ScalarReplAggregates.cpp revision 201360
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation.  This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible).  Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs.  As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "scalarrepl"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/Pass.h"
32#include "llvm/Analysis/Dominators.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Transforms/Utils/PromoteMemToReg.h"
35#include "llvm/Transforms/Utils/Local.h"
36#include "llvm/Support/Debug.h"
37#include "llvm/Support/ErrorHandling.h"
38#include "llvm/Support/GetElementPtrTypeIterator.h"
39#include "llvm/Support/IRBuilder.h"
40#include "llvm/Support/MathExtras.h"
41#include "llvm/Support/raw_ostream.h"
42#include "llvm/ADT/SmallVector.h"
43#include "llvm/ADT/Statistic.h"
44using namespace llvm;
45
46STATISTIC(NumReplaced,  "Number of allocas broken up");
47STATISTIC(NumPromoted,  "Number of allocas promoted");
48STATISTIC(NumConverted, "Number of aggregates converted to scalar");
49STATISTIC(NumGlobals,   "Number of allocas copied from constant global");
50
51namespace {
52  struct SROA : public FunctionPass {
53    static char ID; // Pass identification, replacement for typeid
54    explicit SROA(signed T = -1) : FunctionPass(&ID) {
55      if (T == -1)
56        SRThreshold = 128;
57      else
58        SRThreshold = T;
59    }
60
61    bool runOnFunction(Function &F);
62
63    bool performScalarRepl(Function &F);
64    bool performPromotion(Function &F);
65
66    // getAnalysisUsage - This pass does not require any passes, but we know it
67    // will not alter the CFG, so say so.
68    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
69      AU.addRequired<DominatorTree>();
70      AU.addRequired<DominanceFrontier>();
71      AU.setPreservesCFG();
72    }
73
74  private:
75    TargetData *TD;
76
77    /// DeadInsts - Keep track of instructions we have made dead, so that
78    /// we can remove them after we are done working.
79    SmallVector<Value*, 32> DeadInsts;
80
81    /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
82    /// information about the uses.  All these fields are initialized to false
83    /// and set to true when something is learned.
84    struct AllocaInfo {
85      /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
86      bool isUnsafe : 1;
87
88      /// needsCleanup - This is set to true if there is some use of the alloca
89      /// that requires cleanup.
90      bool needsCleanup : 1;
91
92      /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
93      bool isMemCpySrc : 1;
94
95      /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
96      bool isMemCpyDst : 1;
97
98      AllocaInfo()
99        : isUnsafe(false), needsCleanup(false),
100          isMemCpySrc(false), isMemCpyDst(false) {}
101    };
102
103    unsigned SRThreshold;
104
105    void MarkUnsafe(AllocaInfo &I) { I.isUnsafe = true; }
106
107    int isSafeAllocaToScalarRepl(AllocaInst *AI);
108
109    void isSafeForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
110                             AllocaInfo &Info);
111    void isSafeGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t &Offset,
112                   AllocaInfo &Info);
113    void isSafeMemAccess(AllocaInst *AI, uint64_t Offset, uint64_t MemSize,
114                         const Type *MemOpType, bool isStore, AllocaInfo &Info);
115    bool TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size);
116    uint64_t FindElementAndOffset(const Type *&T, uint64_t &Offset,
117                                  const Type *&IdxTy);
118
119    void DoScalarReplacement(AllocaInst *AI,
120                             std::vector<AllocaInst*> &WorkList);
121    void DeleteDeadInstructions();
122    void CleanupAllocaUsers(Value *V);
123    AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocaInst *Base);
124
125    void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
126                              SmallVector<AllocaInst*, 32> &NewElts);
127    void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
128                        SmallVector<AllocaInst*, 32> &NewElts);
129    void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
130                    SmallVector<AllocaInst*, 32> &NewElts);
131    void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
132                                      AllocaInst *AI,
133                                      SmallVector<AllocaInst*, 32> &NewElts);
134    void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
135                                       SmallVector<AllocaInst*, 32> &NewElts);
136    void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
137                                      SmallVector<AllocaInst*, 32> &NewElts);
138
139    bool CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
140                            bool &SawVec, uint64_t Offset, unsigned AllocaSize);
141    void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
142    Value *ConvertScalar_ExtractValue(Value *NV, const Type *ToType,
143                                     uint64_t Offset, IRBuilder<> &Builder);
144    Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
145                                     uint64_t Offset, IRBuilder<> &Builder);
146    static Instruction *isOnlyCopiedFromConstantGlobal(AllocaInst *AI);
147  };
148}
149
150char SROA::ID = 0;
151static RegisterPass<SROA> X("scalarrepl", "Scalar Replacement of Aggregates");
152
153// Public interface to the ScalarReplAggregates pass
154FunctionPass *llvm::createScalarReplAggregatesPass(signed int Threshold) {
155  return new SROA(Threshold);
156}
157
158
159bool SROA::runOnFunction(Function &F) {
160  TD = getAnalysisIfAvailable<TargetData>();
161
162  bool Changed = performPromotion(F);
163
164  // FIXME: ScalarRepl currently depends on TargetData more than it
165  // theoretically needs to. It should be refactored in order to support
166  // target-independent IR. Until this is done, just skip the actual
167  // scalar-replacement portion of this pass.
168  if (!TD) return Changed;
169
170  while (1) {
171    bool LocalChange = performScalarRepl(F);
172    if (!LocalChange) break;   // No need to repromote if no scalarrepl
173    Changed = true;
174    LocalChange = performPromotion(F);
175    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
176  }
177
178  return Changed;
179}
180
181
182bool SROA::performPromotion(Function &F) {
183  std::vector<AllocaInst*> Allocas;
184  DominatorTree         &DT = getAnalysis<DominatorTree>();
185  DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
186
187  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
188
189  bool Changed = false;
190
191  while (1) {
192    Allocas.clear();
193
194    // Find allocas that are safe to promote, by looking at all instructions in
195    // the entry node
196    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
197      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
198        if (isAllocaPromotable(AI))
199          Allocas.push_back(AI);
200
201    if (Allocas.empty()) break;
202
203    PromoteMemToReg(Allocas, DT, DF);
204    NumPromoted += Allocas.size();
205    Changed = true;
206  }
207
208  return Changed;
209}
210
211/// getNumSAElements - Return the number of elements in the specific struct or
212/// array.
213static uint64_t getNumSAElements(const Type *T) {
214  if (const StructType *ST = dyn_cast<StructType>(T))
215    return ST->getNumElements();
216  return cast<ArrayType>(T)->getNumElements();
217}
218
219// performScalarRepl - This algorithm is a simple worklist driven algorithm,
220// which runs on all of the malloc/alloca instructions in the function, removing
221// them if they are only used by getelementptr instructions.
222//
223bool SROA::performScalarRepl(Function &F) {
224  std::vector<AllocaInst*> WorkList;
225
226  // Scan the entry basic block, adding any alloca's and mallocs to the worklist
227  BasicBlock &BB = F.getEntryBlock();
228  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
229    if (AllocaInst *A = dyn_cast<AllocaInst>(I))
230      WorkList.push_back(A);
231
232  // Process the worklist
233  bool Changed = false;
234  while (!WorkList.empty()) {
235    AllocaInst *AI = WorkList.back();
236    WorkList.pop_back();
237
238    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
239    // with unused elements.
240    if (AI->use_empty()) {
241      AI->eraseFromParent();
242      continue;
243    }
244
245    // If this alloca is impossible for us to promote, reject it early.
246    if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
247      continue;
248
249    // Check to see if this allocation is only modified by a memcpy/memmove from
250    // a constant global.  If this is the case, we can change all users to use
251    // the constant global instead.  This is commonly produced by the CFE by
252    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
253    // is only subsequently read.
254    if (Instruction *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
255      DEBUG(errs() << "Found alloca equal to global: " << *AI << '\n');
256      DEBUG(errs() << "  memcpy = " << *TheCopy << '\n');
257      Constant *TheSrc = cast<Constant>(TheCopy->getOperand(2));
258      AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
259      TheCopy->eraseFromParent();  // Don't mutate the global.
260      AI->eraseFromParent();
261      ++NumGlobals;
262      Changed = true;
263      continue;
264    }
265
266    // Check to see if we can perform the core SROA transformation.  We cannot
267    // transform the allocation instruction if it is an array allocation
268    // (allocations OF arrays are ok though), and an allocation of a scalar
269    // value cannot be decomposed at all.
270    uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
271
272    // Do not promote [0 x %struct].
273    if (AllocaSize == 0) continue;
274
275    // Do not promote any struct whose size is too big.
276    if (AllocaSize > SRThreshold) continue;
277
278    if ((isa<StructType>(AI->getAllocatedType()) ||
279         isa<ArrayType>(AI->getAllocatedType())) &&
280        // Do not promote any struct into more than "32" separate vars.
281        getNumSAElements(AI->getAllocatedType()) <= SRThreshold/4) {
282      // Check that all of the users of the allocation are capable of being
283      // transformed.
284      switch (isSafeAllocaToScalarRepl(AI)) {
285      default: llvm_unreachable("Unexpected value!");
286      case 0:  // Not safe to scalar replace.
287        break;
288      case 1:  // Safe, but requires cleanup/canonicalizations first
289        CleanupAllocaUsers(AI);
290        // FALL THROUGH.
291      case 3:  // Safe to scalar replace.
292        DoScalarReplacement(AI, WorkList);
293        Changed = true;
294        continue;
295      }
296    }
297
298    // If we can turn this aggregate value (potentially with casts) into a
299    // simple scalar value that can be mem2reg'd into a register value.
300    // IsNotTrivial tracks whether this is something that mem2reg could have
301    // promoted itself.  If so, we don't want to transform it needlessly.  Note
302    // that we can't just check based on the type: the alloca may be of an i32
303    // but that has pointer arithmetic to set byte 3 of it or something.
304    bool IsNotTrivial = false;
305    const Type *VectorTy = 0;
306    bool HadAVector = false;
307    if (CanConvertToScalar(AI, IsNotTrivial, VectorTy, HadAVector,
308                           0, unsigned(AllocaSize)) && IsNotTrivial) {
309      AllocaInst *NewAI;
310      // If we were able to find a vector type that can handle this with
311      // insert/extract elements, and if there was at least one use that had
312      // a vector type, promote this to a vector.  We don't want to promote
313      // random stuff that doesn't use vectors (e.g. <9 x double>) because then
314      // we just get a lot of insert/extracts.  If at least one vector is
315      // involved, then we probably really do have a union of vector/array.
316      if (VectorTy && isa<VectorType>(VectorTy) && HadAVector) {
317        DEBUG(errs() << "CONVERT TO VECTOR: " << *AI << "\n  TYPE = "
318                     << *VectorTy << '\n');
319
320        // Create and insert the vector alloca.
321        NewAI = new AllocaInst(VectorTy, 0, "",  AI->getParent()->begin());
322        ConvertUsesToScalar(AI, NewAI, 0);
323      } else {
324        DEBUG(errs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
325
326        // Create and insert the integer alloca.
327        const Type *NewTy = IntegerType::get(AI->getContext(), AllocaSize*8);
328        NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
329        ConvertUsesToScalar(AI, NewAI, 0);
330      }
331      NewAI->takeName(AI);
332      AI->eraseFromParent();
333      ++NumConverted;
334      Changed = true;
335      continue;
336    }
337
338    // Otherwise, couldn't process this alloca.
339  }
340
341  return Changed;
342}
343
344/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
345/// predicate, do SROA now.
346void SROA::DoScalarReplacement(AllocaInst *AI,
347                               std::vector<AllocaInst*> &WorkList) {
348  DEBUG(errs() << "Found inst to SROA: " << *AI << '\n');
349  SmallVector<AllocaInst*, 32> ElementAllocas;
350  if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
351    ElementAllocas.reserve(ST->getNumContainedTypes());
352    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
353      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
354                                      AI->getAlignment(),
355                                      AI->getName() + "." + Twine(i), AI);
356      ElementAllocas.push_back(NA);
357      WorkList.push_back(NA);  // Add to worklist for recursive processing
358    }
359  } else {
360    const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
361    ElementAllocas.reserve(AT->getNumElements());
362    const Type *ElTy = AT->getElementType();
363    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
364      AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
365                                      AI->getName() + "." + Twine(i), AI);
366      ElementAllocas.push_back(NA);
367      WorkList.push_back(NA);  // Add to worklist for recursive processing
368    }
369  }
370
371  // Now that we have created the new alloca instructions, rewrite all the
372  // uses of the old alloca.
373  RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
374
375  // Now erase any instructions that were made dead while rewriting the alloca.
376  DeleteDeadInstructions();
377  AI->eraseFromParent();
378
379  NumReplaced++;
380}
381
382/// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
383/// recursively including all their operands that become trivially dead.
384void SROA::DeleteDeadInstructions() {
385  while (!DeadInsts.empty()) {
386    Instruction *I = cast<Instruction>(DeadInsts.pop_back_val());
387
388    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
389      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
390        // Zero out the operand and see if it becomes trivially dead.
391        // (But, don't add allocas to the dead instruction list -- they are
392        // already on the worklist and will be deleted separately.)
393        *OI = 0;
394        if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U))
395          DeadInsts.push_back(U);
396      }
397
398    I->eraseFromParent();
399  }
400}
401
402/// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
403/// performing scalar replacement of alloca AI.  The results are flagged in
404/// the Info parameter.  Offset indicates the position within AI that is
405/// referenced by this instruction.
406void SROA::isSafeForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
407                               AllocaInfo &Info) {
408  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
409    Instruction *User = cast<Instruction>(*UI);
410
411    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
412      isSafeForScalarRepl(BC, AI, Offset, Info);
413    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
414      uint64_t GEPOffset = Offset;
415      isSafeGEP(GEPI, AI, GEPOffset, Info);
416      if (!Info.isUnsafe)
417        isSafeForScalarRepl(GEPI, AI, GEPOffset, Info);
418    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(UI)) {
419      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
420      if (Length)
421        isSafeMemAccess(AI, Offset, Length->getZExtValue(), 0,
422                        UI.getOperandNo() == 1, Info);
423      else
424        MarkUnsafe(Info);
425    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
426      if (!LI->isVolatile()) {
427        const Type *LIType = LI->getType();
428        isSafeMemAccess(AI, Offset, TD->getTypeAllocSize(LIType),
429                        LIType, false, Info);
430      } else
431        MarkUnsafe(Info);
432    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
433      // Store is ok if storing INTO the pointer, not storing the pointer
434      if (!SI->isVolatile() && SI->getOperand(0) != I) {
435        const Type *SIType = SI->getOperand(0)->getType();
436        isSafeMemAccess(AI, Offset, TD->getTypeAllocSize(SIType),
437                        SIType, true, Info);
438      } else
439        MarkUnsafe(Info);
440    } else if (isa<DbgInfoIntrinsic>(UI)) {
441      // If one user is DbgInfoIntrinsic then check if all users are
442      // DbgInfoIntrinsics.
443      if (OnlyUsedByDbgInfoIntrinsics(I)) {
444        Info.needsCleanup = true;
445        return;
446      }
447      MarkUnsafe(Info);
448    } else {
449      DEBUG(errs() << "  Transformation preventing inst: " << *User << '\n');
450      MarkUnsafe(Info);
451    }
452    if (Info.isUnsafe) return;
453  }
454}
455
456/// isSafeGEP - Check if a GEP instruction can be handled for scalar
457/// replacement.  It is safe when all the indices are constant, in-bounds
458/// references, and when the resulting offset corresponds to an element within
459/// the alloca type.  The results are flagged in the Info parameter.  Upon
460/// return, Offset is adjusted as specified by the GEP indices.
461void SROA::isSafeGEP(GetElementPtrInst *GEPI, AllocaInst *AI,
462                     uint64_t &Offset, AllocaInfo &Info) {
463  gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
464  if (GEPIt == E)
465    return;
466
467  // Walk through the GEP type indices, checking the types that this indexes
468  // into.
469  for (; GEPIt != E; ++GEPIt) {
470    // Ignore struct elements, no extra checking needed for these.
471    if (isa<StructType>(*GEPIt))
472      continue;
473
474    ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
475    if (!IdxVal)
476      return MarkUnsafe(Info);
477  }
478
479  // Compute the offset due to this GEP and check if the alloca has a
480  // component element at that offset.
481  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
482  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
483                                 &Indices[0], Indices.size());
484  if (!TypeHasComponent(AI->getAllocatedType(), Offset, 0))
485    MarkUnsafe(Info);
486}
487
488/// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
489/// alloca or has an offset and size that corresponds to a component element
490/// within it.  The offset checked here may have been formed from a GEP with a
491/// pointer bitcasted to a different type.
492void SROA::isSafeMemAccess(AllocaInst *AI, uint64_t Offset, uint64_t MemSize,
493                           const Type *MemOpType, bool isStore,
494                           AllocaInfo &Info) {
495  // Check if this is a load/store of the entire alloca.
496  if (Offset == 0 && MemSize == TD->getTypeAllocSize(AI->getAllocatedType())) {
497    bool UsesAggregateType = (MemOpType == AI->getAllocatedType());
498    // This is safe for MemIntrinsics (where MemOpType is 0), integer types
499    // (which are essentially the same as the MemIntrinsics, especially with
500    // regard to copying padding between elements), or references using the
501    // aggregate type of the alloca.
502    if (!MemOpType || isa<IntegerType>(MemOpType) || UsesAggregateType) {
503      if (!UsesAggregateType) {
504        if (isStore)
505          Info.isMemCpyDst = true;
506        else
507          Info.isMemCpySrc = true;
508      }
509      return;
510    }
511  }
512  // Check if the offset/size correspond to a component within the alloca type.
513  const Type *T = AI->getAllocatedType();
514  if (TypeHasComponent(T, Offset, MemSize))
515    return;
516
517  return MarkUnsafe(Info);
518}
519
520/// TypeHasComponent - Return true if T has a component type with the
521/// specified offset and size.  If Size is zero, do not check the size.
522bool SROA::TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size) {
523  const Type *EltTy;
524  uint64_t EltSize;
525  if (const StructType *ST = dyn_cast<StructType>(T)) {
526    const StructLayout *Layout = TD->getStructLayout(ST);
527    unsigned EltIdx = Layout->getElementContainingOffset(Offset);
528    EltTy = ST->getContainedType(EltIdx);
529    EltSize = TD->getTypeAllocSize(EltTy);
530    Offset -= Layout->getElementOffset(EltIdx);
531  } else if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
532    EltTy = AT->getElementType();
533    EltSize = TD->getTypeAllocSize(EltTy);
534    if (Offset >= AT->getNumElements() * EltSize)
535      return false;
536    Offset %= EltSize;
537  } else {
538    return false;
539  }
540  if (Offset == 0 && (Size == 0 || EltSize == Size))
541    return true;
542  // Check if the component spans multiple elements.
543  if (Offset + Size > EltSize)
544    return false;
545  return TypeHasComponent(EltTy, Offset, Size);
546}
547
548/// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
549/// the instruction I, which references it, to use the separate elements.
550/// Offset indicates the position within AI that is referenced by this
551/// instruction.
552void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
553                                SmallVector<AllocaInst*, 32> &NewElts) {
554  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
555    Instruction *User = cast<Instruction>(*UI);
556
557    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
558      RewriteBitCast(BC, AI, Offset, NewElts);
559    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
560      RewriteGEP(GEPI, AI, Offset, NewElts);
561    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
562      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
563      uint64_t MemSize = Length->getZExtValue();
564      if (Offset == 0 &&
565          MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
566        RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
567      // Otherwise the intrinsic can only touch a single element and the
568      // address operand will be updated, so nothing else needs to be done.
569    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
570      const Type *LIType = LI->getType();
571      if (LIType == AI->getAllocatedType()) {
572        // Replace:
573        //   %res = load { i32, i32 }* %alloc
574        // with:
575        //   %load.0 = load i32* %alloc.0
576        //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
577        //   %load.1 = load i32* %alloc.1
578        //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
579        // (Also works for arrays instead of structs)
580        Value *Insert = UndefValue::get(LIType);
581        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
582          Value *Load = new LoadInst(NewElts[i], "load", LI);
583          Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
584        }
585        LI->replaceAllUsesWith(Insert);
586        DeadInsts.push_back(LI);
587      } else if (isa<IntegerType>(LIType) &&
588                 TD->getTypeAllocSize(LIType) ==
589                 TD->getTypeAllocSize(AI->getAllocatedType())) {
590        // If this is a load of the entire alloca to an integer, rewrite it.
591        RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
592      }
593    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
594      Value *Val = SI->getOperand(0);
595      const Type *SIType = Val->getType();
596      if (SIType == AI->getAllocatedType()) {
597        // Replace:
598        //   store { i32, i32 } %val, { i32, i32 }* %alloc
599        // with:
600        //   %val.0 = extractvalue { i32, i32 } %val, 0
601        //   store i32 %val.0, i32* %alloc.0
602        //   %val.1 = extractvalue { i32, i32 } %val, 1
603        //   store i32 %val.1, i32* %alloc.1
604        // (Also works for arrays instead of structs)
605        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
606          Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
607          new StoreInst(Extract, NewElts[i], SI);
608        }
609        DeadInsts.push_back(SI);
610      } else if (isa<IntegerType>(SIType) &&
611                 TD->getTypeAllocSize(SIType) ==
612                 TD->getTypeAllocSize(AI->getAllocatedType())) {
613        // If this is a store of the entire alloca from an integer, rewrite it.
614        RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
615      }
616    }
617  }
618}
619
620/// RewriteBitCast - Update a bitcast reference to the alloca being replaced
621/// and recursively continue updating all of its uses.
622void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
623                          SmallVector<AllocaInst*, 32> &NewElts) {
624  RewriteForScalarRepl(BC, AI, Offset, NewElts);
625  if (BC->getOperand(0) != AI)
626    return;
627
628  // The bitcast references the original alloca.  Replace its uses with
629  // references to the first new element alloca.
630  Instruction *Val = NewElts[0];
631  if (Val->getType() != BC->getDestTy()) {
632    Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
633    Val->takeName(BC);
634  }
635  BC->replaceAllUsesWith(Val);
636  DeadInsts.push_back(BC);
637}
638
639/// FindElementAndOffset - Return the index of the element containing Offset
640/// within the specified type, which must be either a struct or an array.
641/// Sets T to the type of the element and Offset to the offset within that
642/// element.  IdxTy is set to the type of the index result to be used in a
643/// GEP instruction.
644uint64_t SROA::FindElementAndOffset(const Type *&T, uint64_t &Offset,
645                                    const Type *&IdxTy) {
646  uint64_t Idx = 0;
647  if (const StructType *ST = dyn_cast<StructType>(T)) {
648    const StructLayout *Layout = TD->getStructLayout(ST);
649    Idx = Layout->getElementContainingOffset(Offset);
650    T = ST->getContainedType(Idx);
651    Offset -= Layout->getElementOffset(Idx);
652    IdxTy = Type::getInt32Ty(T->getContext());
653    return Idx;
654  }
655  const ArrayType *AT = cast<ArrayType>(T);
656  T = AT->getElementType();
657  uint64_t EltSize = TD->getTypeAllocSize(T);
658  Idx = Offset / EltSize;
659  Offset -= Idx * EltSize;
660  IdxTy = Type::getInt64Ty(T->getContext());
661  return Idx;
662}
663
664/// RewriteGEP - Check if this GEP instruction moves the pointer across
665/// elements of the alloca that are being split apart, and if so, rewrite
666/// the GEP to be relative to the new element.
667void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
668                      SmallVector<AllocaInst*, 32> &NewElts) {
669  uint64_t OldOffset = Offset;
670  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
671  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
672                                 &Indices[0], Indices.size());
673
674  RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
675
676  const Type *T = AI->getAllocatedType();
677  const Type *IdxTy;
678  uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy);
679  if (GEPI->getOperand(0) == AI)
680    OldIdx = ~0ULL; // Force the GEP to be rewritten.
681
682  T = AI->getAllocatedType();
683  uint64_t EltOffset = Offset;
684  uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
685
686  // If this GEP does not move the pointer across elements of the alloca
687  // being split, then it does not needs to be rewritten.
688  if (Idx == OldIdx)
689    return;
690
691  const Type *i32Ty = Type::getInt32Ty(AI->getContext());
692  SmallVector<Value*, 8> NewArgs;
693  NewArgs.push_back(Constant::getNullValue(i32Ty));
694  while (EltOffset != 0) {
695    uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy);
696    NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
697  }
698  Instruction *Val = NewElts[Idx];
699  if (NewArgs.size() > 1) {
700    Val = GetElementPtrInst::CreateInBounds(Val, NewArgs.begin(),
701                                            NewArgs.end(), "", GEPI);
702    Val->takeName(GEPI);
703  }
704  if (Val->getType() != GEPI->getType())
705    Val = new BitCastInst(Val, GEPI->getType(), Val->getNameStr(), GEPI);
706  GEPI->replaceAllUsesWith(Val);
707  DeadInsts.push_back(GEPI);
708}
709
710/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
711/// Rewrite it to copy or set the elements of the scalarized memory.
712void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
713                                        AllocaInst *AI,
714                                        SmallVector<AllocaInst*, 32> &NewElts) {
715  // If this is a memcpy/memmove, construct the other pointer as the
716  // appropriate type.  The "Other" pointer is the pointer that goes to memory
717  // that doesn't have anything to do with the alloca that we are promoting. For
718  // memset, this Value* stays null.
719  Value *OtherPtr = 0;
720  LLVMContext &Context = MI->getContext();
721  unsigned MemAlignment = MI->getAlignment();
722  if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
723    if (Inst == MTI->getRawDest())
724      OtherPtr = MTI->getRawSource();
725    else {
726      assert(Inst == MTI->getRawSource());
727      OtherPtr = MTI->getRawDest();
728    }
729  }
730
731  // If there is an other pointer, we want to convert it to the same pointer
732  // type as AI has, so we can GEP through it safely.
733  if (OtherPtr) {
734
735    // Remove bitcasts and all-zero GEPs from OtherPtr.  This is an
736    // optimization, but it's also required to detect the corner case where
737    // both pointer operands are referencing the same memory, and where
738    // OtherPtr may be a bitcast or GEP that currently being rewritten.  (This
739    // function is only called for mem intrinsics that access the whole
740    // aggregate, so non-zero GEPs are not an issue here.)
741    while (1) {
742      if (BitCastInst *BC = dyn_cast<BitCastInst>(OtherPtr)) {
743        OtherPtr = BC->getOperand(0);
744        continue;
745      }
746      if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(OtherPtr)) {
747        // All zero GEPs are effectively bitcasts.
748        if (GEP->hasAllZeroIndices()) {
749          OtherPtr = GEP->getOperand(0);
750          continue;
751        }
752      }
753      break;
754    }
755    // If OtherPtr has already been rewritten, this intrinsic will be dead.
756    if (OtherPtr == NewElts[0])
757      return;
758
759    if (ConstantExpr *BCE = dyn_cast<ConstantExpr>(OtherPtr))
760      if (BCE->getOpcode() == Instruction::BitCast)
761        OtherPtr = BCE->getOperand(0);
762
763    // If the pointer is not the right type, insert a bitcast to the right
764    // type.
765    if (OtherPtr->getType() != AI->getType())
766      OtherPtr = new BitCastInst(OtherPtr, AI->getType(), OtherPtr->getName(),
767                                 MI);
768  }
769
770  // Process each element of the aggregate.
771  Value *TheFn = MI->getOperand(0);
772  const Type *BytePtrTy = MI->getRawDest()->getType();
773  bool SROADest = MI->getRawDest() == Inst;
774
775  Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
776
777  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
778    // If this is a memcpy/memmove, emit a GEP of the other element address.
779    Value *OtherElt = 0;
780    unsigned OtherEltAlign = MemAlignment;
781
782    if (OtherPtr == AI) {
783      OtherElt = NewElts[i];
784      OtherEltAlign = 0;
785    } else if (OtherPtr) {
786      Value *Idx[2] = { Zero,
787                      ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
788      OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx, Idx + 2,
789                                           OtherPtr->getNameStr()+"."+Twine(i),
790                                                   MI);
791      uint64_t EltOffset;
792      const PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
793      if (const StructType *ST =
794            dyn_cast<StructType>(OtherPtrTy->getElementType())) {
795        EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
796      } else {
797        const Type *EltTy =
798          cast<SequentialType>(OtherPtr->getType())->getElementType();
799        EltOffset = TD->getTypeAllocSize(EltTy)*i;
800      }
801
802      // The alignment of the other pointer is the guaranteed alignment of the
803      // element, which is affected by both the known alignment of the whole
804      // mem intrinsic and the alignment of the element.  If the alignment of
805      // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
806      // known alignment is just 4 bytes.
807      OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
808    }
809
810    Value *EltPtr = NewElts[i];
811    const Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
812
813    // If we got down to a scalar, insert a load or store as appropriate.
814    if (EltTy->isSingleValueType()) {
815      if (isa<MemTransferInst>(MI)) {
816        if (SROADest) {
817          // From Other to Alloca.
818          Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
819          new StoreInst(Elt, EltPtr, MI);
820        } else {
821          // From Alloca to Other.
822          Value *Elt = new LoadInst(EltPtr, "tmp", MI);
823          new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
824        }
825        continue;
826      }
827      assert(isa<MemSetInst>(MI));
828
829      // If the stored element is zero (common case), just store a null
830      // constant.
831      Constant *StoreVal;
832      if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getOperand(2))) {
833        if (CI->isZero()) {
834          StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
835        } else {
836          // If EltTy is a vector type, get the element type.
837          const Type *ValTy = EltTy->getScalarType();
838
839          // Construct an integer with the right value.
840          unsigned EltSize = TD->getTypeSizeInBits(ValTy);
841          APInt OneVal(EltSize, CI->getZExtValue());
842          APInt TotalVal(OneVal);
843          // Set each byte.
844          for (unsigned i = 0; 8*i < EltSize; ++i) {
845            TotalVal = TotalVal.shl(8);
846            TotalVal |= OneVal;
847          }
848
849          // Convert the integer value to the appropriate type.
850          StoreVal = ConstantInt::get(Context, TotalVal);
851          if (isa<PointerType>(ValTy))
852            StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
853          else if (ValTy->isFloatingPoint())
854            StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
855          assert(StoreVal->getType() == ValTy && "Type mismatch!");
856
857          // If the requested value was a vector constant, create it.
858          if (EltTy != ValTy) {
859            unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
860            SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
861            StoreVal = ConstantVector::get(&Elts[0], NumElts);
862          }
863        }
864        new StoreInst(StoreVal, EltPtr, MI);
865        continue;
866      }
867      // Otherwise, if we're storing a byte variable, use a memset call for
868      // this element.
869    }
870
871    // Cast the element pointer to BytePtrTy.
872    if (EltPtr->getType() != BytePtrTy)
873      EltPtr = new BitCastInst(EltPtr, BytePtrTy, EltPtr->getNameStr(), MI);
874
875    // Cast the other pointer (if we have one) to BytePtrTy.
876    if (OtherElt && OtherElt->getType() != BytePtrTy)
877      OtherElt = new BitCastInst(OtherElt, BytePtrTy,OtherElt->getNameStr(),
878                                 MI);
879
880    unsigned EltSize = TD->getTypeAllocSize(EltTy);
881
882    // Finally, insert the meminst for this element.
883    if (isa<MemTransferInst>(MI)) {
884      Value *Ops[] = {
885        SROADest ? EltPtr : OtherElt,  // Dest ptr
886        SROADest ? OtherElt : EltPtr,  // Src ptr
887        ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
888        // Align
889        ConstantInt::get(Type::getInt32Ty(MI->getContext()), OtherEltAlign)
890      };
891      CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
892    } else {
893      assert(isa<MemSetInst>(MI));
894      Value *Ops[] = {
895        EltPtr, MI->getOperand(2),  // Dest, Value,
896        ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
897        Zero  // Align
898      };
899      CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
900    }
901  }
902  DeadInsts.push_back(MI);
903}
904
905/// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
906/// overwrites the entire allocation.  Extract out the pieces of the stored
907/// integer and store them individually.
908void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
909                                         SmallVector<AllocaInst*, 32> &NewElts){
910  // Extract each element out of the integer according to its structure offset
911  // and store the element value to the individual alloca.
912  Value *SrcVal = SI->getOperand(0);
913  const Type *AllocaEltTy = AI->getAllocatedType();
914  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
915
916  // Handle tail padding by extending the operand
917  if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
918    SrcVal = new ZExtInst(SrcVal,
919                          IntegerType::get(SI->getContext(), AllocaSizeBits),
920                          "", SI);
921
922  DEBUG(errs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
923               << '\n');
924
925  // There are two forms here: AI could be an array or struct.  Both cases
926  // have different ways to compute the element offset.
927  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
928    const StructLayout *Layout = TD->getStructLayout(EltSTy);
929
930    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
931      // Get the number of bits to shift SrcVal to get the value.
932      const Type *FieldTy = EltSTy->getElementType(i);
933      uint64_t Shift = Layout->getElementOffsetInBits(i);
934
935      if (TD->isBigEndian())
936        Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
937
938      Value *EltVal = SrcVal;
939      if (Shift) {
940        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
941        EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
942                                            "sroa.store.elt", SI);
943      }
944
945      // Truncate down to an integer of the right size.
946      uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
947
948      // Ignore zero sized fields like {}, they obviously contain no data.
949      if (FieldSizeBits == 0) continue;
950
951      if (FieldSizeBits != AllocaSizeBits)
952        EltVal = new TruncInst(EltVal,
953                             IntegerType::get(SI->getContext(), FieldSizeBits),
954                              "", SI);
955      Value *DestField = NewElts[i];
956      if (EltVal->getType() == FieldTy) {
957        // Storing to an integer field of this size, just do it.
958      } else if (FieldTy->isFloatingPoint() || isa<VectorType>(FieldTy)) {
959        // Bitcast to the right element type (for fp/vector values).
960        EltVal = new BitCastInst(EltVal, FieldTy, "", SI);
961      } else {
962        // Otherwise, bitcast the dest pointer (for aggregates).
963        DestField = new BitCastInst(DestField,
964                              PointerType::getUnqual(EltVal->getType()),
965                                    "", SI);
966      }
967      new StoreInst(EltVal, DestField, SI);
968    }
969
970  } else {
971    const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
972    const Type *ArrayEltTy = ATy->getElementType();
973    uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
974    uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
975
976    uint64_t Shift;
977
978    if (TD->isBigEndian())
979      Shift = AllocaSizeBits-ElementOffset;
980    else
981      Shift = 0;
982
983    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
984      // Ignore zero sized fields like {}, they obviously contain no data.
985      if (ElementSizeBits == 0) continue;
986
987      Value *EltVal = SrcVal;
988      if (Shift) {
989        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
990        EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
991                                            "sroa.store.elt", SI);
992      }
993
994      // Truncate down to an integer of the right size.
995      if (ElementSizeBits != AllocaSizeBits)
996        EltVal = new TruncInst(EltVal,
997                               IntegerType::get(SI->getContext(),
998                                                ElementSizeBits),"",SI);
999      Value *DestField = NewElts[i];
1000      if (EltVal->getType() == ArrayEltTy) {
1001        // Storing to an integer field of this size, just do it.
1002      } else if (ArrayEltTy->isFloatingPoint() || isa<VectorType>(ArrayEltTy)) {
1003        // Bitcast to the right element type (for fp/vector values).
1004        EltVal = new BitCastInst(EltVal, ArrayEltTy, "", SI);
1005      } else {
1006        // Otherwise, bitcast the dest pointer (for aggregates).
1007        DestField = new BitCastInst(DestField,
1008                              PointerType::getUnqual(EltVal->getType()),
1009                                    "", SI);
1010      }
1011      new StoreInst(EltVal, DestField, SI);
1012
1013      if (TD->isBigEndian())
1014        Shift -= ElementOffset;
1015      else
1016        Shift += ElementOffset;
1017    }
1018  }
1019
1020  DeadInsts.push_back(SI);
1021}
1022
1023/// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
1024/// an integer.  Load the individual pieces to form the aggregate value.
1025void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
1026                                        SmallVector<AllocaInst*, 32> &NewElts) {
1027  // Extract each element out of the NewElts according to its structure offset
1028  // and form the result value.
1029  const Type *AllocaEltTy = AI->getAllocatedType();
1030  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
1031
1032  DEBUG(errs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
1033               << '\n');
1034
1035  // There are two forms here: AI could be an array or struct.  Both cases
1036  // have different ways to compute the element offset.
1037  const StructLayout *Layout = 0;
1038  uint64_t ArrayEltBitOffset = 0;
1039  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
1040    Layout = TD->getStructLayout(EltSTy);
1041  } else {
1042    const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
1043    ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
1044  }
1045
1046  Value *ResultVal =
1047    Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
1048
1049  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1050    // Load the value from the alloca.  If the NewElt is an aggregate, cast
1051    // the pointer to an integer of the same size before doing the load.
1052    Value *SrcField = NewElts[i];
1053    const Type *FieldTy =
1054      cast<PointerType>(SrcField->getType())->getElementType();
1055    uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
1056
1057    // Ignore zero sized fields like {}, they obviously contain no data.
1058    if (FieldSizeBits == 0) continue;
1059
1060    const IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
1061                                                     FieldSizeBits);
1062    if (!isa<IntegerType>(FieldTy) && !FieldTy->isFloatingPoint() &&
1063        !isa<VectorType>(FieldTy))
1064      SrcField = new BitCastInst(SrcField,
1065                                 PointerType::getUnqual(FieldIntTy),
1066                                 "", LI);
1067    SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
1068
1069    // If SrcField is a fp or vector of the right size but that isn't an
1070    // integer type, bitcast to an integer so we can shift it.
1071    if (SrcField->getType() != FieldIntTy)
1072      SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
1073
1074    // Zero extend the field to be the same size as the final alloca so that
1075    // we can shift and insert it.
1076    if (SrcField->getType() != ResultVal->getType())
1077      SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
1078
1079    // Determine the number of bits to shift SrcField.
1080    uint64_t Shift;
1081    if (Layout) // Struct case.
1082      Shift = Layout->getElementOffsetInBits(i);
1083    else  // Array case.
1084      Shift = i*ArrayEltBitOffset;
1085
1086    if (TD->isBigEndian())
1087      Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
1088
1089    if (Shift) {
1090      Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
1091      SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
1092    }
1093
1094    ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
1095  }
1096
1097  // Handle tail padding by truncating the result
1098  if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
1099    ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
1100
1101  LI->replaceAllUsesWith(ResultVal);
1102  DeadInsts.push_back(LI);
1103}
1104
1105/// HasPadding - Return true if the specified type has any structure or
1106/// alignment padding, false otherwise.
1107static bool HasPadding(const Type *Ty, const TargetData &TD) {
1108  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1109    const StructLayout *SL = TD.getStructLayout(STy);
1110    unsigned PrevFieldBitOffset = 0;
1111    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1112      unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
1113
1114      // Padding in sub-elements?
1115      if (HasPadding(STy->getElementType(i), TD))
1116        return true;
1117
1118      // Check to see if there is any padding between this element and the
1119      // previous one.
1120      if (i) {
1121        unsigned PrevFieldEnd =
1122        PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
1123        if (PrevFieldEnd < FieldBitOffset)
1124          return true;
1125      }
1126
1127      PrevFieldBitOffset = FieldBitOffset;
1128    }
1129
1130    //  Check for tail padding.
1131    if (unsigned EltCount = STy->getNumElements()) {
1132      unsigned PrevFieldEnd = PrevFieldBitOffset +
1133                   TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
1134      if (PrevFieldEnd < SL->getSizeInBits())
1135        return true;
1136    }
1137
1138  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1139    return HasPadding(ATy->getElementType(), TD);
1140  } else if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1141    return HasPadding(VTy->getElementType(), TD);
1142  }
1143  return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
1144}
1145
1146/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
1147/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
1148/// or 1 if safe after canonicalization has been performed.
1149int SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
1150  // Loop over the use list of the alloca.  We can only transform it if all of
1151  // the users are safe to transform.
1152  AllocaInfo Info;
1153
1154  isSafeForScalarRepl(AI, AI, 0, Info);
1155  if (Info.isUnsafe) {
1156    DEBUG(errs() << "Cannot transform: " << *AI << '\n');
1157    return 0;
1158  }
1159
1160  // Okay, we know all the users are promotable.  If the aggregate is a memcpy
1161  // source and destination, we have to be careful.  In particular, the memcpy
1162  // could be moving around elements that live in structure padding of the LLVM
1163  // types, but may actually be used.  In these cases, we refuse to promote the
1164  // struct.
1165  if (Info.isMemCpySrc && Info.isMemCpyDst &&
1166      HasPadding(AI->getAllocatedType(), *TD))
1167    return 0;
1168
1169  // If we require cleanup, return 1, otherwise return 3.
1170  return Info.needsCleanup ? 1 : 3;
1171}
1172
1173/// CleanupAllocaUsers - If SROA reported that it can promote the specified
1174/// allocation, but only if cleaned up, perform the cleanups required.
1175void SROA::CleanupAllocaUsers(Value *V) {
1176  for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
1177       UI != E; ) {
1178    User *U = *UI++;
1179    Instruction *I = cast<Instruction>(U);
1180    SmallVector<DbgInfoIntrinsic *, 2> DbgInUses;
1181    if (!isa<StoreInst>(I) && OnlyUsedByDbgInfoIntrinsics(I, &DbgInUses)) {
1182      // Safe to remove debug info uses.
1183      while (!DbgInUses.empty()) {
1184        DbgInfoIntrinsic *DI = DbgInUses.back(); DbgInUses.pop_back();
1185        DI->eraseFromParent();
1186      }
1187      I->eraseFromParent();
1188    }
1189  }
1190}
1191
1192/// MergeInType - Add the 'In' type to the accumulated type (Accum) so far at
1193/// the offset specified by Offset (which is specified in bytes).
1194///
1195/// There are two cases we handle here:
1196///   1) A union of vector types of the same size and potentially its elements.
1197///      Here we turn element accesses into insert/extract element operations.
1198///      This promotes a <4 x float> with a store of float to the third element
1199///      into a <4 x float> that uses insert element.
1200///   2) A fully general blob of memory, which we turn into some (potentially
1201///      large) integer type with extract and insert operations where the loads
1202///      and stores would mutate the memory.
1203static void MergeInType(const Type *In, uint64_t Offset, const Type *&VecTy,
1204                        unsigned AllocaSize, const TargetData &TD,
1205                        LLVMContext &Context) {
1206  // If this could be contributing to a vector, analyze it.
1207  if (VecTy != Type::getVoidTy(Context)) { // either null or a vector type.
1208
1209    // If the In type is a vector that is the same size as the alloca, see if it
1210    // matches the existing VecTy.
1211    if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
1212      if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) {
1213        // If we're storing/loading a vector of the right size, allow it as a
1214        // vector.  If this the first vector we see, remember the type so that
1215        // we know the element size.
1216        if (VecTy == 0)
1217          VecTy = VInTy;
1218        return;
1219      }
1220    } else if (In->isFloatTy() || In->isDoubleTy() ||
1221               (isa<IntegerType>(In) && In->getPrimitiveSizeInBits() >= 8 &&
1222                isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
1223      // If we're accessing something that could be an element of a vector, see
1224      // if the implied vector agrees with what we already have and if Offset is
1225      // compatible with it.
1226      unsigned EltSize = In->getPrimitiveSizeInBits()/8;
1227      if (Offset % EltSize == 0 &&
1228          AllocaSize % EltSize == 0 &&
1229          (VecTy == 0 ||
1230           cast<VectorType>(VecTy)->getElementType()
1231                 ->getPrimitiveSizeInBits()/8 == EltSize)) {
1232        if (VecTy == 0)
1233          VecTy = VectorType::get(In, AllocaSize/EltSize);
1234        return;
1235      }
1236    }
1237  }
1238
1239  // Otherwise, we have a case that we can't handle with an optimized vector
1240  // form.  We can still turn this into a large integer.
1241  VecTy = Type::getVoidTy(Context);
1242}
1243
1244/// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all
1245/// its accesses to a single vector type, return true and set VecTy to
1246/// the new type.  If we could convert the alloca into a single promotable
1247/// integer, return true but set VecTy to VoidTy.  Further, if the use is not a
1248/// completely trivial use that mem2reg could promote, set IsNotTrivial.  Offset
1249/// is the current offset from the base of the alloca being analyzed.
1250///
1251/// If we see at least one access to the value that is as a vector type, set the
1252/// SawVec flag.
1253bool SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
1254                              bool &SawVec, uint64_t Offset,
1255                              unsigned AllocaSize) {
1256  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1257    Instruction *User = cast<Instruction>(*UI);
1258
1259    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1260      // Don't break volatile loads.
1261      if (LI->isVolatile())
1262        return false;
1263      MergeInType(LI->getType(), Offset, VecTy,
1264                  AllocaSize, *TD, V->getContext());
1265      SawVec |= isa<VectorType>(LI->getType());
1266      continue;
1267    }
1268
1269    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1270      // Storing the pointer, not into the value?
1271      if (SI->getOperand(0) == V || SI->isVolatile()) return 0;
1272      MergeInType(SI->getOperand(0)->getType(), Offset,
1273                  VecTy, AllocaSize, *TD, V->getContext());
1274      SawVec |= isa<VectorType>(SI->getOperand(0)->getType());
1275      continue;
1276    }
1277
1278    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
1279      if (!CanConvertToScalar(BCI, IsNotTrivial, VecTy, SawVec, Offset,
1280                              AllocaSize))
1281        return false;
1282      IsNotTrivial = true;
1283      continue;
1284    }
1285
1286    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
1287      // If this is a GEP with a variable indices, we can't handle it.
1288      if (!GEP->hasAllConstantIndices())
1289        return false;
1290
1291      // Compute the offset that this GEP adds to the pointer.
1292      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
1293      uint64_t GEPOffset = TD->getIndexedOffset(GEP->getPointerOperandType(),
1294                                                &Indices[0], Indices.size());
1295      // See if all uses can be converted.
1296      if (!CanConvertToScalar(GEP, IsNotTrivial, VecTy, SawVec,Offset+GEPOffset,
1297                              AllocaSize))
1298        return false;
1299      IsNotTrivial = true;
1300      continue;
1301    }
1302
1303    // If this is a constant sized memset of a constant value (e.g. 0) we can
1304    // handle it.
1305    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
1306      // Store of constant value and constant size.
1307      if (isa<ConstantInt>(MSI->getValue()) &&
1308          isa<ConstantInt>(MSI->getLength())) {
1309        IsNotTrivial = true;
1310        continue;
1311      }
1312    }
1313
1314    // If this is a memcpy or memmove into or out of the whole allocation, we
1315    // can handle it like a load or store of the scalar type.
1316    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
1317      if (ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength()))
1318        if (Len->getZExtValue() == AllocaSize && Offset == 0) {
1319          IsNotTrivial = true;
1320          continue;
1321        }
1322    }
1323
1324    // Ignore dbg intrinsic.
1325    if (isa<DbgInfoIntrinsic>(User))
1326      continue;
1327
1328    // Otherwise, we cannot handle this!
1329    return false;
1330  }
1331
1332  return true;
1333}
1334
1335/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
1336/// directly.  This happens when we are converting an "integer union" to a
1337/// single integer scalar, or when we are converting a "vector union" to a
1338/// vector with insert/extractelement instructions.
1339///
1340/// Offset is an offset from the original alloca, in bits that need to be
1341/// shifted to the right.  By the end of this, there should be no uses of Ptr.
1342void SROA::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset) {
1343  while (!Ptr->use_empty()) {
1344    Instruction *User = cast<Instruction>(Ptr->use_back());
1345
1346    if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
1347      ConvertUsesToScalar(CI, NewAI, Offset);
1348      CI->eraseFromParent();
1349      continue;
1350    }
1351
1352    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
1353      // Compute the offset that this GEP adds to the pointer.
1354      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
1355      uint64_t GEPOffset = TD->getIndexedOffset(GEP->getPointerOperandType(),
1356                                                &Indices[0], Indices.size());
1357      ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
1358      GEP->eraseFromParent();
1359      continue;
1360    }
1361
1362    IRBuilder<> Builder(User->getParent(), User);
1363
1364    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1365      // The load is a bit extract from NewAI shifted right by Offset bits.
1366      Value *LoadedVal = Builder.CreateLoad(NewAI, "tmp");
1367      Value *NewLoadVal
1368        = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
1369      LI->replaceAllUsesWith(NewLoadVal);
1370      LI->eraseFromParent();
1371      continue;
1372    }
1373
1374    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1375      assert(SI->getOperand(0) != Ptr && "Consistency error!");
1376      Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
1377      Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
1378                                             Builder);
1379      Builder.CreateStore(New, NewAI);
1380      SI->eraseFromParent();
1381
1382      // If the load we just inserted is now dead, then the inserted store
1383      // overwrote the entire thing.
1384      if (Old->use_empty())
1385        Old->eraseFromParent();
1386      continue;
1387    }
1388
1389    // If this is a constant sized memset of a constant value (e.g. 0) we can
1390    // transform it into a store of the expanded constant value.
1391    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
1392      assert(MSI->getRawDest() == Ptr && "Consistency error!");
1393      unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
1394      if (NumBytes != 0) {
1395        unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
1396
1397        // Compute the value replicated the right number of times.
1398        APInt APVal(NumBytes*8, Val);
1399
1400        // Splat the value if non-zero.
1401        if (Val)
1402          for (unsigned i = 1; i != NumBytes; ++i)
1403            APVal |= APVal << 8;
1404
1405        Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
1406        Value *New = ConvertScalar_InsertValue(
1407                                    ConstantInt::get(User->getContext(), APVal),
1408                                               Old, Offset, Builder);
1409        Builder.CreateStore(New, NewAI);
1410
1411        // If the load we just inserted is now dead, then the memset overwrote
1412        // the entire thing.
1413        if (Old->use_empty())
1414          Old->eraseFromParent();
1415      }
1416      MSI->eraseFromParent();
1417      continue;
1418    }
1419
1420    // If this is a memcpy or memmove into or out of the whole allocation, we
1421    // can handle it like a load or store of the scalar type.
1422    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
1423      assert(Offset == 0 && "must be store to start of alloca");
1424
1425      // If the source and destination are both to the same alloca, then this is
1426      // a noop copy-to-self, just delete it.  Otherwise, emit a load and store
1427      // as appropriate.
1428      AllocaInst *OrigAI = cast<AllocaInst>(Ptr->getUnderlyingObject());
1429
1430      if (MTI->getSource()->getUnderlyingObject() != OrigAI) {
1431        // Dest must be OrigAI, change this to be a load from the original
1432        // pointer (bitcasted), then a store to our new alloca.
1433        assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
1434        Value *SrcPtr = MTI->getSource();
1435        SrcPtr = Builder.CreateBitCast(SrcPtr, NewAI->getType());
1436
1437        LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
1438        SrcVal->setAlignment(MTI->getAlignment());
1439        Builder.CreateStore(SrcVal, NewAI);
1440      } else if (MTI->getDest()->getUnderlyingObject() != OrigAI) {
1441        // Src must be OrigAI, change this to be a load from NewAI then a store
1442        // through the original dest pointer (bitcasted).
1443        assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
1444        LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
1445
1446        Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), NewAI->getType());
1447        StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
1448        NewStore->setAlignment(MTI->getAlignment());
1449      } else {
1450        // Noop transfer. Src == Dst
1451      }
1452
1453
1454      MTI->eraseFromParent();
1455      continue;
1456    }
1457
1458    // If user is a dbg info intrinsic then it is safe to remove it.
1459    if (isa<DbgInfoIntrinsic>(User)) {
1460      User->eraseFromParent();
1461      continue;
1462    }
1463
1464    llvm_unreachable("Unsupported operation!");
1465  }
1466}
1467
1468/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
1469/// or vector value FromVal, extracting the bits from the offset specified by
1470/// Offset.  This returns the value, which is of type ToType.
1471///
1472/// This happens when we are converting an "integer union" to a single
1473/// integer scalar, or when we are converting a "vector union" to a vector with
1474/// insert/extractelement instructions.
1475///
1476/// Offset is an offset from the original alloca, in bits that need to be
1477/// shifted to the right.
1478Value *SROA::ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
1479                                        uint64_t Offset, IRBuilder<> &Builder) {
1480  // If the load is of the whole new alloca, no conversion is needed.
1481  if (FromVal->getType() == ToType && Offset == 0)
1482    return FromVal;
1483
1484  // If the result alloca is a vector type, this is either an element
1485  // access or a bitcast to another vector type of the same size.
1486  if (const VectorType *VTy = dyn_cast<VectorType>(FromVal->getType())) {
1487    if (isa<VectorType>(ToType))
1488      return Builder.CreateBitCast(FromVal, ToType, "tmp");
1489
1490    // Otherwise it must be an element access.
1491    unsigned Elt = 0;
1492    if (Offset) {
1493      unsigned EltSize = TD->getTypeAllocSizeInBits(VTy->getElementType());
1494      Elt = Offset/EltSize;
1495      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
1496    }
1497    // Return the element extracted out of it.
1498    Value *V = Builder.CreateExtractElement(FromVal, ConstantInt::get(
1499                    Type::getInt32Ty(FromVal->getContext()), Elt), "tmp");
1500    if (V->getType() != ToType)
1501      V = Builder.CreateBitCast(V, ToType, "tmp");
1502    return V;
1503  }
1504
1505  // If ToType is a first class aggregate, extract out each of the pieces and
1506  // use insertvalue's to form the FCA.
1507  if (const StructType *ST = dyn_cast<StructType>(ToType)) {
1508    const StructLayout &Layout = *TD->getStructLayout(ST);
1509    Value *Res = UndefValue::get(ST);
1510    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
1511      Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
1512                                        Offset+Layout.getElementOffsetInBits(i),
1513                                              Builder);
1514      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
1515    }
1516    return Res;
1517  }
1518
1519  if (const ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
1520    uint64_t EltSize = TD->getTypeAllocSizeInBits(AT->getElementType());
1521    Value *Res = UndefValue::get(AT);
1522    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1523      Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
1524                                              Offset+i*EltSize, Builder);
1525      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
1526    }
1527    return Res;
1528  }
1529
1530  // Otherwise, this must be a union that was converted to an integer value.
1531  const IntegerType *NTy = cast<IntegerType>(FromVal->getType());
1532
1533  // If this is a big-endian system and the load is narrower than the
1534  // full alloca type, we need to do a shift to get the right bits.
1535  int ShAmt = 0;
1536  if (TD->isBigEndian()) {
1537    // On big-endian machines, the lowest bit is stored at the bit offset
1538    // from the pointer given by getTypeStoreSizeInBits.  This matters for
1539    // integers with a bitwidth that is not a multiple of 8.
1540    ShAmt = TD->getTypeStoreSizeInBits(NTy) -
1541            TD->getTypeStoreSizeInBits(ToType) - Offset;
1542  } else {
1543    ShAmt = Offset;
1544  }
1545
1546  // Note: we support negative bitwidths (with shl) which are not defined.
1547  // We do this to support (f.e.) loads off the end of a structure where
1548  // only some bits are used.
1549  if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
1550    FromVal = Builder.CreateLShr(FromVal,
1551                                 ConstantInt::get(FromVal->getType(),
1552                                                           ShAmt), "tmp");
1553  else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
1554    FromVal = Builder.CreateShl(FromVal,
1555                                ConstantInt::get(FromVal->getType(),
1556                                                          -ShAmt), "tmp");
1557
1558  // Finally, unconditionally truncate the integer to the right width.
1559  unsigned LIBitWidth = TD->getTypeSizeInBits(ToType);
1560  if (LIBitWidth < NTy->getBitWidth())
1561    FromVal =
1562      Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
1563                                                    LIBitWidth), "tmp");
1564  else if (LIBitWidth > NTy->getBitWidth())
1565    FromVal =
1566       Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
1567                                                    LIBitWidth), "tmp");
1568
1569  // If the result is an integer, this is a trunc or bitcast.
1570  if (isa<IntegerType>(ToType)) {
1571    // Should be done.
1572  } else if (ToType->isFloatingPoint() || isa<VectorType>(ToType)) {
1573    // Just do a bitcast, we know the sizes match up.
1574    FromVal = Builder.CreateBitCast(FromVal, ToType, "tmp");
1575  } else {
1576    // Otherwise must be a pointer.
1577    FromVal = Builder.CreateIntToPtr(FromVal, ToType, "tmp");
1578  }
1579  assert(FromVal->getType() == ToType && "Didn't convert right?");
1580  return FromVal;
1581}
1582
1583/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
1584/// or vector value "Old" at the offset specified by Offset.
1585///
1586/// This happens when we are converting an "integer union" to a
1587/// single integer scalar, or when we are converting a "vector union" to a
1588/// vector with insert/extractelement instructions.
1589///
1590/// Offset is an offset from the original alloca, in bits that need to be
1591/// shifted to the right.
1592Value *SROA::ConvertScalar_InsertValue(Value *SV, Value *Old,
1593                                       uint64_t Offset, IRBuilder<> &Builder) {
1594
1595  // Convert the stored type to the actual type, shift it left to insert
1596  // then 'or' into place.
1597  const Type *AllocaType = Old->getType();
1598  LLVMContext &Context = Old->getContext();
1599
1600  if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
1601    uint64_t VecSize = TD->getTypeAllocSizeInBits(VTy);
1602    uint64_t ValSize = TD->getTypeAllocSizeInBits(SV->getType());
1603
1604    // Changing the whole vector with memset or with an access of a different
1605    // vector type?
1606    if (ValSize == VecSize)
1607      return Builder.CreateBitCast(SV, AllocaType, "tmp");
1608
1609    uint64_t EltSize = TD->getTypeAllocSizeInBits(VTy->getElementType());
1610
1611    // Must be an element insertion.
1612    unsigned Elt = Offset/EltSize;
1613
1614    if (SV->getType() != VTy->getElementType())
1615      SV = Builder.CreateBitCast(SV, VTy->getElementType(), "tmp");
1616
1617    SV = Builder.CreateInsertElement(Old, SV,
1618                     ConstantInt::get(Type::getInt32Ty(SV->getContext()), Elt),
1619                                     "tmp");
1620    return SV;
1621  }
1622
1623  // If SV is a first-class aggregate value, insert each value recursively.
1624  if (const StructType *ST = dyn_cast<StructType>(SV->getType())) {
1625    const StructLayout &Layout = *TD->getStructLayout(ST);
1626    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
1627      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
1628      Old = ConvertScalar_InsertValue(Elt, Old,
1629                                      Offset+Layout.getElementOffsetInBits(i),
1630                                      Builder);
1631    }
1632    return Old;
1633  }
1634
1635  if (const ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
1636    uint64_t EltSize = TD->getTypeAllocSizeInBits(AT->getElementType());
1637    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1638      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
1639      Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
1640    }
1641    return Old;
1642  }
1643
1644  // If SV is a float, convert it to the appropriate integer type.
1645  // If it is a pointer, do the same.
1646  unsigned SrcWidth = TD->getTypeSizeInBits(SV->getType());
1647  unsigned DestWidth = TD->getTypeSizeInBits(AllocaType);
1648  unsigned SrcStoreWidth = TD->getTypeStoreSizeInBits(SV->getType());
1649  unsigned DestStoreWidth = TD->getTypeStoreSizeInBits(AllocaType);
1650  if (SV->getType()->isFloatingPoint() || isa<VectorType>(SV->getType()))
1651    SV = Builder.CreateBitCast(SV,
1652                            IntegerType::get(SV->getContext(),SrcWidth), "tmp");
1653  else if (isa<PointerType>(SV->getType()))
1654    SV = Builder.CreatePtrToInt(SV, TD->getIntPtrType(SV->getContext()), "tmp");
1655
1656  // Zero extend or truncate the value if needed.
1657  if (SV->getType() != AllocaType) {
1658    if (SV->getType()->getPrimitiveSizeInBits() <
1659             AllocaType->getPrimitiveSizeInBits())
1660      SV = Builder.CreateZExt(SV, AllocaType, "tmp");
1661    else {
1662      // Truncation may be needed if storing more than the alloca can hold
1663      // (undefined behavior).
1664      SV = Builder.CreateTrunc(SV, AllocaType, "tmp");
1665      SrcWidth = DestWidth;
1666      SrcStoreWidth = DestStoreWidth;
1667    }
1668  }
1669
1670  // If this is a big-endian system and the store is narrower than the
1671  // full alloca type, we need to do a shift to get the right bits.
1672  int ShAmt = 0;
1673  if (TD->isBigEndian()) {
1674    // On big-endian machines, the lowest bit is stored at the bit offset
1675    // from the pointer given by getTypeStoreSizeInBits.  This matters for
1676    // integers with a bitwidth that is not a multiple of 8.
1677    ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
1678  } else {
1679    ShAmt = Offset;
1680  }
1681
1682  // Note: we support negative bitwidths (with shr) which are not defined.
1683  // We do this to support (f.e.) stores off the end of a structure where
1684  // only some bits in the structure are set.
1685  APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
1686  if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
1687    SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(),
1688                           ShAmt), "tmp");
1689    Mask <<= ShAmt;
1690  } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
1691    SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(),
1692                            -ShAmt), "tmp");
1693    Mask = Mask.lshr(-ShAmt);
1694  }
1695
1696  // Mask out the bits we are about to insert from the old value, and or
1697  // in the new bits.
1698  if (SrcWidth != DestWidth) {
1699    assert(DestWidth > SrcWidth);
1700    Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
1701    SV = Builder.CreateOr(Old, SV, "ins");
1702  }
1703  return SV;
1704}
1705
1706
1707
1708/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
1709/// some part of a constant global variable.  This intentionally only accepts
1710/// constant expressions because we don't can't rewrite arbitrary instructions.
1711static bool PointsToConstantGlobal(Value *V) {
1712  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
1713    return GV->isConstant();
1714  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
1715    if (CE->getOpcode() == Instruction::BitCast ||
1716        CE->getOpcode() == Instruction::GetElementPtr)
1717      return PointsToConstantGlobal(CE->getOperand(0));
1718  return false;
1719}
1720
1721/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
1722/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
1723/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
1724/// track of whether it moves the pointer (with isOffset) but otherwise traverse
1725/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
1726/// the alloca, and if the source pointer is a pointer to a constant  global, we
1727/// can optimize this.
1728static bool isOnlyCopiedFromConstantGlobal(Value *V, Instruction *&TheCopy,
1729                                           bool isOffset) {
1730  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1731    if (LoadInst *LI = dyn_cast<LoadInst>(*UI))
1732      // Ignore non-volatile loads, they are always ok.
1733      if (!LI->isVolatile())
1734        continue;
1735
1736    if (BitCastInst *BCI = dyn_cast<BitCastInst>(*UI)) {
1737      // If uses of the bitcast are ok, we are ok.
1738      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
1739        return false;
1740      continue;
1741    }
1742    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
1743      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
1744      // doesn't, it does.
1745      if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
1746                                         isOffset || !GEP->hasAllZeroIndices()))
1747        return false;
1748      continue;
1749    }
1750
1751    // If this is isn't our memcpy/memmove, reject it as something we can't
1752    // handle.
1753    if (!isa<MemTransferInst>(*UI))
1754      return false;
1755
1756    // If we already have seen a copy, reject the second one.
1757    if (TheCopy) return false;
1758
1759    // If the pointer has been offset from the start of the alloca, we can't
1760    // safely handle this.
1761    if (isOffset) return false;
1762
1763    // If the memintrinsic isn't using the alloca as the dest, reject it.
1764    if (UI.getOperandNo() != 1) return false;
1765
1766    MemIntrinsic *MI = cast<MemIntrinsic>(*UI);
1767
1768    // If the source of the memcpy/move is not a constant global, reject it.
1769    if (!PointsToConstantGlobal(MI->getOperand(2)))
1770      return false;
1771
1772    // Otherwise, the transform is safe.  Remember the copy instruction.
1773    TheCopy = MI;
1774  }
1775  return true;
1776}
1777
1778/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
1779/// modified by a copy from a constant global.  If we can prove this, we can
1780/// replace any uses of the alloca with uses of the global directly.
1781Instruction *SROA::isOnlyCopiedFromConstantGlobal(AllocaInst *AI) {
1782  Instruction *TheCopy = 0;
1783  if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
1784    return TheCopy;
1785  return 0;
1786}
1787