1263509Sdim//===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2193326Sed//
3193326Sed//                     The LLVM Compiler Infrastructure
4193326Sed//
5193326Sed// This file is distributed under the University of Illinois Open Source
6193326Sed// License. See LICENSE.TXT for details.
7193326Sed//
8193326Sed//===----------------------------------------------------------------------===//
9193326Sed//
10193326Sed// These classes wrap the information about a call or function
11193326Sed// definition used to handle ABI compliancy.
12193326Sed//
13193326Sed//===----------------------------------------------------------------------===//
14193326Sed
15193326Sed#include "CGCall.h"
16252723Sdim#include "ABIInfo.h"
17212904Sdim#include "CGCXXABI.h"
18193326Sed#include "CodeGenFunction.h"
19193326Sed#include "CodeGenModule.h"
20235633Sdim#include "TargetInfo.h"
21193326Sed#include "clang/AST/Decl.h"
22193326Sed#include "clang/AST/DeclCXX.h"
23193326Sed#include "clang/AST/DeclObjC.h"
24252723Sdim#include "clang/Basic/TargetInfo.h"
25263509Sdim#include "clang/CodeGen/CGFunctionInfo.h"
26210299Sed#include "clang/Frontend/CodeGenOptions.h"
27252723Sdim#include "llvm/ADT/StringExtras.h"
28252723Sdim#include "llvm/IR/Attributes.h"
29252723Sdim#include "llvm/IR/DataLayout.h"
30252723Sdim#include "llvm/IR/InlineAsm.h"
31252723Sdim#include "llvm/MC/SubtargetFeature.h"
32193326Sed#include "llvm/Support/CallSite.h"
33224145Sdim#include "llvm/Transforms/Utils/Local.h"
34193326Sedusing namespace clang;
35193326Sedusing namespace CodeGen;
36193326Sed
37193326Sed/***/
38193326Sed
39203955Srdivackystatic unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
40203955Srdivacky  switch (CC) {
41203955Srdivacky  default: return llvm::CallingConv::C;
42203955Srdivacky  case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
43203955Srdivacky  case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
44208600Srdivacky  case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
45256382Sdim  case CC_X86_64Win64: return llvm::CallingConv::X86_64_Win64;
46256382Sdim  case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
47221345Sdim  case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
48221345Sdim  case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
49252723Sdim  case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
50212904Sdim  // TODO: add support for CC_X86Pascal to llvm
51203955Srdivacky  }
52203955Srdivacky}
53203955Srdivacky
54204643Srdivacky/// Derives the 'this' type for codegen purposes, i.e. ignoring method
55204643Srdivacky/// qualification.
56204643Srdivacky/// FIXME: address space qualification?
57204643Srdivackystatic CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
58204643Srdivacky  QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
59204643Srdivacky  return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
60193326Sed}
61193326Sed
62204643Srdivacky/// Returns the canonical formal type of the given C++ method.
63204643Srdivackystatic CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
64204643Srdivacky  return MD->getType()->getCanonicalTypeUnqualified()
65204643Srdivacky           .getAs<FunctionProtoType>();
66204643Srdivacky}
67204643Srdivacky
68204643Srdivacky/// Returns the "extra-canonicalized" return type, which discards
69204643Srdivacky/// qualifiers on the return type.  Codegen doesn't care about them,
70204643Srdivacky/// and it makes ABI code a little easier to be able to assume that
71204643Srdivacky/// all parameter and return types are top-level unqualified.
72204643Srdivackystatic CanQualType GetReturnType(QualType RetTy) {
73204643Srdivacky  return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
74204643Srdivacky}
75204643Srdivacky
76245431Sdim/// Arrange the argument and result information for a value of the given
77245431Sdim/// unprototyped freestanding function type.
78204643Srdivackyconst CGFunctionInfo &
79245431SdimCodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
80235633Sdim  // When translating an unprototyped function type, always use a
81235633Sdim  // variadic type.
82245431Sdim  return arrangeLLVMFunctionInfo(FTNP->getResultType().getUnqualifiedType(),
83252723Sdim                                 None, FTNP->getExtInfo(), RequiredArgs(0));
84204643Srdivacky}
85204643Srdivacky
86245431Sdim/// Arrange the LLVM function layout for a value of the given function
87245431Sdim/// type, on top of any implicit parameters already stored.  Use the
88245431Sdim/// given ExtInfo instead of the ExtInfo from the function type.
89245431Sdimstatic const CGFunctionInfo &arrangeLLVMFunctionInfo(CodeGenTypes &CGT,
90245431Sdim                                       SmallVectorImpl<CanQualType> &prefix,
91245431Sdim                                             CanQual<FunctionProtoType> FTP,
92245431Sdim                                              FunctionType::ExtInfo extInfo) {
93245431Sdim  RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
94193326Sed  // FIXME: Kill copy.
95193326Sed  for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
96245431Sdim    prefix.push_back(FTP->getArgType(i));
97235633Sdim  CanQualType resultType = FTP->getResultType().getUnqualifiedType();
98245431Sdim  return CGT.arrangeLLVMFunctionInfo(resultType, prefix, extInfo, required);
99193326Sed}
100193326Sed
101245431Sdim/// Arrange the argument and result information for a free function (i.e.
102245431Sdim/// not a C++ or ObjC instance method) of the given type.
103245431Sdimstatic const CGFunctionInfo &arrangeFreeFunctionType(CodeGenTypes &CGT,
104245431Sdim                                      SmallVectorImpl<CanQualType> &prefix,
105245431Sdim                                            CanQual<FunctionProtoType> FTP) {
106245431Sdim  return arrangeLLVMFunctionInfo(CGT, prefix, FTP, FTP->getExtInfo());
107245431Sdim}
108245431Sdim
109245431Sdim/// Arrange the argument and result information for a free function (i.e.
110245431Sdim/// not a C++ or ObjC instance method) of the given type.
111245431Sdimstatic const CGFunctionInfo &arrangeCXXMethodType(CodeGenTypes &CGT,
112245431Sdim                                      SmallVectorImpl<CanQualType> &prefix,
113245431Sdim                                            CanQual<FunctionProtoType> FTP) {
114245431Sdim  FunctionType::ExtInfo extInfo = FTP->getExtInfo();
115245431Sdim  return arrangeLLVMFunctionInfo(CGT, prefix, FTP, extInfo);
116245431Sdim}
117245431Sdim
118235633Sdim/// Arrange the argument and result information for a value of the
119245431Sdim/// given freestanding function type.
120204643Srdivackyconst CGFunctionInfo &
121245431SdimCodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
122235633Sdim  SmallVector<CanQualType, 16> argTypes;
123245431Sdim  return ::arrangeFreeFunctionType(*this, argTypes, FTP);
124204643Srdivacky}
125204643Srdivacky
126203955Srdivackystatic CallingConv getCallingConventionForDecl(const Decl *D) {
127198092Srdivacky  // Set the appropriate calling convention for the Function.
128198092Srdivacky  if (D->hasAttr<StdCallAttr>())
129203955Srdivacky    return CC_X86StdCall;
130198092Srdivacky
131198092Srdivacky  if (D->hasAttr<FastCallAttr>())
132203955Srdivacky    return CC_X86FastCall;
133198092Srdivacky
134208600Srdivacky  if (D->hasAttr<ThisCallAttr>())
135208600Srdivacky    return CC_X86ThisCall;
136208600Srdivacky
137212904Sdim  if (D->hasAttr<PascalAttr>())
138212904Sdim    return CC_X86Pascal;
139212904Sdim
140221345Sdim  if (PcsAttr *PCS = D->getAttr<PcsAttr>())
141221345Sdim    return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
142221345Sdim
143245431Sdim  if (D->hasAttr<PnaclCallAttr>())
144245431Sdim    return CC_PnaclCall;
145245431Sdim
146252723Sdim  if (D->hasAttr<IntelOclBiccAttr>())
147252723Sdim    return CC_IntelOclBicc;
148252723Sdim
149203955Srdivacky  return CC_C;
150198092Srdivacky}
151198092Srdivacky
152235633Sdim/// Arrange the argument and result information for a call to an
153235633Sdim/// unknown C++ non-static member function of the given abstract type.
154263509Sdim/// (Zero value of RD means we don't have any meaningful "this" argument type,
155263509Sdim///  so fall back to a generic pointer type).
156235633Sdim/// The member function must be an ordinary function, i.e. not a
157235633Sdim/// constructor or destructor.
158235633Sdimconst CGFunctionInfo &
159235633SdimCodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
160235633Sdim                                   const FunctionProtoType *FTP) {
161235633Sdim  SmallVector<CanQualType, 16> argTypes;
162204643Srdivacky
163198092Srdivacky  // Add the 'this' pointer.
164263509Sdim  if (RD)
165263509Sdim    argTypes.push_back(GetThisType(Context, RD));
166263509Sdim  else
167263509Sdim    argTypes.push_back(Context.VoidPtrTy);
168204643Srdivacky
169245431Sdim  return ::arrangeCXXMethodType(*this, argTypes,
170204643Srdivacky              FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
171198092Srdivacky}
172198092Srdivacky
173235633Sdim/// Arrange the argument and result information for a declaration or
174235633Sdim/// definition of the given C++ non-static member function.  The
175235633Sdim/// member function must be an ordinary function, i.e. not a
176235633Sdim/// constructor or destructor.
177235633Sdimconst CGFunctionInfo &
178235633SdimCodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
179263509Sdim  assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
180212904Sdim  assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
181212904Sdim
182235633Sdim  CanQual<FunctionProtoType> prototype = GetFormalType(MD);
183198092Srdivacky
184235633Sdim  if (MD->isInstance()) {
185235633Sdim    // The abstract case is perfectly fine.
186263509Sdim    const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
187263509Sdim    return arrangeCXXMethodType(ThisType, prototype.getTypePtr());
188235633Sdim  }
189235633Sdim
190245431Sdim  return arrangeFreeFunctionType(prototype);
191193326Sed}
192193326Sed
193235633Sdim/// Arrange the argument and result information for a declaration
194235633Sdim/// or definition to the given constructor variant.
195235633Sdimconst CGFunctionInfo &
196235633SdimCodeGenTypes::arrangeCXXConstructorDeclaration(const CXXConstructorDecl *D,
197235633Sdim                                               CXXCtorType ctorKind) {
198235633Sdim  SmallVector<CanQualType, 16> argTypes;
199235633Sdim  argTypes.push_back(GetThisType(Context, D->getParent()));
200199990Srdivacky
201263509Sdim  GlobalDecl GD(D, ctorKind);
202263509Sdim  CanQualType resultType =
203263509Sdim    TheCXXABI.HasThisReturn(GD) ? argTypes.front() : Context.VoidTy;
204263509Sdim
205235633Sdim  TheCXXABI.BuildConstructorSignature(D, ctorKind, resultType, argTypes);
206204643Srdivacky
207212904Sdim  CanQual<FunctionProtoType> FTP = GetFormalType(D);
208212904Sdim
209235633Sdim  RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, argTypes.size());
210235633Sdim
211212904Sdim  // Add the formal parameters.
212212904Sdim  for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
213235633Sdim    argTypes.push_back(FTP->getArgType(i));
214212904Sdim
215245431Sdim  FunctionType::ExtInfo extInfo = FTP->getExtInfo();
216245431Sdim  return arrangeLLVMFunctionInfo(resultType, argTypes, extInfo, required);
217199990Srdivacky}
218199990Srdivacky
219235633Sdim/// Arrange the argument and result information for a declaration,
220235633Sdim/// definition, or call to the given destructor variant.  It so
221235633Sdim/// happens that all three cases produce the same information.
222235633Sdimconst CGFunctionInfo &
223235633SdimCodeGenTypes::arrangeCXXDestructor(const CXXDestructorDecl *D,
224235633Sdim                                   CXXDtorType dtorKind) {
225235633Sdim  SmallVector<CanQualType, 2> argTypes;
226235633Sdim  argTypes.push_back(GetThisType(Context, D->getParent()));
227204643Srdivacky
228263509Sdim  GlobalDecl GD(D, dtorKind);
229263509Sdim  CanQualType resultType =
230263509Sdim    TheCXXABI.HasThisReturn(GD) ? argTypes.front() : Context.VoidTy;
231263509Sdim
232235633Sdim  TheCXXABI.BuildDestructorSignature(D, dtorKind, resultType, argTypes);
233212904Sdim
234212904Sdim  CanQual<FunctionProtoType> FTP = GetFormalType(D);
235212904Sdim  assert(FTP->getNumArgs() == 0 && "dtor with formal parameters");
236245431Sdim  assert(FTP->isVariadic() == 0 && "dtor with formal parameters");
237212904Sdim
238245431Sdim  FunctionType::ExtInfo extInfo = FTP->getExtInfo();
239245431Sdim  return arrangeLLVMFunctionInfo(resultType, argTypes, extInfo,
240245431Sdim                                 RequiredArgs::All);
241199990Srdivacky}
242199990Srdivacky
243235633Sdim/// Arrange the argument and result information for the declaration or
244235633Sdim/// definition of the given function.
245235633Sdimconst CGFunctionInfo &
246235633SdimCodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
247193326Sed  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
248193326Sed    if (MD->isInstance())
249235633Sdim      return arrangeCXXMethodDeclaration(MD);
250198092Srdivacky
251204643Srdivacky  CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
252235633Sdim
253204643Srdivacky  assert(isa<FunctionType>(FTy));
254235633Sdim
255235633Sdim  // When declaring a function without a prototype, always use a
256235633Sdim  // non-variadic type.
257235633Sdim  if (isa<FunctionNoProtoType>(FTy)) {
258235633Sdim    CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>();
259252723Sdim    return arrangeLLVMFunctionInfo(noProto->getResultType(), None,
260252723Sdim                                   noProto->getExtInfo(), RequiredArgs::All);
261235633Sdim  }
262235633Sdim
263204643Srdivacky  assert(isa<FunctionProtoType>(FTy));
264245431Sdim  return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>());
265193326Sed}
266193326Sed
267235633Sdim/// Arrange the argument and result information for the declaration or
268235633Sdim/// definition of an Objective-C method.
269235633Sdimconst CGFunctionInfo &
270235633SdimCodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
271235633Sdim  // It happens that this is the same as a call with no optional
272235633Sdim  // arguments, except also using the formal 'self' type.
273235633Sdim  return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
274235633Sdim}
275235633Sdim
276235633Sdim/// Arrange the argument and result information for the function type
277235633Sdim/// through which to perform a send to the given Objective-C method,
278235633Sdim/// using the given receiver type.  The receiver type is not always
279235633Sdim/// the 'self' type of the method or even an Objective-C pointer type.
280235633Sdim/// This is *not* the right method for actually performing such a
281235633Sdim/// message send, due to the possibility of optional arguments.
282235633Sdimconst CGFunctionInfo &
283235633SdimCodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
284235633Sdim                                              QualType receiverType) {
285235633Sdim  SmallVector<CanQualType, 16> argTys;
286235633Sdim  argTys.push_back(Context.getCanonicalParamType(receiverType));
287235633Sdim  argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
288193326Sed  // FIXME: Kill copy?
289226890Sdim  for (ObjCMethodDecl::param_const_iterator i = MD->param_begin(),
290204643Srdivacky         e = MD->param_end(); i != e; ++i) {
291235633Sdim    argTys.push_back(Context.getCanonicalParamType((*i)->getType()));
292204643Srdivacky  }
293224145Sdim
294224145Sdim  FunctionType::ExtInfo einfo;
295224145Sdim  einfo = einfo.withCallingConv(getCallingConventionForDecl(MD));
296224145Sdim
297235633Sdim  if (getContext().getLangOpts().ObjCAutoRefCount &&
298224145Sdim      MD->hasAttr<NSReturnsRetainedAttr>())
299224145Sdim    einfo = einfo.withProducesResult(true);
300224145Sdim
301235633Sdim  RequiredArgs required =
302235633Sdim    (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
303235633Sdim
304245431Sdim  return arrangeLLVMFunctionInfo(GetReturnType(MD->getResultType()), argTys,
305245431Sdim                                 einfo, required);
306193326Sed}
307193326Sed
308235633Sdimconst CGFunctionInfo &
309235633SdimCodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
310203955Srdivacky  // FIXME: Do we need to handle ObjCMethodDecl?
311203955Srdivacky  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
312218893Sdim
313203955Srdivacky  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
314235633Sdim    return arrangeCXXConstructorDeclaration(CD, GD.getCtorType());
315203955Srdivacky
316203955Srdivacky  if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
317235633Sdim    return arrangeCXXDestructor(DD, GD.getDtorType());
318218893Sdim
319235633Sdim  return arrangeFunctionDeclaration(FD);
320203955Srdivacky}
321203955Srdivacky
322252723Sdim/// Arrange a call as unto a free function, except possibly with an
323252723Sdim/// additional number of formal parameters considered required.
324252723Sdimstatic const CGFunctionInfo &
325252723SdimarrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
326263509Sdim                            CodeGenModule &CGM,
327252723Sdim                            const CallArgList &args,
328252723Sdim                            const FunctionType *fnType,
329252723Sdim                            unsigned numExtraRequiredArgs) {
330252723Sdim  assert(args.size() >= numExtraRequiredArgs);
331252723Sdim
332252723Sdim  // In most cases, there are no optional arguments.
333252723Sdim  RequiredArgs required = RequiredArgs::All;
334252723Sdim
335252723Sdim  // If we have a variadic prototype, the required arguments are the
336252723Sdim  // extra prefix plus the arguments in the prototype.
337252723Sdim  if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
338252723Sdim    if (proto->isVariadic())
339252723Sdim      required = RequiredArgs(proto->getNumArgs() + numExtraRequiredArgs);
340252723Sdim
341252723Sdim  // If we don't have a prototype at all, but we're supposed to
342252723Sdim  // explicitly use the variadic convention for unprototyped calls,
343252723Sdim  // treat all of the arguments as required but preserve the nominal
344252723Sdim  // possibility of variadics.
345263509Sdim  } else if (CGM.getTargetCodeGenInfo()
346263509Sdim                .isNoProtoCallVariadic(args,
347263509Sdim                                       cast<FunctionNoProtoType>(fnType))) {
348252723Sdim    required = RequiredArgs(args.size());
349252723Sdim  }
350252723Sdim
351252723Sdim  return CGT.arrangeFreeFunctionCall(fnType->getResultType(), args,
352252723Sdim                                     fnType->getExtInfo(), required);
353252723Sdim}
354252723Sdim
355235633Sdim/// Figure out the rules for calling a function with the given formal
356235633Sdim/// type using the given arguments.  The arguments are necessary
357235633Sdim/// because the function might be unprototyped, in which case it's
358235633Sdim/// target-dependent in crazy ways.
359235633Sdimconst CGFunctionInfo &
360245431SdimCodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
361245431Sdim                                      const FunctionType *fnType) {
362263509Sdim  return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 0);
363252723Sdim}
364235633Sdim
365252723Sdim/// A block function call is essentially a free-function call with an
366252723Sdim/// extra implicit argument.
367252723Sdimconst CGFunctionInfo &
368252723SdimCodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
369252723Sdim                                       const FunctionType *fnType) {
370263509Sdim  return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1);
371235633Sdim}
372235633Sdim
373235633Sdimconst CGFunctionInfo &
374245431SdimCodeGenTypes::arrangeFreeFunctionCall(QualType resultType,
375245431Sdim                                      const CallArgList &args,
376245431Sdim                                      FunctionType::ExtInfo info,
377245431Sdim                                      RequiredArgs required) {
378193326Sed  // FIXME: Kill copy.
379235633Sdim  SmallVector<CanQualType, 16> argTypes;
380235633Sdim  for (CallArgList::const_iterator i = args.begin(), e = args.end();
381193326Sed       i != e; ++i)
382235633Sdim    argTypes.push_back(Context.getCanonicalParamType(i->Ty));
383245431Sdim  return arrangeLLVMFunctionInfo(GetReturnType(resultType), argTypes, info,
384245431Sdim                                 required);
385193326Sed}
386193326Sed
387245431Sdim/// Arrange a call to a C++ method, passing the given arguments.
388235633Sdimconst CGFunctionInfo &
389245431SdimCodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
390245431Sdim                                   const FunctionProtoType *FPT,
391245431Sdim                                   RequiredArgs required) {
392245431Sdim  // FIXME: Kill copy.
393245431Sdim  SmallVector<CanQualType, 16> argTypes;
394245431Sdim  for (CallArgList::const_iterator i = args.begin(), e = args.end();
395245431Sdim       i != e; ++i)
396245431Sdim    argTypes.push_back(Context.getCanonicalParamType(i->Ty));
397245431Sdim
398245431Sdim  FunctionType::ExtInfo info = FPT->getExtInfo();
399245431Sdim  return arrangeLLVMFunctionInfo(GetReturnType(FPT->getResultType()),
400245431Sdim                                 argTypes, info, required);
401245431Sdim}
402245431Sdim
403245431Sdimconst CGFunctionInfo &
404235633SdimCodeGenTypes::arrangeFunctionDeclaration(QualType resultType,
405235633Sdim                                         const FunctionArgList &args,
406235633Sdim                                         const FunctionType::ExtInfo &info,
407235633Sdim                                         bool isVariadic) {
408193326Sed  // FIXME: Kill copy.
409235633Sdim  SmallVector<CanQualType, 16> argTypes;
410235633Sdim  for (FunctionArgList::const_iterator i = args.begin(), e = args.end();
411193326Sed       i != e; ++i)
412235633Sdim    argTypes.push_back(Context.getCanonicalParamType((*i)->getType()));
413235633Sdim
414235633Sdim  RequiredArgs required =
415235633Sdim    (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All);
416245431Sdim  return arrangeLLVMFunctionInfo(GetReturnType(resultType), argTypes, info,
417245431Sdim                                 required);
418193326Sed}
419193326Sed
420235633Sdimconst CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
421252723Sdim  return arrangeLLVMFunctionInfo(getContext().VoidTy, None,
422245431Sdim                                 FunctionType::ExtInfo(), RequiredArgs::All);
423221345Sdim}
424221345Sdim
425235633Sdim/// Arrange the argument and result information for an abstract value
426235633Sdim/// of a given function type.  This is the method which all of the
427235633Sdim/// above functions ultimately defer to.
428235633Sdimconst CGFunctionInfo &
429245431SdimCodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
430245431Sdim                                      ArrayRef<CanQualType> argTypes,
431245431Sdim                                      FunctionType::ExtInfo info,
432245431Sdim                                      RequiredArgs required) {
433204643Srdivacky#ifndef NDEBUG
434235633Sdim  for (ArrayRef<CanQualType>::const_iterator
435235633Sdim         I = argTypes.begin(), E = argTypes.end(); I != E; ++I)
436204643Srdivacky    assert(I->isCanonicalAsParam());
437204643Srdivacky#endif
438204643Srdivacky
439235633Sdim  unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
440203955Srdivacky
441193326Sed  // Lookup or create unique function info.
442193326Sed  llvm::FoldingSetNodeID ID;
443235633Sdim  CGFunctionInfo::Profile(ID, info, required, resultType, argTypes);
444193326Sed
445235633Sdim  void *insertPos = 0;
446235633Sdim  CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
447193326Sed  if (FI)
448193326Sed    return *FI;
449193326Sed
450235633Sdim  // Construct the function info.  We co-allocate the ArgInfos.
451235633Sdim  FI = CGFunctionInfo::create(CC, info, resultType, argTypes, required);
452235633Sdim  FunctionInfos.InsertNode(FI, insertPos);
453193326Sed
454235633Sdim  bool inserted = FunctionsBeingProcessed.insert(FI); (void)inserted;
455235633Sdim  assert(inserted && "Recursively being processed?");
456224145Sdim
457212904Sdim  // Compute ABI information.
458212904Sdim  getABIInfo().computeInfo(*FI);
459218893Sdim
460212904Sdim  // Loop over all of the computed argument and return value info.  If any of
461212904Sdim  // them are direct or extend without a specified coerce type, specify the
462212904Sdim  // default now.
463235633Sdim  ABIArgInfo &retInfo = FI->getReturnInfo();
464235633Sdim  if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == 0)
465235633Sdim    retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
466218893Sdim
467212904Sdim  for (CGFunctionInfo::arg_iterator I = FI->arg_begin(), E = FI->arg_end();
468212904Sdim       I != E; ++I)
469212904Sdim    if (I->info.canHaveCoerceToType() && I->info.getCoerceToType() == 0)
470224145Sdim      I->info.setCoerceToType(ConvertType(I->type));
471193326Sed
472235633Sdim  bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
473235633Sdim  assert(erased && "Not in set?");
474224145Sdim
475193326Sed  return *FI;
476193326Sed}
477193326Sed
478235633SdimCGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
479235633Sdim                                       const FunctionType::ExtInfo &info,
480235633Sdim                                       CanQualType resultType,
481235633Sdim                                       ArrayRef<CanQualType> argTypes,
482235633Sdim                                       RequiredArgs required) {
483235633Sdim  void *buffer = operator new(sizeof(CGFunctionInfo) +
484235633Sdim                              sizeof(ArgInfo) * (argTypes.size() + 1));
485235633Sdim  CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
486235633Sdim  FI->CallingConvention = llvmCC;
487235633Sdim  FI->EffectiveCallingConvention = llvmCC;
488235633Sdim  FI->ASTCallingConvention = info.getCC();
489235633Sdim  FI->NoReturn = info.getNoReturn();
490235633Sdim  FI->ReturnsRetained = info.getProducesResult();
491235633Sdim  FI->Required = required;
492235633Sdim  FI->HasRegParm = info.getHasRegParm();
493235633Sdim  FI->RegParm = info.getRegParm();
494235633Sdim  FI->NumArgs = argTypes.size();
495235633Sdim  FI->getArgsBuffer()[0].type = resultType;
496235633Sdim  for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
497235633Sdim    FI->getArgsBuffer()[i + 1].type = argTypes[i];
498235633Sdim  return FI;
499193326Sed}
500193326Sed
501193326Sed/***/
502193326Sed
503223017Sdimvoid CodeGenTypes::GetExpandedTypes(QualType type,
504226890Sdim                     SmallVectorImpl<llvm::Type*> &expandedTypes) {
505226890Sdim  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(type)) {
506226890Sdim    uint64_t NumElts = AT->getSize().getZExtValue();
507226890Sdim    for (uint64_t Elt = 0; Elt < NumElts; ++Elt)
508226890Sdim      GetExpandedTypes(AT->getElementType(), expandedTypes);
509235633Sdim  } else if (const RecordType *RT = type->getAs<RecordType>()) {
510226890Sdim    const RecordDecl *RD = RT->getDecl();
511226890Sdim    assert(!RD->hasFlexibleArrayMember() &&
512226890Sdim           "Cannot expand structure with flexible array.");
513235633Sdim    if (RD->isUnion()) {
514235633Sdim      // Unions can be here only in degenerative cases - all the fields are same
515235633Sdim      // after flattening. Thus we have to use the "largest" field.
516235633Sdim      const FieldDecl *LargestFD = 0;
517235633Sdim      CharUnits UnionSize = CharUnits::Zero();
518235633Sdim
519235633Sdim      for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
520235633Sdim           i != e; ++i) {
521235633Sdim        const FieldDecl *FD = *i;
522235633Sdim        assert(!FD->isBitField() &&
523235633Sdim               "Cannot expand structure with bit-field members.");
524235633Sdim        CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
525235633Sdim        if (UnionSize < FieldSize) {
526235633Sdim          UnionSize = FieldSize;
527235633Sdim          LargestFD = FD;
528235633Sdim        }
529235633Sdim      }
530235633Sdim      if (LargestFD)
531235633Sdim        GetExpandedTypes(LargestFD->getType(), expandedTypes);
532235633Sdim    } else {
533235633Sdim      for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
534235633Sdim           i != e; ++i) {
535245431Sdim        assert(!i->isBitField() &&
536235633Sdim               "Cannot expand structure with bit-field members.");
537245431Sdim        GetExpandedTypes(i->getType(), expandedTypes);
538235633Sdim      }
539226890Sdim    }
540226890Sdim  } else if (const ComplexType *CT = type->getAs<ComplexType>()) {
541226890Sdim    llvm::Type *EltTy = ConvertType(CT->getElementType());
542226890Sdim    expandedTypes.push_back(EltTy);
543226890Sdim    expandedTypes.push_back(EltTy);
544226890Sdim  } else
545226890Sdim    expandedTypes.push_back(ConvertType(type));
546193326Sed}
547193326Sed
548198092Srdivackyllvm::Function::arg_iterator
549193326SedCodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
550193326Sed                                    llvm::Function::arg_iterator AI) {
551198092Srdivacky  assert(LV.isSimple() &&
552198092Srdivacky         "Unexpected non-simple lvalue during struct expansion.");
553226890Sdim
554226890Sdim  if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
555226890Sdim    unsigned NumElts = AT->getSize().getZExtValue();
556226890Sdim    QualType EltTy = AT->getElementType();
557226890Sdim    for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
558235633Sdim      llvm::Value *EltAddr = Builder.CreateConstGEP2_32(LV.getAddress(), 0, Elt);
559226890Sdim      LValue LV = MakeAddrLValue(EltAddr, EltTy);
560226890Sdim      AI = ExpandTypeFromArgs(EltTy, LV, AI);
561226890Sdim    }
562235633Sdim  } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
563226890Sdim    RecordDecl *RD = RT->getDecl();
564235633Sdim    if (RD->isUnion()) {
565235633Sdim      // Unions can be here only in degenerative cases - all the fields are same
566235633Sdim      // after flattening. Thus we have to use the "largest" field.
567235633Sdim      const FieldDecl *LargestFD = 0;
568235633Sdim      CharUnits UnionSize = CharUnits::Zero();
569193326Sed
570235633Sdim      for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
571235633Sdim           i != e; ++i) {
572235633Sdim        const FieldDecl *FD = *i;
573235633Sdim        assert(!FD->isBitField() &&
574235633Sdim               "Cannot expand structure with bit-field members.");
575235633Sdim        CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
576235633Sdim        if (UnionSize < FieldSize) {
577235633Sdim          UnionSize = FieldSize;
578235633Sdim          LargestFD = FD;
579235633Sdim        }
580235633Sdim      }
581235633Sdim      if (LargestFD) {
582235633Sdim        // FIXME: What are the right qualifiers here?
583235633Sdim        LValue SubLV = EmitLValueForField(LV, LargestFD);
584235633Sdim        AI = ExpandTypeFromArgs(LargestFD->getType(), SubLV, AI);
585235633Sdim      }
586235633Sdim    } else {
587235633Sdim      for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
588235633Sdim           i != e; ++i) {
589235633Sdim        FieldDecl *FD = *i;
590235633Sdim        QualType FT = FD->getType();
591235633Sdim
592235633Sdim        // FIXME: What are the right qualifiers here?
593235633Sdim        LValue SubLV = EmitLValueForField(LV, FD);
594235633Sdim        AI = ExpandTypeFromArgs(FT, SubLV, AI);
595235633Sdim      }
596193326Sed    }
597226890Sdim  } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
598226890Sdim    QualType EltTy = CT->getElementType();
599235633Sdim    llvm::Value *RealAddr = Builder.CreateStructGEP(LV.getAddress(), 0, "real");
600226890Sdim    EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(RealAddr, EltTy));
601235633Sdim    llvm::Value *ImagAddr = Builder.CreateStructGEP(LV.getAddress(), 1, "imag");
602226890Sdim    EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(ImagAddr, EltTy));
603226890Sdim  } else {
604226890Sdim    EmitStoreThroughLValue(RValue::get(AI), LV);
605226890Sdim    ++AI;
606193326Sed  }
607193326Sed
608193326Sed  return AI;
609193326Sed}
610193326Sed
611210299Sed/// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
612210299Sed/// accessing some number of bytes out of it, try to gep into the struct to get
613210299Sed/// at its inner goodness.  Dive as deep as possible without entering an element
614210299Sed/// with an in-memory size smaller than DstSize.
615210299Sedstatic llvm::Value *
616210299SedEnterStructPointerForCoercedAccess(llvm::Value *SrcPtr,
617226890Sdim                                   llvm::StructType *SrcSTy,
618210299Sed                                   uint64_t DstSize, CodeGenFunction &CGF) {
619210299Sed  // We can't dive into a zero-element struct.
620210299Sed  if (SrcSTy->getNumElements() == 0) return SrcPtr;
621218893Sdim
622226890Sdim  llvm::Type *FirstElt = SrcSTy->getElementType(0);
623218893Sdim
624210299Sed  // If the first elt is at least as large as what we're looking for, or if the
625210299Sed  // first element is the same size as the whole struct, we can enter it.
626218893Sdim  uint64_t FirstEltSize =
627245431Sdim    CGF.CGM.getDataLayout().getTypeAllocSize(FirstElt);
628218893Sdim  if (FirstEltSize < DstSize &&
629245431Sdim      FirstEltSize < CGF.CGM.getDataLayout().getTypeAllocSize(SrcSTy))
630210299Sed    return SrcPtr;
631218893Sdim
632210299Sed  // GEP into the first element.
633210299Sed  SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive");
634218893Sdim
635210299Sed  // If the first element is a struct, recurse.
636226890Sdim  llvm::Type *SrcTy =
637210299Sed    cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
638226890Sdim  if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
639210299Sed    return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
640210299Sed
641210299Sed  return SrcPtr;
642210299Sed}
643210299Sed
644210299Sed/// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
645210299Sed/// are either integers or pointers.  This does a truncation of the value if it
646210299Sed/// is too large or a zero extension if it is too small.
647263509Sdim///
648263509Sdim/// This behaves as if the value were coerced through memory, so on big-endian
649263509Sdim/// targets the high bits are preserved in a truncation, while little-endian
650263509Sdim/// targets preserve the low bits.
651210299Sedstatic llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
652226890Sdim                                             llvm::Type *Ty,
653210299Sed                                             CodeGenFunction &CGF) {
654210299Sed  if (Val->getType() == Ty)
655210299Sed    return Val;
656218893Sdim
657210299Sed  if (isa<llvm::PointerType>(Val->getType())) {
658210299Sed    // If this is Pointer->Pointer avoid conversion to and from int.
659210299Sed    if (isa<llvm::PointerType>(Ty))
660210299Sed      return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
661218893Sdim
662210299Sed    // Convert the pointer to an integer so we can play with its width.
663210299Sed    Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
664210299Sed  }
665218893Sdim
666226890Sdim  llvm::Type *DestIntTy = Ty;
667210299Sed  if (isa<llvm::PointerType>(DestIntTy))
668210299Sed    DestIntTy = CGF.IntPtrTy;
669218893Sdim
670263509Sdim  if (Val->getType() != DestIntTy) {
671263509Sdim    const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
672263509Sdim    if (DL.isBigEndian()) {
673263509Sdim      // Preserve the high bits on big-endian targets.
674263509Sdim      // That is what memory coercion does.
675263509Sdim      uint64_t SrcSize = DL.getTypeAllocSizeInBits(Val->getType());
676263509Sdim      uint64_t DstSize = DL.getTypeAllocSizeInBits(DestIntTy);
677263509Sdim      if (SrcSize > DstSize) {
678263509Sdim        Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
679263509Sdim        Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
680263509Sdim      } else {
681263509Sdim        Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
682263509Sdim        Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
683263509Sdim      }
684263509Sdim    } else {
685263509Sdim      // Little-endian targets preserve the low bits. No shifts required.
686263509Sdim      Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
687263509Sdim    }
688263509Sdim  }
689218893Sdim
690210299Sed  if (isa<llvm::PointerType>(Ty))
691210299Sed    Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
692210299Sed  return Val;
693210299Sed}
694210299Sed
695210299Sed
696210299Sed
697193326Sed/// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
698193326Sed/// a pointer to an object of type \arg Ty.
699193326Sed///
700193326Sed/// This safely handles the case when the src type is smaller than the
701193326Sed/// destination type; in this situation the values of bits which not
702193326Sed/// present in the src are undefined.
703193326Sedstatic llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr,
704226890Sdim                                      llvm::Type *Ty,
705193326Sed                                      CodeGenFunction &CGF) {
706226890Sdim  llvm::Type *SrcTy =
707193326Sed    cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
708218893Sdim
709210299Sed  // If SrcTy and Ty are the same, just do a load.
710210299Sed  if (SrcTy == Ty)
711210299Sed    return CGF.Builder.CreateLoad(SrcPtr);
712218893Sdim
713245431Sdim  uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
714218893Sdim
715226890Sdim  if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
716210299Sed    SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
717210299Sed    SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
718210299Sed  }
719218893Sdim
720245431Sdim  uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
721193326Sed
722210299Sed  // If the source and destination are integer or pointer types, just do an
723210299Sed  // extension or truncation to the desired type.
724210299Sed  if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
725210299Sed      (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
726210299Sed    llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr);
727210299Sed    return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
728210299Sed  }
729218893Sdim
730193326Sed  // If load is legal, just bitcast the src pointer.
731193326Sed  if (SrcSize >= DstSize) {
732193326Sed    // Generally SrcSize is never greater than DstSize, since this means we are
733193326Sed    // losing bits. However, this can happen in cases where the structure has
734193326Sed    // additional padding, for example due to a user specified alignment.
735193326Sed    //
736193326Sed    // FIXME: Assert that we aren't truncating non-padding bits when have access
737193326Sed    // to that information.
738193326Sed    llvm::Value *Casted =
739193326Sed      CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty));
740193326Sed    llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
741193326Sed    // FIXME: Use better alignment / avoid requiring aligned load.
742193326Sed    Load->setAlignment(1);
743193326Sed    return Load;
744193326Sed  }
745218893Sdim
746210299Sed  // Otherwise do coercion through memory. This is stupid, but
747210299Sed  // simple.
748210299Sed  llvm::Value *Tmp = CGF.CreateTempAlloca(Ty);
749252723Sdim  llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy();
750252723Sdim  llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy);
751252723Sdim  llvm::Value *SrcCasted = CGF.Builder.CreateBitCast(SrcPtr, I8PtrTy);
752252723Sdim  // FIXME: Use better alignment.
753252723Sdim  CGF.Builder.CreateMemCpy(Casted, SrcCasted,
754252723Sdim      llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
755252723Sdim      1, false);
756210299Sed  return CGF.Builder.CreateLoad(Tmp);
757193326Sed}
758193326Sed
759223017Sdim// Function to store a first-class aggregate into memory.  We prefer to
760223017Sdim// store the elements rather than the aggregate to be more friendly to
761223017Sdim// fast-isel.
762223017Sdim// FIXME: Do we need to recurse here?
763223017Sdimstatic void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
764223017Sdim                          llvm::Value *DestPtr, bool DestIsVolatile,
765223017Sdim                          bool LowAlignment) {
766223017Sdim  // Prefer scalar stores to first-class aggregate stores.
767226890Sdim  if (llvm::StructType *STy =
768223017Sdim        dyn_cast<llvm::StructType>(Val->getType())) {
769223017Sdim    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
770223017Sdim      llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(DestPtr, 0, i);
771223017Sdim      llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
772223017Sdim      llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr,
773223017Sdim                                                    DestIsVolatile);
774223017Sdim      if (LowAlignment)
775223017Sdim        SI->setAlignment(1);
776223017Sdim    }
777223017Sdim  } else {
778235633Sdim    llvm::StoreInst *SI = CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile);
779235633Sdim    if (LowAlignment)
780235633Sdim      SI->setAlignment(1);
781223017Sdim  }
782223017Sdim}
783223017Sdim
784193326Sed/// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
785193326Sed/// where the source and destination may have different types.
786193326Sed///
787193326Sed/// This safely handles the case when the src type is larger than the
788193326Sed/// destination type; the upper bits of the src will be lost.
789193326Sedstatic void CreateCoercedStore(llvm::Value *Src,
790193326Sed                               llvm::Value *DstPtr,
791201361Srdivacky                               bool DstIsVolatile,
792193326Sed                               CodeGenFunction &CGF) {
793226890Sdim  llvm::Type *SrcTy = Src->getType();
794226890Sdim  llvm::Type *DstTy =
795193326Sed    cast<llvm::PointerType>(DstPtr->getType())->getElementType();
796210299Sed  if (SrcTy == DstTy) {
797210299Sed    CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
798210299Sed    return;
799210299Sed  }
800218893Sdim
801245431Sdim  uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
802218893Sdim
803226890Sdim  if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
804210299Sed    DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF);
805210299Sed    DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType();
806210299Sed  }
807218893Sdim
808210299Sed  // If the source and destination are integer or pointer types, just do an
809210299Sed  // extension or truncation to the desired type.
810210299Sed  if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
811210299Sed      (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
812210299Sed    Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
813210299Sed    CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
814210299Sed    return;
815210299Sed  }
816218893Sdim
817245431Sdim  uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
818193326Sed
819193326Sed  // If store is legal, just bitcast the src pointer.
820193576Sed  if (SrcSize <= DstSize) {
821193326Sed    llvm::Value *Casted =
822193326Sed      CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy));
823193326Sed    // FIXME: Use better alignment / avoid requiring aligned store.
824223017Sdim    BuildAggStore(CGF, Src, Casted, DstIsVolatile, true);
825193326Sed  } else {
826193326Sed    // Otherwise do coercion through memory. This is stupid, but
827193326Sed    // simple.
828193576Sed
829193576Sed    // Generally SrcSize is never greater than DstSize, since this means we are
830193576Sed    // losing bits. However, this can happen in cases where the structure has
831193576Sed    // additional padding, for example due to a user specified alignment.
832193576Sed    //
833193576Sed    // FIXME: Assert that we aren't truncating non-padding bits when have access
834193576Sed    // to that information.
835193326Sed    llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy);
836193326Sed    CGF.Builder.CreateStore(Src, Tmp);
837252723Sdim    llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy();
838252723Sdim    llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy);
839252723Sdim    llvm::Value *DstCasted = CGF.Builder.CreateBitCast(DstPtr, I8PtrTy);
840252723Sdim    // FIXME: Use better alignment.
841252723Sdim    CGF.Builder.CreateMemCpy(DstCasted, Casted,
842252723Sdim        llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
843252723Sdim        1, false);
844193326Sed  }
845193326Sed}
846193326Sed
847193326Sed/***/
848193326Sed
849210299Sedbool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
850193326Sed  return FI.getReturnInfo().isIndirect();
851193326Sed}
852193326Sed
853210299Sedbool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
854210299Sed  if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
855210299Sed    switch (BT->getKind()) {
856210299Sed    default:
857210299Sed      return false;
858210299Sed    case BuiltinType::Float:
859252723Sdim      return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
860210299Sed    case BuiltinType::Double:
861252723Sdim      return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
862210299Sed    case BuiltinType::LongDouble:
863252723Sdim      return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
864210299Sed    }
865210299Sed  }
866210299Sed
867210299Sed  return false;
868210299Sed}
869210299Sed
870235633Sdimbool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
871235633Sdim  if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
872235633Sdim    if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
873235633Sdim      if (BT->getKind() == BuiltinType::LongDouble)
874252723Sdim        return getTarget().useObjCFP2RetForComplexLongDouble();
875235633Sdim    }
876235633Sdim  }
877218893Sdim
878235633Sdim  return false;
879235633Sdim}
880204643Srdivacky
881235633Sdimllvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
882235633Sdim  const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
883235633Sdim  return GetFunctionType(FI);
884204643Srdivacky}
885204643Srdivacky
886224145Sdimllvm::FunctionType *
887235633SdimCodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
888224145Sdim
889224145Sdim  bool Inserted = FunctionsBeingProcessed.insert(&FI); (void)Inserted;
890224145Sdim  assert(Inserted && "Recursively being processed?");
891224145Sdim
892226890Sdim  SmallVector<llvm::Type*, 8> argTypes;
893226890Sdim  llvm::Type *resultType = 0;
894193326Sed
895223017Sdim  const ABIArgInfo &retAI = FI.getReturnInfo();
896223017Sdim  switch (retAI.getKind()) {
897193326Sed  case ABIArgInfo::Expand:
898223017Sdim    llvm_unreachable("Invalid ABI kind for return argument");
899193326Sed
900193631Sed  case ABIArgInfo::Extend:
901193326Sed  case ABIArgInfo::Direct:
902223017Sdim    resultType = retAI.getCoerceToType();
903193326Sed    break;
904193326Sed
905193326Sed  case ABIArgInfo::Indirect: {
906223017Sdim    assert(!retAI.getIndirectAlign() && "Align unused on indirect return.");
907223017Sdim    resultType = llvm::Type::getVoidTy(getLLVMContext());
908223017Sdim
909223017Sdim    QualType ret = FI.getReturnType();
910226890Sdim    llvm::Type *ty = ConvertType(ret);
911223017Sdim    unsigned addressSpace = Context.getTargetAddressSpace(ret);
912223017Sdim    argTypes.push_back(llvm::PointerType::get(ty, addressSpace));
913193326Sed    break;
914193326Sed  }
915193326Sed
916193326Sed  case ABIArgInfo::Ignore:
917223017Sdim    resultType = llvm::Type::getVoidTy(getLLVMContext());
918193326Sed    break;
919193326Sed  }
920198092Srdivacky
921252723Sdim  // Add in all of the required arguments.
922252723Sdim  CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), ie;
923252723Sdim  if (FI.isVariadic()) {
924252723Sdim    ie = it + FI.getRequiredArgs().getNumRequiredArgs();
925252723Sdim  } else {
926252723Sdim    ie = FI.arg_end();
927252723Sdim  }
928252723Sdim  for (; it != ie; ++it) {
929223017Sdim    const ABIArgInfo &argAI = it->info;
930198092Srdivacky
931245431Sdim    // Insert a padding type to ensure proper alignment.
932245431Sdim    if (llvm::Type *PaddingType = argAI.getPaddingType())
933245431Sdim      argTypes.push_back(PaddingType);
934245431Sdim
935223017Sdim    switch (argAI.getKind()) {
936193326Sed    case ABIArgInfo::Ignore:
937193326Sed      break;
938193326Sed
939212904Sdim    case ABIArgInfo::Indirect: {
940212904Sdim      // indirect arguments are always on the stack, which is addr space #0.
941226890Sdim      llvm::Type *LTy = ConvertTypeForMem(it->type);
942223017Sdim      argTypes.push_back(LTy->getPointerTo());
943212904Sdim      break;
944212904Sdim    }
945212904Sdim
946212904Sdim    case ABIArgInfo::Extend:
947212904Sdim    case ABIArgInfo::Direct: {
948210299Sed      // If the coerce-to type is a first class aggregate, flatten it.  Either
949210299Sed      // way is semantically identical, but fast-isel and the optimizer
950210299Sed      // generally likes scalar values better than FCAs.
951224145Sdim      llvm::Type *argType = argAI.getCoerceToType();
952226890Sdim      if (llvm::StructType *st = dyn_cast<llvm::StructType>(argType)) {
953223017Sdim        for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
954223017Sdim          argTypes.push_back(st->getElementType(i));
955210299Sed      } else {
956223017Sdim        argTypes.push_back(argType);
957210299Sed      }
958193326Sed      break;
959210299Sed    }
960193326Sed
961193326Sed    case ABIArgInfo::Expand:
962224145Sdim      GetExpandedTypes(it->type, argTypes);
963193326Sed      break;
964193326Sed    }
965193326Sed  }
966193326Sed
967224145Sdim  bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
968224145Sdim  assert(Erased && "Not in set?");
969224145Sdim
970235633Sdim  return llvm::FunctionType::get(resultType, argTypes, FI.isVariadic());
971193326Sed}
972193326Sed
973226890Sdimllvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
974212904Sdim  const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
975199990Srdivacky  const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
976218893Sdim
977224145Sdim  if (!isFuncTypeConvertible(FPT))
978224145Sdim    return llvm::StructType::get(getLLVMContext());
979224145Sdim
980224145Sdim  const CGFunctionInfo *Info;
981224145Sdim  if (isa<CXXDestructorDecl>(MD))
982235633Sdim    Info = &arrangeCXXDestructor(cast<CXXDestructorDecl>(MD), GD.getDtorType());
983224145Sdim  else
984235633Sdim    Info = &arrangeCXXMethodDeclaration(MD);
985235633Sdim  return GetFunctionType(*Info);
986199990Srdivacky}
987199990Srdivacky
988193326Sedvoid CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
989193326Sed                                           const Decl *TargetDecl,
990218893Sdim                                           AttributeListType &PAL,
991252723Sdim                                           unsigned &CallingConv,
992252723Sdim                                           bool AttrOnCallSite) {
993245431Sdim  llvm::AttrBuilder FuncAttrs;
994245431Sdim  llvm::AttrBuilder RetAttrs;
995193326Sed
996198092Srdivacky  CallingConv = FI.getEffectiveCallingConvention();
997198092Srdivacky
998203955Srdivacky  if (FI.isNoReturn())
999252723Sdim    FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1000203955Srdivacky
1001193326Sed  // FIXME: handle sseregparm someday...
1002193326Sed  if (TargetDecl) {
1003226890Sdim    if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1004252723Sdim      FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1005195341Sed    if (TargetDecl->hasAttr<NoThrowAttr>())
1006252723Sdim      FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1007252723Sdim    if (TargetDecl->hasAttr<NoReturnAttr>())
1008252723Sdim      FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1009252723Sdim
1010252723Sdim    if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1011210299Sed      const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>();
1012221345Sdim      if (FPT && FPT->isNothrow(getContext()))
1013252723Sdim        FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1014252723Sdim      // Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
1015252723Sdim      // These attributes are not inherited by overloads.
1016252723Sdim      const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1017252723Sdim      if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
1018252723Sdim        FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1019210299Sed    }
1020210299Sed
1021226890Sdim    // 'const' and 'pure' attribute functions are also nounwind.
1022226890Sdim    if (TargetDecl->hasAttr<ConstAttr>()) {
1023252723Sdim      FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1024252723Sdim      FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1025226890Sdim    } else if (TargetDecl->hasAttr<PureAttr>()) {
1026252723Sdim      FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1027252723Sdim      FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1028226890Sdim    }
1029198092Srdivacky    if (TargetDecl->hasAttr<MallocAttr>())
1030252723Sdim      RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1031193326Sed  }
1032193326Sed
1033199482Srdivacky  if (CodeGenOpts.OptimizeSize)
1034252723Sdim    FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1035245431Sdim  if (CodeGenOpts.OptimizeSize == 2)
1036252723Sdim    FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1037199482Srdivacky  if (CodeGenOpts.DisableRedZone)
1038252723Sdim    FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1039199482Srdivacky  if (CodeGenOpts.NoImplicitFloat)
1040252723Sdim    FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1041193576Sed
1042252723Sdim  if (AttrOnCallSite) {
1043252723Sdim    // Attributes that should go on the call site only.
1044252723Sdim    if (!CodeGenOpts.SimplifyLibCalls)
1045252723Sdim      FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1046252723Sdim  } else {
1047252723Sdim    // Attributes that should go on the function, but not the call site.
1048252723Sdim    if (!CodeGenOpts.DisableFPElim) {
1049252723Sdim      FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1050252723Sdim    } else if (CodeGenOpts.OmitLeafFramePointer) {
1051252723Sdim      FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1052263509Sdim      FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1053252723Sdim    } else {
1054252723Sdim      FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
1055263509Sdim      FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1056252723Sdim    }
1057252723Sdim
1058252723Sdim    FuncAttrs.addAttribute("less-precise-fpmad",
1059263509Sdim                           llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1060252723Sdim    FuncAttrs.addAttribute("no-infs-fp-math",
1061263509Sdim                           llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
1062252723Sdim    FuncAttrs.addAttribute("no-nans-fp-math",
1063263509Sdim                           llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
1064252723Sdim    FuncAttrs.addAttribute("unsafe-fp-math",
1065263509Sdim                           llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
1066252723Sdim    FuncAttrs.addAttribute("use-soft-float",
1067263509Sdim                           llvm::toStringRef(CodeGenOpts.SoftFloat));
1068263509Sdim    FuncAttrs.addAttribute("stack-protector-buffer-size",
1069263509Sdim                           llvm::utostr(CodeGenOpts.SSPBufferSize));
1070263509Sdim
1071263509Sdim    if (!CodeGenOpts.StackRealignment)
1072263509Sdim      FuncAttrs.addAttribute("no-realign-stack");
1073252723Sdim  }
1074252723Sdim
1075193326Sed  QualType RetTy = FI.getReturnType();
1076193326Sed  unsigned Index = 1;
1077193326Sed  const ABIArgInfo &RetAI = FI.getReturnInfo();
1078193326Sed  switch (RetAI.getKind()) {
1079193631Sed  case ABIArgInfo::Extend:
1080263509Sdim    if (RetTy->hasSignedIntegerRepresentation())
1081263509Sdim      RetAttrs.addAttribute(llvm::Attribute::SExt);
1082263509Sdim    else if (RetTy->hasUnsignedIntegerRepresentation())
1083263509Sdim      RetAttrs.addAttribute(llvm::Attribute::ZExt);
1084263509Sdim    // FALL THROUGH
1085263509Sdim  case ABIArgInfo::Direct:
1086263509Sdim    if (RetAI.getInReg())
1087263509Sdim      RetAttrs.addAttribute(llvm::Attribute::InReg);
1088212904Sdim    break;
1089212904Sdim  case ABIArgInfo::Ignore:
1090193326Sed    break;
1091193326Sed
1092245431Sdim  case ABIArgInfo::Indirect: {
1093245431Sdim    llvm::AttrBuilder SRETAttrs;
1094252723Sdim    SRETAttrs.addAttribute(llvm::Attribute::StructRet);
1095245431Sdim    if (RetAI.getInReg())
1096252723Sdim      SRETAttrs.addAttribute(llvm::Attribute::InReg);
1097245431Sdim    PAL.push_back(llvm::
1098252723Sdim                  AttributeSet::get(getLLVMContext(), Index, SRETAttrs));
1099245431Sdim
1100193326Sed    ++Index;
1101193326Sed    // sret disables readnone and readonly
1102252723Sdim    FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1103252723Sdim      .removeAttribute(llvm::Attribute::ReadNone);
1104193326Sed    break;
1105245431Sdim  }
1106193326Sed
1107193326Sed  case ABIArgInfo::Expand:
1108226890Sdim    llvm_unreachable("Invalid ABI kind for return argument");
1109193326Sed  }
1110193326Sed
1111245431Sdim  if (RetAttrs.hasAttributes())
1112245431Sdim    PAL.push_back(llvm::
1113252723Sdim                  AttributeSet::get(getLLVMContext(),
1114252723Sdim                                    llvm::AttributeSet::ReturnIndex,
1115252723Sdim                                    RetAttrs));
1116193326Sed
1117198092Srdivacky  for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1118193326Sed         ie = FI.arg_end(); it != ie; ++it) {
1119193326Sed    QualType ParamType = it->type;
1120193326Sed    const ABIArgInfo &AI = it->info;
1121245431Sdim    llvm::AttrBuilder Attrs;
1122193326Sed
1123245431Sdim    if (AI.getPaddingType()) {
1124252723Sdim      if (AI.getPaddingInReg())
1125252723Sdim        PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index,
1126252723Sdim                                              llvm::Attribute::InReg));
1127245431Sdim      // Increment Index if there is padding.
1128245431Sdim      ++Index;
1129245431Sdim    }
1130245431Sdim
1131206084Srdivacky    // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
1132206084Srdivacky    // have the corresponding parameter variable.  It doesn't make
1133218893Sdim    // sense to do it here because parameters are so messed up.
1134193326Sed    switch (AI.getKind()) {
1135212904Sdim    case ABIArgInfo::Extend:
1136223017Sdim      if (ParamType->isSignedIntegerOrEnumerationType())
1137252723Sdim        Attrs.addAttribute(llvm::Attribute::SExt);
1138223017Sdim      else if (ParamType->isUnsignedIntegerOrEnumerationType())
1139252723Sdim        Attrs.addAttribute(llvm::Attribute::ZExt);
1140212904Sdim      // FALL THROUGH
1141212904Sdim    case ABIArgInfo::Direct:
1142245431Sdim      if (AI.getInReg())
1143252723Sdim        Attrs.addAttribute(llvm::Attribute::InReg);
1144245431Sdim
1145212904Sdim      // FIXME: handle sseregparm someday...
1146218893Sdim
1147226890Sdim      if (llvm::StructType *STy =
1148245431Sdim          dyn_cast<llvm::StructType>(AI.getCoerceToType())) {
1149245431Sdim        unsigned Extra = STy->getNumElements()-1;  // 1 will be added below.
1150245431Sdim        if (Attrs.hasAttributes())
1151245431Sdim          for (unsigned I = 0; I < Extra; ++I)
1152252723Sdim            PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index + I,
1153252723Sdim                                                  Attrs));
1154245431Sdim        Index += Extra;
1155245431Sdim      }
1156212904Sdim      break;
1157193326Sed
1158193326Sed    case ABIArgInfo::Indirect:
1159245431Sdim      if (AI.getInReg())
1160252723Sdim        Attrs.addAttribute(llvm::Attribute::InReg);
1161245431Sdim
1162198092Srdivacky      if (AI.getIndirectByVal())
1163252723Sdim        Attrs.addAttribute(llvm::Attribute::ByVal);
1164198092Srdivacky
1165245431Sdim      Attrs.addAlignmentAttr(AI.getIndirectAlign());
1166245431Sdim
1167193326Sed      // byval disables readnone and readonly.
1168252723Sdim      FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1169252723Sdim        .removeAttribute(llvm::Attribute::ReadNone);
1170193326Sed      break;
1171193631Sed
1172193326Sed    case ABIArgInfo::Ignore:
1173193326Sed      // Skip increment, no matching LLVM parameter.
1174198092Srdivacky      continue;
1175193326Sed
1176193326Sed    case ABIArgInfo::Expand: {
1177226890Sdim      SmallVector<llvm::Type*, 8> types;
1178193326Sed      // FIXME: This is rather inefficient. Do we ever actually need to do
1179193326Sed      // anything here? The result should be just reconstructed on the other
1180193326Sed      // side, so extension should be a non-issue.
1181224145Sdim      getTypes().GetExpandedTypes(ParamType, types);
1182223017Sdim      Index += types.size();
1183193326Sed      continue;
1184193326Sed    }
1185193326Sed    }
1186198092Srdivacky
1187245431Sdim    if (Attrs.hasAttributes())
1188252723Sdim      PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index, Attrs));
1189193326Sed    ++Index;
1190193326Sed  }
1191245431Sdim  if (FuncAttrs.hasAttributes())
1192245431Sdim    PAL.push_back(llvm::
1193252723Sdim                  AttributeSet::get(getLLVMContext(),
1194252723Sdim                                    llvm::AttributeSet::FunctionIndex,
1195252723Sdim                                    FuncAttrs));
1196193326Sed}
1197193326Sed
1198221345Sdim/// An argument came in as a promoted argument; demote it back to its
1199221345Sdim/// declared type.
1200221345Sdimstatic llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
1201221345Sdim                                         const VarDecl *var,
1202221345Sdim                                         llvm::Value *value) {
1203226890Sdim  llvm::Type *varType = CGF.ConvertType(var->getType());
1204221345Sdim
1205221345Sdim  // This can happen with promotions that actually don't change the
1206221345Sdim  // underlying type, like the enum promotions.
1207221345Sdim  if (value->getType() == varType) return value;
1208221345Sdim
1209221345Sdim  assert((varType->isIntegerTy() || varType->isFloatingPointTy())
1210221345Sdim         && "unexpected promotion type");
1211221345Sdim
1212221345Sdim  if (isa<llvm::IntegerType>(varType))
1213221345Sdim    return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
1214221345Sdim
1215221345Sdim  return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
1216221345Sdim}
1217221345Sdim
1218193326Sedvoid CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
1219193326Sed                                         llvm::Function *Fn,
1220193326Sed                                         const FunctionArgList &Args) {
1221198092Srdivacky  // If this is an implicit-return-zero function, go ahead and
1222198092Srdivacky  // initialize the return value.  TODO: it might be nice to have
1223198092Srdivacky  // a more general mechanism for this that didn't require synthesized
1224198092Srdivacky  // return statements.
1225252723Sdim  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
1226198092Srdivacky    if (FD->hasImplicitReturnZero()) {
1227198092Srdivacky      QualType RetTy = FD->getResultType().getUnqualifiedType();
1228226890Sdim      llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
1229198092Srdivacky      llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
1230198092Srdivacky      Builder.CreateStore(Zero, ReturnValue);
1231198092Srdivacky    }
1232198092Srdivacky  }
1233198092Srdivacky
1234193326Sed  // FIXME: We no longer need the types from FunctionArgList; lift up and
1235193326Sed  // simplify.
1236193326Sed
1237193326Sed  // Emit allocs for param decls.  Give the LLVM Argument nodes names.
1238193326Sed  llvm::Function::arg_iterator AI = Fn->arg_begin();
1239198092Srdivacky
1240193326Sed  // Name the struct return argument.
1241210299Sed  if (CGM.ReturnTypeUsesSRet(FI)) {
1242193326Sed    AI->setName("agg.result");
1243252723Sdim    AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1244252723Sdim                                        AI->getArgNo() + 1,
1245252723Sdim                                        llvm::Attribute::NoAlias));
1246193326Sed    ++AI;
1247193326Sed  }
1248198092Srdivacky
1249193326Sed  assert(FI.arg_size() == Args.size() &&
1250193326Sed         "Mismatch between function signature & arguments.");
1251221345Sdim  unsigned ArgNo = 1;
1252193326Sed  CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
1253221345Sdim  for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1254221345Sdim       i != e; ++i, ++info_it, ++ArgNo) {
1255221345Sdim    const VarDecl *Arg = *i;
1256193326Sed    QualType Ty = info_it->type;
1257193326Sed    const ABIArgInfo &ArgI = info_it->info;
1258193326Sed
1259221345Sdim    bool isPromoted =
1260221345Sdim      isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
1261221345Sdim
1262245431Sdim    // Skip the dummy padding argument.
1263245431Sdim    if (ArgI.getPaddingType())
1264245431Sdim      ++AI;
1265245431Sdim
1266193326Sed    switch (ArgI.getKind()) {
1267193326Sed    case ABIArgInfo::Indirect: {
1268210299Sed      llvm::Value *V = AI;
1269218893Sdim
1270252723Sdim      if (!hasScalarEvaluationKind(Ty)) {
1271218893Sdim        // Aggregates and complex variables are accessed by reference.  All we
1272218893Sdim        // need to do is realign the value, if requested
1273218893Sdim        if (ArgI.getIndirectRealign()) {
1274218893Sdim          llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce");
1275218893Sdim
1276218893Sdim          // Copy from the incoming argument pointer to the temporary with the
1277218893Sdim          // appropriate alignment.
1278218893Sdim          //
1279218893Sdim          // FIXME: We should have a common utility for generating an aggregate
1280218893Sdim          // copy.
1281226890Sdim          llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
1282218893Sdim          CharUnits Size = getContext().getTypeSizeInChars(Ty);
1283221345Sdim          llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
1284221345Sdim          llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy);
1285221345Sdim          Builder.CreateMemCpy(Dst,
1286221345Sdim                               Src,
1287218893Sdim                               llvm::ConstantInt::get(IntPtrTy,
1288218893Sdim                                                      Size.getQuantity()),
1289218893Sdim                               ArgI.getIndirectAlign(),
1290218893Sdim                               false);
1291218893Sdim          V = AlignedTemp;
1292218893Sdim        }
1293193326Sed      } else {
1294193326Sed        // Load scalar value from indirect argument.
1295218893Sdim        CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
1296263509Sdim        V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty,
1297263509Sdim                             Arg->getLocStart());
1298221345Sdim
1299221345Sdim        if (isPromoted)
1300221345Sdim          V = emitArgumentDemotion(*this, Arg, V);
1301193326Sed      }
1302221345Sdim      EmitParmDecl(*Arg, V, ArgNo);
1303193326Sed      break;
1304193326Sed    }
1305193631Sed
1306193631Sed    case ABIArgInfo::Extend:
1307193326Sed    case ABIArgInfo::Direct: {
1308235633Sdim
1309212904Sdim      // If we have the trivial case, handle it with no muss and fuss.
1310212904Sdim      if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
1311212904Sdim          ArgI.getCoerceToType() == ConvertType(Ty) &&
1312212904Sdim          ArgI.getDirectOffset() == 0) {
1313212904Sdim        assert(AI != Fn->arg_end() && "Argument mismatch!");
1314212904Sdim        llvm::Value *V = AI;
1315218893Sdim
1316206084Srdivacky        if (Arg->getType().isRestrictQualified())
1317252723Sdim          AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1318252723Sdim                                              AI->getArgNo() + 1,
1319252723Sdim                                              llvm::Attribute::NoAlias));
1320206084Srdivacky
1321226890Sdim        // Ensure the argument is the correct type.
1322226890Sdim        if (V->getType() != ArgI.getCoerceToType())
1323226890Sdim          V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
1324226890Sdim
1325221345Sdim        if (isPromoted)
1326221345Sdim          V = emitArgumentDemotion(*this, Arg, V);
1327252723Sdim
1328263509Sdim        if (const CXXMethodDecl *MD =
1329263509Sdim            dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl)) {
1330263509Sdim          if (MD->isVirtual() && Arg == CXXABIThisDecl)
1331263509Sdim            V = CGM.getCXXABI().
1332263509Sdim                adjustThisParameterInVirtualFunctionPrologue(*this, CurGD, V);
1333263509Sdim        }
1334263509Sdim
1335252723Sdim        // Because of merging of function types from multiple decls it is
1336252723Sdim        // possible for the type of an argument to not match the corresponding
1337252723Sdim        // type in the function type. Since we are codegening the callee
1338252723Sdim        // in here, add a cast to the argument type.
1339252723Sdim        llvm::Type *LTy = ConvertType(Arg->getType());
1340252723Sdim        if (V->getType() != LTy)
1341252723Sdim          V = Builder.CreateBitCast(V, LTy);
1342252723Sdim
1343221345Sdim        EmitParmDecl(*Arg, V, ArgNo);
1344212904Sdim        break;
1345193326Sed      }
1346198092Srdivacky
1347235633Sdim      llvm::AllocaInst *Alloca = CreateMemTemp(Ty, Arg->getName());
1348218893Sdim
1349212904Sdim      // The alignment we need to use is the max of the requested alignment for
1350212904Sdim      // the argument plus the alignment required by our access code below.
1351218893Sdim      unsigned AlignmentToUse =
1352245431Sdim        CGM.getDataLayout().getABITypeAlignment(ArgI.getCoerceToType());
1353212904Sdim      AlignmentToUse = std::max(AlignmentToUse,
1354212904Sdim                        (unsigned)getContext().getDeclAlign(Arg).getQuantity());
1355218893Sdim
1356212904Sdim      Alloca->setAlignment(AlignmentToUse);
1357210299Sed      llvm::Value *V = Alloca;
1358212904Sdim      llvm::Value *Ptr = V;    // Pointer to store into.
1359218893Sdim
1360212904Sdim      // If the value is offset in memory, apply the offset now.
1361212904Sdim      if (unsigned Offs = ArgI.getDirectOffset()) {
1362212904Sdim        Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy());
1363212904Sdim        Ptr = Builder.CreateConstGEP1_32(Ptr, Offs);
1364218893Sdim        Ptr = Builder.CreateBitCast(Ptr,
1365212904Sdim                          llvm::PointerType::getUnqual(ArgI.getCoerceToType()));
1366212904Sdim      }
1367218893Sdim
1368210299Sed      // If the coerce-to type is a first class aggregate, we flatten it and
1369210299Sed      // pass the elements. Either way is semantically identical, but fast-isel
1370210299Sed      // and the optimizer generally likes scalar values better than FCAs.
1371235633Sdim      llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
1372235633Sdim      if (STy && STy->getNumElements() > 1) {
1373245431Sdim        uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
1374235633Sdim        llvm::Type *DstTy =
1375235633Sdim          cast<llvm::PointerType>(Ptr->getType())->getElementType();
1376245431Sdim        uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
1377218893Sdim
1378235633Sdim        if (SrcSize <= DstSize) {
1379235633Sdim          Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
1380235633Sdim
1381235633Sdim          for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1382235633Sdim            assert(AI != Fn->arg_end() && "Argument mismatch!");
1383235633Sdim            AI->setName(Arg->getName() + ".coerce" + Twine(i));
1384235633Sdim            llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i);
1385235633Sdim            Builder.CreateStore(AI++, EltPtr);
1386235633Sdim          }
1387235633Sdim        } else {
1388235633Sdim          llvm::AllocaInst *TempAlloca =
1389235633Sdim            CreateTempAlloca(ArgI.getCoerceToType(), "coerce");
1390235633Sdim          TempAlloca->setAlignment(AlignmentToUse);
1391235633Sdim          llvm::Value *TempV = TempAlloca;
1392235633Sdim
1393235633Sdim          for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1394235633Sdim            assert(AI != Fn->arg_end() && "Argument mismatch!");
1395235633Sdim            AI->setName(Arg->getName() + ".coerce" + Twine(i));
1396235633Sdim            llvm::Value *EltPtr = Builder.CreateConstGEP2_32(TempV, 0, i);
1397235633Sdim            Builder.CreateStore(AI++, EltPtr);
1398235633Sdim          }
1399235633Sdim
1400235633Sdim          Builder.CreateMemCpy(Ptr, TempV, DstSize, AlignmentToUse);
1401210299Sed        }
1402210299Sed      } else {
1403210299Sed        // Simple case, just do a coerced store of the argument into the alloca.
1404210299Sed        assert(AI != Fn->arg_end() && "Argument mismatch!");
1405210299Sed        AI->setName(Arg->getName() + ".coerce");
1406212904Sdim        CreateCoercedStore(AI++, Ptr, /*DestIsVolatile=*/false, *this);
1407210299Sed      }
1408218893Sdim
1409218893Sdim
1410193326Sed      // Match to what EmitParmDecl is expecting for this type.
1411252723Sdim      if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
1412263509Sdim        V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty, Arg->getLocStart());
1413221345Sdim        if (isPromoted)
1414221345Sdim          V = emitArgumentDemotion(*this, Arg, V);
1415193326Sed      }
1416221345Sdim      EmitParmDecl(*Arg, V, ArgNo);
1417210299Sed      continue;  // Skip ++AI increment, already done.
1418193326Sed    }
1419212904Sdim
1420212904Sdim    case ABIArgInfo::Expand: {
1421212904Sdim      // If this structure was expanded into multiple arguments then
1422212904Sdim      // we need to create a temporary and reconstruct it from the
1423212904Sdim      // arguments.
1424235633Sdim      llvm::AllocaInst *Alloca = CreateMemTemp(Ty);
1425235633Sdim      CharUnits Align = getContext().getDeclAlign(Arg);
1426235633Sdim      Alloca->setAlignment(Align.getQuantity());
1427235633Sdim      LValue LV = MakeAddrLValue(Alloca, Ty, Align);
1428235633Sdim      llvm::Function::arg_iterator End = ExpandTypeFromArgs(Ty, LV, AI);
1429235633Sdim      EmitParmDecl(*Arg, Alloca, ArgNo);
1430212904Sdim
1431212904Sdim      // Name the arguments used in expansion and increment AI.
1432212904Sdim      unsigned Index = 0;
1433212904Sdim      for (; AI != End; ++AI, ++Index)
1434226890Sdim        AI->setName(Arg->getName() + "." + Twine(Index));
1435212904Sdim      continue;
1436193326Sed    }
1437193326Sed
1438212904Sdim    case ABIArgInfo::Ignore:
1439212904Sdim      // Initialize the local variable appropriately.
1440252723Sdim      if (!hasScalarEvaluationKind(Ty))
1441221345Sdim        EmitParmDecl(*Arg, CreateMemTemp(Ty), ArgNo);
1442212904Sdim      else
1443221345Sdim        EmitParmDecl(*Arg, llvm::UndefValue::get(ConvertType(Arg->getType())),
1444221345Sdim                     ArgNo);
1445212904Sdim
1446212904Sdim      // Skip increment, no matching LLVM parameter.
1447212904Sdim      continue;
1448212904Sdim    }
1449212904Sdim
1450193326Sed    ++AI;
1451193326Sed  }
1452193326Sed  assert(AI == Fn->arg_end() && "Argument mismatch!");
1453193326Sed}
1454193326Sed
1455235633Sdimstatic void eraseUnusedBitCasts(llvm::Instruction *insn) {
1456235633Sdim  while (insn->use_empty()) {
1457235633Sdim    llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
1458235633Sdim    if (!bitcast) return;
1459235633Sdim
1460235633Sdim    // This is "safe" because we would have used a ConstantExpr otherwise.
1461235633Sdim    insn = cast<llvm::Instruction>(bitcast->getOperand(0));
1462235633Sdim    bitcast->eraseFromParent();
1463235633Sdim  }
1464235633Sdim}
1465235633Sdim
1466224145Sdim/// Try to emit a fused autorelease of a return result.
1467224145Sdimstatic llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
1468224145Sdim                                                    llvm::Value *result) {
1469224145Sdim  // We must be immediately followed the cast.
1470224145Sdim  llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
1471224145Sdim  if (BB->empty()) return 0;
1472224145Sdim  if (&BB->back() != result) return 0;
1473224145Sdim
1474226890Sdim  llvm::Type *resultType = result->getType();
1475224145Sdim
1476224145Sdim  // result is in a BasicBlock and is therefore an Instruction.
1477224145Sdim  llvm::Instruction *generator = cast<llvm::Instruction>(result);
1478224145Sdim
1479226890Sdim  SmallVector<llvm::Instruction*,4> insnsToKill;
1480224145Sdim
1481224145Sdim  // Look for:
1482224145Sdim  //  %generator = bitcast %type1* %generator2 to %type2*
1483224145Sdim  while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
1484224145Sdim    // We would have emitted this as a constant if the operand weren't
1485224145Sdim    // an Instruction.
1486224145Sdim    generator = cast<llvm::Instruction>(bitcast->getOperand(0));
1487224145Sdim
1488224145Sdim    // Require the generator to be immediately followed by the cast.
1489224145Sdim    if (generator->getNextNode() != bitcast)
1490224145Sdim      return 0;
1491224145Sdim
1492224145Sdim    insnsToKill.push_back(bitcast);
1493224145Sdim  }
1494224145Sdim
1495224145Sdim  // Look for:
1496224145Sdim  //   %generator = call i8* @objc_retain(i8* %originalResult)
1497224145Sdim  // or
1498224145Sdim  //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
1499224145Sdim  llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
1500224145Sdim  if (!call) return 0;
1501224145Sdim
1502224145Sdim  bool doRetainAutorelease;
1503224145Sdim
1504224145Sdim  if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) {
1505224145Sdim    doRetainAutorelease = true;
1506224145Sdim  } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints()
1507224145Sdim                                          .objc_retainAutoreleasedReturnValue) {
1508224145Sdim    doRetainAutorelease = false;
1509224145Sdim
1510245431Sdim    // If we emitted an assembly marker for this call (and the
1511245431Sdim    // ARCEntrypoints field should have been set if so), go looking
1512245431Sdim    // for that call.  If we can't find it, we can't do this
1513245431Sdim    // optimization.  But it should always be the immediately previous
1514245431Sdim    // instruction, unless we needed bitcasts around the call.
1515245431Sdim    if (CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker) {
1516245431Sdim      llvm::Instruction *prev = call->getPrevNode();
1517245431Sdim      assert(prev);
1518245431Sdim      if (isa<llvm::BitCastInst>(prev)) {
1519245431Sdim        prev = prev->getPrevNode();
1520245431Sdim        assert(prev);
1521245431Sdim      }
1522245431Sdim      assert(isa<llvm::CallInst>(prev));
1523245431Sdim      assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
1524245431Sdim               CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker);
1525245431Sdim      insnsToKill.push_back(prev);
1526245431Sdim    }
1527224145Sdim  } else {
1528224145Sdim    return 0;
1529224145Sdim  }
1530224145Sdim
1531224145Sdim  result = call->getArgOperand(0);
1532224145Sdim  insnsToKill.push_back(call);
1533224145Sdim
1534224145Sdim  // Keep killing bitcasts, for sanity.  Note that we no longer care
1535224145Sdim  // about precise ordering as long as there's exactly one use.
1536224145Sdim  while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
1537224145Sdim    if (!bitcast->hasOneUse()) break;
1538224145Sdim    insnsToKill.push_back(bitcast);
1539224145Sdim    result = bitcast->getOperand(0);
1540224145Sdim  }
1541224145Sdim
1542224145Sdim  // Delete all the unnecessary instructions, from latest to earliest.
1543226890Sdim  for (SmallVectorImpl<llvm::Instruction*>::iterator
1544224145Sdim         i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i)
1545224145Sdim    (*i)->eraseFromParent();
1546224145Sdim
1547224145Sdim  // Do the fused retain/autorelease if we were asked to.
1548224145Sdim  if (doRetainAutorelease)
1549224145Sdim    result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
1550224145Sdim
1551224145Sdim  // Cast back to the result type.
1552224145Sdim  return CGF.Builder.CreateBitCast(result, resultType);
1553224145Sdim}
1554224145Sdim
1555235633Sdim/// If this is a +1 of the value of an immutable 'self', remove it.
1556235633Sdimstatic llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
1557235633Sdim                                          llvm::Value *result) {
1558235633Sdim  // This is only applicable to a method with an immutable 'self'.
1559245431Sdim  const ObjCMethodDecl *method =
1560245431Sdim    dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
1561235633Sdim  if (!method) return 0;
1562235633Sdim  const VarDecl *self = method->getSelfDecl();
1563235633Sdim  if (!self->getType().isConstQualified()) return 0;
1564235633Sdim
1565235633Sdim  // Look for a retain call.
1566235633Sdim  llvm::CallInst *retainCall =
1567235633Sdim    dyn_cast<llvm::CallInst>(result->stripPointerCasts());
1568235633Sdim  if (!retainCall ||
1569235633Sdim      retainCall->getCalledValue() != CGF.CGM.getARCEntrypoints().objc_retain)
1570235633Sdim    return 0;
1571235633Sdim
1572235633Sdim  // Look for an ordinary load of 'self'.
1573235633Sdim  llvm::Value *retainedValue = retainCall->getArgOperand(0);
1574235633Sdim  llvm::LoadInst *load =
1575235633Sdim    dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
1576235633Sdim  if (!load || load->isAtomic() || load->isVolatile() ||
1577235633Sdim      load->getPointerOperand() != CGF.GetAddrOfLocalVar(self))
1578235633Sdim    return 0;
1579235633Sdim
1580235633Sdim  // Okay!  Burn it all down.  This relies for correctness on the
1581235633Sdim  // assumption that the retain is emitted as part of the return and
1582235633Sdim  // that thereafter everything is used "linearly".
1583235633Sdim  llvm::Type *resultType = result->getType();
1584235633Sdim  eraseUnusedBitCasts(cast<llvm::Instruction>(result));
1585235633Sdim  assert(retainCall->use_empty());
1586235633Sdim  retainCall->eraseFromParent();
1587235633Sdim  eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
1588235633Sdim
1589235633Sdim  return CGF.Builder.CreateBitCast(load, resultType);
1590235633Sdim}
1591235633Sdim
1592224145Sdim/// Emit an ARC autorelease of the result of a function.
1593235633Sdim///
1594235633Sdim/// \return the value to actually return from the function
1595224145Sdimstatic llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
1596224145Sdim                                            llvm::Value *result) {
1597235633Sdim  // If we're returning 'self', kill the initial retain.  This is a
1598235633Sdim  // heuristic attempt to "encourage correctness" in the really unfortunate
1599235633Sdim  // case where we have a return of self during a dealloc and we desperately
1600235633Sdim  // need to avoid the possible autorelease.
1601235633Sdim  if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
1602235633Sdim    return self;
1603235633Sdim
1604224145Sdim  // At -O0, try to emit a fused retain/autorelease.
1605224145Sdim  if (CGF.shouldUseFusedARCCalls())
1606224145Sdim    if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
1607224145Sdim      return fused;
1608224145Sdim
1609224145Sdim  return CGF.EmitARCAutoreleaseReturnValue(result);
1610224145Sdim}
1611224145Sdim
1612235633Sdim/// Heuristically search for a dominating store to the return-value slot.
1613235633Sdimstatic llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
1614235633Sdim  // If there are multiple uses of the return-value slot, just check
1615235633Sdim  // for something immediately preceding the IP.  Sometimes this can
1616235633Sdim  // happen with how we generate implicit-returns; it can also happen
1617235633Sdim  // with noreturn cleanups.
1618235633Sdim  if (!CGF.ReturnValue->hasOneUse()) {
1619235633Sdim    llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
1620235633Sdim    if (IP->empty()) return 0;
1621235633Sdim    llvm::StoreInst *store = dyn_cast<llvm::StoreInst>(&IP->back());
1622235633Sdim    if (!store) return 0;
1623235633Sdim    if (store->getPointerOperand() != CGF.ReturnValue) return 0;
1624235633Sdim    assert(!store->isAtomic() && !store->isVolatile()); // see below
1625235633Sdim    return store;
1626235633Sdim  }
1627235633Sdim
1628235633Sdim  llvm::StoreInst *store =
1629235633Sdim    dyn_cast<llvm::StoreInst>(CGF.ReturnValue->use_back());
1630235633Sdim  if (!store) return 0;
1631235633Sdim
1632235633Sdim  // These aren't actually possible for non-coerced returns, and we
1633235633Sdim  // only care about non-coerced returns on this code path.
1634235633Sdim  assert(!store->isAtomic() && !store->isVolatile());
1635235633Sdim
1636235633Sdim  // Now do a first-and-dirty dominance check: just walk up the
1637235633Sdim  // single-predecessors chain from the current insertion point.
1638235633Sdim  llvm::BasicBlock *StoreBB = store->getParent();
1639235633Sdim  llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
1640235633Sdim  while (IP != StoreBB) {
1641235633Sdim    if (!(IP = IP->getSinglePredecessor()))
1642235633Sdim      return 0;
1643235633Sdim  }
1644235633Sdim
1645235633Sdim  // Okay, the store's basic block dominates the insertion point; we
1646235633Sdim  // can do our thing.
1647235633Sdim  return store;
1648235633Sdim}
1649235633Sdim
1650252723Sdimvoid CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
1651263509Sdim                                         bool EmitRetDbgLoc,
1652263509Sdim                                         SourceLocation EndLoc) {
1653210299Sed  // Functions with no result always return void.
1654210299Sed  if (ReturnValue == 0) {
1655210299Sed    Builder.CreateRetVoid();
1656210299Sed    return;
1657210299Sed  }
1658210299Sed
1659212904Sdim  llvm::DebugLoc RetDbgLoc;
1660193326Sed  llvm::Value *RV = 0;
1661210299Sed  QualType RetTy = FI.getReturnType();
1662210299Sed  const ABIArgInfo &RetAI = FI.getReturnInfo();
1663193326Sed
1664210299Sed  switch (RetAI.getKind()) {
1665212904Sdim  case ABIArgInfo::Indirect: {
1666252723Sdim    switch (getEvaluationKind(RetTy)) {
1667252723Sdim    case TEK_Complex: {
1668252723Sdim      ComplexPairTy RT =
1669263509Sdim        EmitLoadOfComplex(MakeNaturalAlignAddrLValue(ReturnValue, RetTy),
1670263509Sdim                          EndLoc);
1671252723Sdim      EmitStoreOfComplex(RT,
1672252723Sdim                       MakeNaturalAlignAddrLValue(CurFn->arg_begin(), RetTy),
1673252723Sdim                         /*isInit*/ true);
1674252723Sdim      break;
1675252723Sdim    }
1676252723Sdim    case TEK_Aggregate:
1677210299Sed      // Do nothing; aggregrates get evaluated directly into the destination.
1678252723Sdim      break;
1679252723Sdim    case TEK_Scalar:
1680252723Sdim      EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
1681252723Sdim                        MakeNaturalAlignAddrLValue(CurFn->arg_begin(), RetTy),
1682252723Sdim                        /*isInit*/ true);
1683252723Sdim      break;
1684210299Sed    }
1685210299Sed    break;
1686212904Sdim  }
1687193631Sed
1688210299Sed  case ABIArgInfo::Extend:
1689212904Sdim  case ABIArgInfo::Direct:
1690212904Sdim    if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
1691212904Sdim        RetAI.getDirectOffset() == 0) {
1692212904Sdim      // The internal return value temp always will have pointer-to-return-type
1693212904Sdim      // type, just do a load.
1694218893Sdim
1695235633Sdim      // If there is a dominating store to ReturnValue, we can elide
1696235633Sdim      // the load, zap the store, and usually zap the alloca.
1697235633Sdim      if (llvm::StoreInst *SI = findDominatingStoreToReturnValue(*this)) {
1698263509Sdim        // Reuse the debug location from the store unless there is
1699263509Sdim        // cleanup code to be emitted between the store and return
1700263509Sdim        // instruction.
1701263509Sdim        if (EmitRetDbgLoc && !AutoreleaseResult)
1702252723Sdim          RetDbgLoc = SI->getDebugLoc();
1703212904Sdim        // Get the stored value and nuke the now-dead store.
1704212904Sdim        RV = SI->getValueOperand();
1705212904Sdim        SI->eraseFromParent();
1706218893Sdim
1707212904Sdim        // If that was the only use of the return value, nuke it as well now.
1708212904Sdim        if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) {
1709212904Sdim          cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent();
1710212904Sdim          ReturnValue = 0;
1711212904Sdim        }
1712235633Sdim
1713235633Sdim      // Otherwise, we have to do a simple load.
1714235633Sdim      } else {
1715235633Sdim        RV = Builder.CreateLoad(ReturnValue);
1716212904Sdim      }
1717210299Sed    } else {
1718212904Sdim      llvm::Value *V = ReturnValue;
1719212904Sdim      // If the value is offset in memory, apply the offset now.
1720212904Sdim      if (unsigned Offs = RetAI.getDirectOffset()) {
1721212904Sdim        V = Builder.CreateBitCast(V, Builder.getInt8PtrTy());
1722212904Sdim        V = Builder.CreateConstGEP1_32(V, Offs);
1723218893Sdim        V = Builder.CreateBitCast(V,
1724212904Sdim                         llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
1725212904Sdim      }
1726218893Sdim
1727212904Sdim      RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
1728210299Sed    }
1729224145Sdim
1730224145Sdim    // In ARC, end functions that return a retainable type with a call
1731224145Sdim    // to objc_autoreleaseReturnValue.
1732224145Sdim    if (AutoreleaseResult) {
1733235633Sdim      assert(getLangOpts().ObjCAutoRefCount &&
1734224145Sdim             !FI.isReturnsRetained() &&
1735224145Sdim             RetTy->isObjCRetainableType());
1736224145Sdim      RV = emitAutoreleaseOfResult(*this, RV);
1737224145Sdim    }
1738224145Sdim
1739210299Sed    break;
1740212904Sdim
1741210299Sed  case ABIArgInfo::Ignore:
1742210299Sed    break;
1743193326Sed
1744210299Sed  case ABIArgInfo::Expand:
1745226890Sdim    llvm_unreachable("Invalid ABI kind for return argument");
1746193326Sed  }
1747198092Srdivacky
1748210299Sed  llvm::Instruction *Ret = RV ? Builder.CreateRet(RV) : Builder.CreateRetVoid();
1749212904Sdim  if (!RetDbgLoc.isUnknown())
1750212904Sdim    Ret->setDebugLoc(RetDbgLoc);
1751193326Sed}
1752193326Sed
1753221345Sdimvoid CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
1754263509Sdim                                          const VarDecl *param,
1755263509Sdim                                          SourceLocation loc) {
1756208600Srdivacky  // StartFunction converted the ABI-lowered parameter(s) into a
1757208600Srdivacky  // local alloca.  We need to turn that into an r-value suitable
1758208600Srdivacky  // for EmitCall.
1759221345Sdim  llvm::Value *local = GetAddrOfLocalVar(param);
1760208600Srdivacky
1761221345Sdim  QualType type = param->getType();
1762218893Sdim
1763208600Srdivacky  // For the most part, we just need to load the alloca, except:
1764208600Srdivacky  // 1) aggregate r-values are actually pointers to temporaries, and
1765252723Sdim  // 2) references to non-scalars are pointers directly to the aggregate.
1766252723Sdim  // I don't know why references to scalars are different here.
1767221345Sdim  if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
1768252723Sdim    if (!hasScalarEvaluationKind(ref->getPointeeType()))
1769221345Sdim      return args.add(RValue::getAggregate(local), type);
1770208600Srdivacky
1771208600Srdivacky    // Locals which are references to scalars are represented
1772208600Srdivacky    // with allocas holding the pointer.
1773221345Sdim    return args.add(RValue::get(Builder.CreateLoad(local)), type);
1774208600Srdivacky  }
1775208600Srdivacky
1776263509Sdim  args.add(convertTempToRValue(local, type, loc), type);
1777208600Srdivacky}
1778208600Srdivacky
1779224145Sdimstatic bool isProvablyNull(llvm::Value *addr) {
1780224145Sdim  return isa<llvm::ConstantPointerNull>(addr);
1781224145Sdim}
1782224145Sdim
1783224145Sdimstatic bool isProvablyNonNull(llvm::Value *addr) {
1784224145Sdim  return isa<llvm::AllocaInst>(addr);
1785224145Sdim}
1786224145Sdim
1787224145Sdim/// Emit the actual writing-back of a writeback.
1788224145Sdimstatic void emitWriteback(CodeGenFunction &CGF,
1789224145Sdim                          const CallArgList::Writeback &writeback) {
1790252723Sdim  const LValue &srcLV = writeback.Source;
1791252723Sdim  llvm::Value *srcAddr = srcLV.getAddress();
1792224145Sdim  assert(!isProvablyNull(srcAddr) &&
1793224145Sdim         "shouldn't have writeback for provably null argument");
1794224145Sdim
1795224145Sdim  llvm::BasicBlock *contBB = 0;
1796224145Sdim
1797224145Sdim  // If the argument wasn't provably non-null, we need to null check
1798224145Sdim  // before doing the store.
1799224145Sdim  bool provablyNonNull = isProvablyNonNull(srcAddr);
1800224145Sdim  if (!provablyNonNull) {
1801224145Sdim    llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
1802224145Sdim    contBB = CGF.createBasicBlock("icr.done");
1803224145Sdim
1804224145Sdim    llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
1805224145Sdim    CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
1806224145Sdim    CGF.EmitBlock(writebackBB);
1807224145Sdim  }
1808224145Sdim
1809224145Sdim  // Load the value to writeback.
1810224145Sdim  llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
1811224145Sdim
1812224145Sdim  // Cast it back, in case we're writing an id to a Foo* or something.
1813224145Sdim  value = CGF.Builder.CreateBitCast(value,
1814224145Sdim               cast<llvm::PointerType>(srcAddr->getType())->getElementType(),
1815224145Sdim                            "icr.writeback-cast");
1816224145Sdim
1817224145Sdim  // Perform the writeback.
1818224145Sdim
1819252723Sdim  // If we have a "to use" value, it's something we need to emit a use
1820252723Sdim  // of.  This has to be carefully threaded in: if it's done after the
1821252723Sdim  // release it's potentially undefined behavior (and the optimizer
1822252723Sdim  // will ignore it), and if it happens before the retain then the
1823252723Sdim  // optimizer could move the release there.
1824252723Sdim  if (writeback.ToUse) {
1825252723Sdim    assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
1826252723Sdim
1827252723Sdim    // Retain the new value.  No need to block-copy here:  the block's
1828252723Sdim    // being passed up the stack.
1829252723Sdim    value = CGF.EmitARCRetainNonBlock(value);
1830252723Sdim
1831252723Sdim    // Emit the intrinsic use here.
1832252723Sdim    CGF.EmitARCIntrinsicUse(writeback.ToUse);
1833252723Sdim
1834252723Sdim    // Load the old value (primitively).
1835263509Sdim    llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
1836252723Sdim
1837252723Sdim    // Put the new value in place (primitively).
1838252723Sdim    CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
1839252723Sdim
1840252723Sdim    // Release the old value.
1841252723Sdim    CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
1842252723Sdim
1843252723Sdim  // Otherwise, we can just do a normal lvalue store.
1844252723Sdim  } else {
1845252723Sdim    CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
1846252723Sdim  }
1847252723Sdim
1848224145Sdim  // Jump to the continuation block.
1849224145Sdim  if (!provablyNonNull)
1850224145Sdim    CGF.EmitBlock(contBB);
1851224145Sdim}
1852224145Sdim
1853224145Sdimstatic void emitWritebacks(CodeGenFunction &CGF,
1854224145Sdim                           const CallArgList &args) {
1855224145Sdim  for (CallArgList::writeback_iterator
1856224145Sdim         i = args.writeback_begin(), e = args.writeback_end(); i != e; ++i)
1857224145Sdim    emitWriteback(CGF, *i);
1858224145Sdim}
1859224145Sdim
1860263509Sdimstatic void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
1861263509Sdim                                            const CallArgList &CallArgs) {
1862263509Sdim  assert(CGF.getTarget().getCXXABI().isArgumentDestroyedByCallee());
1863263509Sdim  ArrayRef<CallArgList::CallArgCleanup> Cleanups =
1864263509Sdim    CallArgs.getCleanupsToDeactivate();
1865263509Sdim  // Iterate in reverse to increase the likelihood of popping the cleanup.
1866263509Sdim  for (ArrayRef<CallArgList::CallArgCleanup>::reverse_iterator
1867263509Sdim         I = Cleanups.rbegin(), E = Cleanups.rend(); I != E; ++I) {
1868263509Sdim    CGF.DeactivateCleanupBlock(I->Cleanup, I->IsActiveIP);
1869263509Sdim    I->IsActiveIP->eraseFromParent();
1870263509Sdim  }
1871263509Sdim}
1872263509Sdim
1873252723Sdimstatic const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
1874252723Sdim  if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
1875252723Sdim    if (uop->getOpcode() == UO_AddrOf)
1876252723Sdim      return uop->getSubExpr();
1877252723Sdim  return 0;
1878252723Sdim}
1879252723Sdim
1880224145Sdim/// Emit an argument that's being passed call-by-writeback.  That is,
1881224145Sdim/// we are passing the address of
1882224145Sdimstatic void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
1883224145Sdim                             const ObjCIndirectCopyRestoreExpr *CRE) {
1884252723Sdim  LValue srcLV;
1885224145Sdim
1886252723Sdim  // Make an optimistic effort to emit the address as an l-value.
1887252723Sdim  // This can fail if the the argument expression is more complicated.
1888252723Sdim  if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
1889252723Sdim    srcLV = CGF.EmitLValue(lvExpr);
1890252723Sdim
1891252723Sdim  // Otherwise, just emit it as a scalar.
1892252723Sdim  } else {
1893252723Sdim    llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr());
1894252723Sdim
1895252723Sdim    QualType srcAddrType =
1896252723Sdim      CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
1897252723Sdim    srcLV = CGF.MakeNaturalAlignAddrLValue(srcAddr, srcAddrType);
1898252723Sdim  }
1899252723Sdim  llvm::Value *srcAddr = srcLV.getAddress();
1900252723Sdim
1901224145Sdim  // The dest and src types don't necessarily match in LLVM terms
1902224145Sdim  // because of the crazy ObjC compatibility rules.
1903224145Sdim
1904226890Sdim  llvm::PointerType *destType =
1905224145Sdim    cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
1906224145Sdim
1907224145Sdim  // If the address is a constant null, just pass the appropriate null.
1908224145Sdim  if (isProvablyNull(srcAddr)) {
1909224145Sdim    args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
1910224145Sdim             CRE->getType());
1911224145Sdim    return;
1912224145Sdim  }
1913224145Sdim
1914224145Sdim  // Create the temporary.
1915224145Sdim  llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(),
1916224145Sdim                                           "icr.temp");
1917252723Sdim  // Loading an l-value can introduce a cleanup if the l-value is __weak,
1918252723Sdim  // and that cleanup will be conditional if we can't prove that the l-value
1919252723Sdim  // isn't null, so we need to register a dominating point so that the cleanups
1920252723Sdim  // system will make valid IR.
1921252723Sdim  CodeGenFunction::ConditionalEvaluation condEval(CGF);
1922252723Sdim
1923224145Sdim  // Zero-initialize it if we're not doing a copy-initialization.
1924224145Sdim  bool shouldCopy = CRE->shouldCopy();
1925224145Sdim  if (!shouldCopy) {
1926224145Sdim    llvm::Value *null =
1927224145Sdim      llvm::ConstantPointerNull::get(
1928224145Sdim        cast<llvm::PointerType>(destType->getElementType()));
1929224145Sdim    CGF.Builder.CreateStore(null, temp);
1930224145Sdim  }
1931252723Sdim
1932224145Sdim  llvm::BasicBlock *contBB = 0;
1933252723Sdim  llvm::BasicBlock *originBB = 0;
1934224145Sdim
1935224145Sdim  // If the address is *not* known to be non-null, we need to switch.
1936224145Sdim  llvm::Value *finalArgument;
1937224145Sdim
1938224145Sdim  bool provablyNonNull = isProvablyNonNull(srcAddr);
1939224145Sdim  if (provablyNonNull) {
1940224145Sdim    finalArgument = temp;
1941224145Sdim  } else {
1942224145Sdim    llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
1943224145Sdim
1944224145Sdim    finalArgument = CGF.Builder.CreateSelect(isNull,
1945224145Sdim                                   llvm::ConstantPointerNull::get(destType),
1946224145Sdim                                             temp, "icr.argument");
1947224145Sdim
1948224145Sdim    // If we need to copy, then the load has to be conditional, which
1949224145Sdim    // means we need control flow.
1950224145Sdim    if (shouldCopy) {
1951252723Sdim      originBB = CGF.Builder.GetInsertBlock();
1952224145Sdim      contBB = CGF.createBasicBlock("icr.cont");
1953224145Sdim      llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
1954224145Sdim      CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
1955224145Sdim      CGF.EmitBlock(copyBB);
1956252723Sdim      condEval.begin(CGF);
1957224145Sdim    }
1958224145Sdim  }
1959224145Sdim
1960252723Sdim  llvm::Value *valueToUse = 0;
1961252723Sdim
1962224145Sdim  // Perform a copy if necessary.
1963224145Sdim  if (shouldCopy) {
1964263509Sdim    RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
1965224145Sdim    assert(srcRV.isScalar());
1966224145Sdim
1967224145Sdim    llvm::Value *src = srcRV.getScalarVal();
1968224145Sdim    src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
1969224145Sdim                                    "icr.cast");
1970224145Sdim
1971224145Sdim    // Use an ordinary store, not a store-to-lvalue.
1972224145Sdim    CGF.Builder.CreateStore(src, temp);
1973252723Sdim
1974252723Sdim    // If optimization is enabled, and the value was held in a
1975252723Sdim    // __strong variable, we need to tell the optimizer that this
1976252723Sdim    // value has to stay alive until we're doing the store back.
1977252723Sdim    // This is because the temporary is effectively unretained,
1978252723Sdim    // and so otherwise we can violate the high-level semantics.
1979252723Sdim    if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
1980252723Sdim        srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
1981252723Sdim      valueToUse = src;
1982252723Sdim    }
1983224145Sdim  }
1984252723Sdim
1985224145Sdim  // Finish the control flow if we needed it.
1986252723Sdim  if (shouldCopy && !provablyNonNull) {
1987252723Sdim    llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
1988224145Sdim    CGF.EmitBlock(contBB);
1989224145Sdim
1990252723Sdim    // Make a phi for the value to intrinsically use.
1991252723Sdim    if (valueToUse) {
1992252723Sdim      llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
1993252723Sdim                                                      "icr.to-use");
1994252723Sdim      phiToUse->addIncoming(valueToUse, copyBB);
1995252723Sdim      phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
1996252723Sdim                            originBB);
1997252723Sdim      valueToUse = phiToUse;
1998252723Sdim    }
1999252723Sdim
2000252723Sdim    condEval.end(CGF);
2001252723Sdim  }
2002252723Sdim
2003252723Sdim  args.addWriteback(srcLV, temp, valueToUse);
2004224145Sdim  args.add(RValue::get(finalArgument), CRE->getType());
2005224145Sdim}
2006224145Sdim
2007221345Sdimvoid CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
2008221345Sdim                                  QualType type) {
2009224145Sdim  if (const ObjCIndirectCopyRestoreExpr *CRE
2010224145Sdim        = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
2011245431Sdim    assert(getLangOpts().ObjCAutoRefCount);
2012224145Sdim    assert(getContext().hasSameType(E->getType(), type));
2013224145Sdim    return emitWritebackArg(*this, args, CRE);
2014224145Sdim  }
2015224145Sdim
2016226890Sdim  assert(type->isReferenceType() == E->isGLValue() &&
2017226890Sdim         "reference binding to unmaterialized r-value!");
2018226890Sdim
2019226890Sdim  if (E->isGLValue()) {
2020226890Sdim    assert(E->getObjectKind() == OK_Ordinary);
2021263509Sdim    return args.add(EmitReferenceBindingToExpr(E), type);
2022226890Sdim  }
2023198092Srdivacky
2024263509Sdim  bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
2025263509Sdim
2026263509Sdim  // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
2027263509Sdim  // However, we still have to push an EH-only cleanup in case we unwind before
2028263509Sdim  // we make it to the call.
2029263509Sdim  if (HasAggregateEvalKind &&
2030263509Sdim      CGM.getTarget().getCXXABI().isArgumentDestroyedByCallee()) {
2031263509Sdim    const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
2032263509Sdim    if (RD && RD->hasNonTrivialDestructor()) {
2033263509Sdim      AggValueSlot Slot = CreateAggTemp(type, "agg.arg.tmp");
2034263509Sdim      Slot.setExternallyDestructed();
2035263509Sdim      EmitAggExpr(E, Slot);
2036263509Sdim      RValue RV = Slot.asRValue();
2037263509Sdim      args.add(RV, type);
2038263509Sdim
2039263509Sdim      pushDestroy(EHCleanup, RV.getAggregateAddr(), type, destroyCXXObject,
2040263509Sdim                  /*useEHCleanupForArray*/ true);
2041263509Sdim      // This unreachable is a temporary marker which will be removed later.
2042263509Sdim      llvm::Instruction *IsActive = Builder.CreateUnreachable();
2043263509Sdim      args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
2044263509Sdim      return;
2045263509Sdim    }
2046263509Sdim  }
2047263509Sdim
2048263509Sdim  if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
2049223017Sdim      cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
2050223017Sdim    LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
2051223017Sdim    assert(L.isSimple());
2052263509Sdim    if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) {
2053263509Sdim      args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
2054263509Sdim    } else {
2055263509Sdim      // We can't represent a misaligned lvalue in the CallArgList, so copy
2056263509Sdim      // to an aligned temporary now.
2057263509Sdim      llvm::Value *tmp = CreateMemTemp(type);
2058263509Sdim      EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile(),
2059263509Sdim                        L.getAlignment());
2060263509Sdim      args.add(RValue::getAggregate(tmp), type);
2061263509Sdim    }
2062223017Sdim    return;
2063223017Sdim  }
2064223017Sdim
2065221345Sdim  args.add(EmitAnyExprToTemp(E), type);
2066193326Sed}
2067193326Sed
2068235633Sdim// In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2069235633Sdim// optimizer it can aggressively ignore unwind edges.
2070235633Sdimvoid
2071235633SdimCodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
2072235633Sdim  if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
2073235633Sdim      !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
2074235633Sdim    Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
2075235633Sdim                      CGM.getNoObjCARCExceptionsMetadata());
2076235633Sdim}
2077235633Sdim
2078252723Sdim/// Emits a call to the given no-arguments nounwind runtime function.
2079252723Sdimllvm::CallInst *
2080252723SdimCodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
2081252723Sdim                                         const llvm::Twine &name) {
2082252723Sdim  return EmitNounwindRuntimeCall(callee, ArrayRef<llvm::Value*>(), name);
2083252723Sdim}
2084252723Sdim
2085252723Sdim/// Emits a call to the given nounwind runtime function.
2086252723Sdimllvm::CallInst *
2087252723SdimCodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
2088252723Sdim                                         ArrayRef<llvm::Value*> args,
2089252723Sdim                                         const llvm::Twine &name) {
2090252723Sdim  llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
2091252723Sdim  call->setDoesNotThrow();
2092252723Sdim  return call;
2093252723Sdim}
2094252723Sdim
2095252723Sdim/// Emits a simple call (never an invoke) to the given no-arguments
2096252723Sdim/// runtime function.
2097252723Sdimllvm::CallInst *
2098252723SdimCodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
2099252723Sdim                                 const llvm::Twine &name) {
2100252723Sdim  return EmitRuntimeCall(callee, ArrayRef<llvm::Value*>(), name);
2101252723Sdim}
2102252723Sdim
2103252723Sdim/// Emits a simple call (never an invoke) to the given runtime
2104252723Sdim/// function.
2105252723Sdimllvm::CallInst *
2106252723SdimCodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
2107252723Sdim                                 ArrayRef<llvm::Value*> args,
2108252723Sdim                                 const llvm::Twine &name) {
2109252723Sdim  llvm::CallInst *call = Builder.CreateCall(callee, args, name);
2110252723Sdim  call->setCallingConv(getRuntimeCC());
2111252723Sdim  return call;
2112252723Sdim}
2113252723Sdim
2114252723Sdim/// Emits a call or invoke to the given noreturn runtime function.
2115252723Sdimvoid CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
2116252723Sdim                                               ArrayRef<llvm::Value*> args) {
2117252723Sdim  if (getInvokeDest()) {
2118252723Sdim    llvm::InvokeInst *invoke =
2119252723Sdim      Builder.CreateInvoke(callee,
2120252723Sdim                           getUnreachableBlock(),
2121252723Sdim                           getInvokeDest(),
2122252723Sdim                           args);
2123252723Sdim    invoke->setDoesNotReturn();
2124252723Sdim    invoke->setCallingConv(getRuntimeCC());
2125252723Sdim  } else {
2126252723Sdim    llvm::CallInst *call = Builder.CreateCall(callee, args);
2127252723Sdim    call->setDoesNotReturn();
2128252723Sdim    call->setCallingConv(getRuntimeCC());
2129252723Sdim    Builder.CreateUnreachable();
2130252723Sdim  }
2131252723Sdim}
2132252723Sdim
2133252723Sdim/// Emits a call or invoke instruction to the given nullary runtime
2134252723Sdim/// function.
2135252723Sdimllvm::CallSite
2136252723SdimCodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
2137252723Sdim                                         const Twine &name) {
2138252723Sdim  return EmitRuntimeCallOrInvoke(callee, ArrayRef<llvm::Value*>(), name);
2139252723Sdim}
2140252723Sdim
2141252723Sdim/// Emits a call or invoke instruction to the given runtime function.
2142252723Sdimllvm::CallSite
2143252723SdimCodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
2144252723Sdim                                         ArrayRef<llvm::Value*> args,
2145252723Sdim                                         const Twine &name) {
2146252723Sdim  llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name);
2147252723Sdim  callSite.setCallingConv(getRuntimeCC());
2148252723Sdim  return callSite;
2149252723Sdim}
2150252723Sdim
2151252723Sdimllvm::CallSite
2152252723SdimCodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
2153252723Sdim                                  const Twine &Name) {
2154252723Sdim  return EmitCallOrInvoke(Callee, ArrayRef<llvm::Value *>(), Name);
2155252723Sdim}
2156252723Sdim
2157210299Sed/// Emits a call or invoke instruction to the given function, depending
2158210299Sed/// on the current state of the EH stack.
2159210299Sedllvm::CallSite
2160210299SedCodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
2161226890Sdim                                  ArrayRef<llvm::Value *> Args,
2162226890Sdim                                  const Twine &Name) {
2163210299Sed  llvm::BasicBlock *InvokeDest = getInvokeDest();
2164235633Sdim
2165235633Sdim  llvm::Instruction *Inst;
2166210299Sed  if (!InvokeDest)
2167235633Sdim    Inst = Builder.CreateCall(Callee, Args, Name);
2168235633Sdim  else {
2169235633Sdim    llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
2170235633Sdim    Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name);
2171235633Sdim    EmitBlock(ContBB);
2172235633Sdim  }
2173210299Sed
2174235633Sdim  // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2175235633Sdim  // optimizer it can aggressively ignore unwind edges.
2176235633Sdim  if (CGM.getLangOpts().ObjCAutoRefCount)
2177235633Sdim    AddObjCARCExceptionMetadata(Inst);
2178235633Sdim
2179235633Sdim  return Inst;
2180210299Sed}
2181210299Sed
2182224145Sdimstatic void checkArgMatches(llvm::Value *Elt, unsigned &ArgNo,
2183224145Sdim                            llvm::FunctionType *FTy) {
2184224145Sdim  if (ArgNo < FTy->getNumParams())
2185224145Sdim    assert(Elt->getType() == FTy->getParamType(ArgNo));
2186224145Sdim  else
2187224145Sdim    assert(FTy->isVarArg());
2188224145Sdim  ++ArgNo;
2189224145Sdim}
2190224145Sdim
2191224145Sdimvoid CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV,
2192263509Sdim                                       SmallVectorImpl<llvm::Value *> &Args,
2193224145Sdim                                       llvm::FunctionType *IRFuncTy) {
2194226890Sdim  if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2195226890Sdim    unsigned NumElts = AT->getSize().getZExtValue();
2196226890Sdim    QualType EltTy = AT->getElementType();
2197226890Sdim    llvm::Value *Addr = RV.getAggregateAddr();
2198226890Sdim    for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
2199226890Sdim      llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt);
2200263509Sdim      RValue EltRV = convertTempToRValue(EltAddr, EltTy, SourceLocation());
2201226890Sdim      ExpandTypeToArgs(EltTy, EltRV, Args, IRFuncTy);
2202226890Sdim    }
2203235633Sdim  } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
2204226890Sdim    RecordDecl *RD = RT->getDecl();
2205226890Sdim    assert(RV.isAggregate() && "Unexpected rvalue during struct expansion");
2206235633Sdim    LValue LV = MakeAddrLValue(RV.getAggregateAddr(), Ty);
2207235633Sdim
2208235633Sdim    if (RD->isUnion()) {
2209235633Sdim      const FieldDecl *LargestFD = 0;
2210235633Sdim      CharUnits UnionSize = CharUnits::Zero();
2211235633Sdim
2212235633Sdim      for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2213235633Sdim           i != e; ++i) {
2214235633Sdim        const FieldDecl *FD = *i;
2215235633Sdim        assert(!FD->isBitField() &&
2216235633Sdim               "Cannot expand structure with bit-field members.");
2217235633Sdim        CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
2218235633Sdim        if (UnionSize < FieldSize) {
2219235633Sdim          UnionSize = FieldSize;
2220235633Sdim          LargestFD = FD;
2221235633Sdim        }
2222235633Sdim      }
2223235633Sdim      if (LargestFD) {
2224263509Sdim        RValue FldRV = EmitRValueForField(LV, LargestFD, SourceLocation());
2225235633Sdim        ExpandTypeToArgs(LargestFD->getType(), FldRV, Args, IRFuncTy);
2226235633Sdim      }
2227235633Sdim    } else {
2228235633Sdim      for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2229235633Sdim           i != e; ++i) {
2230235633Sdim        FieldDecl *FD = *i;
2231235633Sdim
2232263509Sdim        RValue FldRV = EmitRValueForField(LV, FD, SourceLocation());
2233235633Sdim        ExpandTypeToArgs(FD->getType(), FldRV, Args, IRFuncTy);
2234235633Sdim      }
2235224145Sdim    }
2236235633Sdim  } else if (Ty->isAnyComplexType()) {
2237226890Sdim    ComplexPairTy CV = RV.getComplexVal();
2238226890Sdim    Args.push_back(CV.first);
2239226890Sdim    Args.push_back(CV.second);
2240226890Sdim  } else {
2241224145Sdim    assert(RV.isScalar() &&
2242224145Sdim           "Unexpected non-scalar rvalue during struct expansion.");
2243224145Sdim
2244224145Sdim    // Insert a bitcast as needed.
2245224145Sdim    llvm::Value *V = RV.getScalarVal();
2246224145Sdim    if (Args.size() < IRFuncTy->getNumParams() &&
2247224145Sdim        V->getType() != IRFuncTy->getParamType(Args.size()))
2248224145Sdim      V = Builder.CreateBitCast(V, IRFuncTy->getParamType(Args.size()));
2249224145Sdim
2250224145Sdim    Args.push_back(V);
2251224145Sdim  }
2252224145Sdim}
2253224145Sdim
2254224145Sdim
2255193326SedRValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
2256198092Srdivacky                                 llvm::Value *Callee,
2257201361Srdivacky                                 ReturnValueSlot ReturnValue,
2258193326Sed                                 const CallArgList &CallArgs,
2259207619Srdivacky                                 const Decl *TargetDecl,
2260207619Srdivacky                                 llvm::Instruction **callOrInvoke) {
2261193326Sed  // FIXME: We no longer need the types from CallArgs; lift up and simplify.
2262226890Sdim  SmallVector<llvm::Value*, 16> Args;
2263193326Sed
2264193326Sed  // Handle struct-return functions by passing a pointer to the
2265193326Sed  // location that we would like to return into.
2266193326Sed  QualType RetTy = CallInfo.getReturnType();
2267193326Sed  const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
2268198092Srdivacky
2269224145Sdim  // IRArgNo - Keep track of the argument number in the callee we're looking at.
2270224145Sdim  unsigned IRArgNo = 0;
2271224145Sdim  llvm::FunctionType *IRFuncTy =
2272224145Sdim    cast<llvm::FunctionType>(
2273224145Sdim                  cast<llvm::PointerType>(Callee->getType())->getElementType());
2274198092Srdivacky
2275194179Sed  // If the call returns a temporary with struct return, create a temporary
2276201361Srdivacky  // alloca to hold the result, unless one is given to us.
2277210299Sed  if (CGM.ReturnTypeUsesSRet(CallInfo)) {
2278201361Srdivacky    llvm::Value *Value = ReturnValue.getValue();
2279201361Srdivacky    if (!Value)
2280203955Srdivacky      Value = CreateMemTemp(RetTy);
2281201361Srdivacky    Args.push_back(Value);
2282224145Sdim    checkArgMatches(Value, IRArgNo, IRFuncTy);
2283201361Srdivacky  }
2284198092Srdivacky
2285193326Sed  assert(CallInfo.arg_size() == CallArgs.size() &&
2286193326Sed         "Mismatch between function signature & arguments.");
2287193326Sed  CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
2288198092Srdivacky  for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
2289193326Sed       I != E; ++I, ++info_it) {
2290193326Sed    const ABIArgInfo &ArgInfo = info_it->info;
2291221345Sdim    RValue RV = I->RV;
2292193326Sed
2293252723Sdim    CharUnits TypeAlign = getContext().getTypeAlignInChars(I->Ty);
2294245431Sdim
2295245431Sdim    // Insert a padding argument to ensure proper alignment.
2296245431Sdim    if (llvm::Type *PaddingType = ArgInfo.getPaddingType()) {
2297245431Sdim      Args.push_back(llvm::UndefValue::get(PaddingType));
2298245431Sdim      ++IRArgNo;
2299245431Sdim    }
2300245431Sdim
2301193326Sed    switch (ArgInfo.getKind()) {
2302212904Sdim    case ABIArgInfo::Indirect: {
2303193326Sed      if (RV.isScalar() || RV.isComplex()) {
2304193326Sed        // Make a temporary alloca to pass the argument.
2305224145Sdim        llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
2306224145Sdim        if (ArgInfo.getIndirectAlign() > AI->getAlignment())
2307224145Sdim          AI->setAlignment(ArgInfo.getIndirectAlign());
2308224145Sdim        Args.push_back(AI);
2309252723Sdim
2310252723Sdim        LValue argLV =
2311252723Sdim          MakeAddrLValue(Args.back(), I->Ty, TypeAlign);
2312224145Sdim
2313193326Sed        if (RV.isScalar())
2314252723Sdim          EmitStoreOfScalar(RV.getScalarVal(), argLV, /*init*/ true);
2315193326Sed        else
2316252723Sdim          EmitStoreOfComplex(RV.getComplexVal(), argLV, /*init*/ true);
2317224145Sdim
2318224145Sdim        // Validate argument match.
2319224145Sdim        checkArgMatches(AI, IRArgNo, IRFuncTy);
2320193326Sed      } else {
2321224145Sdim        // We want to avoid creating an unnecessary temporary+copy here;
2322252723Sdim        // however, we need one in three cases:
2323224145Sdim        // 1. If the argument is not byval, and we are required to copy the
2324224145Sdim        //    source.  (This case doesn't occur on any common architecture.)
2325224145Sdim        // 2. If the argument is byval, RV is not sufficiently aligned, and
2326224145Sdim        //    we cannot force it to be sufficiently aligned.
2327252723Sdim        // 3. If the argument is byval, but RV is located in an address space
2328252723Sdim        //    different than that of the argument (0).
2329224145Sdim        llvm::Value *Addr = RV.getAggregateAddr();
2330224145Sdim        unsigned Align = ArgInfo.getIndirectAlign();
2331245431Sdim        const llvm::DataLayout *TD = &CGM.getDataLayout();
2332252723Sdim        const unsigned RVAddrSpace = Addr->getType()->getPointerAddressSpace();
2333252723Sdim        const unsigned ArgAddrSpace = (IRArgNo < IRFuncTy->getNumParams() ?
2334252723Sdim          IRFuncTy->getParamType(IRArgNo)->getPointerAddressSpace() : 0);
2335224145Sdim        if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
2336252723Sdim            (ArgInfo.getIndirectByVal() && TypeAlign.getQuantity() < Align &&
2337252723Sdim             llvm::getOrEnforceKnownAlignment(Addr, Align, TD) < Align) ||
2338252723Sdim             (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) {
2339224145Sdim          // Create an aligned temporary, and copy to it.
2340224145Sdim          llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
2341224145Sdim          if (Align > AI->getAlignment())
2342224145Sdim            AI->setAlignment(Align);
2343224145Sdim          Args.push_back(AI);
2344224145Sdim          EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
2345224145Sdim
2346224145Sdim          // Validate argument match.
2347224145Sdim          checkArgMatches(AI, IRArgNo, IRFuncTy);
2348224145Sdim        } else {
2349224145Sdim          // Skip the extra memcpy call.
2350224145Sdim          Args.push_back(Addr);
2351224145Sdim
2352224145Sdim          // Validate argument match.
2353224145Sdim          checkArgMatches(Addr, IRArgNo, IRFuncTy);
2354224145Sdim        }
2355193326Sed      }
2356193326Sed      break;
2357212904Sdim    }
2358193326Sed
2359212904Sdim    case ABIArgInfo::Ignore:
2360212904Sdim      break;
2361218893Sdim
2362193631Sed    case ABIArgInfo::Extend:
2363212904Sdim    case ABIArgInfo::Direct: {
2364212904Sdim      if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
2365212904Sdim          ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
2366212904Sdim          ArgInfo.getDirectOffset() == 0) {
2367224145Sdim        llvm::Value *V;
2368212904Sdim        if (RV.isScalar())
2369224145Sdim          V = RV.getScalarVal();
2370212904Sdim        else
2371224145Sdim          V = Builder.CreateLoad(RV.getAggregateAddr());
2372224145Sdim
2373224145Sdim        // If the argument doesn't match, perform a bitcast to coerce it.  This
2374224145Sdim        // can happen due to trivial type mismatches.
2375224145Sdim        if (IRArgNo < IRFuncTy->getNumParams() &&
2376224145Sdim            V->getType() != IRFuncTy->getParamType(IRArgNo))
2377224145Sdim          V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRArgNo));
2378224145Sdim        Args.push_back(V);
2379224145Sdim
2380224145Sdim        checkArgMatches(V, IRArgNo, IRFuncTy);
2381212904Sdim        break;
2382193326Sed      }
2383198092Srdivacky
2384193326Sed      // FIXME: Avoid the conversion through memory if possible.
2385193326Sed      llvm::Value *SrcPtr;
2386252723Sdim      if (RV.isScalar() || RV.isComplex()) {
2387221345Sdim        SrcPtr = CreateMemTemp(I->Ty, "coerce");
2388252723Sdim        LValue SrcLV = MakeAddrLValue(SrcPtr, I->Ty, TypeAlign);
2389252723Sdim        if (RV.isScalar()) {
2390252723Sdim          EmitStoreOfScalar(RV.getScalarVal(), SrcLV, /*init*/ true);
2391252723Sdim        } else {
2392252723Sdim          EmitStoreOfComplex(RV.getComplexVal(), SrcLV, /*init*/ true);
2393252723Sdim        }
2394198092Srdivacky      } else
2395193326Sed        SrcPtr = RV.getAggregateAddr();
2396218893Sdim
2397212904Sdim      // If the value is offset in memory, apply the offset now.
2398212904Sdim      if (unsigned Offs = ArgInfo.getDirectOffset()) {
2399212904Sdim        SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy());
2400212904Sdim        SrcPtr = Builder.CreateConstGEP1_32(SrcPtr, Offs);
2401218893Sdim        SrcPtr = Builder.CreateBitCast(SrcPtr,
2402212904Sdim                       llvm::PointerType::getUnqual(ArgInfo.getCoerceToType()));
2403212904Sdim
2404212904Sdim      }
2405218893Sdim
2406210299Sed      // If the coerce-to type is a first class aggregate, we flatten it and
2407210299Sed      // pass the elements. Either way is semantically identical, but fast-isel
2408210299Sed      // and the optimizer generally likes scalar values better than FCAs.
2409226890Sdim      if (llvm::StructType *STy =
2410210299Sed            dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType())) {
2411245431Sdim        llvm::Type *SrcTy =
2412245431Sdim          cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
2413245431Sdim        uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
2414245431Sdim        uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
2415245431Sdim
2416245431Sdim        // If the source type is smaller than the destination type of the
2417245431Sdim        // coerce-to logic, copy the source value into a temp alloca the size
2418245431Sdim        // of the destination type to allow loading all of it. The bits past
2419245431Sdim        // the source value are left undef.
2420245431Sdim        if (SrcSize < DstSize) {
2421245431Sdim          llvm::AllocaInst *TempAlloca
2422245431Sdim            = CreateTempAlloca(STy, SrcPtr->getName() + ".coerce");
2423245431Sdim          Builder.CreateMemCpy(TempAlloca, SrcPtr, SrcSize, 0);
2424245431Sdim          SrcPtr = TempAlloca;
2425245431Sdim        } else {
2426245431Sdim          SrcPtr = Builder.CreateBitCast(SrcPtr,
2427245431Sdim                                         llvm::PointerType::getUnqual(STy));
2428245431Sdim        }
2429245431Sdim
2430210299Sed        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2431210299Sed          llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i);
2432212904Sdim          llvm::LoadInst *LI = Builder.CreateLoad(EltPtr);
2433212904Sdim          // We don't know what we're loading from.
2434212904Sdim          LI->setAlignment(1);
2435212904Sdim          Args.push_back(LI);
2436224145Sdim
2437224145Sdim          // Validate argument match.
2438224145Sdim          checkArgMatches(LI, IRArgNo, IRFuncTy);
2439210299Sed        }
2440210299Sed      } else {
2441210299Sed        // In the simple case, just pass the coerced loaded value.
2442210299Sed        Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(),
2443210299Sed                                         *this));
2444224145Sdim
2445224145Sdim        // Validate argument match.
2446224145Sdim        checkArgMatches(Args.back(), IRArgNo, IRFuncTy);
2447210299Sed      }
2448218893Sdim
2449193326Sed      break;
2450193326Sed    }
2451193326Sed
2452193326Sed    case ABIArgInfo::Expand:
2453224145Sdim      ExpandTypeToArgs(I->Ty, RV, Args, IRFuncTy);
2454224145Sdim      IRArgNo = Args.size();
2455193326Sed      break;
2456193326Sed    }
2457193326Sed  }
2458198092Srdivacky
2459263509Sdim  if (!CallArgs.getCleanupsToDeactivate().empty())
2460263509Sdim    deactivateArgCleanupsBeforeCall(*this, CallArgs);
2461263509Sdim
2462194179Sed  // If the callee is a bitcast of a function to a varargs pointer to function
2463194179Sed  // type, check to see if we can remove the bitcast.  This handles some cases
2464194179Sed  // with unprototyped functions.
2465194179Sed  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
2466194179Sed    if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
2467226890Sdim      llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
2468226890Sdim      llvm::FunctionType *CurFT =
2469194179Sed        cast<llvm::FunctionType>(CurPT->getElementType());
2470226890Sdim      llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
2471198092Srdivacky
2472194179Sed      if (CE->getOpcode() == llvm::Instruction::BitCast &&
2473194179Sed          ActualFT->getReturnType() == CurFT->getReturnType() &&
2474194711Sed          ActualFT->getNumParams() == CurFT->getNumParams() &&
2475221345Sdim          ActualFT->getNumParams() == Args.size() &&
2476221345Sdim          (CurFT->isVarArg() || !ActualFT->isVarArg())) {
2477194179Sed        bool ArgsMatch = true;
2478194179Sed        for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
2479194179Sed          if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
2480194179Sed            ArgsMatch = false;
2481194179Sed            break;
2482194179Sed          }
2483198092Srdivacky
2484194179Sed        // Strip the cast if we can get away with it.  This is a nice cleanup,
2485194179Sed        // but also allows us to inline the function at -O0 if it is marked
2486194179Sed        // always_inline.
2487194179Sed        if (ArgsMatch)
2488194179Sed          Callee = CalleeF;
2489194179Sed      }
2490194179Sed    }
2491193326Sed
2492198092Srdivacky  unsigned CallingConv;
2493193326Sed  CodeGen::AttributeListType AttributeList;
2494252723Sdim  CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList,
2495252723Sdim                             CallingConv, true);
2496252723Sdim  llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(),
2497252723Sdim                                                     AttributeList);
2498198092Srdivacky
2499210299Sed  llvm::BasicBlock *InvokeDest = 0;
2500252723Sdim  if (!Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex,
2501252723Sdim                          llvm::Attribute::NoUnwind))
2502210299Sed    InvokeDest = getInvokeDest();
2503210299Sed
2504193326Sed  llvm::CallSite CS;
2505210299Sed  if (!InvokeDest) {
2506224145Sdim    CS = Builder.CreateCall(Callee, Args);
2507193326Sed  } else {
2508193326Sed    llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
2509224145Sdim    CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, Args);
2510193326Sed    EmitBlock(Cont);
2511193326Sed  }
2512210299Sed  if (callOrInvoke)
2513207619Srdivacky    *callOrInvoke = CS.getInstruction();
2514193326Sed
2515193326Sed  CS.setAttributes(Attrs);
2516198092Srdivacky  CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2517193326Sed
2518235633Sdim  // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2519235633Sdim  // optimizer it can aggressively ignore unwind edges.
2520235633Sdim  if (CGM.getLangOpts().ObjCAutoRefCount)
2521235633Sdim    AddObjCARCExceptionMetadata(CS.getInstruction());
2522235633Sdim
2523193326Sed  // If the call doesn't return, finish the basic block and clear the
2524193326Sed  // insertion point; this allows the rest of IRgen to discard
2525193326Sed  // unreachable code.
2526193326Sed  if (CS.doesNotReturn()) {
2527193326Sed    Builder.CreateUnreachable();
2528193326Sed    Builder.ClearInsertionPoint();
2529198092Srdivacky
2530193326Sed    // FIXME: For now, emit a dummy basic block because expr emitters in
2531193326Sed    // generally are not ready to handle emitting expressions at unreachable
2532193326Sed    // points.
2533193326Sed    EnsureInsertPoint();
2534198092Srdivacky
2535193326Sed    // Return a reasonable RValue.
2536193326Sed    return GetUndefRValue(RetTy);
2537198092Srdivacky  }
2538193326Sed
2539193326Sed  llvm::Instruction *CI = CS.getInstruction();
2540198092Srdivacky  if (Builder.isNamePreserving() && !CI->getType()->isVoidTy())
2541193326Sed    CI->setName("call");
2542193326Sed
2543224145Sdim  // Emit any writebacks immediately.  Arguably this should happen
2544224145Sdim  // after any return-value munging.
2545224145Sdim  if (CallArgs.hasWritebacks())
2546224145Sdim    emitWritebacks(*this, CallArgs);
2547224145Sdim
2548193326Sed  switch (RetAI.getKind()) {
2549252723Sdim  case ABIArgInfo::Indirect:
2550263509Sdim    return convertTempToRValue(Args[0], RetTy, SourceLocation());
2551193326Sed
2552193326Sed  case ABIArgInfo::Ignore:
2553193326Sed    // If we are ignoring an argument that had a result, make sure to
2554193326Sed    // construct the appropriate return value for our caller.
2555193326Sed    return GetUndefRValue(RetTy);
2556218893Sdim
2557212904Sdim  case ABIArgInfo::Extend:
2558212904Sdim  case ABIArgInfo::Direct: {
2559224145Sdim    llvm::Type *RetIRTy = ConvertType(RetTy);
2560224145Sdim    if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
2561252723Sdim      switch (getEvaluationKind(RetTy)) {
2562252723Sdim      case TEK_Complex: {
2563212904Sdim        llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
2564212904Sdim        llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
2565212904Sdim        return RValue::getComplex(std::make_pair(Real, Imag));
2566212904Sdim      }
2567252723Sdim      case TEK_Aggregate: {
2568212904Sdim        llvm::Value *DestPtr = ReturnValue.getValue();
2569212904Sdim        bool DestIsVolatile = ReturnValue.isVolatile();
2570193326Sed
2571212904Sdim        if (!DestPtr) {
2572212904Sdim          DestPtr = CreateMemTemp(RetTy, "agg.tmp");
2573212904Sdim          DestIsVolatile = false;
2574212904Sdim        }
2575223017Sdim        BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false);
2576212904Sdim        return RValue::getAggregate(DestPtr);
2577212904Sdim      }
2578252723Sdim      case TEK_Scalar: {
2579252723Sdim        // If the argument doesn't match, perform a bitcast to coerce it.  This
2580252723Sdim        // can happen due to trivial type mismatches.
2581252723Sdim        llvm::Value *V = CI;
2582252723Sdim        if (V->getType() != RetIRTy)
2583252723Sdim          V = Builder.CreateBitCast(V, RetIRTy);
2584252723Sdim        return RValue::get(V);
2585252723Sdim      }
2586252723Sdim      }
2587252723Sdim      llvm_unreachable("bad evaluation kind");
2588212904Sdim    }
2589218893Sdim
2590201361Srdivacky    llvm::Value *DestPtr = ReturnValue.getValue();
2591201361Srdivacky    bool DestIsVolatile = ReturnValue.isVolatile();
2592218893Sdim
2593201361Srdivacky    if (!DestPtr) {
2594203955Srdivacky      DestPtr = CreateMemTemp(RetTy, "coerce");
2595201361Srdivacky      DestIsVolatile = false;
2596201361Srdivacky    }
2597218893Sdim
2598212904Sdim    // If the value is offset in memory, apply the offset now.
2599212904Sdim    llvm::Value *StorePtr = DestPtr;
2600212904Sdim    if (unsigned Offs = RetAI.getDirectOffset()) {
2601212904Sdim      StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy());
2602212904Sdim      StorePtr = Builder.CreateConstGEP1_32(StorePtr, Offs);
2603218893Sdim      StorePtr = Builder.CreateBitCast(StorePtr,
2604212904Sdim                         llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
2605212904Sdim    }
2606212904Sdim    CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
2607218893Sdim
2608263509Sdim    return convertTempToRValue(DestPtr, RetTy, SourceLocation());
2609193326Sed  }
2610193326Sed
2611193326Sed  case ABIArgInfo::Expand:
2612226890Sdim    llvm_unreachable("Invalid ABI kind for return argument");
2613193326Sed  }
2614193326Sed
2615226890Sdim  llvm_unreachable("Unhandled ABIArgInfo::Kind");
2616193326Sed}
2617193326Sed
2618193326Sed/* VarArg handling */
2619193326Sed
2620193326Sedllvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) {
2621193326Sed  return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this);
2622193326Sed}
2623