToBool(Src, SrcType);
440198092Srdivacky
441193326Sed  const llvm::Type *DstTy = ConvertType(DstType);
442193326Sed
443193326Sed  // Ignore conversions like int -> uint.
444193326Sed  if (Src->getType() == DstTy)
445193326Sed    return Src;
446193326Sed
447198092Srdivacky  // Handle pointer conversions next: pointers can only be converted to/from
448198092Srdivacky  // other pointers and integers. Check for pointer types in terms of LLVM, as
449198092Srdivacky  // some native types (like Obj-C id) may map to a pointer type.
450193326Sed  if (isa<llvm::PointerType>(DstTy)) {
451193326Sed    // The source value may be an integer, or a pointer.
452193326Sed    if (isa<llvm::PointerType>(Src->getType()))
453193326Sed      return Builder.CreateBitCast(Src, DstTy, "conv");
454198092Srdivacky
455193326Sed    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
456193326Sed    // First, convert to the correct width so that we control the kind of
457193326Sed    // extension.
458198092Srdivacky    const llvm::Type *MiddleTy =
459198092Srdivacky          llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
460193326Sed    bool InputSigned = SrcType->isSignedIntegerType();
461193326Sed    llvm::Value* IntResult =
462193326Sed        Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
463193326Sed    // Then, cast to pointer.
464193326Sed    return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
465193326Sed  }
466198092Srdivacky
467193326Sed  if (isa<llvm::PointerType>(Src->getType())) {
468193326Sed    // Must be an ptr to int cast.
469193326Sed    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
470193326Sed    return Builder.CreatePtrToInt(Src, DstTy, "conv");
471193326Sed  }
472198092Srdivacky
473193326Sed  // A scalar can be splatted to an extended vector of the same element type
474198092Srdivacky  if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
475193326Sed    // Cast the scalar to element type
476198092Srdivacky    QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
477193326Sed    llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
478193326Sed
479193326Sed    // Insert the element in element zero of an undef vector
480193326Sed    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
481198092Srdivacky    llvm::Value *Idx =
482198092Srdivacky        llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 0);
483193326Sed    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
484193326Sed
485193326Sed    // Splat the element across to all elements
486193326Sed    llvm::SmallVector<llvm::Constant*, 16> Args;
487193326Sed    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
488193326Sed    for (unsigned i = 0; i < NumElements; i++)
489198092Srdivacky      Args.push_back(llvm::ConstantInt::get(
490198092Srdivacky                                        llvm::Type::getInt32Ty(VMContext), 0));
491198092Srdivacky
492193326Sed    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
493193326Sed    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
494193326Sed    return Yay;
495193326Sed  }
496193326Sed
497193326Sed  // Allow bitcast from vector to integer/fp of the same size.
498193326Sed  if (isa<llvm::VectorType>(Src->getType()) ||
499193326Sed      isa<llvm::VectorType>(DstTy))
500193326Sed    return Builder.CreateBitCast(Src, DstTy, "conv");
501198092Srdivacky
502193326Sed  // Finally, we have the arithmetic types: real int/float.
503193326Sed  if (isa<llvm::IntegerType>(Src->getType())) {
504193326Sed    bool InputSigned = SrcType->isSignedIntegerType();
505193326Sed    if (isa<llvm::IntegerType>(DstTy))
506193326Sed      return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
507193326Sed    else if (InputSigned)
508193326Sed      return Builder.CreateSIToFP(Src, DstTy, "conv");
509193326Sed    else
510193326Sed      return Builder.CreateUIToFP(Src, DstTy, "conv");
511193326Sed  }
512198092Srdivacky
513193326Sed  assert(Src->getType()->isFloatingPoint() && "Unknown real conversion");
514193326Sed  if (isa<llvm::IntegerType>(DstTy)) {
515193326Sed    if (DstType->isSignedIntegerType())
516193326Sed      return Builder.CreateFPToSI(Src, DstTy, "conv");
517193326Sed    else
518193326Sed      return Builder.CreateFPToUI(Src, DstTy, "conv");
519193326Sed  }
520193326Sed
521193326Sed  assert(DstTy->isFloatingPoint() && "Unknown real conversion");
522193326Sed  if (DstTy->getTypeID() < Src->getType()->getTypeID())
523193326Sed    return Builder.CreateFPTrunc(Src, DstTy, "conv");
524193326Sed  else
525193326Sed    return Builder.CreateFPExt(Src, DstTy, "conv");
526193326Sed}
527193326Sed
528198092Srdivacky/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
529198092Srdivacky/// type to the specified destination type, where the destination type is an
530198092Srdivacky/// LLVM scalar type.
531193326SedValue *ScalarExprEmitter::
532193326SedEmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
533193326Sed                              QualType SrcTy, QualType DstTy) {
534193326Sed  // Get the source element type.
535198092Srdivacky  SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
536198092Srdivacky
537193326Sed  // Handle conversions to bool first, they are special: comparisons against 0.
538193326Sed  if (DstTy->isBooleanType()) {
539193326Sed    //  Complex != 0  -> (Real != 0) | (Imag != 0)
540193326Sed    Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
541193326Sed    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
542193326Sed    return Builder.CreateOr(Src.first, Src.second, "tobool");
543193326Sed  }
544198092Srdivacky
545193326Sed  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
546193326Sed  // the imaginary part of the complex value is discarded and the value of the
547193326Sed  // real part is converted according to the conversion rules for the
548198092Srdivacky  // corresponding real type.
549193326Sed  return EmitScalarConversion(Src.first, SrcTy, DstTy);
550193326Sed}
551193326Sed
552193326Sed
553193326Sed//===----------------------------------------------------------------------===//
554193326Sed//                            Visitor Methods
555193326Sed//===----------------------------------------------------------------------===//
556193326Sed
557193326SedValue *ScalarExprEmitter::VisitExpr(Expr *E) {
558193326Sed  CGF.ErrorUnsupported(E, "scalar expression");
559193326Sed  if (E->getType()->isVoidType())
560193326Sed    return 0;
561193326Sed  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
562193326Sed}
563193326Sed
564193326SedValue *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
565193326Sed  llvm::SmallVector<llvm::Constant*, 32> indices;
566193326Sed  for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
567193326Sed    indices.push_back(cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i))));
568193326Sed  }
569193326Sed  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
570193326Sed  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
571193326Sed  Value* SV = llvm::ConstantVector::get(indices.begin(), indices.size());
572193326Sed  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
573193326Sed}
574199990SrdivackyValue *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
575199990Srdivacky  Expr::EvalResult Result;
576199990Srdivacky  if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
577199990Srdivacky    if (E->isArrow())
578199990Srdivacky      CGF.EmitScalarExpr(E->getBase());
579199990Srdivacky    else
580199990Srdivacky      EmitLValue(E->getBase());
581199990Srdivacky    return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
582199990Srdivacky  }
583199990Srdivacky  return EmitLoadOfLValue(E);
584199990Srdivacky}
585193326Sed
586193326SedValue *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
587193326Sed  TestAndClearIgnoreResultAssign();
588193326Sed
589193326Sed  // Emit subscript expressions in rvalue context's.  For most cases, this just
590193326Sed  // loads the lvalue formed by the subscript expr.  However, we have to be
591193326Sed  // careful, because the base of a vector subscript is occasionally an rvalue,
592193326Sed  // so we can't get it as an lvalue.
593193326Sed  if (!E->getBase()->getType()->isVectorType())
594193326Sed    return EmitLoadOfLValue(E);
595198092Srdivacky
596193326Sed  // Handle the vector case.  The base must be a vector, the index must be an
597193326Sed  // integer value.
598193326Sed  Value *Base = Visit(E->getBase());
599193326Sed  Value *Idx  = Visit(E->getIdx());
600193326Sed  bool IdxSigned = E->getIdx()->getType()->isSignedIntegerType();
601198092Srdivacky  Idx = Builder.CreateIntCast(Idx,
602198092Srdivacky                              llvm::Type::getInt32Ty(CGF.getLLVMContext()),
603198092Srdivacky                              IdxSigned,
604193326Sed                              "vecidxcast");
605193326Sed  return Builder.CreateExtractElement(Base, Idx, "vecext");
606193326Sed}
607193326Sed
608198398Srdivackystatic llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
609198398Srdivacky                                  unsigned Off, const llvm::Type *I32Ty) {
610198398Srdivacky  int MV = SVI->getMaskValue(Idx);
611198398Srdivacky  if (MV == -1)
612198398Srdivacky    return llvm::UndefValue::get(I32Ty);
613198398Srdivacky  return llvm::ConstantInt::get(I32Ty, Off+MV);
614198398Srdivacky}
615198398Srdivacky
616198398SrdivackyValue *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
617198398Srdivacky  bool Ignore = TestAndClearIgnoreResultAssign();
618198398Srdivacky  (void)Ignore;
619198398Srdivacky  assert (Ignore == false && "init list ignored");
620198398Srdivacky  unsigned NumInitElements = E->getNumInits();
621198398Srdivacky
622198398Srdivacky  if (E->hadArrayRangeDesignator())
623198398Srdivacky    CGF.ErrorUnsupported(E, "GNU array range designator extension");
624198398Srdivacky
625198398Srdivacky  const llvm::VectorType *VType =
626198398Srdivacky    dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
627198398Srdivacky
628198398Srdivacky  // We have a scalar in braces. Just use the first element.
629198398Srdivacky  if (!VType)
630198398Srdivacky    return Visit(E->getInit(0));
631198398Srdivacky
632198398Srdivacky  unsigned ResElts = VType->getNumElements();
633198398Srdivacky  const llvm::Type *I32Ty = llvm::Type::getInt32Ty(CGF.getLLVMContext());
634198398Srdivacky
635198398Srdivacky  // Loop over initializers collecting the Value for each, and remembering
636198398Srdivacky  // whether the source was swizzle (ExtVectorElementExpr).  This will allow
637198398Srdivacky  // us to fold the shuffle for the swizzle into the shuffle for the vector
638198398Srdivacky  // initializer, since LLVM optimizers generally do not want to touch
639198398Srdivacky  // shuffles.
640198398Srdivacky  unsigned CurIdx = 0;
641198398Srdivacky  bool VIsUndefShuffle = false;
642198398Srdivacky  llvm::Value *V = llvm::UndefValue::get(VType);
643198398Srdivacky  for (unsigned i = 0; i != NumInitElements; ++i) {
644198398Srdivacky    Expr *IE = E->getInit(i);
645198398Srdivacky    Value *Init = Visit(IE);
646198398Srdivacky    llvm::SmallVector<llvm::Constant*, 16> Args;
647198398Srdivacky
648198398Srdivacky    const llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
649198398Srdivacky
650198398Srdivacky    // Handle scalar elements.  If the scalar initializer is actually one
651198398Srdivacky    // element of a different vector of the same width, use shuffle instead of
652198398Srdivacky    // extract+insert.
653198398Srdivacky    if (!VVT) {
654198398Srdivacky      if (isa<ExtVectorElementExpr>(IE)) {
655198398Srdivacky        llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
656198398Srdivacky
657198398Srdivacky        if (EI->getVectorOperandType()->getNumElements() == ResElts) {
658198398Srdivacky          llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
659198398Srdivacky          Value *LHS = 0, *RHS = 0;
660198398Srdivacky          if (CurIdx == 0) {
661198398Srdivacky            // insert into undef -> shuffle (src, undef)
662198398Srdivacky            Args.push_back(C);
663198398Srdivacky            for (unsigned j = 1; j != ResElts; ++j)
664198398Srdivacky              Args.push_back(llvm::UndefValue::get(I32Ty));
665198398Srdivacky
666198398Srdivacky            LHS = EI->getVectorOperand();
667198398Srdivacky            RHS = V;
668198398Srdivacky            VIsUndefShuffle = true;
669198398Srdivacky          } else if (VIsUndefShuffle) {
670198398Srdivacky            // insert into undefshuffle && size match -> shuffle (v, src)
671198398Srdivacky            llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
672198398Srdivacky            for (unsigned j = 0; j != CurIdx; ++j)
673198398Srdivacky              Args.push_back(getMaskElt(SVV, j, 0, I32Ty));
674198398Srdivacky            Args.push_back(llvm::ConstantInt::get(I32Ty,
675198398Srdivacky                                                  ResElts + C->getZExtValue()));
676198398Srdivacky            for (unsigned j = CurIdx + 1; j != ResElts; ++j)
677198398Srdivacky              Args.push_back(llvm::UndefValue::get(I32Ty));
678198398Srdivacky
679198398Srdivacky            LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
680198398Srdivacky            RHS = EI->getVectorOperand();
681198398Srdivacky            VIsUndefShuffle = false;
682198398Srdivacky          }
683198398Srdivacky          if (!Args.empty()) {
684198398Srdivacky            llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
685198398Srdivacky            V = Builder.CreateShuffleVector(LHS, RHS, Mask);
686198398Srdivacky            ++CurIdx;
687198398Srdivacky            continue;
688198398Srdivacky          }
689198398Srdivacky        }
690198398Srdivacky      }
691198398Srdivacky      Value *Idx = llvm::ConstantInt::get(I32Ty, CurIdx);
692198398Srdivacky      V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
693198398Srdivacky      VIsUndefShuffle = false;
694198398Srdivacky      ++CurIdx;
695198398Srdivacky      continue;
696198398Srdivacky    }
697198398Srdivacky
698198398Srdivacky    unsigned InitElts = VVT->getNumElements();
699198398Srdivacky
700198398Srdivacky    // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
701198398Srdivacky    // input is the same width as the vector being constructed, generate an
702198398Srdivacky    // optimized shuffle of the swizzle input into the result.
703198893Srdivacky    unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
704198398Srdivacky    if (isa<ExtVectorElementExpr>(IE)) {
705198398Srdivacky      llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
706198398Srdivacky      Value *SVOp = SVI->getOperand(0);
707198398Srdivacky      const llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
708198398Srdivacky
709198398Srdivacky      if (OpTy->getNumElements() == ResElts) {
710198398Srdivacky        for (unsigned j = 0; j != CurIdx; ++j) {
711198398Srdivacky          // If the current vector initializer is a shuffle with undef, merge
712198398Srdivacky          // this shuffle directly into it.
713198398Srdivacky          if (VIsUndefShuffle) {
714198398Srdivacky            Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
715198398Srdivacky                                      I32Ty));
716198398Srdivacky          } else {
717198398Srdivacky            Args.push_back(llvm::ConstantInt::get(I32Ty, j));
718198398Srdivacky          }
719198398Srdivacky        }
720198398Srdivacky        for (unsigned j = 0, je = InitElts; j != je; ++j)
721198398Srdivacky          Args.push_back(getMaskElt(SVI, j, Offset, I32Ty));
722198398Srdivacky        for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
723198398Srdivacky          Args.push_back(llvm::UndefValue::get(I32Ty));
724198398Srdivacky
725198398Srdivacky        if (VIsUndefShuffle)
726198398Srdivacky          V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
727198398Srdivacky
728198398Srdivacky        Init = SVOp;
729198398Srdivacky      }
730198398Srdivacky    }
731198398Srdivacky
732198398Srdivacky    // Extend init to result vector length, and then shuffle its contribution
733198398Srdivacky    // to the vector initializer into V.
734198398Srdivacky    if (Args.empty()) {
735198398Srdivacky      for (unsigned j = 0; j != InitElts; ++j)
736198398Srdivacky        Args.push_back(llvm::ConstantInt::get(I32Ty, j));
737198398Srdivacky      for (unsigned j = InitElts; j != ResElts; ++j)
738198398Srdivacky        Args.push_back(llvm::UndefValue::get(I32Ty));
739198398Srdivacky      llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
740198398Srdivacky      Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
741198893Srdivacky                                         Mask, "vext");
742198398Srdivacky
743198398Srdivacky      Args.clear();
744198398Srdivacky      for (unsigned j = 0; j != CurIdx; ++j)
745198398Srdivacky        Args.push_back(llvm::ConstantInt::get(I32Ty, j));
746198398Srdivacky      for (unsigned j = 0; j != InitElts; ++j)
747198893Srdivacky        Args.push_back(llvm::ConstantInt::get(I32Ty, j+Offset));
748198398Srdivacky      for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
749198398Srdivacky        Args.push_back(llvm::UndefValue::get(I32Ty));
750198398Srdivacky    }
751198398Srdivacky
752198398Srdivacky    // If V is undef, make sure it ends up on the RHS of the shuffle to aid
753198398Srdivacky    // merging subsequent shuffles into this one.
754198398Srdivacky    if (CurIdx == 0)
755198398Srdivacky      std::swap(V, Init);
756198398Srdivacky    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
757198398Srdivacky    V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
758198398Srdivacky    VIsUndefShuffle = isa<llvm::UndefValue>(Init);
759198398Srdivacky    CurIdx += InitElts;
760198398Srdivacky  }
761198398Srdivacky
762198398Srdivacky  // FIXME: evaluate codegen vs. shuffling against constant null vector.
763198398Srdivacky  // Emit remaining default initializers.
764198398Srdivacky  const llvm::Type *EltTy = VType->getElementType();
765198398Srdivacky
766198398Srdivacky  // Emit remaining default initializers
767198398Srdivacky  for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
768198398Srdivacky    Value *Idx = llvm::ConstantInt::get(I32Ty, CurIdx);
769198398Srdivacky    llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
770198398Srdivacky    V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
771198398Srdivacky  }
772198398Srdivacky  return V;
773198398Srdivacky}
774198398Srdivacky
775199990Srdivackystatic bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
776199990Srdivacky  const Expr *E = CE->getSubExpr();
777199990Srdivacky
778199990Srdivacky  if (isa<CXXThisExpr>(E)) {
779199990Srdivacky    // We always assume that 'this' is never null.
780199990Srdivacky    return false;
781199990Srdivacky  }
782199990Srdivacky
783199990Srdivacky  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
784199990Srdivacky    // And that lvalue casts are never null.
785199990Srdivacky    if (ICE->isLvalueCast())
786199990Srdivacky      return false;
787199990Srdivacky  }
788199990Srdivacky
789199990Srdivacky  return true;
790199990Srdivacky}
791199990Srdivacky
792198092Srdivacky// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
793198092Srdivacky// have to handle a more broad range of conversions than explicit casts, as they
794198092Srdivacky// handle things like function to ptr-to-function decay etc.
795199990SrdivackyValue *ScalarExprEmitter::EmitCastExpr(CastExpr *CE) {
796199990Srdivacky  Expr *E = CE->getSubExpr();
797198092Srdivacky  QualType DestTy = CE->getType();
798198092Srdivacky  CastExpr::CastKind Kind = CE->getCastKind();
799193326Sed
800198092Srdivacky  if (!DestTy->isVoidType())
801198092Srdivacky    TestAndClearIgnoreResultAssign();
802193326Sed
803199990Srdivacky  // Since almost all cast kinds apply to scalars, this switch doesn't have
804199990Srdivacky  // a default case, so the compiler will warn on a missing case.  The cases
805199990Srdivacky  // are in the same order as in the CastKind enum.
806198092Srdivacky  switch (Kind) {
807198092Srdivacky  case CastExpr::CK_Unknown:
808199990Srdivacky    // FIXME: All casts should have a known kind!
809199482Srdivacky    //assert(0 && "Unknown cast kind!");
810198092Srdivacky    break;
811199482Srdivacky
812200583Srdivacky  case CastExpr::CK_AnyPointerToObjCPointerCast:
813200583Srdivacky  case CastExpr::CK_AnyPointerToBlockPointerCast:
814198092Srdivacky  case CastExpr::CK_BitCast: {
815198092Srdivacky    Value *Src = Visit(const_cast<Expr*>(E));
816198092Srdivacky    return Builder.CreateBitCast(Src, ConvertType(DestTy));
817198092Srdivacky  }
818199482Srdivacky  case CastExpr::CK_NoOp:
819201361Srdivacky  case CastExpr::CK_UserDefinedConversion:
820199482Srdivacky    return Visit(const_cast<Expr*>(E));
821198092Srdivacky
822199990Srdivacky  case CastExpr::CK_BaseToDerived: {
823199990Srdivacky    const CXXRecordDecl *BaseClassDecl =
824199990Srdivacky      E->getType()->getCXXRecordDeclForPointerType();
825199990Srdivacky    const CXXRecordDecl *DerivedClassDecl =
826199990Srdivacky      DestTy->getCXXRecordDeclForPointerType();
827199990Srdivacky
828199990Srdivacky    Value *Src = Visit(const_cast<Expr*>(E));
829199990Srdivacky
830199990Srdivacky    bool NullCheckValue = ShouldNullCheckClassCastValue(CE);
831199990Srdivacky    return CGF.GetAddressOfDerivedClass(Src, BaseClassDecl, DerivedClassDecl,
832199990Srdivacky                                        NullCheckValue);
833199990Srdivacky  }
834198092Srdivacky  case CastExpr::CK_DerivedToBase: {
835198092Srdivacky    const RecordType *DerivedClassTy =
836198092Srdivacky      E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
837198092Srdivacky    CXXRecordDecl *DerivedClassDecl =
838198092Srdivacky      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
839193326Sed
840198092Srdivacky    const RecordType *BaseClassTy =
841198092Srdivacky      DestTy->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
842198092Srdivacky    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseClassTy->getDecl());
843198092Srdivacky
844198092Srdivacky    Value *Src = Visit(const_cast<Expr*>(E));
845193326Sed
846199990Srdivacky    bool NullCheckValue = ShouldNullCheckClassCastValue(CE);
847199990Srdivacky    return CGF.GetAddressOfBaseClass(Src, DerivedClassDecl, BaseClassDecl,
848199990Srdivacky                                     NullCheckValue);
849198092Srdivacky  }
850199990Srdivacky  case CastExpr::CK_Dynamic: {
851199990Srdivacky    Value *V = Visit(const_cast<Expr*>(E));
852199990Srdivacky    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
853199990Srdivacky    return CGF.EmitDynamicCast(V, DCE);
854199990Srdivacky  }
855199990Srdivacky  case CastExpr::CK_ToUnion:
856199482Srdivacky    assert(0 && "Should be unreachable!");
857199482Srdivacky    break;
858199990Srdivacky
859199482Srdivacky  case CastExpr::CK_ArrayToPointerDecay: {
860199482Srdivacky    assert(E->getType()->isArrayType() &&
861199482Srdivacky           "Array to pointer decay must have array source type!");
862193326Sed
863199482Srdivacky    Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
864199482Srdivacky
865199482Srdivacky    // Note that VLA pointers are always decayed, so we don't need to do
866199482Srdivacky    // anything here.
867199482Srdivacky    if (!E->getType()->isVariableArrayType()) {
868199482Srdivacky      assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
869199482Srdivacky      assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
870199482Srdivacky                                 ->getElementType()) &&
871199482Srdivacky             "Expected pointer to array");
872199482Srdivacky      V = Builder.CreateStructGEP(V, 0, "arraydecay");
873199482Srdivacky    }
874199482Srdivacky
875199482Srdivacky    return V;
876199482Srdivacky  }
877199482Srdivacky  case CastExpr::CK_FunctionToPointerDecay:
878199482Srdivacky    return EmitLValue(E).getAddress();
879199482Srdivacky
880199482Srdivacky  case CastExpr::CK_NullToMemberPointer:
881199482Srdivacky    return CGF.CGM.EmitNullConstant(DestTy);
882199482Srdivacky
883199990Srdivacky  case CastExpr::CK_BaseToDerivedMemberPointer:
884199990Srdivacky  case CastExpr::CK_DerivedToBaseMemberPointer: {
885199990Srdivacky    Value *Src = Visit(E);
886199990Srdivacky
887199990Srdivacky    // See if we need to adjust the pointer.
888199990Srdivacky    const CXXRecordDecl *BaseDecl =
889199990Srdivacky      cast<CXXRecordDecl>(E->getType()->getAs<MemberPointerType>()->
890199990Srdivacky                          getClass()->getAs<RecordType>()->getDecl());
891199990Srdivacky    const CXXRecordDecl *DerivedDecl =
892199990Srdivacky      cast<CXXRecordDecl>(CE->getType()->getAs<MemberPointerType>()->
893199990Srdivacky                          getClass()->getAs<RecordType>()->getDecl());
894199990Srdivacky    if (CE->getCastKind() == CastExpr::CK_DerivedToBaseMemberPointer)
895199990Srdivacky      std::swap(DerivedDecl, BaseDecl);
896199990Srdivacky
897199990Srdivacky    llvm::Constant *Adj = CGF.CGM.GetCXXBaseClassOffset(DerivedDecl, BaseDecl);
898199990Srdivacky    if (Adj) {
899199990Srdivacky      if (CE->getCastKind() == CastExpr::CK_DerivedToBaseMemberPointer)
900199990Srdivacky        Src = Builder.CreateSub(Src, Adj, "adj");
901199990Srdivacky      else
902199990Srdivacky        Src = Builder.CreateAdd(Src, Adj, "adj");
903199990Srdivacky    }
904199990Srdivacky    return Src;
905199990Srdivacky  }
906199990Srdivacky
907199990Srdivacky  case CastExpr::CK_ConstructorConversion:
908199990Srdivacky    assert(0 && "Should be unreachable!");
909199990Srdivacky    break;
910199990Srdivacky
911198092Srdivacky  case CastExpr::CK_IntegralToPointer: {
912198092Srdivacky    Value *Src = Visit(const_cast<Expr*>(E));
913198398Srdivacky
914198398Srdivacky    // First, convert to the correct width so that we control the kind of
915198398Srdivacky    // extension.
916198398Srdivacky    const llvm::Type *MiddleTy =
917198398Srdivacky      llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
918198398Srdivacky    bool InputSigned = E->getType()->isSignedIntegerType();
919198398Srdivacky    llvm::Value* IntResult =
920198398Srdivacky      Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
921198398Srdivacky
922198398Srdivacky    return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
923198092Srdivacky  }
924198092Srdivacky  case CastExpr::CK_PointerToIntegral: {
925198092Srdivacky    Value *Src = Visit(const_cast<Expr*>(E));
926198092Srdivacky    return Builder.CreatePtrToInt(Src, ConvertType(DestTy));
927198092Srdivacky  }
928199482Srdivacky  case CastExpr::CK_ToVoid: {
929199482Srdivacky    CGF.EmitAnyExpr(E, 0, false, true);
930199482Srdivacky    return 0;
931198092Srdivacky  }
932199482Srdivacky  case CastExpr::CK_VectorSplat: {
933199482Srdivacky    const llvm::Type *DstTy = ConvertType(DestTy);
934199482Srdivacky    Value *Elt = Visit(const_cast<Expr*>(E));
935199482Srdivacky
936199482Srdivacky    // Insert the element in element zero of an undef vector
937199482Srdivacky    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
938199482Srdivacky    llvm::Value *Idx =
939199482Srdivacky        llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 0);
940199482Srdivacky    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
941199482Srdivacky
942199482Srdivacky    // Splat the element across to all elements
943199482Srdivacky    llvm::SmallVector<llvm::Constant*, 16> Args;
944199482Srdivacky    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
945199482Srdivacky    for (unsigned i = 0; i < NumElements; i++)
946199482Srdivacky      Args.push_back(llvm::ConstantInt::get(
947199482Srdivacky                                        llvm::Type::getInt32Ty(VMContext), 0));
948199482Srdivacky
949199482Srdivacky    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
950199482Srdivacky    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
951199482Srdivacky    return Yay;
952199482Srdivacky  }
953199990Srdivacky  case CastExpr::CK_IntegralCast:
954199990Srdivacky  case CastExpr::CK_IntegralToFloating:
955199990Srdivacky  case CastExpr::CK_FloatingToIntegral:
956199990Srdivacky  case CastExpr::CK_FloatingCast:
957199990Srdivacky    return EmitScalarConversion(Visit(E), E->getType(), DestTy);
958199482Srdivacky
959200583Srdivacky  case CastExpr::CK_MemberPointerToBoolean:
960200583Srdivacky    return CGF.EvaluateExprAsBool(E);
961199482Srdivacky  }
962199482Srdivacky
963193326Sed  // Handle cases where the source is an non-complex type.
964198092Srdivacky
965193326Sed  if (!CGF.hasAggregateLLVMType(E->getType())) {
966193326Sed    Value *Src = Visit(const_cast<Expr*>(E));
967193326Sed
968193326Sed    // Use EmitScalarConversion to perform the conversion.
969193326Sed    return EmitScalarConversion(Src, E->getType(), DestTy);
970193326Sed  }
971198092Srdivacky
972193326Sed  if (E->getType()->isAnyComplexType()) {
973193326Sed    // Handle cases where the source is a complex type.
974193326Sed    bool IgnoreImag = true;
975193326Sed    bool IgnoreImagAssign = true;
976193326Sed    bool IgnoreReal = IgnoreResultAssign;
977193326Sed    bool IgnoreRealAssign = IgnoreResultAssign;
978193326Sed    if (DestTy->isBooleanType())
979193326Sed      IgnoreImagAssign = IgnoreImag = false;
980193326Sed    else if (DestTy->isVoidType()) {
981193326Sed      IgnoreReal = IgnoreImag = false;
982193326Sed      IgnoreRealAssign = IgnoreImagAssign = true;
983193326Sed    }
984193326Sed    CodeGenFunction::ComplexPairTy V
985193326Sed      = CGF.EmitComplexExpr(E, IgnoreReal, IgnoreImag, IgnoreRealAssign,
986193326Sed                            IgnoreImagAssign);
987193326Sed    return EmitComplexToScalarConversion(V, E->getType(), DestTy);
988193326Sed  }
989193326Sed
990193326Sed  // Okay, this is a cast from an aggregate.  It must be a cast to void.  Just
991193326Sed  // evaluate the result and return.
992193326Sed  CGF.EmitAggExpr(E, 0, false, true);
993193326Sed  return 0;
994193326Sed}
995193326Sed
996193326SedValue *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
997193326Sed  return CGF.EmitCompoundStmt(*E->getSubStmt(),
998193326Sed                              !E->getType()->isVoidType()).getScalarVal();
999193326Sed}
1000193326Sed
1001193326SedValue *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
1002198092Srdivacky  llvm::Value *V = CGF.GetAddrOfBlockDecl(E);
1003198092Srdivacky  if (E->getType().isObjCGCWeak())
1004198092Srdivacky    return CGF.CGM.getObjCRuntime().EmitObjCWeakRead(CGF, V);
1005199990Srdivacky  return Builder.CreateLoad(V, "tmp");
1006193326Sed}
1007193326Sed
1008193326Sed//===----------------------------------------------------------------------===//
1009193326Sed//                             Unary Operators
1010193326Sed//===----------------------------------------------------------------------===//
1011193326Sed
1012193326SedValue *ScalarExprEmitter::VisitPrePostIncDec(const UnaryOperator *E,
1013193326Sed                                             bool isInc, bool isPre) {
1014193326Sed  LValue LV = EmitLValue(E->getSubExpr());
1015193326Sed  QualType ValTy = E->getSubExpr()->getType();
1016193326Sed  Value *InVal = CGF.EmitLoadOfLValue(LV, ValTy).getScalarVal();
1017198092Srdivacky
1018198092Srdivacky  llvm::LLVMContext &VMContext = CGF.getLLVMContext();
1019198092Srdivacky
1020193326Sed  int AmountVal = isInc ? 1 : -1;
1021193326Sed
1022193326Sed  if (ValTy->isPointerType() &&
1023198092Srdivacky      ValTy->getAs<PointerType>()->isVariableArrayType()) {
1024193326Sed    // The amount of the addition/subtraction needs to account for the VLA size
1025193326Sed    CGF.ErrorUnsupported(E, "VLA pointer inc/dec");
1026193326Sed  }
1027193326Sed
1028193326Sed  Value *NextVal;
1029198092Srdivacky  if (const llvm::PointerType *PT =
1030193326Sed         dyn_cast<llvm::PointerType>(InVal->getType())) {
1031198092Srdivacky    llvm::Constant *Inc =
1032198092Srdivacky      llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), AmountVal);
1033193326Sed    if (!isa<llvm::FunctionType>(PT->getElementType())) {
1034198092Srdivacky      QualType PTEE = ValTy->getPointeeType();
1035198092Srdivacky      if (const ObjCInterfaceType *OIT =
1036198092Srdivacky          dyn_cast<ObjCInterfaceType>(PTEE)) {
1037198092Srdivacky        // Handle interface types, which are not represented with a concrete type.
1038198092Srdivacky        int size = CGF.getContext().getTypeSize(OIT) / 8;
1039198092Srdivacky        if (!isInc)
1040198092Srdivacky          size = -size;
1041198092Srdivacky        Inc = llvm::ConstantInt::get(Inc->getType(), size);
1042198092Srdivacky        const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1043198092Srdivacky        InVal = Builder.CreateBitCast(InVal, i8Ty);
1044198092Srdivacky        NextVal = Builder.CreateGEP(InVal, Inc, "add.ptr");
1045198092Srdivacky        llvm::Value *lhs = LV.getAddress();
1046198092Srdivacky        lhs = Builder.CreateBitCast(lhs, llvm::PointerType::getUnqual(i8Ty));
1047198092Srdivacky        LV = LValue::MakeAddr(lhs, CGF.MakeQualifiers(ValTy));
1048198092Srdivacky      } else
1049198092Srdivacky        NextVal = Builder.CreateInBoundsGEP(InVal, Inc, "ptrincdec");
1050193326Sed    } else {
1051198092Srdivacky      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1052193326Sed      NextVal = Builder.CreateBitCast(InVal, i8Ty, "tmp");
1053193326Sed      NextVal = Builder.CreateGEP(NextVal, Inc, "ptrincdec");
1054193326Sed      NextVal = Builder.CreateBitCast(NextVal, InVal->getType());
1055193326Sed    }
1056198092Srdivacky  } else if (InVal->getType() == llvm::Type::getInt1Ty(VMContext) && isInc) {
1057193326Sed    // Bool++ is an interesting case, due to promotion rules, we get:
1058193326Sed    // Bool++ -> Bool = Bool+1 -> Bool = (int)Bool+1 ->
1059193326Sed    // Bool = ((int)Bool+1) != 0
1060193326Sed    // An interesting aspect of this is that increment is always true.
1061193326Sed    // Decrement does not have this property.
1062198092Srdivacky    NextVal = llvm::ConstantInt::getTrue(VMContext);
1063194613Sed  } else if (isa<llvm::IntegerType>(InVal->getType())) {
1064194613Sed    NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal);
1065198092Srdivacky
1066198092Srdivacky    // Signed integer overflow is undefined behavior.
1067198092Srdivacky    if (ValTy->isSignedIntegerType())
1068198092Srdivacky      NextVal = Builder.CreateNSWAdd(InVal, NextVal, isInc ? "inc" : "dec");
1069198092Srdivacky    else
1070198092Srdivacky      NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
1071193326Sed  } else {
1072193326Sed    // Add the inc/dec to the real part.
1073198092Srdivacky    if (InVal->getType()->isFloatTy())
1074198092Srdivacky      NextVal =
1075198092Srdivacky        llvm::ConstantFP::get(VMContext,
1076198092Srdivacky                              llvm::APFloat(static_cast<float>(AmountVal)));
1077198092Srdivacky    else if (InVal->getType()->isDoubleTy())
1078198092Srdivacky      NextVal =
1079198092Srdivacky        llvm::ConstantFP::get(VMContext,
1080198092Srdivacky                              llvm::APFloat(static_cast<double>(AmountVal)));
1081193326Sed    else {
1082193326Sed      llvm::APFloat F(static_cast<float>(AmountVal));
1083193326Sed      bool ignored;
1084193326Sed      F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
1085193326Sed                &ignored);
1086198092Srdivacky      NextVal = llvm::ConstantFP::get(VMContext, F);
1087193326Sed    }
1088194613Sed    NextVal = Builder.CreateFAdd(InVal, NextVal, isInc ? "inc" : "dec");
1089193326Sed  }
1090198092Srdivacky
1091193326Sed  // Store the updated result through the lvalue.
1092193326Sed  if (LV.isBitfield())
1093193326Sed    CGF.EmitStoreThroughBitfieldLValue(RValue::get(NextVal), LV, ValTy,
1094193326Sed                                       &NextVal);
1095193326Sed  else
1096193326Sed    CGF.EmitStoreThroughLValue(RValue::get(NextVal), LV, ValTy);
1097193326Sed
1098193326Sed  // If this is a postinc, return the value read from memory, otherwise use the
1099193326Sed  // updated value.
1100193326Sed  return isPre ? NextVal : InVal;
1101193326Sed}
1102193326Sed
1103193326Sed
1104193326SedValue *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1105193326Sed  TestAndClearIgnoreResultAssign();
1106193326Sed  Value *Op = Visit(E->getSubExpr());
1107194613Sed  if (Op->getType()->isFPOrFPVector())
1108194613Sed    return Builder.CreateFNeg(Op, "neg");
1109193326Sed  return Builder.CreateNeg(Op, "neg");
1110193326Sed}
1111193326Sed
1112193326SedValue *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1113193326Sed  TestAndClearIgnoreResultAssign();
1114193326Sed  Value *Op = Visit(E->getSubExpr());
1115193326Sed  return Builder.CreateNot(Op, "neg");
1116193326Sed}
1117193326Sed
1118193326SedValue *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1119193326Sed  // Compare operand to zero.
1120193326Sed  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1121198092Srdivacky
1122193326Sed  // Invert value.
1123193326Sed  // TODO: Could dynamically modify easy computations here.  For example, if
1124193326Sed  // the operand is an icmp ne, turn into icmp eq.
1125193326Sed  BoolVal = Builder.CreateNot(BoolVal, "lnot");
1126198092Srdivacky
1127193326Sed  // ZExt result to the expr type.
1128193326Sed  return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1129193326Sed}
1130193326Sed
1131193326Sed/// VisitSizeOfAlignOfExpr - Return the size or alignment of the type of
1132193326Sed/// argument of the sizeof expression as an integer.
1133193326SedValue *
1134193326SedScalarExprEmitter::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) {
1135193326Sed  QualType TypeToSize = E->getTypeOfArgument();
1136193326Sed  if (E->isSizeOf()) {
1137198092Srdivacky    if (const VariableArrayType *VAT =
1138193326Sed          CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1139193326Sed      if (E->isArgumentType()) {
1140193326Sed        // sizeof(type) - make sure to emit the VLA size.
1141193326Sed        CGF.EmitVLASize(TypeToSize);
1142193326Sed      } else {
1143193326Sed        // C99 6.5.3.4p2: If the argument is an expression of type
1144193326Sed        // VLA, it is evaluated.
1145193326Sed        CGF.EmitAnyExpr(E->getArgumentExpr());
1146193326Sed      }
1147198092Srdivacky
1148193326Sed      return CGF.GetVLASize(VAT);
1149193326Sed    }
1150193326Sed  }
1151193326Sed
1152198092Srdivacky  // If this isn't sizeof(vla), the result must be constant; use the constant
1153198092Srdivacky  // folding logic so we don't have to duplicate it here.
1154193326Sed  Expr::EvalResult Result;
1155193326Sed  E->Evaluate(Result, CGF.getContext());
1156198092Srdivacky  return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
1157193326Sed}
1158193326Sed
1159193326SedValue *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1160193326Sed  Expr *Op = E->getSubExpr();
1161193326Sed  if (Op->getType()->isAnyComplexType())
1162193326Sed    return CGF.EmitComplexExpr(Op, false, true, false, true).first;
1163193326Sed  return Visit(Op);
1164193326Sed}
1165193326SedValue *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1166193326Sed  Expr *Op = E->getSubExpr();
1167193326Sed  if (Op->getType()->isAnyComplexType())
1168193326Sed    return CGF.EmitComplexExpr(Op, true, false, true, false).second;
1169198092Srdivacky
1170193326Sed  // __imag on a scalar returns zero.  Emit the subexpr to ensure side
1171193326Sed  // effects are evaluated, but not the actual value.
1172193326Sed  if (E->isLvalue(CGF.getContext()) == Expr::LV_Valid)
1173193326Sed    CGF.EmitLValue(Op);
1174193326Sed  else
1175193326Sed    CGF.EmitScalarExpr(Op, true);
1176193326Sed  return llvm::Constant::getNullValue(ConvertType(E->getType()));
1177193326Sed}
1178193326Sed
1179198092SrdivackyValue *ScalarExprEmitter::VisitUnaryOffsetOf(const UnaryOperator *E) {
1180193326Sed  Value* ResultAsPtr = EmitLValue(E->getSubExpr()).getAddress();
1181193326Sed  const llvm::Type* ResultType = ConvertType(E->getType());
1182193326Sed  return Builder.CreatePtrToInt(ResultAsPtr, ResultType, "offsetof");
1183193326Sed}
1184193326Sed
1185193326Sed//===----------------------------------------------------------------------===//
1186193326Sed//                           Binary Operators
1187193326Sed//===----------------------------------------------------------------------===//
1188193326Sed
1189193326SedBinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1190193326Sed  TestAndClearIgnoreResultAssign();
1191193326Sed  BinOpInfo Result;
1192193326Sed  Result.LHS = Visit(E->getLHS());
1193193326Sed  Result.RHS = Visit(E->getRHS());
1194193326Sed  Result.Ty  = E->getType();
1195193326Sed  Result.E = E;
1196193326Sed  return Result;
1197193326Sed}
1198193326Sed
1199193326SedValue *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
1200193326Sed                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
1201193326Sed  bool Ignore = TestAndClearIgnoreResultAssign();
1202201361Srdivacky  QualType LHSTy = E->getLHS()->getType();
1203193326Sed
1204193326Sed  BinOpInfo OpInfo;
1205193326Sed
1206193326Sed  if (E->getComputationResultType()->isAnyComplexType()) {
1207198092Srdivacky    // This needs to go through the complex expression emitter, but it's a tad
1208198092Srdivacky    // complicated to do that... I'm leaving it out for now.  (Note that we do
1209198092Srdivacky    // actually need the imaginary part of the RHS for multiplication and
1210198092Srdivacky    // division.)
1211193326Sed    CGF.ErrorUnsupported(E, "complex compound assignment");
1212193326Sed    return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1213193326Sed  }
1214193326Sed
1215193326Sed  // Emit the RHS first.  __block variables need to have the rhs evaluated
1216193326Sed  // first, plus this should improve codegen a little.
1217193326Sed  OpInfo.RHS = Visit(E->getRHS());
1218193326Sed  OpInfo.Ty = E->getComputationResultType();
1219193326Sed  OpInfo.E = E;
1220193326Sed  // Load/convert the LHS.
1221201361Srdivacky  LValue LHSLV = EmitCheckedLValue(E->getLHS());
1222193326Sed  OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
1223193326Sed  OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
1224193326Sed                                    E->getComputationLHSType());
1225198092Srdivacky
1226193326Sed  // Expand the binary operator.
1227193326Sed  Value *Result = (this->*Func)(OpInfo);
1228198092Srdivacky
1229193326Sed  // Convert the result back to the LHS type.
1230193326Sed  Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
1231193326Sed
1232198092Srdivacky  // Store the result value into the LHS lvalue. Bit-fields are handled
1233198092Srdivacky  // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
1234198092Srdivacky  // 'An assignment expression has the value of the left operand after the
1235198092Srdivacky  // assignment...'.
1236193326Sed  if (LHSLV.isBitfield()) {
1237193326Sed    if (!LHSLV.isVolatileQualified()) {
1238193326Sed      CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy,
1239193326Sed                                         &Result);
1240193326Sed      return Result;
1241193326Sed    } else
1242193326Sed      CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy);
1243193326Sed  } else
1244193326Sed    CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
1245193326Sed  if (Ignore)
1246193326Sed    return 0;
1247193326Sed  return EmitLoadOfLValue(LHSLV, E->getType());
1248193326Sed}
1249193326Sed
1250193326Sed
1251193326SedValue *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
1252193326Sed  if (Ops.LHS->getType()->isFPOrFPVector())
1253193326Sed    return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
1254193326Sed  else if (Ops.Ty->isUnsignedIntegerType())
1255193326Sed    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
1256193326Sed  else
1257193326Sed    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
1258193326Sed}
1259193326Sed
1260193326SedValue *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
1261193326Sed  // Rem in C can't be a floating point type: C99 6.5.5p2.
1262193326Sed  if (Ops.Ty->isUnsignedIntegerType())
1263193326Sed    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
1264193326Sed  else
1265193326Sed    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
1266193326Sed}
1267193326Sed
1268193326SedValue *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
1269193326Sed  unsigned IID;
1270193326Sed  unsigned OpID = 0;
1271193326Sed
1272193326Sed  switch (Ops.E->getOpcode()) {
1273193326Sed  case BinaryOperator::Add:
1274193326Sed  case BinaryOperator::AddAssign:
1275193326Sed    OpID = 1;
1276193326Sed    IID = llvm::Intrinsic::sadd_with_overflow;
1277193326Sed    break;
1278193326Sed  case BinaryOperator::Sub:
1279193326Sed  case BinaryOperator::SubAssign:
1280193326Sed    OpID = 2;
1281193326Sed    IID = llvm::Intrinsic::ssub_with_overflow;
1282193326Sed    break;
1283193326Sed  case BinaryOperator::Mul:
1284193326Sed  case BinaryOperator::MulAssign:
1285193326Sed    OpID = 3;
1286193326Sed    IID = llvm::Intrinsic::smul_with_overflow;
1287193326Sed    break;
1288193326Sed  default:
1289193326Sed    assert(false && "Unsupported operation for overflow detection");
1290193326Sed    IID = 0;
1291193326Sed  }
1292193326Sed  OpID <<= 1;
1293193326Sed  OpID |= 1;
1294193326Sed
1295193326Sed  const llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
1296193326Sed
1297193326Sed  llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, &opTy, 1);
1298193326Sed
1299193326Sed  Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
1300193326Sed  Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
1301193326Sed  Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
1302193326Sed
1303193326Sed  // Branch in case of overflow.
1304193326Sed  llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
1305193326Sed  llvm::BasicBlock *overflowBB =
1306193326Sed    CGF.createBasicBlock("overflow", CGF.CurFn);
1307193326Sed  llvm::BasicBlock *continueBB =
1308193326Sed    CGF.createBasicBlock("overflow.continue", CGF.CurFn);
1309193326Sed
1310193326Sed  Builder.CreateCondBr(overflow, overflowBB, continueBB);
1311193326Sed
1312193326Sed  // Handle overflow
1313193326Sed
1314193326Sed  Builder.SetInsertPoint(overflowBB);
1315193326Sed
1316193326Sed  // Handler is:
1317198092Srdivacky  // long long *__overflow_handler)(long long a, long long b, char op,
1318193326Sed  // char width)
1319193326Sed  std::vector<const llvm::Type*> handerArgTypes;
1320198092Srdivacky  handerArgTypes.push_back(llvm::Type::getInt64Ty(VMContext));
1321198092Srdivacky  handerArgTypes.push_back(llvm::Type::getInt64Ty(VMContext));
1322198092Srdivacky  handerArgTypes.push_back(llvm::Type::getInt8Ty(VMContext));
1323198092Srdivacky  handerArgTypes.push_back(llvm::Type::getInt8Ty(VMContext));
1324198092Srdivacky  llvm::FunctionType *handlerTy = llvm::FunctionType::get(
1325198092Srdivacky      llvm::Type::getInt64Ty(VMContext), handerArgTypes, false);
1326193326Sed  llvm::Value *handlerFunction =
1327193326Sed    CGF.CGM.getModule().getOrInsertGlobal("__overflow_handler",
1328193326Sed        llvm::PointerType::getUnqual(handlerTy));
1329193326Sed  handlerFunction = Builder.CreateLoad(handlerFunction);
1330193326Sed
1331193326Sed  llvm::Value *handlerResult = Builder.CreateCall4(handlerFunction,
1332198092Srdivacky      Builder.CreateSExt(Ops.LHS, llvm::Type::getInt64Ty(VMContext)),
1333198092Srdivacky      Builder.CreateSExt(Ops.RHS, llvm::Type::getInt64Ty(VMContext)),
1334198092Srdivacky      llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext), OpID),
1335198092Srdivacky      llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext),
1336193326Sed        cast<llvm::IntegerType>(opTy)->getBitWidth()));
1337193326Sed
1338193326Sed  handlerResult = Builder.CreateTrunc(handlerResult, opTy);
1339193326Sed
1340193326Sed  Builder.CreateBr(continueBB);
1341198092Srdivacky
1342193326Sed  // Set up the continuation
1343193326Sed  Builder.SetInsertPoint(continueBB);
1344193326Sed  // Get the correct result
1345193326Sed  llvm::PHINode *phi = Builder.CreatePHI(opTy);
1346193326Sed  phi->reserveOperandSpace(2);
1347193326Sed  phi->addIncoming(result, initialBB);
1348193326Sed  phi->addIncoming(handlerResult, overflowBB);
1349193326Sed
1350193326Sed  return phi;
1351193326Sed}
1352193326Sed
1353193326SedValue *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
1354198092Srdivacky  if (!Ops.Ty->isAnyPointerType()) {
1355194613Sed    if (CGF.getContext().getLangOptions().OverflowChecking &&
1356194613Sed        Ops.Ty->isSignedIntegerType())
1357193326Sed      return EmitOverflowCheckedBinOp(Ops);
1358198092Srdivacky
1359194613Sed    if (Ops.LHS->getType()->isFPOrFPVector())
1360194613Sed      return Builder.CreateFAdd(Ops.LHS, Ops.RHS, "add");
1361198092Srdivacky
1362198092Srdivacky    // Signed integer overflow is undefined behavior.
1363198092Srdivacky    if (Ops.Ty->isSignedIntegerType())
1364198092Srdivacky      return Builder.CreateNSWAdd(Ops.LHS, Ops.RHS, "add");
1365198092Srdivacky
1366193326Sed    return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
1367193326Sed  }
1368193326Sed
1369198092Srdivacky  if (Ops.Ty->isPointerType() &&
1370198092Srdivacky      Ops.Ty->getAs<PointerType>()->isVariableArrayType()) {
1371193326Sed    // The amount of the addition needs to account for the VLA size
1372193326Sed    CGF.ErrorUnsupported(Ops.E, "VLA pointer addition");
1373193326Sed  }
1374193326Sed  Value *Ptr, *Idx;
1375193326Sed  Expr *IdxExp;
1376198092Srdivacky  const PointerType *PT = Ops.E->getLHS()->getType()->getAs<PointerType>();
1377198092Srdivacky  const ObjCObjectPointerType *OPT =
1378198092Srdivacky    Ops.E->getLHS()->getType()->getAs<ObjCObjectPointerType>();
1379198092Srdivacky  if (PT || OPT) {
1380193326Sed    Ptr = Ops.LHS;
1381193326Sed    Idx = Ops.RHS;
1382193326Sed    IdxExp = Ops.E->getRHS();
1383198092Srdivacky  } else {  // int + pointer
1384198092Srdivacky    PT = Ops.E->getRHS()->getType()->getAs<PointerType>();
1385198092Srdivacky    OPT = Ops.E->getRHS()->getType()->getAs<ObjCObjectPointerType>();
1386198092Srdivacky    assert((PT || OPT) && "Invalid add expr");
1387193326Sed    Ptr = Ops.RHS;
1388193326Sed    Idx = Ops.LHS;
1389193326Sed    IdxExp = Ops.E->getLHS();
1390193326Sed  }
1391193326Sed
1392193326Sed  unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1393193326Sed  if (Width < CGF.LLVMPointerWidth) {
1394193326Sed    // Zero or sign extend the pointer value based on whether the index is
1395193326Sed    // signed or not.
1396198092Srdivacky    const llvm::Type *IdxType =
1397198092Srdivacky        llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
1398193326Sed    if (IdxExp->getType()->isSignedIntegerType())
1399193326Sed      Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1400193326Sed    else
1401193326Sed      Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1402193326Sed  }
1403198092Srdivacky  const QualType ElementType = PT ? PT->getPointeeType() : OPT->getPointeeType();
1404198092Srdivacky  // Handle interface types, which are not represented with a concrete type.
1405193326Sed  if (const ObjCInterfaceType *OIT = dyn_cast<ObjCInterfaceType>(ElementType)) {
1406198092Srdivacky    llvm::Value *InterfaceSize =
1407193326Sed      llvm::ConstantInt::get(Idx->getType(),
1408193326Sed                             CGF.getContext().getTypeSize(OIT) / 8);
1409193326Sed    Idx = Builder.CreateMul(Idx, InterfaceSize);
1410198092Srdivacky    const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1411193326Sed    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1412193326Sed    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1413193326Sed    return Builder.CreateBitCast(Res, Ptr->getType());
1414198092Srdivacky  }
1415193326Sed
1416198092Srdivacky  // Explicitly handle GNU void* and function pointer arithmetic extensions. The
1417198092Srdivacky  // GNU void* casts amount to no-ops since our void* type is i8*, but this is
1418198092Srdivacky  // future proof.
1419193326Sed  if (ElementType->isVoidType() || ElementType->isFunctionType()) {
1420198092Srdivacky    const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1421193326Sed    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1422193326Sed    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1423193326Sed    return Builder.CreateBitCast(Res, Ptr->getType());
1424198092Srdivacky  }
1425198092Srdivacky
1426198092Srdivacky  return Builder.CreateInBoundsGEP(Ptr, Idx, "add.ptr");
1427193326Sed}
1428193326Sed
1429193326SedValue *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
1430193326Sed  if (!isa<llvm::PointerType>(Ops.LHS->getType())) {
1431193326Sed    if (CGF.getContext().getLangOptions().OverflowChecking
1432193326Sed        && Ops.Ty->isSignedIntegerType())
1433193326Sed      return EmitOverflowCheckedBinOp(Ops);
1434194613Sed
1435194613Sed    if (Ops.LHS->getType()->isFPOrFPVector())
1436194613Sed      return Builder.CreateFSub(Ops.LHS, Ops.RHS, "sub");
1437193326Sed    return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
1438193326Sed  }
1439193326Sed
1440198092Srdivacky  if (Ops.E->getLHS()->getType()->isPointerType() &&
1441198092Srdivacky      Ops.E->getLHS()->getType()->getAs<PointerType>()->isVariableArrayType()) {
1442193326Sed    // The amount of the addition needs to account for the VLA size for
1443193326Sed    // ptr-int
1444193326Sed    // The amount of the division needs to account for the VLA size for
1445193326Sed    // ptr-ptr.
1446193326Sed    CGF.ErrorUnsupported(Ops.E, "VLA pointer subtraction");
1447193326Sed  }
1448193326Sed
1449193326Sed  const QualType LHSType = Ops.E->getLHS()->getType();
1450198092Srdivacky  const QualType LHSElementType = LHSType->getPointeeType();
1451193326Sed  if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
1452193326Sed    // pointer - int
1453193326Sed    Value *Idx = Ops.RHS;
1454193326Sed    unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1455193326Sed    if (Width < CGF.LLVMPointerWidth) {
1456193326Sed      // Zero or sign extend the pointer value based on whether the index is
1457193326Sed      // signed or not.
1458198092Srdivacky      const llvm::Type *IdxType =
1459198092Srdivacky          llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
1460193326Sed      if (Ops.E->getRHS()->getType()->isSignedIntegerType())
1461193326Sed        Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1462193326Sed      else
1463193326Sed        Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1464193326Sed    }
1465193326Sed    Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
1466193326Sed
1467198092Srdivacky    // Handle interface types, which are not represented with a concrete type.
1468198092Srdivacky    if (const ObjCInterfaceType *OIT =
1469193326Sed        dyn_cast<ObjCInterfaceType>(LHSElementType)) {
1470198092Srdivacky      llvm::Value *InterfaceSize =
1471193326Sed        llvm::ConstantInt::get(Idx->getType(),
1472193326Sed                               CGF.getContext().getTypeSize(OIT) / 8);
1473193326Sed      Idx = Builder.CreateMul(Idx, InterfaceSize);
1474198092Srdivacky      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1475193326Sed      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1476193326Sed      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "add.ptr");
1477193326Sed      return Builder.CreateBitCast(Res, Ops.LHS->getType());
1478198092Srdivacky    }
1479193326Sed
1480193326Sed    // Explicitly handle GNU void* and function pointer arithmetic
1481198092Srdivacky    // extensions. The GNU void* casts amount to no-ops since our void* type is
1482198092Srdivacky    // i8*, but this is future proof.
1483193326Sed    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1484198092Srdivacky      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1485193326Sed      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1486193326Sed      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "sub.ptr");
1487193326Sed      return Builder.CreateBitCast(Res, Ops.LHS->getType());
1488198092Srdivacky    }
1489198092Srdivacky
1490198092Srdivacky    return Builder.CreateInBoundsGEP(Ops.LHS, Idx, "sub.ptr");
1491193326Sed  } else {
1492193326Sed    // pointer - pointer
1493193326Sed    Value *LHS = Ops.LHS;
1494193326Sed    Value *RHS = Ops.RHS;
1495198092Srdivacky
1496193326Sed    uint64_t ElementSize;
1497193326Sed
1498193326Sed    // Handle GCC extension for pointer arithmetic on void* and function pointer
1499193326Sed    // types.
1500193326Sed    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1501193326Sed      ElementSize = 1;
1502193326Sed    } else {
1503193326Sed      ElementSize = CGF.getContext().getTypeSize(LHSElementType) / 8;
1504193326Sed    }
1505198092Srdivacky
1506193326Sed    const llvm::Type *ResultType = ConvertType(Ops.Ty);
1507193326Sed    LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
1508193326Sed    RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1509193326Sed    Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
1510198092Srdivacky
1511193326Sed    // Optimize out the shift for element size of 1.
1512193326Sed    if (ElementSize == 1)
1513193326Sed      return BytesBetween;
1514198092Srdivacky
1515198092Srdivacky    // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
1516198092Srdivacky    // pointer difference in C is only defined in the case where both operands
1517198092Srdivacky    // are pointing to elements of an array.
1518193326Sed    Value *BytesPerElt = llvm::ConstantInt::get(ResultType, ElementSize);
1519198092Srdivacky    return Builder.CreateExactSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
1520193326Sed  }
1521193326Sed}
1522193326Sed
1523193326SedValue *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
1524193326Sed  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1525193326Sed  // RHS to the same size as the LHS.
1526193326Sed  Value *RHS = Ops.RHS;
1527193326Sed  if (Ops.LHS->getType() != RHS->getType())
1528193326Sed    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1529198092Srdivacky
1530200583Srdivacky  if (CGF.CatchUndefined
1531200583Srdivacky      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
1532200583Srdivacky    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
1533200583Srdivacky    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
1534200583Srdivacky    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
1535200583Srdivacky                                 llvm::ConstantInt::get(RHS->getType(), Width)),
1536200583Srdivacky                             Cont, CGF.getTrapBB());
1537200583Srdivacky    CGF.EmitBlock(Cont);
1538200583Srdivacky  }
1539200583Srdivacky
1540193326Sed  return Builder.CreateShl(Ops.LHS, RHS, "shl");
1541193326Sed}
1542193326Sed
1543193326SedValue *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
1544193326Sed  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1545193326Sed  // RHS to the same size as the LHS.
1546193326Sed  Value *RHS = Ops.RHS;
1547193326Sed  if (Ops.LHS->getType() != RHS->getType())
1548193326Sed    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1549198092Srdivacky
1550200583Srdivacky  if (CGF.CatchUndefined
1551200583Srdivacky      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
1552200583Srdivacky    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
1553200583Srdivacky    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
1554200583Srdivacky    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
1555200583Srdivacky                                 llvm::ConstantInt::get(RHS->getType(), Width)),
1556200583Srdivacky                             Cont, CGF.getTrapBB());
1557200583Srdivacky    CGF.EmitBlock(Cont);
1558200583Srdivacky  }
1559200583Srdivacky
1560193326Sed  if (Ops.Ty->isUnsignedIntegerType())
1561193326Sed    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
1562193326Sed  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
1563193326Sed}
1564193326Sed
1565193326SedValue *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
1566193326Sed                                      unsigned SICmpOpc, unsigned FCmpOpc) {
1567193326Sed  TestAndClearIgnoreResultAssign();
1568193326Sed  Value *Result;
1569193326Sed  QualType LHSTy = E->getLHS()->getType();
1570200583Srdivacky  if (LHSTy->isMemberFunctionPointerType()) {
1571200583Srdivacky    Value *LHSPtr = CGF.EmitAnyExprToTemp(E->getLHS()).getAggregateAddr();
1572200583Srdivacky    Value *RHSPtr = CGF.EmitAnyExprToTemp(E->getRHS()).getAggregateAddr();
1573200583Srdivacky    llvm::Value *LHSFunc = Builder.CreateStructGEP(LHSPtr, 0);
1574200583Srdivacky    LHSFunc = Builder.CreateLoad(LHSFunc);
1575200583Srdivacky    llvm::Value *RHSFunc = Builder.CreateStructGEP(RHSPtr, 0);
1576200583Srdivacky    RHSFunc = Builder.CreateLoad(RHSFunc);
1577200583Srdivacky    Value *ResultF = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1578200583Srdivacky                                        LHSFunc, RHSFunc, "cmp.func");
1579200583Srdivacky    Value *NullPtr = llvm::Constant::getNullValue(LHSFunc->getType());
1580200583Srdivacky    Value *ResultNull = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1581200583Srdivacky                                           LHSFunc, NullPtr, "cmp.null");
1582200583Srdivacky    llvm::Value *LHSAdj = Builder.CreateStructGEP(LHSPtr, 1);
1583200583Srdivacky    LHSAdj = Builder.CreateLoad(LHSAdj);
1584200583Srdivacky    llvm::Value *RHSAdj = Builder.CreateStructGEP(RHSPtr, 1);
1585200583Srdivacky    RHSAdj = Builder.CreateLoad(RHSAdj);
1586200583Srdivacky    Value *ResultA = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1587200583Srdivacky                                        LHSAdj, RHSAdj, "cmp.adj");
1588200583Srdivacky    if (E->getOpcode() == BinaryOperator::EQ) {
1589200583Srdivacky      Result = Builder.CreateOr(ResultNull, ResultA, "or.na");
1590200583Srdivacky      Result = Builder.CreateAnd(Result, ResultF, "and.f");
1591200583Srdivacky    } else {
1592200583Srdivacky      assert(E->getOpcode() == BinaryOperator::NE &&
1593200583Srdivacky             "Member pointer comparison other than == or != ?");
1594200583Srdivacky      Result = Builder.CreateAnd(ResultNull, ResultA, "and.na");
1595200583Srdivacky      Result = Builder.CreateOr(Result, ResultF, "or.f");
1596200583Srdivacky    }
1597200583Srdivacky  } else if (!LHSTy->isAnyComplexType()) {
1598193326Sed    Value *LHS = Visit(E->getLHS());
1599193326Sed    Value *RHS = Visit(E->getRHS());
1600198092Srdivacky
1601198092Srdivacky    if (LHS->getType()->isFPOrFPVector()) {
1602193326Sed      Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
1603193326Sed                                  LHS, RHS, "cmp");
1604193326Sed    } else if (LHSTy->isSignedIntegerType()) {
1605193326Sed      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
1606193326Sed                                  LHS, RHS, "cmp");
1607193326Sed    } else {
1608193326Sed      // Unsigned integers and pointers.
1609193326Sed      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1610193326Sed                                  LHS, RHS, "cmp");
1611193326Sed    }
1612198092Srdivacky
1613198092Srdivacky    // If this is a vector comparison, sign extend the result to the appropriate
1614198092Srdivacky    // vector integer type and return it (don't convert to bool).
1615198092Srdivacky    if (LHSTy->isVectorType())
1616198092Srdivacky      return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1617198092Srdivacky
1618193326Sed  } else {
1619193326Sed    // Complex Comparison: can only be an equality comparison.
1620193326Sed    CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
1621193326Sed    CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
1622198092Srdivacky
1623198092Srdivacky    QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
1624198092Srdivacky
1625193326Sed    Value *ResultR, *ResultI;
1626193326Sed    if (CETy->isRealFloatingType()) {
1627193326Sed      ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1628193326Sed                                   LHS.first, RHS.first, "cmp.r");
1629193326Sed      ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1630193326Sed                                   LHS.second, RHS.second, "cmp.i");
1631193326Sed    } else {
1632193326Sed      // Complex comparisons can only be equality comparisons.  As such, signed
1633193326Sed      // and unsigned opcodes are the same.
1634193326Sed      ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1635193326Sed                                   LHS.first, RHS.first, "cmp.r");
1636193326Sed      ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1637193326Sed                                   LHS.second, RHS.second, "cmp.i");
1638193326Sed    }
1639198092Srdivacky
1640193326Sed    if (E->getOpcode() == BinaryOperator::EQ) {
1641193326Sed      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
1642193326Sed    } else {
1643193326Sed      assert(E->getOpcode() == BinaryOperator::NE &&
1644193326Sed             "Complex comparison other than == or != ?");
1645193326Sed      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
1646193326Sed    }
1647193326Sed  }
1648193326Sed
1649193326Sed  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
1650193326Sed}
1651193326Sed
1652193326SedValue *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1653193326Sed  bool Ignore = TestAndClearIgnoreResultAssign();
1654193326Sed
1655193326Sed  // __block variables need to have the rhs evaluated first, plus this should
1656193326Sed  // improve codegen just a little.
1657193326Sed  Value *RHS = Visit(E->getRHS());
1658201361Srdivacky  LValue LHS = EmitCheckedLValue(E->getLHS());
1659198092Srdivacky
1660193326Sed  // Store the value into the LHS.  Bit-fields are handled specially
1661193326Sed  // because the result is altered by the store, i.e., [C99 6.5.16p1]
1662193326Sed  // 'An assignment expression has the value of the left operand after
1663193326Sed  // the assignment...'.
1664193326Sed  if (LHS.isBitfield()) {
1665193326Sed    if (!LHS.isVolatileQualified()) {
1666193326Sed      CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(),
1667193326Sed                                         &RHS);
1668193326Sed      return RHS;
1669193326Sed    } else
1670193326Sed      CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType());
1671193326Sed  } else
1672193326Sed    CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
1673193326Sed  if (Ignore)
1674193326Sed    return 0;
1675193326Sed  return EmitLoadOfLValue(LHS, E->getType());
1676193326Sed}
1677193326Sed
1678193326SedValue *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
1679198398Srdivacky  const llvm::Type *ResTy = ConvertType(E->getType());
1680198398Srdivacky
1681193326Sed  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
1682193326Sed  // If we have 1 && X, just emit X without inserting the control flow.
1683193326Sed  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1684193326Sed    if (Cond == 1) { // If we have 1 && X, just emit X.
1685193326Sed      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1686198398Srdivacky      // ZExt result to int or bool.
1687198398Srdivacky      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
1688193326Sed    }
1689198092Srdivacky
1690198398Srdivacky    // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
1691193326Sed    if (!CGF.ContainsLabel(E->getRHS()))
1692198398Srdivacky      return llvm::Constant::getNullValue(ResTy);
1693193326Sed  }
1694198092Srdivacky
1695193326Sed  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
1696193326Sed  llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
1697193326Sed
1698193326Sed  // Branch on the LHS first.  If it is false, go to the failure (cont) block.
1699193326Sed  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
1700193326Sed
1701193326Sed  // Any edges into the ContBlock are now from an (indeterminate number of)
1702193326Sed  // edges from this first condition.  All of these values will be false.  Start
1703193326Sed  // setting up the PHI node in the Cont Block for this.
1704198092Srdivacky  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
1705198092Srdivacky                                            "", ContBlock);
1706193326Sed  PN->reserveOperandSpace(2);  // Normal case, two inputs.
1707193326Sed  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1708193326Sed       PI != PE; ++PI)
1709198092Srdivacky    PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
1710198092Srdivacky
1711199990Srdivacky  CGF.StartConditionalBranch();
1712193326Sed  CGF.EmitBlock(RHSBlock);
1713193326Sed  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1714199990Srdivacky  CGF.FinishConditionalBranch();
1715198092Srdivacky
1716193326Sed  // Reaquire the RHS block, as there may be subblocks inserted.
1717193326Sed  RHSBlock = Builder.GetInsertBlock();
1718193326Sed
1719193326Sed  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
1720193326Sed  // into the phi node for the edge with the value of RHSCond.
1721193326Sed  CGF.EmitBlock(ContBlock);
1722193326Sed  PN->addIncoming(RHSCond, RHSBlock);
1723198092Srdivacky
1724193326Sed  // ZExt result to int.
1725198398Srdivacky  return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
1726193326Sed}
1727193326Sed
1728193326SedValue *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
1729198398Srdivacky  const llvm::Type *ResTy = ConvertType(E->getType());
1730198398Srdivacky
1731193326Sed  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
1732193326Sed  // If we have 0 || X, just emit X without inserting the control flow.
1733193326Sed  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1734193326Sed    if (Cond == -1) { // If we have 0 || X, just emit X.
1735193326Sed      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1736198398Srdivacky      // ZExt result to int or bool.
1737198398Srdivacky      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
1738193326Sed    }
1739198092Srdivacky
1740198398Srdivacky    // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
1741193326Sed    if (!CGF.ContainsLabel(E->getRHS()))
1742198398Srdivacky      return llvm::ConstantInt::get(ResTy, 1);
1743193326Sed  }
1744198092Srdivacky
1745193326Sed  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
1746193326Sed  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
1747198092Srdivacky
1748193326Sed  // Branch on the LHS first.  If it is true, go to the success (cont) block.
1749193326Sed  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
1750193326Sed
1751193326Sed  // Any edges into the ContBlock are now from an (indeterminate number of)
1752193326Sed  // edges from this first condition.  All of these values will be true.  Start
1753193326Sed  // setting up the PHI node in the Cont Block for this.
1754198092Srdivacky  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
1755198092Srdivacky                                            "", ContBlock);
1756193326Sed  PN->reserveOperandSpace(2);  // Normal case, two inputs.
1757193326Sed  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1758193326Sed       PI != PE; ++PI)
1759198092Srdivacky    PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
1760193326Sed
1761199990Srdivacky  CGF.StartConditionalBranch();
1762193576Sed
1763193326Sed  // Emit the RHS condition as a bool value.
1764193326Sed  CGF.EmitBlock(RHSBlock);
1765193326Sed  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1766198092Srdivacky
1767199990Srdivacky  CGF.FinishConditionalBranch();
1768198092Srdivacky
1769193326Sed  // Reaquire the RHS block, as there may be subblocks inserted.
1770193326Sed  RHSBlock = Builder.GetInsertBlock();
1771198092Srdivacky
1772193326Sed  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
1773193326Sed  // into the phi node for the edge with the value of RHSCond.
1774193326Sed  CGF.EmitBlock(ContBlock);
1775193326Sed  PN->addIncoming(RHSCond, RHSBlock);
1776198092Srdivacky
1777193326Sed  // ZExt result to int.
1778198398Srdivacky  return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
1779193326Sed}
1780193326Sed
1781193326SedValue *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
1782193326Sed  CGF.EmitStmt(E->getLHS());
1783193326Sed  CGF.EnsureInsertPoint();
1784193326Sed  return Visit(E->getRHS());
1785193326Sed}
1786193326Sed
1787193326Sed//===----------------------------------------------------------------------===//
1788193326Sed//                             Other Operators
1789193326Sed//===----------------------------------------------------------------------===//
1790193326Sed
1791193326Sed/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
1792193326Sed/// expression is cheap enough and side-effect-free enough to evaluate
1793193326Sed/// unconditionally instead of conditionally.  This is used to convert control
1794193326Sed/// flow into selects in some cases.
1795198893Srdivackystatic bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
1796198893Srdivacky                                                   CodeGenFunction &CGF) {
1797193326Sed  if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
1798198893Srdivacky    return isCheapEnoughToEvaluateUnconditionally(PE->getSubExpr(), CGF);
1799198092Srdivacky
1800193326Sed  // TODO: Allow anything we can constant fold to an integer or fp constant.
1801193326Sed  if (isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) ||
1802193326Sed      isa<FloatingLiteral>(E))
1803193326Sed    return true;
1804198092Srdivacky
1805193326Sed  // Non-volatile automatic variables too, to get "cond ? X : Y" where
1806193326Sed  // X and Y are local variables.
1807193326Sed  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
1808193326Sed    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
1809198893Srdivacky      if (VD->hasLocalStorage() && !(CGF.getContext()
1810198893Srdivacky                                     .getCanonicalType(VD->getType())
1811198893Srdivacky                                     .isVolatileQualified()))
1812193326Sed        return true;
1813198092Srdivacky
1814193326Sed  return false;
1815193326Sed}
1816193326Sed
1817193326Sed
1818193326SedValue *ScalarExprEmitter::
1819193326SedVisitConditionalOperator(const ConditionalOperator *E) {
1820193326Sed  TestAndClearIgnoreResultAssign();
1821193326Sed  // If the condition constant folds and can be elided, try to avoid emitting
1822193326Sed  // the condition and the dead arm.
1823193326Sed  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getCond())){
1824193326Sed    Expr *Live = E->getLHS(), *Dead = E->getRHS();
1825193326Sed    if (Cond == -1)
1826193326Sed      std::swap(Live, Dead);
1827198092Srdivacky
1828193326Sed    // If the dead side doesn't have labels we need, and if the Live side isn't
1829193326Sed    // the gnu missing ?: extension (which we could handle, but don't bother
1830193326Sed    // to), just emit the Live part.
1831193326Sed    if ((!Dead || !CGF.ContainsLabel(Dead)) &&  // No labels in dead part
1832193326Sed        Live)                                   // Live part isn't missing.
1833193326Sed      return Visit(Live);
1834193326Sed  }
1835198092Srdivacky
1836198092Srdivacky
1837193326Sed  // If this is a really simple expression (like x ? 4 : 5), emit this as a
1838193326Sed  // select instead of as control flow.  We can only do this if it is cheap and
1839193326Sed  // safe to evaluate the LHS and RHS unconditionally.
1840198893Srdivacky  if (E->getLHS() && isCheapEnoughToEvaluateUnconditionally(E->getLHS(),
1841198893Srdivacky                                                            CGF) &&
1842198893Srdivacky      isCheapEnoughToEvaluateUnconditionally(E->getRHS(), CGF)) {
1843193326Sed    llvm::Value *CondV = CGF.EvaluateExprAsBool(E->getCond());
1844193326Sed    llvm::Value *LHS = Visit(E->getLHS());
1845193326Sed    llvm::Value *RHS = Visit(E->getRHS());
1846193326Sed    return Builder.CreateSelect(CondV, LHS, RHS, "cond");
1847193326Sed  }
1848198092Srdivacky
1849198092Srdivacky
1850193326Sed  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1851193326Sed  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1852193326Sed  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1853193326Sed  Value *CondVal = 0;
1854193326Sed
1855198092Srdivacky  // If we don't have the GNU missing condition extension, emit a branch on bool
1856198092Srdivacky  // the normal way.
1857193326Sed  if (E->getLHS()) {
1858193326Sed    // Otherwise, just use EmitBranchOnBoolExpr to get small and simple code for
1859193326Sed    // the branch on bool.
1860193326Sed    CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
1861193326Sed  } else {
1862193326Sed    // Otherwise, for the ?: extension, evaluate the conditional and then
1863193326Sed    // convert it to bool the hard way.  We do this explicitly because we need
1864193326Sed    // the unconverted value for the missing middle value of the ?:.
1865193326Sed    CondVal = CGF.EmitScalarExpr(E->getCond());
1866198092Srdivacky
1867193326Sed    // In some cases, EmitScalarConversion will delete the "CondVal" expression
1868193326Sed    // if there are no extra uses (an optimization).  Inhibit this by making an
1869193326Sed    // extra dead use, because we're going to add a use of CondVal later.  We
1870193326Sed    // don't use the builder for this, because we don't want it to get optimized
1871193326Sed    // away.  This leaves dead code, but the ?: extension isn't common.
1872193326Sed    new llvm::BitCastInst(CondVal, CondVal->getType(), "dummy?:holder",
1873193326Sed                          Builder.GetInsertBlock());
1874198092Srdivacky
1875193326Sed    Value *CondBoolVal =
1876193326Sed      CGF.EmitScalarConversion(CondVal, E->getCond()->getType(),
1877193326Sed                               CGF.getContext().BoolTy);
1878193326Sed    Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock);
1879193326Sed  }
1880193576Sed
1881199990Srdivacky  CGF.StartConditionalBranch();
1882193326Sed  CGF.EmitBlock(LHSBlock);
1883198092Srdivacky
1884193326Sed  // Handle the GNU extension for missing LHS.
1885193326Sed  Value *LHS;
1886193326Sed  if (E->getLHS())
1887193326Sed    LHS = Visit(E->getLHS());
1888193326Sed  else    // Perform promotions, to handle cases like "short ?: int"
1889193326Sed    LHS = EmitScalarConversion(CondVal, E->getCond()->getType(), E->getType());
1890198092Srdivacky
1891199990Srdivacky  CGF.FinishConditionalBranch();
1892193326Sed  LHSBlock = Builder.GetInsertBlock();
1893193326Sed  CGF.EmitBranch(ContBlock);
1894198092Srdivacky
1895199990Srdivacky  CGF.StartConditionalBranch();
1896193326Sed  CGF.EmitBlock(RHSBlock);
1897198092Srdivacky
1898193326Sed  Value *RHS = Visit(E->getRHS());
1899199990Srdivacky  CGF.FinishConditionalBranch();
1900193326Sed  RHSBlock = Builder.GetInsertBlock();
1901193326Sed  CGF.EmitBranch(ContBlock);
1902198092Srdivacky
1903193326Sed  CGF.EmitBlock(ContBlock);
1904198092Srdivacky
1905200583Srdivacky  // If the LHS or RHS is a throw expression, it will be legitimately null.
1906200583Srdivacky  if (!LHS)
1907200583Srdivacky    return RHS;
1908200583Srdivacky  if (!RHS)
1909200583Srdivacky    return LHS;
1910198092Srdivacky
1911193326Sed  // Create a PHI node for the real part.
1912193326Sed  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
1913193326Sed  PN->reserveOperandSpace(2);
1914193326Sed  PN->addIncoming(LHS, LHSBlock);
1915193326Sed  PN->addIncoming(RHS, RHSBlock);
1916193326Sed  return PN;
1917193326Sed}
1918193326Sed
1919193326SedValue *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
1920193326Sed  return Visit(E->getChosenSubExpr(CGF.getContext()));
1921193326Sed}
1922193326Sed
1923193326SedValue *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1924193326Sed  llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
1925193326Sed  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
1926193326Sed
1927193326Sed  // If EmitVAArg fails, we fall back to the LLVM instruction.
1928198092Srdivacky  if (!ArgPtr)
1929193326Sed    return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
1930193326Sed
1931193326Sed  // FIXME Volatility.
1932193326Sed  return Builder.CreateLoad(ArgPtr);
1933193326Sed}
1934193326Sed
1935193326SedValue *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *BE) {
1936193326Sed  return CGF.BuildBlockLiteralTmp(BE);
1937193326Sed}
1938193326Sed
1939193326Sed//===----------------------------------------------------------------------===//
1940193326Sed//                         Entry Point into this File
1941193326Sed//===----------------------------------------------------------------------===//
1942193326Sed
1943198092Srdivacky/// EmitScalarExpr - Emit the computation of the specified expression of scalar
1944198092Srdivacky/// type, ignoring the result.
1945193326SedValue *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
1946193326Sed  assert(E && !hasAggregateLLVMType(E->getType()) &&
1947193326Sed         "Invalid scalar expression to emit");
1948198092Srdivacky
1949193326Sed  return ScalarExprEmitter(*this, IgnoreResultAssign)
1950193326Sed    .Visit(const_cast<Expr*>(E));
1951193326Sed}
1952193326Sed
1953193326Sed/// EmitScalarConversion - Emit a conversion from the specified type to the
1954193326Sed/// specified destination type, both of which are LLVM scalar types.
1955193326SedValue *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
1956193326Sed                                             QualType DstTy) {
1957193326Sed  assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
1958193326Sed         "Invalid scalar expression to emit");
1959193326Sed  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
1960193326Sed}
1961193326Sed
1962198092Srdivacky/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
1963198092Srdivacky/// type to the specified destination type, where the destination type is an
1964198092Srdivacky/// LLVM scalar type.
1965193326SedValue *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
1966193326Sed                                                      QualType SrcTy,
1967193326Sed                                                      QualType DstTy) {
1968193326Sed  assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
1969193326Sed         "Invalid complex -> scalar conversion");
1970193326Sed  return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
1971193326Sed                                                                DstTy);
1972193326Sed}
1973193326Sed
1974193326SedValue *CodeGenFunction::EmitShuffleVector(Value* V1, Value *V2, ...) {
1975193326Sed  assert(V1->getType() == V2->getType() &&
1976193326Sed         "Vector operands must be of the same type");
1977198092Srdivacky  unsigned NumElements =
1978193326Sed    cast<llvm::VectorType>(V1->getType())->getNumElements();
1979198092Srdivacky
1980193326Sed  va_list va;
1981193326Sed  va_start(va, V2);
1982198092Srdivacky
1983193326Sed  llvm::SmallVector<llvm::Constant*, 16> Args;
1984193326Sed  for (unsigned i = 0; i < NumElements; i++) {
1985193326Sed    int n = va_arg(va, int);
1986198092Srdivacky    assert(n >= 0 && n < (int)NumElements * 2 &&
1987193326Sed           "Vector shuffle index out of bounds!");
1988198092Srdivacky    Args.push_back(llvm::ConstantInt::get(
1989198092Srdivacky                                         llvm::Type::getInt32Ty(VMContext), n));
1990193326Sed  }
1991198092Srdivacky
1992193326Sed  const char *Name = va_arg(va, const char *);
1993193326Sed  va_end(va);
1994198092Srdivacky
1995193326Sed  llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
1996198092Srdivacky
1997193326Sed  return Builder.CreateShuffleVector(V1, V2, Mask, Name);
1998193326Sed}
1999193326Sed
2000198092Srdivackyllvm::Value *CodeGenFunction::EmitVector(llvm::Value * const *Vals,
2001193326Sed                                         unsigned NumVals, bool isSplat) {
2002193326Sed  llvm::Value *Vec
2003193326Sed    = llvm::UndefValue::get(llvm::VectorType::get(Vals[0]->getType(), NumVals));
2004198092Srdivacky
2005193326Sed  for (unsigned i = 0, e = NumVals; i != e; ++i) {
2006193326Sed    llvm::Value *Val = isSplat ? Vals[0] : Vals[i];
2007198092Srdivacky    llvm::Value *Idx = llvm::ConstantInt::get(
2008198092Srdivacky                                          llvm::Type::getInt32Ty(VMContext), i);
2009193326Sed    Vec = Builder.CreateInsertElement(Vec, Val, Idx, "tmp");
2010193326Sed  }
2011198092Srdivacky
2012198092Srdivacky  return Vec;
2013193326Sed}
2014200583Srdivacky
2015200583SrdivackyLValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
2016200583Srdivacky  llvm::Value *V;
2017200583Srdivacky  // object->isa or (*object).isa
2018200583Srdivacky  // Generate code as for: *(Class*)object
2019200583Srdivacky  Expr *BaseExpr = E->getBase();
2020200583Srdivacky  if (E->isArrow())
2021200583Srdivacky    V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
2022200583Srdivacky  else
2023200583Srdivacky    V  = EmitLValue(BaseExpr).getAddress();
2024200583Srdivacky
2025200583Srdivacky  // build Class* type
2026200583Srdivacky  const llvm::Type *ClassPtrTy = ConvertType(E->getType());
2027200583Srdivacky  ClassPtrTy = ClassPtrTy->getPointerTo();
2028200583Srdivacky  V = Builder.CreateBitCast(V, ClassPtrTy);
2029200583Srdivacky  LValue LV = LValue::MakeAddr(V, MakeQualifiers(E->getType()));
2030200583Srdivacky  return LV;
2031200583Srdivacky}
2032200583Srdivacky
2033