SimplifyIndVar.cpp revision 235633
1//===-- SimplifyIndVar.cpp - Induction variable simplification ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements induction variable simplification. It does
11// not define any actual pass or policy, but provides a single function to
12// simplify a loop's induction variables based on ScalarEvolution.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "indvars"
17
18#include "llvm/Instructions.h"
19#include "llvm/Analysis/Dominators.h"
20#include "llvm/Analysis/IVUsers.h"
21#include "llvm/Analysis/LoopInfo.h"
22#include "llvm/Analysis/LoopPass.h"
23#include "llvm/Analysis/ScalarEvolutionExpressions.h"
24#include "llvm/Support/CommandLine.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/raw_ostream.h"
27#include "llvm/Transforms/Utils/SimplifyIndVar.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/ADT/SmallVector.h"
30#include "llvm/ADT/Statistic.h"
31
32using namespace llvm;
33
34STATISTIC(NumElimIdentity, "Number of IV identities eliminated");
35STATISTIC(NumElimOperand,  "Number of IV operands folded into a use");
36STATISTIC(NumElimRem     , "Number of IV remainder operations eliminated");
37STATISTIC(NumElimCmp     , "Number of IV comparisons eliminated");
38
39namespace {
40  /// SimplifyIndvar - This is a utility for simplifying induction variables
41  /// based on ScalarEvolution. It is the primary instrument of the
42  /// IndvarSimplify pass, but it may also be directly invoked to cleanup after
43  /// other loop passes that preserve SCEV.
44  class SimplifyIndvar {
45    Loop             *L;
46    LoopInfo         *LI;
47    DominatorTree    *DT;
48    ScalarEvolution  *SE;
49    const TargetData *TD; // May be NULL
50
51    SmallVectorImpl<WeakVH> &DeadInsts;
52
53    bool Changed;
54
55  public:
56    SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, LPPassManager *LPM,
57                   SmallVectorImpl<WeakVH> &Dead, IVUsers *IVU = NULL) :
58      L(Loop),
59      LI(LPM->getAnalysisIfAvailable<LoopInfo>()),
60      SE(SE),
61      TD(LPM->getAnalysisIfAvailable<TargetData>()),
62      DeadInsts(Dead),
63      Changed(false) {
64      assert(LI && "IV simplification requires LoopInfo");
65    }
66
67    bool hasChanged() const { return Changed; }
68
69    /// Iteratively perform simplification on a worklist of users of the
70    /// specified induction variable. This is the top-level driver that applies
71    /// all simplicitions to users of an IV.
72    void simplifyUsers(PHINode *CurrIV, IVVisitor *V = NULL);
73
74    Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand);
75
76    bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand);
77    void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand);
78    void eliminateIVRemainder(BinaryOperator *Rem, Value *IVOperand,
79                              bool IsSigned);
80  };
81}
82
83/// foldIVUser - Fold an IV operand into its use.  This removes increments of an
84/// aligned IV when used by a instruction that ignores the low bits.
85///
86/// IVOperand is guaranteed SCEVable, but UseInst may not be.
87///
88/// Return the operand of IVOperand for this induction variable if IVOperand can
89/// be folded (in case more folding opportunities have been exposed).
90/// Otherwise return null.
91Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) {
92  Value *IVSrc = 0;
93  unsigned OperIdx = 0;
94  const SCEV *FoldedExpr = 0;
95  switch (UseInst->getOpcode()) {
96  default:
97    return 0;
98  case Instruction::UDiv:
99  case Instruction::LShr:
100    // We're only interested in the case where we know something about
101    // the numerator and have a constant denominator.
102    if (IVOperand != UseInst->getOperand(OperIdx) ||
103        !isa<ConstantInt>(UseInst->getOperand(1)))
104      return 0;
105
106    // Attempt to fold a binary operator with constant operand.
107    // e.g. ((I + 1) >> 2) => I >> 2
108    if (!isa<BinaryOperator>(IVOperand)
109        || !isa<ConstantInt>(IVOperand->getOperand(1)))
110      return 0;
111
112    IVSrc = IVOperand->getOperand(0);
113    // IVSrc must be the (SCEVable) IV, since the other operand is const.
114    assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand");
115
116    ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1));
117    if (UseInst->getOpcode() == Instruction::LShr) {
118      // Get a constant for the divisor. See createSCEV.
119      uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth();
120      if (D->getValue().uge(BitWidth))
121        return 0;
122
123      D = ConstantInt::get(UseInst->getContext(),
124                           APInt(BitWidth, 1).shl(D->getZExtValue()));
125    }
126    FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D));
127  }
128  // We have something that might fold it's operand. Compare SCEVs.
129  if (!SE->isSCEVable(UseInst->getType()))
130    return 0;
131
132  // Bypass the operand if SCEV can prove it has no effect.
133  if (SE->getSCEV(UseInst) != FoldedExpr)
134    return 0;
135
136  DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand
137        << " -> " << *UseInst << '\n');
138
139  UseInst->setOperand(OperIdx, IVSrc);
140  assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper");
141
142  ++NumElimOperand;
143  Changed = true;
144  if (IVOperand->use_empty())
145    DeadInsts.push_back(IVOperand);
146  return IVSrc;
147}
148
149/// eliminateIVComparison - SimplifyIVUsers helper for eliminating useless
150/// comparisons against an induction variable.
151void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) {
152  unsigned IVOperIdx = 0;
153  ICmpInst::Predicate Pred = ICmp->getPredicate();
154  if (IVOperand != ICmp->getOperand(0)) {
155    // Swapped
156    assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
157    IVOperIdx = 1;
158    Pred = ICmpInst::getSwappedPredicate(Pred);
159  }
160
161  // Get the SCEVs for the ICmp operands.
162  const SCEV *S = SE->getSCEV(ICmp->getOperand(IVOperIdx));
163  const SCEV *X = SE->getSCEV(ICmp->getOperand(1 - IVOperIdx));
164
165  // Simplify unnecessary loops away.
166  const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
167  S = SE->getSCEVAtScope(S, ICmpLoop);
168  X = SE->getSCEVAtScope(X, ICmpLoop);
169
170  // If the condition is always true or always false, replace it with
171  // a constant value.
172  if (SE->isKnownPredicate(Pred, S, X))
173    ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext()));
174  else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X))
175    ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext()));
176  else
177    return;
178
179  DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
180  ++NumElimCmp;
181  Changed = true;
182  DeadInsts.push_back(ICmp);
183}
184
185/// eliminateIVRemainder - SimplifyIVUsers helper for eliminating useless
186/// remainder operations operating on an induction variable.
187void SimplifyIndvar::eliminateIVRemainder(BinaryOperator *Rem,
188                                      Value *IVOperand,
189                                      bool IsSigned) {
190  // We're only interested in the case where we know something about
191  // the numerator.
192  if (IVOperand != Rem->getOperand(0))
193    return;
194
195  // Get the SCEVs for the ICmp operands.
196  const SCEV *S = SE->getSCEV(Rem->getOperand(0));
197  const SCEV *X = SE->getSCEV(Rem->getOperand(1));
198
199  // Simplify unnecessary loops away.
200  const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
201  S = SE->getSCEVAtScope(S, ICmpLoop);
202  X = SE->getSCEVAtScope(X, ICmpLoop);
203
204  // i % n  -->  i  if i is in [0,n).
205  if ((!IsSigned || SE->isKnownNonNegative(S)) &&
206      SE->isKnownPredicate(IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
207                           S, X))
208    Rem->replaceAllUsesWith(Rem->getOperand(0));
209  else {
210    // (i+1) % n  -->  (i+1)==n?0:(i+1)  if i is in [0,n).
211    const SCEV *LessOne =
212      SE->getMinusSCEV(S, SE->getConstant(S->getType(), 1));
213    if (IsSigned && !SE->isKnownNonNegative(LessOne))
214      return;
215
216    if (!SE->isKnownPredicate(IsSigned ?
217                              ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
218                              LessOne, X))
219      return;
220
221    ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ,
222                                  Rem->getOperand(0), Rem->getOperand(1));
223    SelectInst *Sel =
224      SelectInst::Create(ICmp,
225                         ConstantInt::get(Rem->getType(), 0),
226                         Rem->getOperand(0), "tmp", Rem);
227    Rem->replaceAllUsesWith(Sel);
228  }
229
230  DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
231  ++NumElimRem;
232  Changed = true;
233  DeadInsts.push_back(Rem);
234}
235
236/// eliminateIVUser - Eliminate an operation that consumes a simple IV and has
237/// no observable side-effect given the range of IV values.
238/// IVOperand is guaranteed SCEVable, but UseInst may not be.
239bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst,
240                                     Instruction *IVOperand) {
241  if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
242    eliminateIVComparison(ICmp, IVOperand);
243    return true;
244  }
245  if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) {
246    bool IsSigned = Rem->getOpcode() == Instruction::SRem;
247    if (IsSigned || Rem->getOpcode() == Instruction::URem) {
248      eliminateIVRemainder(Rem, IVOperand, IsSigned);
249      return true;
250    }
251  }
252
253  // Eliminate any operation that SCEV can prove is an identity function.
254  if (!SE->isSCEVable(UseInst->getType()) ||
255      (UseInst->getType() != IVOperand->getType()) ||
256      (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand)))
257    return false;
258
259  DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n');
260
261  UseInst->replaceAllUsesWith(IVOperand);
262  ++NumElimIdentity;
263  Changed = true;
264  DeadInsts.push_back(UseInst);
265  return true;
266}
267
268/// pushIVUsers - Add all uses of Def to the current IV's worklist.
269///
270static void pushIVUsers(
271  Instruction *Def,
272  SmallPtrSet<Instruction*,16> &Simplified,
273  SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) {
274
275  for (Value::use_iterator UI = Def->use_begin(), E = Def->use_end();
276       UI != E; ++UI) {
277    Instruction *User = cast<Instruction>(*UI);
278
279    // Avoid infinite or exponential worklist processing.
280    // Also ensure unique worklist users.
281    // If Def is a LoopPhi, it may not be in the Simplified set, so check for
282    // self edges first.
283    if (User != Def && Simplified.insert(User))
284      SimpleIVUsers.push_back(std::make_pair(User, Def));
285  }
286}
287
288/// isSimpleIVUser - Return true if this instruction generates a simple SCEV
289/// expression in terms of that IV.
290///
291/// This is similar to IVUsers' isInteresting() but processes each instruction
292/// non-recursively when the operand is already known to be a simpleIVUser.
293///
294static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) {
295  if (!SE->isSCEVable(I->getType()))
296    return false;
297
298  // Get the symbolic expression for this instruction.
299  const SCEV *S = SE->getSCEV(I);
300
301  // Only consider affine recurrences.
302  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
303  if (AR && AR->getLoop() == L)
304    return true;
305
306  return false;
307}
308
309/// simplifyUsers - Iteratively perform simplification on a worklist of users
310/// of the specified induction variable. Each successive simplification may push
311/// more users which may themselves be candidates for simplification.
312///
313/// This algorithm does not require IVUsers analysis. Instead, it simplifies
314/// instructions in-place during analysis. Rather than rewriting induction
315/// variables bottom-up from their users, it transforms a chain of IVUsers
316/// top-down, updating the IR only when it encouters a clear optimization
317/// opportunitiy.
318///
319/// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
320///
321void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) {
322  if (!SE->isSCEVable(CurrIV->getType()))
323    return;
324
325  // Instructions processed by SimplifyIndvar for CurrIV.
326  SmallPtrSet<Instruction*,16> Simplified;
327
328  // Use-def pairs if IV users waiting to be processed for CurrIV.
329  SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers;
330
331  // Push users of the current LoopPhi. In rare cases, pushIVUsers may be
332  // called multiple times for the same LoopPhi. This is the proper thing to
333  // do for loop header phis that use each other.
334  pushIVUsers(CurrIV, Simplified, SimpleIVUsers);
335
336  while (!SimpleIVUsers.empty()) {
337    std::pair<Instruction*, Instruction*> UseOper =
338      SimpleIVUsers.pop_back_val();
339    // Bypass back edges to avoid extra work.
340    if (UseOper.first == CurrIV) continue;
341
342    Instruction *IVOperand = UseOper.second;
343    for (unsigned N = 0; IVOperand; ++N) {
344      assert(N <= Simplified.size() && "runaway iteration");
345
346      Value *NewOper = foldIVUser(UseOper.first, IVOperand);
347      if (!NewOper)
348        break; // done folding
349      IVOperand = dyn_cast<Instruction>(NewOper);
350    }
351    if (!IVOperand)
352      continue;
353
354    if (eliminateIVUser(UseOper.first, IVOperand)) {
355      pushIVUsers(IVOperand, Simplified, SimpleIVUsers);
356      continue;
357    }
358    CastInst *Cast = dyn_cast<CastInst>(UseOper.first);
359    if (V && Cast) {
360      V->visitCast(Cast);
361      continue;
362    }
363    if (isSimpleIVUser(UseOper.first, L, SE)) {
364      pushIVUsers(UseOper.first, Simplified, SimpleIVUsers);
365    }
366  }
367}
368
369namespace llvm {
370
371void IVVisitor::anchor() { }
372
373/// simplifyUsersOfIV - Simplify instructions that use this induction variable
374/// by using ScalarEvolution to analyze the IV's recurrence.
375bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, LPPassManager *LPM,
376                       SmallVectorImpl<WeakVH> &Dead, IVVisitor *V)
377{
378  LoopInfo *LI = &LPM->getAnalysis<LoopInfo>();
379  SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, LPM, Dead);
380  SIV.simplifyUsers(CurrIV, V);
381  return SIV.hasChanged();
382}
383
384/// simplifyLoopIVs - Simplify users of induction variables within this
385/// loop. This does not actually change or add IVs.
386bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, LPPassManager *LPM,
387                     SmallVectorImpl<WeakVH> &Dead) {
388  bool Changed = false;
389  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
390    Changed |= simplifyUsersOfIV(cast<PHINode>(I), SE, LPM, Dead);
391  }
392  return Changed;
393}
394
395} // namespace llvm
396