1//===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This transformation implements the well known scalar replacement of
11/// aggregates transformation. It tries to identify promotable elements of an
12/// aggregate alloca, and promote them to registers. It will also try to
13/// convert uses of an element (or set of elements) of an alloca into a vector
14/// or bitfield-style integer scalar if appropriate.
15///
16/// It works to do this with minimal slicing of the alloca so that regions
17/// which are merely transferred in and out of external memory remain unchanged
18/// and are not decomposed to scalar code.
19///
20/// Because this also performs alloca promotion, it can be thought of as also
21/// serving the purpose of SSA formation. The algorithm iterates on the
22/// function until all opportunities for promotion have been realized.
23///
24//===----------------------------------------------------------------------===//
25
26#define DEBUG_TYPE "sroa"
27#include "llvm/Transforms/Scalar.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/ADT/SetVector.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/ADT/Statistic.h"
32#include "llvm/Analysis/Dominators.h"
33#include "llvm/Analysis/Loads.h"
34#include "llvm/Analysis/PtrUseVisitor.h"
35#include "llvm/Analysis/ValueTracking.h"
36#include "llvm/DIBuilder.h"
37#include "llvm/DebugInfo.h"
38#include "llvm/IR/Constants.h"
39#include "llvm/IR/DataLayout.h"
40#include "llvm/IR/DerivedTypes.h"
41#include "llvm/IR/Function.h"
42#include "llvm/IR/IRBuilder.h"
43#include "llvm/IR/Instructions.h"
44#include "llvm/IR/IntrinsicInst.h"
45#include "llvm/IR/LLVMContext.h"
46#include "llvm/IR/Operator.h"
47#include "llvm/InstVisitor.h"
48#include "llvm/Pass.h"
49#include "llvm/Support/CommandLine.h"
50#include "llvm/Support/Compiler.h"
51#include "llvm/Support/Debug.h"
52#include "llvm/Support/ErrorHandling.h"
53#include "llvm/Support/MathExtras.h"
54#include "llvm/Support/raw_ostream.h"
55#include "llvm/Transforms/Utils/Local.h"
56#include "llvm/Transforms/Utils/PromoteMemToReg.h"
57#include "llvm/Transforms/Utils/SSAUpdater.h"
58using namespace llvm;
59
60STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement");
61STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed");
62STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions per alloca");
63STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses rewritten");
64STATISTIC(MaxUsesPerAllocaPartition, "Maximum number of uses of a partition");
65STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced");
66STATISTIC(NumPromoted, "Number of allocas promoted to SSA values");
67STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion");
68STATISTIC(NumDeleted, "Number of instructions deleted");
69STATISTIC(NumVectorized, "Number of vectorized aggregates");
70
71/// Hidden option to force the pass to not use DomTree and mem2reg, instead
72/// forming SSA values through the SSAUpdater infrastructure.
73static cl::opt<bool>
74ForceSSAUpdater("force-ssa-updater", cl::init(false), cl::Hidden);
75
76namespace {
77/// \brief A custom IRBuilder inserter which prefixes all names if they are
78/// preserved.
79template <bool preserveNames = true>
80class IRBuilderPrefixedInserter :
81    public IRBuilderDefaultInserter<preserveNames> {
82  std::string Prefix;
83
84public:
85  void SetNamePrefix(const Twine &P) { Prefix = P.str(); }
86
87protected:
88  void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB,
89                    BasicBlock::iterator InsertPt) const {
90    IRBuilderDefaultInserter<preserveNames>::InsertHelper(
91        I, Name.isTriviallyEmpty() ? Name : Prefix + Name, BB, InsertPt);
92  }
93};
94
95// Specialization for not preserving the name is trivial.
96template <>
97class IRBuilderPrefixedInserter<false> :
98    public IRBuilderDefaultInserter<false> {
99public:
100  void SetNamePrefix(const Twine &P) {}
101};
102
103/// \brief Provide a typedef for IRBuilder that drops names in release builds.
104#ifndef NDEBUG
105typedef llvm::IRBuilder<true, ConstantFolder,
106                        IRBuilderPrefixedInserter<true> > IRBuilderTy;
107#else
108typedef llvm::IRBuilder<false, ConstantFolder,
109                        IRBuilderPrefixedInserter<false> > IRBuilderTy;
110#endif
111}
112
113namespace {
114/// \brief A used slice of an alloca.
115///
116/// This structure represents a slice of an alloca used by some instruction. It
117/// stores both the begin and end offsets of this use, a pointer to the use
118/// itself, and a flag indicating whether we can classify the use as splittable
119/// or not when forming partitions of the alloca.
120class Slice {
121  /// \brief The beginning offset of the range.
122  uint64_t BeginOffset;
123
124  /// \brief The ending offset, not included in the range.
125  uint64_t EndOffset;
126
127  /// \brief Storage for both the use of this slice and whether it can be
128  /// split.
129  PointerIntPair<Use *, 1, bool> UseAndIsSplittable;
130
131public:
132  Slice() : BeginOffset(), EndOffset() {}
133  Slice(uint64_t BeginOffset, uint64_t EndOffset, Use *U, bool IsSplittable)
134      : BeginOffset(BeginOffset), EndOffset(EndOffset),
135        UseAndIsSplittable(U, IsSplittable) {}
136
137  uint64_t beginOffset() const { return BeginOffset; }
138  uint64_t endOffset() const { return EndOffset; }
139
140  bool isSplittable() const { return UseAndIsSplittable.getInt(); }
141  void makeUnsplittable() { UseAndIsSplittable.setInt(false); }
142
143  Use *getUse() const { return UseAndIsSplittable.getPointer(); }
144
145  bool isDead() const { return getUse() == 0; }
146  void kill() { UseAndIsSplittable.setPointer(0); }
147
148  /// \brief Support for ordering ranges.
149  ///
150  /// This provides an ordering over ranges such that start offsets are
151  /// always increasing, and within equal start offsets, the end offsets are
152  /// decreasing. Thus the spanning range comes first in a cluster with the
153  /// same start position.
154  bool operator<(const Slice &RHS) const {
155    if (beginOffset() < RHS.beginOffset()) return true;
156    if (beginOffset() > RHS.beginOffset()) return false;
157    if (isSplittable() != RHS.isSplittable()) return !isSplittable();
158    if (endOffset() > RHS.endOffset()) return true;
159    return false;
160  }
161
162  /// \brief Support comparison with a single offset to allow binary searches.
163  friend LLVM_ATTRIBUTE_UNUSED bool operator<(const Slice &LHS,
164                                              uint64_t RHSOffset) {
165    return LHS.beginOffset() < RHSOffset;
166  }
167  friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset,
168                                              const Slice &RHS) {
169    return LHSOffset < RHS.beginOffset();
170  }
171
172  bool operator==(const Slice &RHS) const {
173    return isSplittable() == RHS.isSplittable() &&
174           beginOffset() == RHS.beginOffset() && endOffset() == RHS.endOffset();
175  }
176  bool operator!=(const Slice &RHS) const { return !operator==(RHS); }
177};
178} // end anonymous namespace
179
180namespace llvm {
181template <typename T> struct isPodLike;
182template <> struct isPodLike<Slice> {
183   static const bool value = true;
184};
185}
186
187namespace {
188/// \brief Representation of the alloca slices.
189///
190/// This class represents the slices of an alloca which are formed by its
191/// various uses. If a pointer escapes, we can't fully build a representation
192/// for the slices used and we reflect that in this structure. The uses are
193/// stored, sorted by increasing beginning offset and with unsplittable slices
194/// starting at a particular offset before splittable slices.
195class AllocaSlices {
196public:
197  /// \brief Construct the slices of a particular alloca.
198  AllocaSlices(const DataLayout &DL, AllocaInst &AI);
199
200  /// \brief Test whether a pointer to the allocation escapes our analysis.
201  ///
202  /// If this is true, the slices are never fully built and should be
203  /// ignored.
204  bool isEscaped() const { return PointerEscapingInstr; }
205
206  /// \brief Support for iterating over the slices.
207  /// @{
208  typedef SmallVectorImpl<Slice>::iterator iterator;
209  iterator begin() { return Slices.begin(); }
210  iterator end() { return Slices.end(); }
211
212  typedef SmallVectorImpl<Slice>::const_iterator const_iterator;
213  const_iterator begin() const { return Slices.begin(); }
214  const_iterator end() const { return Slices.end(); }
215  /// @}
216
217  /// \brief Allow iterating the dead users for this alloca.
218  ///
219  /// These are instructions which will never actually use the alloca as they
220  /// are outside the allocated range. They are safe to replace with undef and
221  /// delete.
222  /// @{
223  typedef SmallVectorImpl<Instruction *>::const_iterator dead_user_iterator;
224  dead_user_iterator dead_user_begin() const { return DeadUsers.begin(); }
225  dead_user_iterator dead_user_end() const { return DeadUsers.end(); }
226  /// @}
227
228  /// \brief Allow iterating the dead expressions referring to this alloca.
229  ///
230  /// These are operands which have cannot actually be used to refer to the
231  /// alloca as they are outside its range and the user doesn't correct for
232  /// that. These mostly consist of PHI node inputs and the like which we just
233  /// need to replace with undef.
234  /// @{
235  typedef SmallVectorImpl<Use *>::const_iterator dead_op_iterator;
236  dead_op_iterator dead_op_begin() const { return DeadOperands.begin(); }
237  dead_op_iterator dead_op_end() const { return DeadOperands.end(); }
238  /// @}
239
240#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
241  void print(raw_ostream &OS, const_iterator I, StringRef Indent = "  ") const;
242  void printSlice(raw_ostream &OS, const_iterator I,
243                  StringRef Indent = "  ") const;
244  void printUse(raw_ostream &OS, const_iterator I,
245                StringRef Indent = "  ") const;
246  void print(raw_ostream &OS) const;
247  void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump(const_iterator I) const;
248  void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump() const;
249#endif
250
251private:
252  template <typename DerivedT, typename RetT = void> class BuilderBase;
253  class SliceBuilder;
254  friend class AllocaSlices::SliceBuilder;
255
256#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
257  /// \brief Handle to alloca instruction to simplify method interfaces.
258  AllocaInst &AI;
259#endif
260
261  /// \brief The instruction responsible for this alloca not having a known set
262  /// of slices.
263  ///
264  /// When an instruction (potentially) escapes the pointer to the alloca, we
265  /// store a pointer to that here and abort trying to form slices of the
266  /// alloca. This will be null if the alloca slices are analyzed successfully.
267  Instruction *PointerEscapingInstr;
268
269  /// \brief The slices of the alloca.
270  ///
271  /// We store a vector of the slices formed by uses of the alloca here. This
272  /// vector is sorted by increasing begin offset, and then the unsplittable
273  /// slices before the splittable ones. See the Slice inner class for more
274  /// details.
275  SmallVector<Slice, 8> Slices;
276
277  /// \brief Instructions which will become dead if we rewrite the alloca.
278  ///
279  /// Note that these are not separated by slice. This is because we expect an
280  /// alloca to be completely rewritten or not rewritten at all. If rewritten,
281  /// all these instructions can simply be removed and replaced with undef as
282  /// they come from outside of the allocated space.
283  SmallVector<Instruction *, 8> DeadUsers;
284
285  /// \brief Operands which will become dead if we rewrite the alloca.
286  ///
287  /// These are operands that in their particular use can be replaced with
288  /// undef when we rewrite the alloca. These show up in out-of-bounds inputs
289  /// to PHI nodes and the like. They aren't entirely dead (there might be
290  /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we
291  /// want to swap this particular input for undef to simplify the use lists of
292  /// the alloca.
293  SmallVector<Use *, 8> DeadOperands;
294};
295}
296
297static Value *foldSelectInst(SelectInst &SI) {
298  // If the condition being selected on is a constant or the same value is
299  // being selected between, fold the select. Yes this does (rarely) happen
300  // early on.
301  if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition()))
302    return SI.getOperand(1+CI->isZero());
303  if (SI.getOperand(1) == SI.getOperand(2))
304    return SI.getOperand(1);
305
306  return 0;
307}
308
309/// \brief Builder for the alloca slices.
310///
311/// This class builds a set of alloca slices by recursively visiting the uses
312/// of an alloca and making a slice for each load and store at each offset.
313class AllocaSlices::SliceBuilder : public PtrUseVisitor<SliceBuilder> {
314  friend class PtrUseVisitor<SliceBuilder>;
315  friend class InstVisitor<SliceBuilder>;
316  typedef PtrUseVisitor<SliceBuilder> Base;
317
318  const uint64_t AllocSize;
319  AllocaSlices &S;
320
321  SmallDenseMap<Instruction *, unsigned> MemTransferSliceMap;
322  SmallDenseMap<Instruction *, uint64_t> PHIOrSelectSizes;
323
324  /// \brief Set to de-duplicate dead instructions found in the use walk.
325  SmallPtrSet<Instruction *, 4> VisitedDeadInsts;
326
327public:
328  SliceBuilder(const DataLayout &DL, AllocaInst &AI, AllocaSlices &S)
329      : PtrUseVisitor<SliceBuilder>(DL),
330        AllocSize(DL.getTypeAllocSize(AI.getAllocatedType())), S(S) {}
331
332private:
333  void markAsDead(Instruction &I) {
334    if (VisitedDeadInsts.insert(&I))
335      S.DeadUsers.push_back(&I);
336  }
337
338  void insertUse(Instruction &I, const APInt &Offset, uint64_t Size,
339                 bool IsSplittable = false) {
340    // Completely skip uses which have a zero size or start either before or
341    // past the end of the allocation.
342    if (Size == 0 || Offset.isNegative() || Offset.uge(AllocSize)) {
343      DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" << Offset
344                   << " which has zero size or starts outside of the "
345                   << AllocSize << " byte alloca:\n"
346                   << "    alloca: " << S.AI << "\n"
347                   << "       use: " << I << "\n");
348      return markAsDead(I);
349    }
350
351    uint64_t BeginOffset = Offset.getZExtValue();
352    uint64_t EndOffset = BeginOffset + Size;
353
354    // Clamp the end offset to the end of the allocation. Note that this is
355    // formulated to handle even the case where "BeginOffset + Size" overflows.
356    // This may appear superficially to be something we could ignore entirely,
357    // but that is not so! There may be widened loads or PHI-node uses where
358    // some instructions are dead but not others. We can't completely ignore
359    // them, and so have to record at least the information here.
360    assert(AllocSize >= BeginOffset); // Established above.
361    if (Size > AllocSize - BeginOffset) {
362      DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" << Offset
363                   << " to remain within the " << AllocSize << " byte alloca:\n"
364                   << "    alloca: " << S.AI << "\n"
365                   << "       use: " << I << "\n");
366      EndOffset = AllocSize;
367    }
368
369    S.Slices.push_back(Slice(BeginOffset, EndOffset, U, IsSplittable));
370  }
371
372  void visitBitCastInst(BitCastInst &BC) {
373    if (BC.use_empty())
374      return markAsDead(BC);
375
376    return Base::visitBitCastInst(BC);
377  }
378
379  void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
380    if (GEPI.use_empty())
381      return markAsDead(GEPI);
382
383    return Base::visitGetElementPtrInst(GEPI);
384  }
385
386  void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset,
387                         uint64_t Size, bool IsVolatile) {
388    // We allow splitting of loads and stores where the type is an integer type
389    // and cover the entire alloca. This prevents us from splitting over
390    // eagerly.
391    // FIXME: In the great blue eventually, we should eagerly split all integer
392    // loads and stores, and then have a separate step that merges adjacent
393    // alloca partitions into a single partition suitable for integer widening.
394    // Or we should skip the merge step and rely on GVN and other passes to
395    // merge adjacent loads and stores that survive mem2reg.
396    bool IsSplittable =
397        Ty->isIntegerTy() && !IsVolatile && Offset == 0 && Size >= AllocSize;
398
399    insertUse(I, Offset, Size, IsSplittable);
400  }
401
402  void visitLoadInst(LoadInst &LI) {
403    assert((!LI.isSimple() || LI.getType()->isSingleValueType()) &&
404           "All simple FCA loads should have been pre-split");
405
406    if (!IsOffsetKnown)
407      return PI.setAborted(&LI);
408
409    uint64_t Size = DL.getTypeStoreSize(LI.getType());
410    return handleLoadOrStore(LI.getType(), LI, Offset, Size, LI.isVolatile());
411  }
412
413  void visitStoreInst(StoreInst &SI) {
414    Value *ValOp = SI.getValueOperand();
415    if (ValOp == *U)
416      return PI.setEscapedAndAborted(&SI);
417    if (!IsOffsetKnown)
418      return PI.setAborted(&SI);
419
420    uint64_t Size = DL.getTypeStoreSize(ValOp->getType());
421
422    // If this memory access can be shown to *statically* extend outside the
423    // bounds of of the allocation, it's behavior is undefined, so simply
424    // ignore it. Note that this is more strict than the generic clamping
425    // behavior of insertUse. We also try to handle cases which might run the
426    // risk of overflow.
427    // FIXME: We should instead consider the pointer to have escaped if this
428    // function is being instrumented for addressing bugs or race conditions.
429    if (Offset.isNegative() || Size > AllocSize ||
430        Offset.ugt(AllocSize - Size)) {
431      DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @" << Offset
432                   << " which extends past the end of the " << AllocSize
433                   << " byte alloca:\n"
434                   << "    alloca: " << S.AI << "\n"
435                   << "       use: " << SI << "\n");
436      return markAsDead(SI);
437    }
438
439    assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) &&
440           "All simple FCA stores should have been pre-split");
441    handleLoadOrStore(ValOp->getType(), SI, Offset, Size, SI.isVolatile());
442  }
443
444
445  void visitMemSetInst(MemSetInst &II) {
446    assert(II.getRawDest() == *U && "Pointer use is not the destination?");
447    ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
448    if ((Length && Length->getValue() == 0) ||
449        (IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize)))
450      // Zero-length mem transfer intrinsics can be ignored entirely.
451      return markAsDead(II);
452
453    if (!IsOffsetKnown)
454      return PI.setAborted(&II);
455
456    insertUse(II, Offset,
457              Length ? Length->getLimitedValue()
458                     : AllocSize - Offset.getLimitedValue(),
459              (bool)Length);
460  }
461
462  void visitMemTransferInst(MemTransferInst &II) {
463    ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
464    if ((Length && Length->getValue() == 0) ||
465        (IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize)))
466      // Zero-length mem transfer intrinsics can be ignored entirely.
467      return markAsDead(II);
468
469    if (!IsOffsetKnown)
470      return PI.setAborted(&II);
471
472    uint64_t RawOffset = Offset.getLimitedValue();
473    uint64_t Size = Length ? Length->getLimitedValue()
474                           : AllocSize - RawOffset;
475
476    // Check for the special case where the same exact value is used for both
477    // source and dest.
478    if (*U == II.getRawDest() && *U == II.getRawSource()) {
479      // For non-volatile transfers this is a no-op.
480      if (!II.isVolatile())
481        return markAsDead(II);
482
483      return insertUse(II, Offset, Size, /*IsSplittable=*/false);
484    }
485
486    // If we have seen both source and destination for a mem transfer, then
487    // they both point to the same alloca.
488    bool Inserted;
489    SmallDenseMap<Instruction *, unsigned>::iterator MTPI;
490    llvm::tie(MTPI, Inserted) =
491        MemTransferSliceMap.insert(std::make_pair(&II, S.Slices.size()));
492    unsigned PrevIdx = MTPI->second;
493    if (!Inserted) {
494      Slice &PrevP = S.Slices[PrevIdx];
495
496      // Check if the begin offsets match and this is a non-volatile transfer.
497      // In that case, we can completely elide the transfer.
498      if (!II.isVolatile() && PrevP.beginOffset() == RawOffset) {
499        PrevP.kill();
500        return markAsDead(II);
501      }
502
503      // Otherwise we have an offset transfer within the same alloca. We can't
504      // split those.
505      PrevP.makeUnsplittable();
506    }
507
508    // Insert the use now that we've fixed up the splittable nature.
509    insertUse(II, Offset, Size, /*IsSplittable=*/Inserted && Length);
510
511    // Check that we ended up with a valid index in the map.
512    assert(S.Slices[PrevIdx].getUse()->getUser() == &II &&
513           "Map index doesn't point back to a slice with this user.");
514  }
515
516  // Disable SRoA for any intrinsics except for lifetime invariants.
517  // FIXME: What about debug intrinsics? This matches old behavior, but
518  // doesn't make sense.
519  void visitIntrinsicInst(IntrinsicInst &II) {
520    if (!IsOffsetKnown)
521      return PI.setAborted(&II);
522
523    if (II.getIntrinsicID() == Intrinsic::lifetime_start ||
524        II.getIntrinsicID() == Intrinsic::lifetime_end) {
525      ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
526      uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(),
527                               Length->getLimitedValue());
528      insertUse(II, Offset, Size, true);
529      return;
530    }
531
532    Base::visitIntrinsicInst(II);
533  }
534
535  Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) {
536    // We consider any PHI or select that results in a direct load or store of
537    // the same offset to be a viable use for slicing purposes. These uses
538    // are considered unsplittable and the size is the maximum loaded or stored
539    // size.
540    SmallPtrSet<Instruction *, 4> Visited;
541    SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses;
542    Visited.insert(Root);
543    Uses.push_back(std::make_pair(cast<Instruction>(*U), Root));
544    // If there are no loads or stores, the access is dead. We mark that as
545    // a size zero access.
546    Size = 0;
547    do {
548      Instruction *I, *UsedI;
549      llvm::tie(UsedI, I) = Uses.pop_back_val();
550
551      if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
552        Size = std::max(Size, DL.getTypeStoreSize(LI->getType()));
553        continue;
554      }
555      if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
556        Value *Op = SI->getOperand(0);
557        if (Op == UsedI)
558          return SI;
559        Size = std::max(Size, DL.getTypeStoreSize(Op->getType()));
560        continue;
561      }
562
563      if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
564        if (!GEP->hasAllZeroIndices())
565          return GEP;
566      } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) &&
567                 !isa<SelectInst>(I)) {
568        return I;
569      }
570
571      for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
572           ++UI)
573        if (Visited.insert(cast<Instruction>(*UI)))
574          Uses.push_back(std::make_pair(I, cast<Instruction>(*UI)));
575    } while (!Uses.empty());
576
577    return 0;
578  }
579
580  void visitPHINode(PHINode &PN) {
581    if (PN.use_empty())
582      return markAsDead(PN);
583    if (!IsOffsetKnown)
584      return PI.setAborted(&PN);
585
586    // See if we already have computed info on this node.
587    uint64_t &PHISize = PHIOrSelectSizes[&PN];
588    if (!PHISize) {
589      // This is a new PHI node, check for an unsafe use of the PHI node.
590      if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&PN, PHISize))
591        return PI.setAborted(UnsafeI);
592    }
593
594    // For PHI and select operands outside the alloca, we can't nuke the entire
595    // phi or select -- the other side might still be relevant, so we special
596    // case them here and use a separate structure to track the operands
597    // themselves which should be replaced with undef.
598    // FIXME: This should instead be escaped in the event we're instrumenting
599    // for address sanitization.
600    if ((Offset.isNegative() && (-Offset).uge(PHISize)) ||
601        (!Offset.isNegative() && Offset.uge(AllocSize))) {
602      S.DeadOperands.push_back(U);
603      return;
604    }
605
606    insertUse(PN, Offset, PHISize);
607  }
608
609  void visitSelectInst(SelectInst &SI) {
610    if (SI.use_empty())
611      return markAsDead(SI);
612    if (Value *Result = foldSelectInst(SI)) {
613      if (Result == *U)
614        // If the result of the constant fold will be the pointer, recurse
615        // through the select as if we had RAUW'ed it.
616        enqueueUsers(SI);
617      else
618        // Otherwise the operand to the select is dead, and we can replace it
619        // with undef.
620        S.DeadOperands.push_back(U);
621
622      return;
623    }
624    if (!IsOffsetKnown)
625      return PI.setAborted(&SI);
626
627    // See if we already have computed info on this node.
628    uint64_t &SelectSize = PHIOrSelectSizes[&SI];
629    if (!SelectSize) {
630      // This is a new Select, check for an unsafe use of it.
631      if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&SI, SelectSize))
632        return PI.setAborted(UnsafeI);
633    }
634
635    // For PHI and select operands outside the alloca, we can't nuke the entire
636    // phi or select -- the other side might still be relevant, so we special
637    // case them here and use a separate structure to track the operands
638    // themselves which should be replaced with undef.
639    // FIXME: This should instead be escaped in the event we're instrumenting
640    // for address sanitization.
641    if ((Offset.isNegative() && Offset.uge(SelectSize)) ||
642        (!Offset.isNegative() && Offset.uge(AllocSize))) {
643      S.DeadOperands.push_back(U);
644      return;
645    }
646
647    insertUse(SI, Offset, SelectSize);
648  }
649
650  /// \brief Disable SROA entirely if there are unhandled users of the alloca.
651  void visitInstruction(Instruction &I) {
652    PI.setAborted(&I);
653  }
654};
655
656AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI)
657    :
658#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
659      AI(AI),
660#endif
661      PointerEscapingInstr(0) {
662  SliceBuilder PB(DL, AI, *this);
663  SliceBuilder::PtrInfo PtrI = PB.visitPtr(AI);
664  if (PtrI.isEscaped() || PtrI.isAborted()) {
665    // FIXME: We should sink the escape vs. abort info into the caller nicely,
666    // possibly by just storing the PtrInfo in the AllocaSlices.
667    PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst()
668                                                  : PtrI.getAbortingInst();
669    assert(PointerEscapingInstr && "Did not track a bad instruction");
670    return;
671  }
672
673  Slices.erase(std::remove_if(Slices.begin(), Slices.end(),
674                              std::mem_fun_ref(&Slice::isDead)),
675               Slices.end());
676
677  // Sort the uses. This arranges for the offsets to be in ascending order,
678  // and the sizes to be in descending order.
679  std::sort(Slices.begin(), Slices.end());
680}
681
682#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
683
684void AllocaSlices::print(raw_ostream &OS, const_iterator I,
685                         StringRef Indent) const {
686  printSlice(OS, I, Indent);
687  printUse(OS, I, Indent);
688}
689
690void AllocaSlices::printSlice(raw_ostream &OS, const_iterator I,
691                              StringRef Indent) const {
692  OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")"
693     << " slice #" << (I - begin())
694     << (I->isSplittable() ? " (splittable)" : "") << "\n";
695}
696
697void AllocaSlices::printUse(raw_ostream &OS, const_iterator I,
698                            StringRef Indent) const {
699  OS << Indent << "  used by: " << *I->getUse()->getUser() << "\n";
700}
701
702void AllocaSlices::print(raw_ostream &OS) const {
703  if (PointerEscapingInstr) {
704    OS << "Can't analyze slices for alloca: " << AI << "\n"
705       << "  A pointer to this alloca escaped by:\n"
706       << "  " << *PointerEscapingInstr << "\n";
707    return;
708  }
709
710  OS << "Slices of alloca: " << AI << "\n";
711  for (const_iterator I = begin(), E = end(); I != E; ++I)
712    print(OS, I);
713}
714
715void AllocaSlices::dump(const_iterator I) const { print(dbgs(), I); }
716void AllocaSlices::dump() const { print(dbgs()); }
717
718#endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
719
720namespace {
721/// \brief Implementation of LoadAndStorePromoter for promoting allocas.
722///
723/// This subclass of LoadAndStorePromoter adds overrides to handle promoting
724/// the loads and stores of an alloca instruction, as well as updating its
725/// debug information. This is used when a domtree is unavailable and thus
726/// mem2reg in its full form can't be used to handle promotion of allocas to
727/// scalar values.
728class AllocaPromoter : public LoadAndStorePromoter {
729  AllocaInst &AI;
730  DIBuilder &DIB;
731
732  SmallVector<DbgDeclareInst *, 4> DDIs;
733  SmallVector<DbgValueInst *, 4> DVIs;
734
735public:
736  AllocaPromoter(const SmallVectorImpl<Instruction *> &Insts, SSAUpdater &S,
737                 AllocaInst &AI, DIBuilder &DIB)
738      : LoadAndStorePromoter(Insts, S), AI(AI), DIB(DIB) {}
739
740  void run(const SmallVectorImpl<Instruction*> &Insts) {
741    // Retain the debug information attached to the alloca for use when
742    // rewriting loads and stores.
743    if (MDNode *DebugNode = MDNode::getIfExists(AI.getContext(), &AI)) {
744      for (Value::use_iterator UI = DebugNode->use_begin(),
745                               UE = DebugNode->use_end();
746           UI != UE; ++UI)
747        if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
748          DDIs.push_back(DDI);
749        else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(*UI))
750          DVIs.push_back(DVI);
751    }
752
753    LoadAndStorePromoter::run(Insts);
754
755    // While we have the debug information, clear it off of the alloca. The
756    // caller takes care of deleting the alloca.
757    while (!DDIs.empty())
758      DDIs.pop_back_val()->eraseFromParent();
759    while (!DVIs.empty())
760      DVIs.pop_back_val()->eraseFromParent();
761  }
762
763  virtual bool isInstInList(Instruction *I,
764                            const SmallVectorImpl<Instruction*> &Insts) const {
765    Value *Ptr;
766    if (LoadInst *LI = dyn_cast<LoadInst>(I))
767      Ptr = LI->getOperand(0);
768    else
769      Ptr = cast<StoreInst>(I)->getPointerOperand();
770
771    // Only used to detect cycles, which will be rare and quickly found as
772    // we're walking up a chain of defs rather than down through uses.
773    SmallPtrSet<Value *, 4> Visited;
774
775    do {
776      if (Ptr == &AI)
777        return true;
778
779      if (BitCastInst *BCI = dyn_cast<BitCastInst>(Ptr))
780        Ptr = BCI->getOperand(0);
781      else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr))
782        Ptr = GEPI->getPointerOperand();
783      else
784        return false;
785
786    } while (Visited.insert(Ptr));
787
788    return false;
789  }
790
791  virtual void updateDebugInfo(Instruction *Inst) const {
792    for (SmallVectorImpl<DbgDeclareInst *>::const_iterator I = DDIs.begin(),
793           E = DDIs.end(); I != E; ++I) {
794      DbgDeclareInst *DDI = *I;
795      if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
796        ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
797      else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
798        ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
799    }
800    for (SmallVectorImpl<DbgValueInst *>::const_iterator I = DVIs.begin(),
801           E = DVIs.end(); I != E; ++I) {
802      DbgValueInst *DVI = *I;
803      Value *Arg = 0;
804      if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
805        // If an argument is zero extended then use argument directly. The ZExt
806        // may be zapped by an optimization pass in future.
807        if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
808          Arg = dyn_cast<Argument>(ZExt->getOperand(0));
809        else if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
810          Arg = dyn_cast<Argument>(SExt->getOperand(0));
811        if (!Arg)
812          Arg = SI->getValueOperand();
813      } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
814        Arg = LI->getPointerOperand();
815      } else {
816        continue;
817      }
818      Instruction *DbgVal =
819        DIB.insertDbgValueIntrinsic(Arg, 0, DIVariable(DVI->getVariable()),
820                                     Inst);
821      DbgVal->setDebugLoc(DVI->getDebugLoc());
822    }
823  }
824};
825} // end anon namespace
826
827
828namespace {
829/// \brief An optimization pass providing Scalar Replacement of Aggregates.
830///
831/// This pass takes allocations which can be completely analyzed (that is, they
832/// don't escape) and tries to turn them into scalar SSA values. There are
833/// a few steps to this process.
834///
835/// 1) It takes allocations of aggregates and analyzes the ways in which they
836///    are used to try to split them into smaller allocations, ideally of
837///    a single scalar data type. It will split up memcpy and memset accesses
838///    as necessary and try to isolate individual scalar accesses.
839/// 2) It will transform accesses into forms which are suitable for SSA value
840///    promotion. This can be replacing a memset with a scalar store of an
841///    integer value, or it can involve speculating operations on a PHI or
842///    select to be a PHI or select of the results.
843/// 3) Finally, this will try to detect a pattern of accesses which map cleanly
844///    onto insert and extract operations on a vector value, and convert them to
845///    this form. By doing so, it will enable promotion of vector aggregates to
846///    SSA vector values.
847class SROA : public FunctionPass {
848  const bool RequiresDomTree;
849
850  LLVMContext *C;
851  const DataLayout *DL;
852  DominatorTree *DT;
853
854  /// \brief Worklist of alloca instructions to simplify.
855  ///
856  /// Each alloca in the function is added to this. Each new alloca formed gets
857  /// added to it as well to recursively simplify unless that alloca can be
858  /// directly promoted. Finally, each time we rewrite a use of an alloca other
859  /// the one being actively rewritten, we add it back onto the list if not
860  /// already present to ensure it is re-visited.
861  SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > Worklist;
862
863  /// \brief A collection of instructions to delete.
864  /// We try to batch deletions to simplify code and make things a bit more
865  /// efficient.
866  SetVector<Instruction *, SmallVector<Instruction *, 8> > DeadInsts;
867
868  /// \brief Post-promotion worklist.
869  ///
870  /// Sometimes we discover an alloca which has a high probability of becoming
871  /// viable for SROA after a round of promotion takes place. In those cases,
872  /// the alloca is enqueued here for re-processing.
873  ///
874  /// Note that we have to be very careful to clear allocas out of this list in
875  /// the event they are deleted.
876  SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > PostPromotionWorklist;
877
878  /// \brief A collection of alloca instructions we can directly promote.
879  std::vector<AllocaInst *> PromotableAllocas;
880
881  /// \brief A worklist of PHIs to speculate prior to promoting allocas.
882  ///
883  /// All of these PHIs have been checked for the safety of speculation and by
884  /// being speculated will allow promoting allocas currently in the promotable
885  /// queue.
886  SetVector<PHINode *, SmallVector<PHINode *, 2> > SpeculatablePHIs;
887
888  /// \brief A worklist of select instructions to speculate prior to promoting
889  /// allocas.
890  ///
891  /// All of these select instructions have been checked for the safety of
892  /// speculation and by being speculated will allow promoting allocas
893  /// currently in the promotable queue.
894  SetVector<SelectInst *, SmallVector<SelectInst *, 2> > SpeculatableSelects;
895
896public:
897  SROA(bool RequiresDomTree = true)
898      : FunctionPass(ID), RequiresDomTree(RequiresDomTree),
899        C(0), DL(0), DT(0) {
900    initializeSROAPass(*PassRegistry::getPassRegistry());
901  }
902  bool runOnFunction(Function &F);
903  void getAnalysisUsage(AnalysisUsage &AU) const;
904
905  const char *getPassName() const { return "SROA"; }
906  static char ID;
907
908private:
909  friend class PHIOrSelectSpeculator;
910  friend class AllocaSliceRewriter;
911
912  bool rewritePartition(AllocaInst &AI, AllocaSlices &S,
913                        AllocaSlices::iterator B, AllocaSlices::iterator E,
914                        int64_t BeginOffset, int64_t EndOffset,
915                        ArrayRef<AllocaSlices::iterator> SplitUses);
916  bool splitAlloca(AllocaInst &AI, AllocaSlices &S);
917  bool runOnAlloca(AllocaInst &AI);
918  void deleteDeadInstructions(SmallPtrSet<AllocaInst *, 4> &DeletedAllocas);
919  bool promoteAllocas(Function &F);
920};
921}
922
923char SROA::ID = 0;
924
925FunctionPass *llvm::createSROAPass(bool RequiresDomTree) {
926  return new SROA(RequiresDomTree);
927}
928
929INITIALIZE_PASS_BEGIN(SROA, "sroa", "Scalar Replacement Of Aggregates",
930                      false, false)
931INITIALIZE_PASS_DEPENDENCY(DominatorTree)
932INITIALIZE_PASS_END(SROA, "sroa", "Scalar Replacement Of Aggregates",
933                    false, false)
934
935/// Walk the range of a partitioning looking for a common type to cover this
936/// sequence of slices.
937static Type *findCommonType(AllocaSlices::const_iterator B,
938                            AllocaSlices::const_iterator E,
939                            uint64_t EndOffset) {
940  Type *Ty = 0;
941  bool IgnoreNonIntegralTypes = false;
942  for (AllocaSlices::const_iterator I = B; I != E; ++I) {
943    Use *U = I->getUse();
944    if (isa<IntrinsicInst>(*U->getUser()))
945      continue;
946    if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset)
947      continue;
948
949    Type *UserTy = 0;
950    if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
951      UserTy = LI->getType();
952    } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
953      UserTy = SI->getValueOperand()->getType();
954    } else {
955      IgnoreNonIntegralTypes = true; // Give up on anything but an iN type.
956      continue;
957    }
958
959    if (IntegerType *ITy = dyn_cast<IntegerType>(UserTy)) {
960      // If the type is larger than the partition, skip it. We only encounter
961      // this for split integer operations where we want to use the type of the
962      // entity causing the split. Also skip if the type is not a byte width
963      // multiple.
964      if (ITy->getBitWidth() % 8 != 0 ||
965          ITy->getBitWidth() / 8 > (EndOffset - B->beginOffset()))
966        continue;
967
968      // If we have found an integer type use covering the alloca, use that
969      // regardless of the other types, as integers are often used for
970      // a "bucket of bits" type.
971      //
972      // NB: This *must* be the only return from inside the loop so that the
973      // order of slices doesn't impact the computed type.
974      return ITy;
975    } else if (IgnoreNonIntegralTypes) {
976      continue;
977    }
978
979    if (Ty && Ty != UserTy)
980      IgnoreNonIntegralTypes = true; // Give up on anything but an iN type.
981
982    Ty = UserTy;
983  }
984  return Ty;
985}
986
987/// PHI instructions that use an alloca and are subsequently loaded can be
988/// rewritten to load both input pointers in the pred blocks and then PHI the
989/// results, allowing the load of the alloca to be promoted.
990/// From this:
991///   %P2 = phi [i32* %Alloca, i32* %Other]
992///   %V = load i32* %P2
993/// to:
994///   %V1 = load i32* %Alloca      -> will be mem2reg'd
995///   ...
996///   %V2 = load i32* %Other
997///   ...
998///   %V = phi [i32 %V1, i32 %V2]
999///
1000/// We can do this to a select if its only uses are loads and if the operands
1001/// to the select can be loaded unconditionally.
1002///
1003/// FIXME: This should be hoisted into a generic utility, likely in
1004/// Transforms/Util/Local.h
1005static bool isSafePHIToSpeculate(PHINode &PN,
1006                                 const DataLayout *DL = 0) {
1007  // For now, we can only do this promotion if the load is in the same block
1008  // as the PHI, and if there are no stores between the phi and load.
1009  // TODO: Allow recursive phi users.
1010  // TODO: Allow stores.
1011  BasicBlock *BB = PN.getParent();
1012  unsigned MaxAlign = 0;
1013  bool HaveLoad = false;
1014  for (Value::use_iterator UI = PN.use_begin(), UE = PN.use_end(); UI != UE;
1015       ++UI) {
1016    LoadInst *LI = dyn_cast<LoadInst>(*UI);
1017    if (LI == 0 || !LI->isSimple())
1018      return false;
1019
1020    // For now we only allow loads in the same block as the PHI.  This is
1021    // a common case that happens when instcombine merges two loads through
1022    // a PHI.
1023    if (LI->getParent() != BB)
1024      return false;
1025
1026    // Ensure that there are no instructions between the PHI and the load that
1027    // could store.
1028    for (BasicBlock::iterator BBI = &PN; &*BBI != LI; ++BBI)
1029      if (BBI->mayWriteToMemory())
1030        return false;
1031
1032    MaxAlign = std::max(MaxAlign, LI->getAlignment());
1033    HaveLoad = true;
1034  }
1035
1036  if (!HaveLoad)
1037    return false;
1038
1039  // We can only transform this if it is safe to push the loads into the
1040  // predecessor blocks. The only thing to watch out for is that we can't put
1041  // a possibly trapping load in the predecessor if it is a critical edge.
1042  for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1043    TerminatorInst *TI = PN.getIncomingBlock(Idx)->getTerminator();
1044    Value *InVal = PN.getIncomingValue(Idx);
1045
1046    // If the value is produced by the terminator of the predecessor (an
1047    // invoke) or it has side-effects, there is no valid place to put a load
1048    // in the predecessor.
1049    if (TI == InVal || TI->mayHaveSideEffects())
1050      return false;
1051
1052    // If the predecessor has a single successor, then the edge isn't
1053    // critical.
1054    if (TI->getNumSuccessors() == 1)
1055      continue;
1056
1057    // If this pointer is always safe to load, or if we can prove that there
1058    // is already a load in the block, then we can move the load to the pred
1059    // block.
1060    if (InVal->isDereferenceablePointer() ||
1061        isSafeToLoadUnconditionally(InVal, TI, MaxAlign, DL))
1062      continue;
1063
1064    return false;
1065  }
1066
1067  return true;
1068}
1069
1070static void speculatePHINodeLoads(PHINode &PN) {
1071  DEBUG(dbgs() << "    original: " << PN << "\n");
1072
1073  Type *LoadTy = cast<PointerType>(PN.getType())->getElementType();
1074  IRBuilderTy PHIBuilder(&PN);
1075  PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(),
1076                                        PN.getName() + ".sroa.speculated");
1077
1078  // Get the TBAA tag and alignment to use from one of the loads.  It doesn't
1079  // matter which one we get and if any differ.
1080  LoadInst *SomeLoad = cast<LoadInst>(*PN.use_begin());
1081  MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
1082  unsigned Align = SomeLoad->getAlignment();
1083
1084  // Rewrite all loads of the PN to use the new PHI.
1085  while (!PN.use_empty()) {
1086    LoadInst *LI = cast<LoadInst>(*PN.use_begin());
1087    LI->replaceAllUsesWith(NewPN);
1088    LI->eraseFromParent();
1089  }
1090
1091  // Inject loads into all of the pred blocks.
1092  for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1093    BasicBlock *Pred = PN.getIncomingBlock(Idx);
1094    TerminatorInst *TI = Pred->getTerminator();
1095    Value *InVal = PN.getIncomingValue(Idx);
1096    IRBuilderTy PredBuilder(TI);
1097
1098    LoadInst *Load = PredBuilder.CreateLoad(
1099        InVal, (PN.getName() + ".sroa.speculate.load." + Pred->getName()));
1100    ++NumLoadsSpeculated;
1101    Load->setAlignment(Align);
1102    if (TBAATag)
1103      Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
1104    NewPN->addIncoming(Load, Pred);
1105  }
1106
1107  DEBUG(dbgs() << "          speculated to: " << *NewPN << "\n");
1108  PN.eraseFromParent();
1109}
1110
1111/// Select instructions that use an alloca and are subsequently loaded can be
1112/// rewritten to load both input pointers and then select between the result,
1113/// allowing the load of the alloca to be promoted.
1114/// From this:
1115///   %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1116///   %V = load i32* %P2
1117/// to:
1118///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1119///   %V2 = load i32* %Other
1120///   %V = select i1 %cond, i32 %V1, i32 %V2
1121///
1122/// We can do this to a select if its only uses are loads and if the operand
1123/// to the select can be loaded unconditionally.
1124static bool isSafeSelectToSpeculate(SelectInst &SI, const DataLayout *DL = 0) {
1125  Value *TValue = SI.getTrueValue();
1126  Value *FValue = SI.getFalseValue();
1127  bool TDerefable = TValue->isDereferenceablePointer();
1128  bool FDerefable = FValue->isDereferenceablePointer();
1129
1130  for (Value::use_iterator UI = SI.use_begin(), UE = SI.use_end(); UI != UE;
1131       ++UI) {
1132    LoadInst *LI = dyn_cast<LoadInst>(*UI);
1133    if (LI == 0 || !LI->isSimple())
1134      return false;
1135
1136    // Both operands to the select need to be dereferencable, either
1137    // absolutely (e.g. allocas) or at this point because we can see other
1138    // accesses to it.
1139    if (!TDerefable &&
1140        !isSafeToLoadUnconditionally(TValue, LI, LI->getAlignment(), DL))
1141      return false;
1142    if (!FDerefable &&
1143        !isSafeToLoadUnconditionally(FValue, LI, LI->getAlignment(), DL))
1144      return false;
1145  }
1146
1147  return true;
1148}
1149
1150static void speculateSelectInstLoads(SelectInst &SI) {
1151  DEBUG(dbgs() << "    original: " << SI << "\n");
1152
1153  IRBuilderTy IRB(&SI);
1154  Value *TV = SI.getTrueValue();
1155  Value *FV = SI.getFalseValue();
1156  // Replace the loads of the select with a select of two loads.
1157  while (!SI.use_empty()) {
1158    LoadInst *LI = cast<LoadInst>(*SI.use_begin());
1159    assert(LI->isSimple() && "We only speculate simple loads");
1160
1161    IRB.SetInsertPoint(LI);
1162    LoadInst *TL =
1163        IRB.CreateLoad(TV, LI->getName() + ".sroa.speculate.load.true");
1164    LoadInst *FL =
1165        IRB.CreateLoad(FV, LI->getName() + ".sroa.speculate.load.false");
1166    NumLoadsSpeculated += 2;
1167
1168    // Transfer alignment and TBAA info if present.
1169    TL->setAlignment(LI->getAlignment());
1170    FL->setAlignment(LI->getAlignment());
1171    if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
1172      TL->setMetadata(LLVMContext::MD_tbaa, Tag);
1173      FL->setMetadata(LLVMContext::MD_tbaa, Tag);
1174    }
1175
1176    Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL,
1177                                LI->getName() + ".sroa.speculated");
1178
1179    DEBUG(dbgs() << "          speculated to: " << *V << "\n");
1180    LI->replaceAllUsesWith(V);
1181    LI->eraseFromParent();
1182  }
1183  SI.eraseFromParent();
1184}
1185
1186/// \brief Build a GEP out of a base pointer and indices.
1187///
1188/// This will return the BasePtr if that is valid, or build a new GEP
1189/// instruction using the IRBuilder if GEP-ing is needed.
1190static Value *buildGEP(IRBuilderTy &IRB, Value *BasePtr,
1191                       SmallVectorImpl<Value *> &Indices) {
1192  if (Indices.empty())
1193    return BasePtr;
1194
1195  // A single zero index is a no-op, so check for this and avoid building a GEP
1196  // in that case.
1197  if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero())
1198    return BasePtr;
1199
1200  return IRB.CreateInBoundsGEP(BasePtr, Indices, "idx");
1201}
1202
1203/// \brief Get a natural GEP off of the BasePtr walking through Ty toward
1204/// TargetTy without changing the offset of the pointer.
1205///
1206/// This routine assumes we've already established a properly offset GEP with
1207/// Indices, and arrived at the Ty type. The goal is to continue to GEP with
1208/// zero-indices down through type layers until we find one the same as
1209/// TargetTy. If we can't find one with the same type, we at least try to use
1210/// one with the same size. If none of that works, we just produce the GEP as
1211/// indicated by Indices to have the correct offset.
1212static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &DL,
1213                                    Value *BasePtr, Type *Ty, Type *TargetTy,
1214                                    SmallVectorImpl<Value *> &Indices) {
1215  if (Ty == TargetTy)
1216    return buildGEP(IRB, BasePtr, Indices);
1217
1218  // See if we can descend into a struct and locate a field with the correct
1219  // type.
1220  unsigned NumLayers = 0;
1221  Type *ElementTy = Ty;
1222  do {
1223    if (ElementTy->isPointerTy())
1224      break;
1225    if (SequentialType *SeqTy = dyn_cast<SequentialType>(ElementTy)) {
1226      ElementTy = SeqTy->getElementType();
1227      // Note that we use the default address space as this index is over an
1228      // array or a vector, not a pointer.
1229      Indices.push_back(IRB.getInt(APInt(DL.getPointerSizeInBits(0), 0)));
1230    } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) {
1231      if (STy->element_begin() == STy->element_end())
1232        break; // Nothing left to descend into.
1233      ElementTy = *STy->element_begin();
1234      Indices.push_back(IRB.getInt32(0));
1235    } else {
1236      break;
1237    }
1238    ++NumLayers;
1239  } while (ElementTy != TargetTy);
1240  if (ElementTy != TargetTy)
1241    Indices.erase(Indices.end() - NumLayers, Indices.end());
1242
1243  return buildGEP(IRB, BasePtr, Indices);
1244}
1245
1246/// \brief Recursively compute indices for a natural GEP.
1247///
1248/// This is the recursive step for getNaturalGEPWithOffset that walks down the
1249/// element types adding appropriate indices for the GEP.
1250static Value *getNaturalGEPRecursively(IRBuilderTy &IRB, const DataLayout &DL,
1251                                       Value *Ptr, Type *Ty, APInt &Offset,
1252                                       Type *TargetTy,
1253                                       SmallVectorImpl<Value *> &Indices) {
1254  if (Offset == 0)
1255    return getNaturalGEPWithType(IRB, DL, Ptr, Ty, TargetTy, Indices);
1256
1257  // We can't recurse through pointer types.
1258  if (Ty->isPointerTy())
1259    return 0;
1260
1261  // We try to analyze GEPs over vectors here, but note that these GEPs are
1262  // extremely poorly defined currently. The long-term goal is to remove GEPing
1263  // over a vector from the IR completely.
1264  if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) {
1265    unsigned ElementSizeInBits = DL.getTypeSizeInBits(VecTy->getScalarType());
1266    if (ElementSizeInBits % 8)
1267      return 0; // GEPs over non-multiple of 8 size vector elements are invalid.
1268    APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8);
1269    APInt NumSkippedElements = Offset.sdiv(ElementSize);
1270    if (NumSkippedElements.ugt(VecTy->getNumElements()))
1271      return 0;
1272    Offset -= NumSkippedElements * ElementSize;
1273    Indices.push_back(IRB.getInt(NumSkippedElements));
1274    return getNaturalGEPRecursively(IRB, DL, Ptr, VecTy->getElementType(),
1275                                    Offset, TargetTy, Indices);
1276  }
1277
1278  if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
1279    Type *ElementTy = ArrTy->getElementType();
1280    APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy));
1281    APInt NumSkippedElements = Offset.sdiv(ElementSize);
1282    if (NumSkippedElements.ugt(ArrTy->getNumElements()))
1283      return 0;
1284
1285    Offset -= NumSkippedElements * ElementSize;
1286    Indices.push_back(IRB.getInt(NumSkippedElements));
1287    return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
1288                                    Indices);
1289  }
1290
1291  StructType *STy = dyn_cast<StructType>(Ty);
1292  if (!STy)
1293    return 0;
1294
1295  const StructLayout *SL = DL.getStructLayout(STy);
1296  uint64_t StructOffset = Offset.getZExtValue();
1297  if (StructOffset >= SL->getSizeInBytes())
1298    return 0;
1299  unsigned Index = SL->getElementContainingOffset(StructOffset);
1300  Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index));
1301  Type *ElementTy = STy->getElementType(Index);
1302  if (Offset.uge(DL.getTypeAllocSize(ElementTy)))
1303    return 0; // The offset points into alignment padding.
1304
1305  Indices.push_back(IRB.getInt32(Index));
1306  return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
1307                                  Indices);
1308}
1309
1310/// \brief Get a natural GEP from a base pointer to a particular offset and
1311/// resulting in a particular type.
1312///
1313/// The goal is to produce a "natural" looking GEP that works with the existing
1314/// composite types to arrive at the appropriate offset and element type for
1315/// a pointer. TargetTy is the element type the returned GEP should point-to if
1316/// possible. We recurse by decreasing Offset, adding the appropriate index to
1317/// Indices, and setting Ty to the result subtype.
1318///
1319/// If no natural GEP can be constructed, this function returns null.
1320static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &DL,
1321                                      Value *Ptr, APInt Offset, Type *TargetTy,
1322                                      SmallVectorImpl<Value *> &Indices) {
1323  PointerType *Ty = cast<PointerType>(Ptr->getType());
1324
1325  // Don't consider any GEPs through an i8* as natural unless the TargetTy is
1326  // an i8.
1327  if (Ty == IRB.getInt8PtrTy() && TargetTy->isIntegerTy(8))
1328    return 0;
1329
1330  Type *ElementTy = Ty->getElementType();
1331  if (!ElementTy->isSized())
1332    return 0; // We can't GEP through an unsized element.
1333  APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy));
1334  if (ElementSize == 0)
1335    return 0; // Zero-length arrays can't help us build a natural GEP.
1336  APInt NumSkippedElements = Offset.sdiv(ElementSize);
1337
1338  Offset -= NumSkippedElements * ElementSize;
1339  Indices.push_back(IRB.getInt(NumSkippedElements));
1340  return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
1341                                  Indices);
1342}
1343
1344/// \brief Compute an adjusted pointer from Ptr by Offset bytes where the
1345/// resulting pointer has PointerTy.
1346///
1347/// This tries very hard to compute a "natural" GEP which arrives at the offset
1348/// and produces the pointer type desired. Where it cannot, it will try to use
1349/// the natural GEP to arrive at the offset and bitcast to the type. Where that
1350/// fails, it will try to use an existing i8* and GEP to the byte offset and
1351/// bitcast to the type.
1352///
1353/// The strategy for finding the more natural GEPs is to peel off layers of the
1354/// pointer, walking back through bit casts and GEPs, searching for a base
1355/// pointer from which we can compute a natural GEP with the desired
1356/// properties. The algorithm tries to fold as many constant indices into
1357/// a single GEP as possible, thus making each GEP more independent of the
1358/// surrounding code.
1359static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL,
1360                             Value *Ptr, APInt Offset, Type *PointerTy) {
1361  // Even though we don't look through PHI nodes, we could be called on an
1362  // instruction in an unreachable block, which may be on a cycle.
1363  SmallPtrSet<Value *, 4> Visited;
1364  Visited.insert(Ptr);
1365  SmallVector<Value *, 4> Indices;
1366
1367  // We may end up computing an offset pointer that has the wrong type. If we
1368  // never are able to compute one directly that has the correct type, we'll
1369  // fall back to it, so keep it around here.
1370  Value *OffsetPtr = 0;
1371
1372  // Remember any i8 pointer we come across to re-use if we need to do a raw
1373  // byte offset.
1374  Value *Int8Ptr = 0;
1375  APInt Int8PtrOffset(Offset.getBitWidth(), 0);
1376
1377  Type *TargetTy = PointerTy->getPointerElementType();
1378
1379  do {
1380    // First fold any existing GEPs into the offset.
1381    while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
1382      APInt GEPOffset(Offset.getBitWidth(), 0);
1383      if (!GEP->accumulateConstantOffset(DL, GEPOffset))
1384        break;
1385      Offset += GEPOffset;
1386      Ptr = GEP->getPointerOperand();
1387      if (!Visited.insert(Ptr))
1388        break;
1389    }
1390
1391    // See if we can perform a natural GEP here.
1392    Indices.clear();
1393    if (Value *P = getNaturalGEPWithOffset(IRB, DL, Ptr, Offset, TargetTy,
1394                                           Indices)) {
1395      if (P->getType() == PointerTy) {
1396        // Zap any offset pointer that we ended up computing in previous rounds.
1397        if (OffsetPtr && OffsetPtr->use_empty())
1398          if (Instruction *I = dyn_cast<Instruction>(OffsetPtr))
1399            I->eraseFromParent();
1400        return P;
1401      }
1402      if (!OffsetPtr) {
1403        OffsetPtr = P;
1404      }
1405    }
1406
1407    // Stash this pointer if we've found an i8*.
1408    if (Ptr->getType()->isIntegerTy(8)) {
1409      Int8Ptr = Ptr;
1410      Int8PtrOffset = Offset;
1411    }
1412
1413    // Peel off a layer of the pointer and update the offset appropriately.
1414    if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
1415      Ptr = cast<Operator>(Ptr)->getOperand(0);
1416    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
1417      if (GA->mayBeOverridden())
1418        break;
1419      Ptr = GA->getAliasee();
1420    } else {
1421      break;
1422    }
1423    assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!");
1424  } while (Visited.insert(Ptr));
1425
1426  if (!OffsetPtr) {
1427    if (!Int8Ptr) {
1428      Int8Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy(),
1429                                  "raw_cast");
1430      Int8PtrOffset = Offset;
1431    }
1432
1433    OffsetPtr = Int8PtrOffset == 0 ? Int8Ptr :
1434      IRB.CreateInBoundsGEP(Int8Ptr, IRB.getInt(Int8PtrOffset),
1435                            "raw_idx");
1436  }
1437  Ptr = OffsetPtr;
1438
1439  // On the off chance we were targeting i8*, guard the bitcast here.
1440  if (Ptr->getType() != PointerTy)
1441    Ptr = IRB.CreateBitCast(Ptr, PointerTy, "cast");
1442
1443  return Ptr;
1444}
1445
1446/// \brief Test whether we can convert a value from the old to the new type.
1447///
1448/// This predicate should be used to guard calls to convertValue in order to
1449/// ensure that we only try to convert viable values. The strategy is that we
1450/// will peel off single element struct and array wrappings to get to an
1451/// underlying value, and convert that value.
1452static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) {
1453  if (OldTy == NewTy)
1454    return true;
1455  if (IntegerType *OldITy = dyn_cast<IntegerType>(OldTy))
1456    if (IntegerType *NewITy = dyn_cast<IntegerType>(NewTy))
1457      if (NewITy->getBitWidth() >= OldITy->getBitWidth())
1458        return true;
1459  if (DL.getTypeSizeInBits(NewTy) != DL.getTypeSizeInBits(OldTy))
1460    return false;
1461  if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType())
1462    return false;
1463
1464  // We can convert pointers to integers and vice-versa. Same for vectors
1465  // of pointers and integers.
1466  OldTy = OldTy->getScalarType();
1467  NewTy = NewTy->getScalarType();
1468  if (NewTy->isPointerTy() || OldTy->isPointerTy()) {
1469    if (NewTy->isPointerTy() && OldTy->isPointerTy())
1470      return true;
1471    if (NewTy->isIntegerTy() || OldTy->isIntegerTy())
1472      return true;
1473    return false;
1474  }
1475
1476  return true;
1477}
1478
1479/// \brief Generic routine to convert an SSA value to a value of a different
1480/// type.
1481///
1482/// This will try various different casting techniques, such as bitcasts,
1483/// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test
1484/// two types for viability with this routine.
1485static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
1486                           Type *NewTy) {
1487  Type *OldTy = V->getType();
1488  assert(canConvertValue(DL, OldTy, NewTy) && "Value not convertable to type");
1489
1490  if (OldTy == NewTy)
1491    return V;
1492
1493  if (IntegerType *OldITy = dyn_cast<IntegerType>(OldTy))
1494    if (IntegerType *NewITy = dyn_cast<IntegerType>(NewTy))
1495      if (NewITy->getBitWidth() > OldITy->getBitWidth())
1496        return IRB.CreateZExt(V, NewITy);
1497
1498  // See if we need inttoptr for this type pair. A cast involving both scalars
1499  // and vectors requires and additional bitcast.
1500  if (OldTy->getScalarType()->isIntegerTy() &&
1501      NewTy->getScalarType()->isPointerTy()) {
1502    // Expand <2 x i32> to i8* --> <2 x i32> to i64 to i8*
1503    if (OldTy->isVectorTy() && !NewTy->isVectorTy())
1504      return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)),
1505                                NewTy);
1506
1507    // Expand i128 to <2 x i8*> --> i128 to <2 x i64> to <2 x i8*>
1508    if (!OldTy->isVectorTy() && NewTy->isVectorTy())
1509      return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)),
1510                                NewTy);
1511
1512    return IRB.CreateIntToPtr(V, NewTy);
1513  }
1514
1515  // See if we need ptrtoint for this type pair. A cast involving both scalars
1516  // and vectors requires and additional bitcast.
1517  if (OldTy->getScalarType()->isPointerTy() &&
1518      NewTy->getScalarType()->isIntegerTy()) {
1519    // Expand <2 x i8*> to i128 --> <2 x i8*> to <2 x i64> to i128
1520    if (OldTy->isVectorTy() && !NewTy->isVectorTy())
1521      return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
1522                               NewTy);
1523
1524    // Expand i8* to <2 x i32> --> i8* to i64 to <2 x i32>
1525    if (!OldTy->isVectorTy() && NewTy->isVectorTy())
1526      return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
1527                               NewTy);
1528
1529    return IRB.CreatePtrToInt(V, NewTy);
1530  }
1531
1532  return IRB.CreateBitCast(V, NewTy);
1533}
1534
1535/// \brief Test whether the given slice use can be promoted to a vector.
1536///
1537/// This function is called to test each entry in a partioning which is slated
1538/// for a single slice.
1539static bool isVectorPromotionViableForSlice(
1540    const DataLayout &DL, AllocaSlices &S, uint64_t SliceBeginOffset,
1541    uint64_t SliceEndOffset, VectorType *Ty, uint64_t ElementSize,
1542    AllocaSlices::const_iterator I) {
1543  // First validate the slice offsets.
1544  uint64_t BeginOffset =
1545      std::max(I->beginOffset(), SliceBeginOffset) - SliceBeginOffset;
1546  uint64_t BeginIndex = BeginOffset / ElementSize;
1547  if (BeginIndex * ElementSize != BeginOffset ||
1548      BeginIndex >= Ty->getNumElements())
1549    return false;
1550  uint64_t EndOffset =
1551      std::min(I->endOffset(), SliceEndOffset) - SliceBeginOffset;
1552  uint64_t EndIndex = EndOffset / ElementSize;
1553  if (EndIndex * ElementSize != EndOffset || EndIndex > Ty->getNumElements())
1554    return false;
1555
1556  assert(EndIndex > BeginIndex && "Empty vector!");
1557  uint64_t NumElements = EndIndex - BeginIndex;
1558  Type *SliceTy =
1559      (NumElements == 1) ? Ty->getElementType()
1560                         : VectorType::get(Ty->getElementType(), NumElements);
1561
1562  Type *SplitIntTy =
1563      Type::getIntNTy(Ty->getContext(), NumElements * ElementSize * 8);
1564
1565  Use *U = I->getUse();
1566
1567  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
1568    if (MI->isVolatile())
1569      return false;
1570    if (!I->isSplittable())
1571      return false; // Skip any unsplittable intrinsics.
1572  } else if (U->get()->getType()->getPointerElementType()->isStructTy()) {
1573    // Disable vector promotion when there are loads or stores of an FCA.
1574    return false;
1575  } else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
1576    if (LI->isVolatile())
1577      return false;
1578    Type *LTy = LI->getType();
1579    if (SliceBeginOffset > I->beginOffset() ||
1580        SliceEndOffset < I->endOffset()) {
1581      assert(LTy->isIntegerTy());
1582      LTy = SplitIntTy;
1583    }
1584    if (!canConvertValue(DL, SliceTy, LTy))
1585      return false;
1586  } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
1587    if (SI->isVolatile())
1588      return false;
1589    Type *STy = SI->getValueOperand()->getType();
1590    if (SliceBeginOffset > I->beginOffset() ||
1591        SliceEndOffset < I->endOffset()) {
1592      assert(STy->isIntegerTy());
1593      STy = SplitIntTy;
1594    }
1595    if (!canConvertValue(DL, STy, SliceTy))
1596      return false;
1597  } else {
1598    return false;
1599  }
1600
1601  return true;
1602}
1603
1604/// \brief Test whether the given alloca partitioning and range of slices can be
1605/// promoted to a vector.
1606///
1607/// This is a quick test to check whether we can rewrite a particular alloca
1608/// partition (and its newly formed alloca) into a vector alloca with only
1609/// whole-vector loads and stores such that it could be promoted to a vector
1610/// SSA value. We only can ensure this for a limited set of operations, and we
1611/// don't want to do the rewrites unless we are confident that the result will
1612/// be promotable, so we have an early test here.
1613static bool
1614isVectorPromotionViable(const DataLayout &DL, Type *AllocaTy, AllocaSlices &S,
1615                        uint64_t SliceBeginOffset, uint64_t SliceEndOffset,
1616                        AllocaSlices::const_iterator I,
1617                        AllocaSlices::const_iterator E,
1618                        ArrayRef<AllocaSlices::iterator> SplitUses) {
1619  VectorType *Ty = dyn_cast<VectorType>(AllocaTy);
1620  if (!Ty)
1621    return false;
1622
1623  uint64_t ElementSize = DL.getTypeSizeInBits(Ty->getScalarType());
1624
1625  // While the definition of LLVM vectors is bitpacked, we don't support sizes
1626  // that aren't byte sized.
1627  if (ElementSize % 8)
1628    return false;
1629  assert((DL.getTypeSizeInBits(Ty) % 8) == 0 &&
1630         "vector size not a multiple of element size?");
1631  ElementSize /= 8;
1632
1633  for (; I != E; ++I)
1634    if (!isVectorPromotionViableForSlice(DL, S, SliceBeginOffset,
1635                                         SliceEndOffset, Ty, ElementSize, I))
1636      return false;
1637
1638  for (ArrayRef<AllocaSlices::iterator>::const_iterator SUI = SplitUses.begin(),
1639                                                        SUE = SplitUses.end();
1640       SUI != SUE; ++SUI)
1641    if (!isVectorPromotionViableForSlice(DL, S, SliceBeginOffset,
1642                                         SliceEndOffset, Ty, ElementSize, *SUI))
1643      return false;
1644
1645  return true;
1646}
1647
1648/// \brief Test whether a slice of an alloca is valid for integer widening.
1649///
1650/// This implements the necessary checking for the \c isIntegerWideningViable
1651/// test below on a single slice of the alloca.
1652static bool isIntegerWideningViableForSlice(const DataLayout &DL,
1653                                            Type *AllocaTy,
1654                                            uint64_t AllocBeginOffset,
1655                                            uint64_t Size, AllocaSlices &S,
1656                                            AllocaSlices::const_iterator I,
1657                                            bool &WholeAllocaOp) {
1658  uint64_t RelBegin = I->beginOffset() - AllocBeginOffset;
1659  uint64_t RelEnd = I->endOffset() - AllocBeginOffset;
1660
1661  // We can't reasonably handle cases where the load or store extends past
1662  // the end of the aloca's type and into its padding.
1663  if (RelEnd > Size)
1664    return false;
1665
1666  Use *U = I->getUse();
1667
1668  if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
1669    if (LI->isVolatile())
1670      return false;
1671    if (RelBegin == 0 && RelEnd == Size)
1672      WholeAllocaOp = true;
1673    if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) {
1674      if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy))
1675        return false;
1676    } else if (RelBegin != 0 || RelEnd != Size ||
1677               !canConvertValue(DL, AllocaTy, LI->getType())) {
1678      // Non-integer loads need to be convertible from the alloca type so that
1679      // they are promotable.
1680      return false;
1681    }
1682  } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
1683    Type *ValueTy = SI->getValueOperand()->getType();
1684    if (SI->isVolatile())
1685      return false;
1686    if (RelBegin == 0 && RelEnd == Size)
1687      WholeAllocaOp = true;
1688    if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) {
1689      if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy))
1690        return false;
1691    } else if (RelBegin != 0 || RelEnd != Size ||
1692               !canConvertValue(DL, ValueTy, AllocaTy)) {
1693      // Non-integer stores need to be convertible to the alloca type so that
1694      // they are promotable.
1695      return false;
1696    }
1697  } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
1698    if (MI->isVolatile() || !isa<Constant>(MI->getLength()))
1699      return false;
1700    if (!I->isSplittable())
1701      return false; // Skip any unsplittable intrinsics.
1702  } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
1703    if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
1704        II->getIntrinsicID() != Intrinsic::lifetime_end)
1705      return false;
1706  } else {
1707    return false;
1708  }
1709
1710  return true;
1711}
1712
1713/// \brief Test whether the given alloca partition's integer operations can be
1714/// widened to promotable ones.
1715///
1716/// This is a quick test to check whether we can rewrite the integer loads and
1717/// stores to a particular alloca into wider loads and stores and be able to
1718/// promote the resulting alloca.
1719static bool
1720isIntegerWideningViable(const DataLayout &DL, Type *AllocaTy,
1721                        uint64_t AllocBeginOffset, AllocaSlices &S,
1722                        AllocaSlices::const_iterator I,
1723                        AllocaSlices::const_iterator E,
1724                        ArrayRef<AllocaSlices::iterator> SplitUses) {
1725  uint64_t SizeInBits = DL.getTypeSizeInBits(AllocaTy);
1726  // Don't create integer types larger than the maximum bitwidth.
1727  if (SizeInBits > IntegerType::MAX_INT_BITS)
1728    return false;
1729
1730  // Don't try to handle allocas with bit-padding.
1731  if (SizeInBits != DL.getTypeStoreSizeInBits(AllocaTy))
1732    return false;
1733
1734  // We need to ensure that an integer type with the appropriate bitwidth can
1735  // be converted to the alloca type, whatever that is. We don't want to force
1736  // the alloca itself to have an integer type if there is a more suitable one.
1737  Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits);
1738  if (!canConvertValue(DL, AllocaTy, IntTy) ||
1739      !canConvertValue(DL, IntTy, AllocaTy))
1740    return false;
1741
1742  uint64_t Size = DL.getTypeStoreSize(AllocaTy);
1743
1744  // While examining uses, we ensure that the alloca has a covering load or
1745  // store. We don't want to widen the integer operations only to fail to
1746  // promote due to some other unsplittable entry (which we may make splittable
1747  // later). However, if there are only splittable uses, go ahead and assume
1748  // that we cover the alloca.
1749  bool WholeAllocaOp = (I != E) ? false : DL.isLegalInteger(SizeInBits);
1750
1751  for (; I != E; ++I)
1752    if (!isIntegerWideningViableForSlice(DL, AllocaTy, AllocBeginOffset, Size,
1753                                         S, I, WholeAllocaOp))
1754      return false;
1755
1756  for (ArrayRef<AllocaSlices::iterator>::const_iterator SUI = SplitUses.begin(),
1757                                                        SUE = SplitUses.end();
1758       SUI != SUE; ++SUI)
1759    if (!isIntegerWideningViableForSlice(DL, AllocaTy, AllocBeginOffset, Size,
1760                                         S, *SUI, WholeAllocaOp))
1761      return false;
1762
1763  return WholeAllocaOp;
1764}
1765
1766static Value *extractInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
1767                             IntegerType *Ty, uint64_t Offset,
1768                             const Twine &Name) {
1769  DEBUG(dbgs() << "       start: " << *V << "\n");
1770  IntegerType *IntTy = cast<IntegerType>(V->getType());
1771  assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
1772         "Element extends past full value");
1773  uint64_t ShAmt = 8*Offset;
1774  if (DL.isBigEndian())
1775    ShAmt = 8*(DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
1776  if (ShAmt) {
1777    V = IRB.CreateLShr(V, ShAmt, Name + ".shift");
1778    DEBUG(dbgs() << "     shifted: " << *V << "\n");
1779  }
1780  assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
1781         "Cannot extract to a larger integer!");
1782  if (Ty != IntTy) {
1783    V = IRB.CreateTrunc(V, Ty, Name + ".trunc");
1784    DEBUG(dbgs() << "     trunced: " << *V << "\n");
1785  }
1786  return V;
1787}
1788
1789static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old,
1790                            Value *V, uint64_t Offset, const Twine &Name) {
1791  IntegerType *IntTy = cast<IntegerType>(Old->getType());
1792  IntegerType *Ty = cast<IntegerType>(V->getType());
1793  assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
1794         "Cannot insert a larger integer!");
1795  DEBUG(dbgs() << "       start: " << *V << "\n");
1796  if (Ty != IntTy) {
1797    V = IRB.CreateZExt(V, IntTy, Name + ".ext");
1798    DEBUG(dbgs() << "    extended: " << *V << "\n");
1799  }
1800  assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
1801         "Element store outside of alloca store");
1802  uint64_t ShAmt = 8*Offset;
1803  if (DL.isBigEndian())
1804    ShAmt = 8*(DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
1805  if (ShAmt) {
1806    V = IRB.CreateShl(V, ShAmt, Name + ".shift");
1807    DEBUG(dbgs() << "     shifted: " << *V << "\n");
1808  }
1809
1810  if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) {
1811    APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt);
1812    Old = IRB.CreateAnd(Old, Mask, Name + ".mask");
1813    DEBUG(dbgs() << "      masked: " << *Old << "\n");
1814    V = IRB.CreateOr(Old, V, Name + ".insert");
1815    DEBUG(dbgs() << "    inserted: " << *V << "\n");
1816  }
1817  return V;
1818}
1819
1820static Value *extractVector(IRBuilderTy &IRB, Value *V,
1821                            unsigned BeginIndex, unsigned EndIndex,
1822                            const Twine &Name) {
1823  VectorType *VecTy = cast<VectorType>(V->getType());
1824  unsigned NumElements = EndIndex - BeginIndex;
1825  assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
1826
1827  if (NumElements == VecTy->getNumElements())
1828    return V;
1829
1830  if (NumElements == 1) {
1831    V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex),
1832                                 Name + ".extract");
1833    DEBUG(dbgs() << "     extract: " << *V << "\n");
1834    return V;
1835  }
1836
1837  SmallVector<Constant*, 8> Mask;
1838  Mask.reserve(NumElements);
1839  for (unsigned i = BeginIndex; i != EndIndex; ++i)
1840    Mask.push_back(IRB.getInt32(i));
1841  V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
1842                              ConstantVector::get(Mask),
1843                              Name + ".extract");
1844  DEBUG(dbgs() << "     shuffle: " << *V << "\n");
1845  return V;
1846}
1847
1848static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V,
1849                           unsigned BeginIndex, const Twine &Name) {
1850  VectorType *VecTy = cast<VectorType>(Old->getType());
1851  assert(VecTy && "Can only insert a vector into a vector");
1852
1853  VectorType *Ty = dyn_cast<VectorType>(V->getType());
1854  if (!Ty) {
1855    // Single element to insert.
1856    V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex),
1857                                Name + ".insert");
1858    DEBUG(dbgs() <<  "     insert: " << *V << "\n");
1859    return V;
1860  }
1861
1862  assert(Ty->getNumElements() <= VecTy->getNumElements() &&
1863         "Too many elements!");
1864  if (Ty->getNumElements() == VecTy->getNumElements()) {
1865    assert(V->getType() == VecTy && "Vector type mismatch");
1866    return V;
1867  }
1868  unsigned EndIndex = BeginIndex + Ty->getNumElements();
1869
1870  // When inserting a smaller vector into the larger to store, we first
1871  // use a shuffle vector to widen it with undef elements, and then
1872  // a second shuffle vector to select between the loaded vector and the
1873  // incoming vector.
1874  SmallVector<Constant*, 8> Mask;
1875  Mask.reserve(VecTy->getNumElements());
1876  for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
1877    if (i >= BeginIndex && i < EndIndex)
1878      Mask.push_back(IRB.getInt32(i - BeginIndex));
1879    else
1880      Mask.push_back(UndefValue::get(IRB.getInt32Ty()));
1881  V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
1882                              ConstantVector::get(Mask),
1883                              Name + ".expand");
1884  DEBUG(dbgs() << "    shuffle: " << *V << "\n");
1885
1886  Mask.clear();
1887  for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
1888    Mask.push_back(IRB.getInt1(i >= BeginIndex && i < EndIndex));
1889
1890  V = IRB.CreateSelect(ConstantVector::get(Mask), V, Old, Name + "blend");
1891
1892  DEBUG(dbgs() << "    blend: " << *V << "\n");
1893  return V;
1894}
1895
1896namespace {
1897/// \brief Visitor to rewrite instructions using p particular slice of an alloca
1898/// to use a new alloca.
1899///
1900/// Also implements the rewriting to vector-based accesses when the partition
1901/// passes the isVectorPromotionViable predicate. Most of the rewriting logic
1902/// lives here.
1903class AllocaSliceRewriter : public InstVisitor<AllocaSliceRewriter, bool> {
1904  // Befriend the base class so it can delegate to private visit methods.
1905  friend class llvm::InstVisitor<AllocaSliceRewriter, bool>;
1906  typedef llvm::InstVisitor<AllocaSliceRewriter, bool> Base;
1907
1908  const DataLayout &DL;
1909  AllocaSlices &S;
1910  SROA &Pass;
1911  AllocaInst &OldAI, &NewAI;
1912  const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset;
1913  Type *NewAllocaTy;
1914
1915  // If we are rewriting an alloca partition which can be written as pure
1916  // vector operations, we stash extra information here. When VecTy is
1917  // non-null, we have some strict guarantees about the rewritten alloca:
1918  //   - The new alloca is exactly the size of the vector type here.
1919  //   - The accesses all either map to the entire vector or to a single
1920  //     element.
1921  //   - The set of accessing instructions is only one of those handled above
1922  //     in isVectorPromotionViable. Generally these are the same access kinds
1923  //     which are promotable via mem2reg.
1924  VectorType *VecTy;
1925  Type *ElementTy;
1926  uint64_t ElementSize;
1927
1928  // This is a convenience and flag variable that will be null unless the new
1929  // alloca's integer operations should be widened to this integer type due to
1930  // passing isIntegerWideningViable above. If it is non-null, the desired
1931  // integer type will be stored here for easy access during rewriting.
1932  IntegerType *IntTy;
1933
1934  // The offset of the slice currently being rewritten.
1935  uint64_t BeginOffset, EndOffset;
1936  bool IsSplittable;
1937  bool IsSplit;
1938  Use *OldUse;
1939  Instruction *OldPtr;
1940
1941  // Output members carrying state about the result of visiting and rewriting
1942  // the slice of the alloca.
1943  bool IsUsedByRewrittenSpeculatableInstructions;
1944
1945  // Utility IR builder, whose name prefix is setup for each visited use, and
1946  // the insertion point is set to point to the user.
1947  IRBuilderTy IRB;
1948
1949public:
1950  AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &S, SROA &Pass,
1951                      AllocaInst &OldAI, AllocaInst &NewAI,
1952                      uint64_t NewBeginOffset, uint64_t NewEndOffset,
1953                      bool IsVectorPromotable = false,
1954                      bool IsIntegerPromotable = false)
1955      : DL(DL), S(S), Pass(Pass), OldAI(OldAI), NewAI(NewAI),
1956        NewAllocaBeginOffset(NewBeginOffset), NewAllocaEndOffset(NewEndOffset),
1957        NewAllocaTy(NewAI.getAllocatedType()),
1958        VecTy(IsVectorPromotable ? cast<VectorType>(NewAllocaTy) : 0),
1959        ElementTy(VecTy ? VecTy->getElementType() : 0),
1960        ElementSize(VecTy ? DL.getTypeSizeInBits(ElementTy) / 8 : 0),
1961        IntTy(IsIntegerPromotable
1962                  ? Type::getIntNTy(
1963                        NewAI.getContext(),
1964                        DL.getTypeSizeInBits(NewAI.getAllocatedType()))
1965                  : 0),
1966        BeginOffset(), EndOffset(), IsSplittable(), IsSplit(), OldUse(),
1967        OldPtr(), IsUsedByRewrittenSpeculatableInstructions(false),
1968        IRB(NewAI.getContext(), ConstantFolder()) {
1969    if (VecTy) {
1970      assert((DL.getTypeSizeInBits(ElementTy) % 8) == 0 &&
1971             "Only multiple-of-8 sized vector elements are viable");
1972      ++NumVectorized;
1973    }
1974    assert((!IsVectorPromotable && !IsIntegerPromotable) ||
1975           IsVectorPromotable != IsIntegerPromotable);
1976  }
1977
1978  bool visit(AllocaSlices::const_iterator I) {
1979    bool CanSROA = true;
1980    BeginOffset = I->beginOffset();
1981    EndOffset = I->endOffset();
1982    IsSplittable = I->isSplittable();
1983    IsSplit =
1984        BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset;
1985
1986    OldUse = I->getUse();
1987    OldPtr = cast<Instruction>(OldUse->get());
1988
1989    Instruction *OldUserI = cast<Instruction>(OldUse->getUser());
1990    IRB.SetInsertPoint(OldUserI);
1991    IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc());
1992    IRB.SetNamePrefix(Twine(NewAI.getName()) + "." + Twine(BeginOffset) + ".");
1993
1994    CanSROA &= visit(cast<Instruction>(OldUse->getUser()));
1995    if (VecTy || IntTy)
1996      assert(CanSROA);
1997    return CanSROA;
1998  }
1999
2000  /// \brief Query whether this slice is used by speculatable instructions after
2001  /// rewriting.
2002  ///
2003  /// These instructions (PHIs and Selects currently) require the alloca slice
2004  /// to run back through the rewriter. Thus, they are promotable, but not on
2005  /// this iteration. This is distinct from a slice which is unpromotable for
2006  /// some other reason, in which case we don't even want to perform the
2007  /// speculation. This can be querried at any time and reflects whether (at
2008  /// that point) a visit call has rewritten a speculatable instruction on the
2009  /// current slice.
2010  bool isUsedByRewrittenSpeculatableInstructions() const {
2011    return IsUsedByRewrittenSpeculatableInstructions;
2012  }
2013
2014private:
2015  // Make sure the other visit overloads are visible.
2016  using Base::visit;
2017
2018  // Every instruction which can end up as a user must have a rewrite rule.
2019  bool visitInstruction(Instruction &I) {
2020    DEBUG(dbgs() << "    !!!! Cannot rewrite: " << I << "\n");
2021    llvm_unreachable("No rewrite rule for this instruction!");
2022  }
2023
2024  Value *getAdjustedAllocaPtr(IRBuilderTy &IRB, uint64_t Offset,
2025                              Type *PointerTy) {
2026    assert(Offset >= NewAllocaBeginOffset);
2027    return getAdjustedPtr(IRB, DL, &NewAI, APInt(DL.getPointerSizeInBits(),
2028                                                 Offset - NewAllocaBeginOffset),
2029                          PointerTy);
2030  }
2031
2032  /// \brief Compute suitable alignment to access an offset into the new alloca.
2033  unsigned getOffsetAlign(uint64_t Offset) {
2034    unsigned NewAIAlign = NewAI.getAlignment();
2035    if (!NewAIAlign)
2036      NewAIAlign = DL.getABITypeAlignment(NewAI.getAllocatedType());
2037    return MinAlign(NewAIAlign, Offset);
2038  }
2039
2040  /// \brief Compute suitable alignment to access a type at an offset of the
2041  /// new alloca.
2042  ///
2043  /// \returns zero if the type's ABI alignment is a suitable alignment,
2044  /// otherwise returns the maximal suitable alignment.
2045  unsigned getOffsetTypeAlign(Type *Ty, uint64_t Offset) {
2046    unsigned Align = getOffsetAlign(Offset);
2047    return Align == DL.getABITypeAlignment(Ty) ? 0 : Align;
2048  }
2049
2050  unsigned getIndex(uint64_t Offset) {
2051    assert(VecTy && "Can only call getIndex when rewriting a vector");
2052    uint64_t RelOffset = Offset - NewAllocaBeginOffset;
2053    assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds");
2054    uint32_t Index = RelOffset / ElementSize;
2055    assert(Index * ElementSize == RelOffset);
2056    return Index;
2057  }
2058
2059  void deleteIfTriviallyDead(Value *V) {
2060    Instruction *I = cast<Instruction>(V);
2061    if (isInstructionTriviallyDead(I))
2062      Pass.DeadInsts.insert(I);
2063  }
2064
2065  Value *rewriteVectorizedLoadInst(uint64_t NewBeginOffset,
2066                                   uint64_t NewEndOffset) {
2067    unsigned BeginIndex = getIndex(NewBeginOffset);
2068    unsigned EndIndex = getIndex(NewEndOffset);
2069    assert(EndIndex > BeginIndex && "Empty vector!");
2070
2071    Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2072                                     "load");
2073    return extractVector(IRB, V, BeginIndex, EndIndex, "vec");
2074  }
2075
2076  Value *rewriteIntegerLoad(LoadInst &LI, uint64_t NewBeginOffset,
2077                            uint64_t NewEndOffset) {
2078    assert(IntTy && "We cannot insert an integer to the alloca");
2079    assert(!LI.isVolatile());
2080    Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2081                                     "load");
2082    V = convertValue(DL, IRB, V, IntTy);
2083    assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2084    uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2085    if (Offset > 0 || NewEndOffset < NewAllocaEndOffset)
2086      V = extractInteger(DL, IRB, V, cast<IntegerType>(LI.getType()), Offset,
2087                         "extract");
2088    return V;
2089  }
2090
2091  bool visitLoadInst(LoadInst &LI) {
2092    DEBUG(dbgs() << "    original: " << LI << "\n");
2093    Value *OldOp = LI.getOperand(0);
2094    assert(OldOp == OldPtr);
2095
2096    // Compute the intersecting offset range.
2097    assert(BeginOffset < NewAllocaEndOffset);
2098    assert(EndOffset > NewAllocaBeginOffset);
2099    uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
2100    uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
2101
2102    uint64_t Size = NewEndOffset - NewBeginOffset;
2103
2104    Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), Size * 8)
2105                             : LI.getType();
2106    bool IsPtrAdjusted = false;
2107    Value *V;
2108    if (VecTy) {
2109      V = rewriteVectorizedLoadInst(NewBeginOffset, NewEndOffset);
2110    } else if (IntTy && LI.getType()->isIntegerTy()) {
2111      V = rewriteIntegerLoad(LI, NewBeginOffset, NewEndOffset);
2112    } else if (NewBeginOffset == NewAllocaBeginOffset &&
2113               canConvertValue(DL, NewAllocaTy, LI.getType())) {
2114      V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2115                                LI.isVolatile(), "load");
2116    } else {
2117      Type *LTy = TargetTy->getPointerTo();
2118      V = IRB.CreateAlignedLoad(
2119          getAdjustedAllocaPtr(IRB, NewBeginOffset, LTy),
2120          getOffsetTypeAlign(TargetTy, NewBeginOffset - NewAllocaBeginOffset),
2121          LI.isVolatile(), "load");
2122      IsPtrAdjusted = true;
2123    }
2124    V = convertValue(DL, IRB, V, TargetTy);
2125
2126    if (IsSplit) {
2127      assert(!LI.isVolatile());
2128      assert(LI.getType()->isIntegerTy() &&
2129             "Only integer type loads and stores are split");
2130      assert(Size < DL.getTypeStoreSize(LI.getType()) &&
2131             "Split load isn't smaller than original load");
2132      assert(LI.getType()->getIntegerBitWidth() ==
2133             DL.getTypeStoreSizeInBits(LI.getType()) &&
2134             "Non-byte-multiple bit width");
2135      // Move the insertion point just past the load so that we can refer to it.
2136      IRB.SetInsertPoint(llvm::next(BasicBlock::iterator(&LI)));
2137      // Create a placeholder value with the same type as LI to use as the
2138      // basis for the new value. This allows us to replace the uses of LI with
2139      // the computed value, and then replace the placeholder with LI, leaving
2140      // LI only used for this computation.
2141      Value *Placeholder
2142        = new LoadInst(UndefValue::get(LI.getType()->getPointerTo()));
2143      V = insertInteger(DL, IRB, Placeholder, V, NewBeginOffset,
2144                        "insert");
2145      LI.replaceAllUsesWith(V);
2146      Placeholder->replaceAllUsesWith(&LI);
2147      delete Placeholder;
2148    } else {
2149      LI.replaceAllUsesWith(V);
2150    }
2151
2152    Pass.DeadInsts.insert(&LI);
2153    deleteIfTriviallyDead(OldOp);
2154    DEBUG(dbgs() << "          to: " << *V << "\n");
2155    return !LI.isVolatile() && !IsPtrAdjusted;
2156  }
2157
2158  bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp,
2159                                  uint64_t NewBeginOffset,
2160                                  uint64_t NewEndOffset) {
2161    if (V->getType() != VecTy) {
2162      unsigned BeginIndex = getIndex(NewBeginOffset);
2163      unsigned EndIndex = getIndex(NewEndOffset);
2164      assert(EndIndex > BeginIndex && "Empty vector!");
2165      unsigned NumElements = EndIndex - BeginIndex;
2166      assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2167      Type *SliceTy =
2168          (NumElements == 1) ? ElementTy
2169                             : VectorType::get(ElementTy, NumElements);
2170      if (V->getType() != SliceTy)
2171        V = convertValue(DL, IRB, V, SliceTy);
2172
2173      // Mix in the existing elements.
2174      Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2175                                         "load");
2176      V = insertVector(IRB, Old, V, BeginIndex, "vec");
2177    }
2178    StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
2179    Pass.DeadInsts.insert(&SI);
2180
2181    (void)Store;
2182    DEBUG(dbgs() << "          to: " << *Store << "\n");
2183    return true;
2184  }
2185
2186  bool rewriteIntegerStore(Value *V, StoreInst &SI,
2187                           uint64_t NewBeginOffset, uint64_t NewEndOffset) {
2188    assert(IntTy && "We cannot extract an integer from the alloca");
2189    assert(!SI.isVolatile());
2190    if (DL.getTypeSizeInBits(V->getType()) != IntTy->getBitWidth()) {
2191      Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2192                                         "oldload");
2193      Old = convertValue(DL, IRB, Old, IntTy);
2194      assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2195      uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
2196      V = insertInteger(DL, IRB, Old, SI.getValueOperand(), Offset,
2197                        "insert");
2198    }
2199    V = convertValue(DL, IRB, V, NewAllocaTy);
2200    StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
2201    Pass.DeadInsts.insert(&SI);
2202    (void)Store;
2203    DEBUG(dbgs() << "          to: " << *Store << "\n");
2204    return true;
2205  }
2206
2207  bool visitStoreInst(StoreInst &SI) {
2208    DEBUG(dbgs() << "    original: " << SI << "\n");
2209    Value *OldOp = SI.getOperand(1);
2210    assert(OldOp == OldPtr);
2211
2212    Value *V = SI.getValueOperand();
2213
2214    // Strip all inbounds GEPs and pointer casts to try to dig out any root
2215    // alloca that should be re-examined after promoting this alloca.
2216    if (V->getType()->isPointerTy())
2217      if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets()))
2218        Pass.PostPromotionWorklist.insert(AI);
2219
2220    // Compute the intersecting offset range.
2221    assert(BeginOffset < NewAllocaEndOffset);
2222    assert(EndOffset > NewAllocaBeginOffset);
2223    uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
2224    uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
2225
2226    uint64_t Size = NewEndOffset - NewBeginOffset;
2227    if (Size < DL.getTypeStoreSize(V->getType())) {
2228      assert(!SI.isVolatile());
2229      assert(V->getType()->isIntegerTy() &&
2230             "Only integer type loads and stores are split");
2231      assert(V->getType()->getIntegerBitWidth() ==
2232             DL.getTypeStoreSizeInBits(V->getType()) &&
2233             "Non-byte-multiple bit width");
2234      IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), Size * 8);
2235      V = extractInteger(DL, IRB, V, NarrowTy, NewBeginOffset,
2236                         "extract");
2237    }
2238
2239    if (VecTy)
2240      return rewriteVectorizedStoreInst(V, SI, OldOp, NewBeginOffset,
2241                                        NewEndOffset);
2242    if (IntTy && V->getType()->isIntegerTy())
2243      return rewriteIntegerStore(V, SI, NewBeginOffset, NewEndOffset);
2244
2245    StoreInst *NewSI;
2246    if (NewBeginOffset == NewAllocaBeginOffset &&
2247        NewEndOffset == NewAllocaEndOffset &&
2248        canConvertValue(DL, V->getType(), NewAllocaTy)) {
2249      V = convertValue(DL, IRB, V, NewAllocaTy);
2250      NewSI = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
2251                                     SI.isVolatile());
2252    } else {
2253      Value *NewPtr = getAdjustedAllocaPtr(IRB, NewBeginOffset,
2254                                           V->getType()->getPointerTo());
2255      NewSI = IRB.CreateAlignedStore(
2256          V, NewPtr, getOffsetTypeAlign(
2257                         V->getType(), NewBeginOffset - NewAllocaBeginOffset),
2258          SI.isVolatile());
2259    }
2260    (void)NewSI;
2261    Pass.DeadInsts.insert(&SI);
2262    deleteIfTriviallyDead(OldOp);
2263
2264    DEBUG(dbgs() << "          to: " << *NewSI << "\n");
2265    return NewSI->getPointerOperand() == &NewAI && !SI.isVolatile();
2266  }
2267
2268  /// \brief Compute an integer value from splatting an i8 across the given
2269  /// number of bytes.
2270  ///
2271  /// Note that this routine assumes an i8 is a byte. If that isn't true, don't
2272  /// call this routine.
2273  /// FIXME: Heed the advice above.
2274  ///
2275  /// \param V The i8 value to splat.
2276  /// \param Size The number of bytes in the output (assuming i8 is one byte)
2277  Value *getIntegerSplat(Value *V, unsigned Size) {
2278    assert(Size > 0 && "Expected a positive number of bytes.");
2279    IntegerType *VTy = cast<IntegerType>(V->getType());
2280    assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte");
2281    if (Size == 1)
2282      return V;
2283
2284    Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size*8);
2285    V = IRB.CreateMul(IRB.CreateZExt(V, SplatIntTy, "zext"),
2286                      ConstantExpr::getUDiv(
2287                        Constant::getAllOnesValue(SplatIntTy),
2288                        ConstantExpr::getZExt(
2289                          Constant::getAllOnesValue(V->getType()),
2290                          SplatIntTy)),
2291                      "isplat");
2292    return V;
2293  }
2294
2295  /// \brief Compute a vector splat for a given element value.
2296  Value *getVectorSplat(Value *V, unsigned NumElements) {
2297    V = IRB.CreateVectorSplat(NumElements, V, "vsplat");
2298    DEBUG(dbgs() << "       splat: " << *V << "\n");
2299    return V;
2300  }
2301
2302  bool visitMemSetInst(MemSetInst &II) {
2303    DEBUG(dbgs() << "    original: " << II << "\n");
2304    assert(II.getRawDest() == OldPtr);
2305
2306    // If the memset has a variable size, it cannot be split, just adjust the
2307    // pointer to the new alloca.
2308    if (!isa<Constant>(II.getLength())) {
2309      assert(!IsSplit);
2310      assert(BeginOffset >= NewAllocaBeginOffset);
2311      II.setDest(
2312          getAdjustedAllocaPtr(IRB, BeginOffset, II.getRawDest()->getType()));
2313      Type *CstTy = II.getAlignmentCst()->getType();
2314      II.setAlignment(ConstantInt::get(CstTy, getOffsetAlign(BeginOffset)));
2315
2316      deleteIfTriviallyDead(OldPtr);
2317      return false;
2318    }
2319
2320    // Record this instruction for deletion.
2321    Pass.DeadInsts.insert(&II);
2322
2323    Type *AllocaTy = NewAI.getAllocatedType();
2324    Type *ScalarTy = AllocaTy->getScalarType();
2325
2326    // Compute the intersecting offset range.
2327    assert(BeginOffset < NewAllocaEndOffset);
2328    assert(EndOffset > NewAllocaBeginOffset);
2329    uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
2330    uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
2331    uint64_t SliceOffset = NewBeginOffset - NewAllocaBeginOffset;
2332
2333    // If this doesn't map cleanly onto the alloca type, and that type isn't
2334    // a single value type, just emit a memset.
2335    if (!VecTy && !IntTy &&
2336        (BeginOffset > NewAllocaBeginOffset ||
2337         EndOffset < NewAllocaEndOffset ||
2338         !AllocaTy->isSingleValueType() ||
2339         !DL.isLegalInteger(DL.getTypeSizeInBits(ScalarTy)) ||
2340         DL.getTypeSizeInBits(ScalarTy)%8 != 0)) {
2341      Type *SizeTy = II.getLength()->getType();
2342      Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
2343      CallInst *New = IRB.CreateMemSet(
2344          getAdjustedAllocaPtr(IRB, NewBeginOffset, II.getRawDest()->getType()),
2345          II.getValue(), Size, getOffsetAlign(SliceOffset), II.isVolatile());
2346      (void)New;
2347      DEBUG(dbgs() << "          to: " << *New << "\n");
2348      return false;
2349    }
2350
2351    // If we can represent this as a simple value, we have to build the actual
2352    // value to store, which requires expanding the byte present in memset to
2353    // a sensible representation for the alloca type. This is essentially
2354    // splatting the byte to a sufficiently wide integer, splatting it across
2355    // any desired vector width, and bitcasting to the final type.
2356    Value *V;
2357
2358    if (VecTy) {
2359      // If this is a memset of a vectorized alloca, insert it.
2360      assert(ElementTy == ScalarTy);
2361
2362      unsigned BeginIndex = getIndex(NewBeginOffset);
2363      unsigned EndIndex = getIndex(NewEndOffset);
2364      assert(EndIndex > BeginIndex && "Empty vector!");
2365      unsigned NumElements = EndIndex - BeginIndex;
2366      assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2367
2368      Value *Splat =
2369          getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ElementTy) / 8);
2370      Splat = convertValue(DL, IRB, Splat, ElementTy);
2371      if (NumElements > 1)
2372        Splat = getVectorSplat(Splat, NumElements);
2373
2374      Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2375                                         "oldload");
2376      V = insertVector(IRB, Old, Splat, BeginIndex, "vec");
2377    } else if (IntTy) {
2378      // If this is a memset on an alloca where we can widen stores, insert the
2379      // set integer.
2380      assert(!II.isVolatile());
2381
2382      uint64_t Size = NewEndOffset - NewBeginOffset;
2383      V = getIntegerSplat(II.getValue(), Size);
2384
2385      if (IntTy && (BeginOffset != NewAllocaBeginOffset ||
2386                    EndOffset != NewAllocaBeginOffset)) {
2387        Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2388                                           "oldload");
2389        Old = convertValue(DL, IRB, Old, IntTy);
2390        uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2391        V = insertInteger(DL, IRB, Old, V, Offset, "insert");
2392      } else {
2393        assert(V->getType() == IntTy &&
2394               "Wrong type for an alloca wide integer!");
2395      }
2396      V = convertValue(DL, IRB, V, AllocaTy);
2397    } else {
2398      // Established these invariants above.
2399      assert(NewBeginOffset == NewAllocaBeginOffset);
2400      assert(NewEndOffset == NewAllocaEndOffset);
2401
2402      V = getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ScalarTy) / 8);
2403      if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy))
2404        V = getVectorSplat(V, AllocaVecTy->getNumElements());
2405
2406      V = convertValue(DL, IRB, V, AllocaTy);
2407    }
2408
2409    Value *New = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
2410                                        II.isVolatile());
2411    (void)New;
2412    DEBUG(dbgs() << "          to: " << *New << "\n");
2413    return !II.isVolatile();
2414  }
2415
2416  bool visitMemTransferInst(MemTransferInst &II) {
2417    // Rewriting of memory transfer instructions can be a bit tricky. We break
2418    // them into two categories: split intrinsics and unsplit intrinsics.
2419
2420    DEBUG(dbgs() << "    original: " << II << "\n");
2421
2422    // Compute the intersecting offset range.
2423    assert(BeginOffset < NewAllocaEndOffset);
2424    assert(EndOffset > NewAllocaBeginOffset);
2425    uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
2426    uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
2427
2428    assert(II.getRawSource() == OldPtr || II.getRawDest() == OldPtr);
2429    bool IsDest = II.getRawDest() == OldPtr;
2430
2431    // Compute the relative offset within the transfer.
2432    unsigned IntPtrWidth = DL.getPointerSizeInBits();
2433    APInt RelOffset(IntPtrWidth, NewBeginOffset - BeginOffset);
2434
2435    unsigned Align = II.getAlignment();
2436    uint64_t SliceOffset = NewBeginOffset - NewAllocaBeginOffset;
2437    if (Align > 1)
2438      Align =
2439          MinAlign(RelOffset.zextOrTrunc(64).getZExtValue(),
2440                   MinAlign(II.getAlignment(), getOffsetAlign(SliceOffset)));
2441
2442    // For unsplit intrinsics, we simply modify the source and destination
2443    // pointers in place. This isn't just an optimization, it is a matter of
2444    // correctness. With unsplit intrinsics we may be dealing with transfers
2445    // within a single alloca before SROA ran, or with transfers that have
2446    // a variable length. We may also be dealing with memmove instead of
2447    // memcpy, and so simply updating the pointers is the necessary for us to
2448    // update both source and dest of a single call.
2449    if (!IsSplittable) {
2450      Value *OldOp = IsDest ? II.getRawDest() : II.getRawSource();
2451      if (IsDest)
2452        II.setDest(
2453            getAdjustedAllocaPtr(IRB, BeginOffset, II.getRawDest()->getType()));
2454      else
2455        II.setSource(getAdjustedAllocaPtr(IRB, BeginOffset,
2456                                          II.getRawSource()->getType()));
2457
2458      Type *CstTy = II.getAlignmentCst()->getType();
2459      II.setAlignment(ConstantInt::get(CstTy, Align));
2460
2461      DEBUG(dbgs() << "          to: " << II << "\n");
2462      deleteIfTriviallyDead(OldOp);
2463      return false;
2464    }
2465    // For split transfer intrinsics we have an incredibly useful assurance:
2466    // the source and destination do not reside within the same alloca, and at
2467    // least one of them does not escape. This means that we can replace
2468    // memmove with memcpy, and we don't need to worry about all manner of
2469    // downsides to splitting and transforming the operations.
2470
2471    // If this doesn't map cleanly onto the alloca type, and that type isn't
2472    // a single value type, just emit a memcpy.
2473    bool EmitMemCpy
2474      = !VecTy && !IntTy && (BeginOffset > NewAllocaBeginOffset ||
2475                             EndOffset < NewAllocaEndOffset ||
2476                             !NewAI.getAllocatedType()->isSingleValueType());
2477
2478    // If we're just going to emit a memcpy, the alloca hasn't changed, and the
2479    // size hasn't been shrunk based on analysis of the viable range, this is
2480    // a no-op.
2481    if (EmitMemCpy && &OldAI == &NewAI) {
2482      // Ensure the start lines up.
2483      assert(NewBeginOffset == BeginOffset);
2484
2485      // Rewrite the size as needed.
2486      if (NewEndOffset != EndOffset)
2487        II.setLength(ConstantInt::get(II.getLength()->getType(),
2488                                      NewEndOffset - NewBeginOffset));
2489      return false;
2490    }
2491    // Record this instruction for deletion.
2492    Pass.DeadInsts.insert(&II);
2493
2494    // Strip all inbounds GEPs and pointer casts to try to dig out any root
2495    // alloca that should be re-examined after rewriting this instruction.
2496    Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest();
2497    if (AllocaInst *AI
2498          = dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets()))
2499      Pass.Worklist.insert(AI);
2500
2501    if (EmitMemCpy) {
2502      Type *OtherPtrTy = IsDest ? II.getRawSource()->getType()
2503                                : II.getRawDest()->getType();
2504
2505      // Compute the other pointer, folding as much as possible to produce
2506      // a single, simple GEP in most cases.
2507      OtherPtr = getAdjustedPtr(IRB, DL, OtherPtr, RelOffset, OtherPtrTy);
2508
2509      Value *OurPtr = getAdjustedAllocaPtr(
2510          IRB, NewBeginOffset,
2511          IsDest ? II.getRawDest()->getType() : II.getRawSource()->getType());
2512      Type *SizeTy = II.getLength()->getType();
2513      Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
2514
2515      CallInst *New = IRB.CreateMemCpy(IsDest ? OurPtr : OtherPtr,
2516                                       IsDest ? OtherPtr : OurPtr,
2517                                       Size, Align, II.isVolatile());
2518      (void)New;
2519      DEBUG(dbgs() << "          to: " << *New << "\n");
2520      return false;
2521    }
2522
2523    // Note that we clamp the alignment to 1 here as a 0 alignment for a memcpy
2524    // is equivalent to 1, but that isn't true if we end up rewriting this as
2525    // a load or store.
2526    if (!Align)
2527      Align = 1;
2528
2529    bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset &&
2530                         NewEndOffset == NewAllocaEndOffset;
2531    uint64_t Size = NewEndOffset - NewBeginOffset;
2532    unsigned BeginIndex = VecTy ? getIndex(NewBeginOffset) : 0;
2533    unsigned EndIndex = VecTy ? getIndex(NewEndOffset) : 0;
2534    unsigned NumElements = EndIndex - BeginIndex;
2535    IntegerType *SubIntTy
2536      = IntTy ? Type::getIntNTy(IntTy->getContext(), Size*8) : 0;
2537
2538    Type *OtherPtrTy = NewAI.getType();
2539    if (VecTy && !IsWholeAlloca) {
2540      if (NumElements == 1)
2541        OtherPtrTy = VecTy->getElementType();
2542      else
2543        OtherPtrTy = VectorType::get(VecTy->getElementType(), NumElements);
2544
2545      OtherPtrTy = OtherPtrTy->getPointerTo();
2546    } else if (IntTy && !IsWholeAlloca) {
2547      OtherPtrTy = SubIntTy->getPointerTo();
2548    }
2549
2550    Value *SrcPtr = getAdjustedPtr(IRB, DL, OtherPtr, RelOffset, OtherPtrTy);
2551    Value *DstPtr = &NewAI;
2552    if (!IsDest)
2553      std::swap(SrcPtr, DstPtr);
2554
2555    Value *Src;
2556    if (VecTy && !IsWholeAlloca && !IsDest) {
2557      Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2558                                  "load");
2559      Src = extractVector(IRB, Src, BeginIndex, EndIndex, "vec");
2560    } else if (IntTy && !IsWholeAlloca && !IsDest) {
2561      Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2562                                  "load");
2563      Src = convertValue(DL, IRB, Src, IntTy);
2564      uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2565      Src = extractInteger(DL, IRB, Src, SubIntTy, Offset, "extract");
2566    } else {
2567      Src = IRB.CreateAlignedLoad(SrcPtr, Align, II.isVolatile(),
2568                                  "copyload");
2569    }
2570
2571    if (VecTy && !IsWholeAlloca && IsDest) {
2572      Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2573                                         "oldload");
2574      Src = insertVector(IRB, Old, Src, BeginIndex, "vec");
2575    } else if (IntTy && !IsWholeAlloca && IsDest) {
2576      Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2577                                         "oldload");
2578      Old = convertValue(DL, IRB, Old, IntTy);
2579      uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2580      Src = insertInteger(DL, IRB, Old, Src, Offset, "insert");
2581      Src = convertValue(DL, IRB, Src, NewAllocaTy);
2582    }
2583
2584    StoreInst *Store = cast<StoreInst>(
2585      IRB.CreateAlignedStore(Src, DstPtr, Align, II.isVolatile()));
2586    (void)Store;
2587    DEBUG(dbgs() << "          to: " << *Store << "\n");
2588    return !II.isVolatile();
2589  }
2590
2591  bool visitIntrinsicInst(IntrinsicInst &II) {
2592    assert(II.getIntrinsicID() == Intrinsic::lifetime_start ||
2593           II.getIntrinsicID() == Intrinsic::lifetime_end);
2594    DEBUG(dbgs() << "    original: " << II << "\n");
2595    assert(II.getArgOperand(1) == OldPtr);
2596
2597    // Compute the intersecting offset range.
2598    assert(BeginOffset < NewAllocaEndOffset);
2599    assert(EndOffset > NewAllocaBeginOffset);
2600    uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
2601    uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
2602
2603    // Record this instruction for deletion.
2604    Pass.DeadInsts.insert(&II);
2605
2606    ConstantInt *Size
2607      = ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()),
2608                         NewEndOffset - NewBeginOffset);
2609    Value *Ptr =
2610        getAdjustedAllocaPtr(IRB, NewBeginOffset, II.getArgOperand(1)->getType());
2611    Value *New;
2612    if (II.getIntrinsicID() == Intrinsic::lifetime_start)
2613      New = IRB.CreateLifetimeStart(Ptr, Size);
2614    else
2615      New = IRB.CreateLifetimeEnd(Ptr, Size);
2616
2617    (void)New;
2618    DEBUG(dbgs() << "          to: " << *New << "\n");
2619    return true;
2620  }
2621
2622  bool visitPHINode(PHINode &PN) {
2623    DEBUG(dbgs() << "    original: " << PN << "\n");
2624    assert(BeginOffset >= NewAllocaBeginOffset && "PHIs are unsplittable");
2625    assert(EndOffset <= NewAllocaEndOffset && "PHIs are unsplittable");
2626
2627    // We would like to compute a new pointer in only one place, but have it be
2628    // as local as possible to the PHI. To do that, we re-use the location of
2629    // the old pointer, which necessarily must be in the right position to
2630    // dominate the PHI.
2631    IRBuilderTy PtrBuilder(OldPtr);
2632    PtrBuilder.SetNamePrefix(Twine(NewAI.getName()) + "." + Twine(BeginOffset) +
2633                             ".");
2634
2635    Value *NewPtr =
2636        getAdjustedAllocaPtr(PtrBuilder, BeginOffset, OldPtr->getType());
2637    // Replace the operands which were using the old pointer.
2638    std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr);
2639
2640    DEBUG(dbgs() << "          to: " << PN << "\n");
2641    deleteIfTriviallyDead(OldPtr);
2642
2643    // Check whether we can speculate this PHI node, and if so remember that
2644    // fact and queue it up for another iteration after the speculation
2645    // occurs.
2646    if (isSafePHIToSpeculate(PN, &DL)) {
2647      Pass.SpeculatablePHIs.insert(&PN);
2648      IsUsedByRewrittenSpeculatableInstructions = true;
2649      return true;
2650    }
2651
2652    return false; // PHIs can't be promoted on their own.
2653  }
2654
2655  bool visitSelectInst(SelectInst &SI) {
2656    DEBUG(dbgs() << "    original: " << SI << "\n");
2657    assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) &&
2658           "Pointer isn't an operand!");
2659    assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable");
2660    assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable");
2661
2662    Value *NewPtr = getAdjustedAllocaPtr(IRB, BeginOffset, OldPtr->getType());
2663    // Replace the operands which were using the old pointer.
2664    if (SI.getOperand(1) == OldPtr)
2665      SI.setOperand(1, NewPtr);
2666    if (SI.getOperand(2) == OldPtr)
2667      SI.setOperand(2, NewPtr);
2668
2669    DEBUG(dbgs() << "          to: " << SI << "\n");
2670    deleteIfTriviallyDead(OldPtr);
2671
2672    // Check whether we can speculate this select instruction, and if so
2673    // remember that fact and queue it up for another iteration after the
2674    // speculation occurs.
2675    if (isSafeSelectToSpeculate(SI, &DL)) {
2676      Pass.SpeculatableSelects.insert(&SI);
2677      IsUsedByRewrittenSpeculatableInstructions = true;
2678      return true;
2679    }
2680
2681    return false; // Selects can't be promoted on their own.
2682  }
2683
2684};
2685}
2686
2687namespace {
2688/// \brief Visitor to rewrite aggregate loads and stores as scalar.
2689///
2690/// This pass aggressively rewrites all aggregate loads and stores on
2691/// a particular pointer (or any pointer derived from it which we can identify)
2692/// with scalar loads and stores.
2693class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> {
2694  // Befriend the base class so it can delegate to private visit methods.
2695  friend class llvm::InstVisitor<AggLoadStoreRewriter, bool>;
2696
2697  const DataLayout &DL;
2698
2699  /// Queue of pointer uses to analyze and potentially rewrite.
2700  SmallVector<Use *, 8> Queue;
2701
2702  /// Set to prevent us from cycling with phi nodes and loops.
2703  SmallPtrSet<User *, 8> Visited;
2704
2705  /// The current pointer use being rewritten. This is used to dig up the used
2706  /// value (as opposed to the user).
2707  Use *U;
2708
2709public:
2710  AggLoadStoreRewriter(const DataLayout &DL) : DL(DL) {}
2711
2712  /// Rewrite loads and stores through a pointer and all pointers derived from
2713  /// it.
2714  bool rewrite(Instruction &I) {
2715    DEBUG(dbgs() << "  Rewriting FCA loads and stores...\n");
2716    enqueueUsers(I);
2717    bool Changed = false;
2718    while (!Queue.empty()) {
2719      U = Queue.pop_back_val();
2720      Changed |= visit(cast<Instruction>(U->getUser()));
2721    }
2722    return Changed;
2723  }
2724
2725private:
2726  /// Enqueue all the users of the given instruction for further processing.
2727  /// This uses a set to de-duplicate users.
2728  void enqueueUsers(Instruction &I) {
2729    for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE;
2730         ++UI)
2731      if (Visited.insert(*UI))
2732        Queue.push_back(&UI.getUse());
2733  }
2734
2735  // Conservative default is to not rewrite anything.
2736  bool visitInstruction(Instruction &I) { return false; }
2737
2738  /// \brief Generic recursive split emission class.
2739  template <typename Derived>
2740  class OpSplitter {
2741  protected:
2742    /// The builder used to form new instructions.
2743    IRBuilderTy IRB;
2744    /// The indices which to be used with insert- or extractvalue to select the
2745    /// appropriate value within the aggregate.
2746    SmallVector<unsigned, 4> Indices;
2747    /// The indices to a GEP instruction which will move Ptr to the correct slot
2748    /// within the aggregate.
2749    SmallVector<Value *, 4> GEPIndices;
2750    /// The base pointer of the original op, used as a base for GEPing the
2751    /// split operations.
2752    Value *Ptr;
2753
2754    /// Initialize the splitter with an insertion point, Ptr and start with a
2755    /// single zero GEP index.
2756    OpSplitter(Instruction *InsertionPoint, Value *Ptr)
2757      : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr) {}
2758
2759  public:
2760    /// \brief Generic recursive split emission routine.
2761    ///
2762    /// This method recursively splits an aggregate op (load or store) into
2763    /// scalar or vector ops. It splits recursively until it hits a single value
2764    /// and emits that single value operation via the template argument.
2765    ///
2766    /// The logic of this routine relies on GEPs and insertvalue and
2767    /// extractvalue all operating with the same fundamental index list, merely
2768    /// formatted differently (GEPs need actual values).
2769    ///
2770    /// \param Ty  The type being split recursively into smaller ops.
2771    /// \param Agg The aggregate value being built up or stored, depending on
2772    /// whether this is splitting a load or a store respectively.
2773    void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) {
2774      if (Ty->isSingleValueType())
2775        return static_cast<Derived *>(this)->emitFunc(Ty, Agg, Name);
2776
2777      if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
2778        unsigned OldSize = Indices.size();
2779        (void)OldSize;
2780        for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size;
2781             ++Idx) {
2782          assert(Indices.size() == OldSize && "Did not return to the old size");
2783          Indices.push_back(Idx);
2784          GEPIndices.push_back(IRB.getInt32(Idx));
2785          emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx));
2786          GEPIndices.pop_back();
2787          Indices.pop_back();
2788        }
2789        return;
2790      }
2791
2792      if (StructType *STy = dyn_cast<StructType>(Ty)) {
2793        unsigned OldSize = Indices.size();
2794        (void)OldSize;
2795        for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size;
2796             ++Idx) {
2797          assert(Indices.size() == OldSize && "Did not return to the old size");
2798          Indices.push_back(Idx);
2799          GEPIndices.push_back(IRB.getInt32(Idx));
2800          emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx));
2801          GEPIndices.pop_back();
2802          Indices.pop_back();
2803        }
2804        return;
2805      }
2806
2807      llvm_unreachable("Only arrays and structs are aggregate loadable types");
2808    }
2809  };
2810
2811  struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> {
2812    LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr)
2813      : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr) {}
2814
2815    /// Emit a leaf load of a single value. This is called at the leaves of the
2816    /// recursive emission to actually load values.
2817    void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
2818      assert(Ty->isSingleValueType());
2819      // Load the single value and insert it using the indices.
2820      Value *GEP = IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep");
2821      Value *Load = IRB.CreateLoad(GEP, Name + ".load");
2822      Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert");
2823      DEBUG(dbgs() << "          to: " << *Load << "\n");
2824    }
2825  };
2826
2827  bool visitLoadInst(LoadInst &LI) {
2828    assert(LI.getPointerOperand() == *U);
2829    if (!LI.isSimple() || LI.getType()->isSingleValueType())
2830      return false;
2831
2832    // We have an aggregate being loaded, split it apart.
2833    DEBUG(dbgs() << "    original: " << LI << "\n");
2834    LoadOpSplitter Splitter(&LI, *U);
2835    Value *V = UndefValue::get(LI.getType());
2836    Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca");
2837    LI.replaceAllUsesWith(V);
2838    LI.eraseFromParent();
2839    return true;
2840  }
2841
2842  struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> {
2843    StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr)
2844      : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr) {}
2845
2846    /// Emit a leaf store of a single value. This is called at the leaves of the
2847    /// recursive emission to actually produce stores.
2848    void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
2849      assert(Ty->isSingleValueType());
2850      // Extract the single value and store it using the indices.
2851      Value *Store = IRB.CreateStore(
2852        IRB.CreateExtractValue(Agg, Indices, Name + ".extract"),
2853        IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep"));
2854      (void)Store;
2855      DEBUG(dbgs() << "          to: " << *Store << "\n");
2856    }
2857  };
2858
2859  bool visitStoreInst(StoreInst &SI) {
2860    if (!SI.isSimple() || SI.getPointerOperand() != *U)
2861      return false;
2862    Value *V = SI.getValueOperand();
2863    if (V->getType()->isSingleValueType())
2864      return false;
2865
2866    // We have an aggregate being stored, split it apart.
2867    DEBUG(dbgs() << "    original: " << SI << "\n");
2868    StoreOpSplitter Splitter(&SI, *U);
2869    Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca");
2870    SI.eraseFromParent();
2871    return true;
2872  }
2873
2874  bool visitBitCastInst(BitCastInst &BC) {
2875    enqueueUsers(BC);
2876    return false;
2877  }
2878
2879  bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
2880    enqueueUsers(GEPI);
2881    return false;
2882  }
2883
2884  bool visitPHINode(PHINode &PN) {
2885    enqueueUsers(PN);
2886    return false;
2887  }
2888
2889  bool visitSelectInst(SelectInst &SI) {
2890    enqueueUsers(SI);
2891    return false;
2892  }
2893};
2894}
2895
2896/// \brief Strip aggregate type wrapping.
2897///
2898/// This removes no-op aggregate types wrapping an underlying type. It will
2899/// strip as many layers of types as it can without changing either the type
2900/// size or the allocated size.
2901static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) {
2902  if (Ty->isSingleValueType())
2903    return Ty;
2904
2905  uint64_t AllocSize = DL.getTypeAllocSize(Ty);
2906  uint64_t TypeSize = DL.getTypeSizeInBits(Ty);
2907
2908  Type *InnerTy;
2909  if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
2910    InnerTy = ArrTy->getElementType();
2911  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
2912    const StructLayout *SL = DL.getStructLayout(STy);
2913    unsigned Index = SL->getElementContainingOffset(0);
2914    InnerTy = STy->getElementType(Index);
2915  } else {
2916    return Ty;
2917  }
2918
2919  if (AllocSize > DL.getTypeAllocSize(InnerTy) ||
2920      TypeSize > DL.getTypeSizeInBits(InnerTy))
2921    return Ty;
2922
2923  return stripAggregateTypeWrapping(DL, InnerTy);
2924}
2925
2926/// \brief Try to find a partition of the aggregate type passed in for a given
2927/// offset and size.
2928///
2929/// This recurses through the aggregate type and tries to compute a subtype
2930/// based on the offset and size. When the offset and size span a sub-section
2931/// of an array, it will even compute a new array type for that sub-section,
2932/// and the same for structs.
2933///
2934/// Note that this routine is very strict and tries to find a partition of the
2935/// type which produces the *exact* right offset and size. It is not forgiving
2936/// when the size or offset cause either end of type-based partition to be off.
2937/// Also, this is a best-effort routine. It is reasonable to give up and not
2938/// return a type if necessary.
2939static Type *getTypePartition(const DataLayout &DL, Type *Ty,
2940                              uint64_t Offset, uint64_t Size) {
2941  if (Offset == 0 && DL.getTypeAllocSize(Ty) == Size)
2942    return stripAggregateTypeWrapping(DL, Ty);
2943  if (Offset > DL.getTypeAllocSize(Ty) ||
2944      (DL.getTypeAllocSize(Ty) - Offset) < Size)
2945    return 0;
2946
2947  if (SequentialType *SeqTy = dyn_cast<SequentialType>(Ty)) {
2948    // We can't partition pointers...
2949    if (SeqTy->isPointerTy())
2950      return 0;
2951
2952    Type *ElementTy = SeqTy->getElementType();
2953    uint64_t ElementSize = DL.getTypeAllocSize(ElementTy);
2954    uint64_t NumSkippedElements = Offset / ElementSize;
2955    if (ArrayType *ArrTy = dyn_cast<ArrayType>(SeqTy)) {
2956      if (NumSkippedElements >= ArrTy->getNumElements())
2957        return 0;
2958    } else if (VectorType *VecTy = dyn_cast<VectorType>(SeqTy)) {
2959      if (NumSkippedElements >= VecTy->getNumElements())
2960        return 0;
2961    }
2962    Offset -= NumSkippedElements * ElementSize;
2963
2964    // First check if we need to recurse.
2965    if (Offset > 0 || Size < ElementSize) {
2966      // Bail if the partition ends in a different array element.
2967      if ((Offset + Size) > ElementSize)
2968        return 0;
2969      // Recurse through the element type trying to peel off offset bytes.
2970      return getTypePartition(DL, ElementTy, Offset, Size);
2971    }
2972    assert(Offset == 0);
2973
2974    if (Size == ElementSize)
2975      return stripAggregateTypeWrapping(DL, ElementTy);
2976    assert(Size > ElementSize);
2977    uint64_t NumElements = Size / ElementSize;
2978    if (NumElements * ElementSize != Size)
2979      return 0;
2980    return ArrayType::get(ElementTy, NumElements);
2981  }
2982
2983  StructType *STy = dyn_cast<StructType>(Ty);
2984  if (!STy)
2985    return 0;
2986
2987  const StructLayout *SL = DL.getStructLayout(STy);
2988  if (Offset >= SL->getSizeInBytes())
2989    return 0;
2990  uint64_t EndOffset = Offset + Size;
2991  if (EndOffset > SL->getSizeInBytes())
2992    return 0;
2993
2994  unsigned Index = SL->getElementContainingOffset(Offset);
2995  Offset -= SL->getElementOffset(Index);
2996
2997  Type *ElementTy = STy->getElementType(Index);
2998  uint64_t ElementSize = DL.getTypeAllocSize(ElementTy);
2999  if (Offset >= ElementSize)
3000    return 0; // The offset points into alignment padding.
3001
3002  // See if any partition must be contained by the element.
3003  if (Offset > 0 || Size < ElementSize) {
3004    if ((Offset + Size) > ElementSize)
3005      return 0;
3006    return getTypePartition(DL, ElementTy, Offset, Size);
3007  }
3008  assert(Offset == 0);
3009
3010  if (Size == ElementSize)
3011    return stripAggregateTypeWrapping(DL, ElementTy);
3012
3013  StructType::element_iterator EI = STy->element_begin() + Index,
3014                               EE = STy->element_end();
3015  if (EndOffset < SL->getSizeInBytes()) {
3016    unsigned EndIndex = SL->getElementContainingOffset(EndOffset);
3017    if (Index == EndIndex)
3018      return 0; // Within a single element and its padding.
3019
3020    // Don't try to form "natural" types if the elements don't line up with the
3021    // expected size.
3022    // FIXME: We could potentially recurse down through the last element in the
3023    // sub-struct to find a natural end point.
3024    if (SL->getElementOffset(EndIndex) != EndOffset)
3025      return 0;
3026
3027    assert(Index < EndIndex);
3028    EE = STy->element_begin() + EndIndex;
3029  }
3030
3031  // Try to build up a sub-structure.
3032  StructType *SubTy = StructType::get(STy->getContext(), makeArrayRef(EI, EE),
3033                                      STy->isPacked());
3034  const StructLayout *SubSL = DL.getStructLayout(SubTy);
3035  if (Size != SubSL->getSizeInBytes())
3036    return 0; // The sub-struct doesn't have quite the size needed.
3037
3038  return SubTy;
3039}
3040
3041/// \brief Rewrite an alloca partition's users.
3042///
3043/// This routine drives both of the rewriting goals of the SROA pass. It tries
3044/// to rewrite uses of an alloca partition to be conducive for SSA value
3045/// promotion. If the partition needs a new, more refined alloca, this will
3046/// build that new alloca, preserving as much type information as possible, and
3047/// rewrite the uses of the old alloca to point at the new one and have the
3048/// appropriate new offsets. It also evaluates how successful the rewrite was
3049/// at enabling promotion and if it was successful queues the alloca to be
3050/// promoted.
3051bool SROA::rewritePartition(AllocaInst &AI, AllocaSlices &S,
3052                            AllocaSlices::iterator B, AllocaSlices::iterator E,
3053                            int64_t BeginOffset, int64_t EndOffset,
3054                            ArrayRef<AllocaSlices::iterator> SplitUses) {
3055  assert(BeginOffset < EndOffset);
3056  uint64_t SliceSize = EndOffset - BeginOffset;
3057
3058  // Try to compute a friendly type for this partition of the alloca. This
3059  // won't always succeed, in which case we fall back to a legal integer type
3060  // or an i8 array of an appropriate size.
3061  Type *SliceTy = 0;
3062  if (Type *CommonUseTy = findCommonType(B, E, EndOffset))
3063    if (DL->getTypeAllocSize(CommonUseTy) >= SliceSize)
3064      SliceTy = CommonUseTy;
3065  if (!SliceTy)
3066    if (Type *TypePartitionTy = getTypePartition(*DL, AI.getAllocatedType(),
3067                                                 BeginOffset, SliceSize))
3068      SliceTy = TypePartitionTy;
3069  if ((!SliceTy || (SliceTy->isArrayTy() &&
3070                    SliceTy->getArrayElementType()->isIntegerTy())) &&
3071      DL->isLegalInteger(SliceSize * 8))
3072    SliceTy = Type::getIntNTy(*C, SliceSize * 8);
3073  if (!SliceTy)
3074    SliceTy = ArrayType::get(Type::getInt8Ty(*C), SliceSize);
3075  assert(DL->getTypeAllocSize(SliceTy) >= SliceSize);
3076
3077  bool IsVectorPromotable = isVectorPromotionViable(
3078      *DL, SliceTy, S, BeginOffset, EndOffset, B, E, SplitUses);
3079
3080  bool IsIntegerPromotable =
3081      !IsVectorPromotable &&
3082      isIntegerWideningViable(*DL, SliceTy, BeginOffset, S, B, E, SplitUses);
3083
3084  // Check for the case where we're going to rewrite to a new alloca of the
3085  // exact same type as the original, and with the same access offsets. In that
3086  // case, re-use the existing alloca, but still run through the rewriter to
3087  // perform phi and select speculation.
3088  AllocaInst *NewAI;
3089  if (SliceTy == AI.getAllocatedType()) {
3090    assert(BeginOffset == 0 &&
3091           "Non-zero begin offset but same alloca type");
3092    NewAI = &AI;
3093    // FIXME: We should be able to bail at this point with "nothing changed".
3094    // FIXME: We might want to defer PHI speculation until after here.
3095  } else {
3096    unsigned Alignment = AI.getAlignment();
3097    if (!Alignment) {
3098      // The minimum alignment which users can rely on when the explicit
3099      // alignment is omitted or zero is that required by the ABI for this
3100      // type.
3101      Alignment = DL->getABITypeAlignment(AI.getAllocatedType());
3102    }
3103    Alignment = MinAlign(Alignment, BeginOffset);
3104    // If we will get at least this much alignment from the type alone, leave
3105    // the alloca's alignment unconstrained.
3106    if (Alignment <= DL->getABITypeAlignment(SliceTy))
3107      Alignment = 0;
3108    NewAI = new AllocaInst(SliceTy, 0, Alignment,
3109                           AI.getName() + ".sroa." + Twine(B - S.begin()), &AI);
3110    ++NumNewAllocas;
3111  }
3112
3113  DEBUG(dbgs() << "Rewriting alloca partition "
3114               << "[" << BeginOffset << "," << EndOffset << ") to: " << *NewAI
3115               << "\n");
3116
3117  // Track the high watermark on several worklists that are only relevant for
3118  // promoted allocas. We will reset it to this point if the alloca is not in
3119  // fact scheduled for promotion.
3120  unsigned PPWOldSize = PostPromotionWorklist.size();
3121  unsigned SPOldSize = SpeculatablePHIs.size();
3122  unsigned SSOldSize = SpeculatableSelects.size();
3123  unsigned NumUses = 0;
3124
3125  AllocaSliceRewriter Rewriter(*DL, S, *this, AI, *NewAI, BeginOffset,
3126                               EndOffset, IsVectorPromotable,
3127                               IsIntegerPromotable);
3128  bool Promotable = true;
3129  for (ArrayRef<AllocaSlices::iterator>::const_iterator SUI = SplitUses.begin(),
3130                                                        SUE = SplitUses.end();
3131       SUI != SUE; ++SUI) {
3132    DEBUG(dbgs() << "  rewriting split ");
3133    DEBUG(S.printSlice(dbgs(), *SUI, ""));
3134    Promotable &= Rewriter.visit(*SUI);
3135    ++NumUses;
3136  }
3137  for (AllocaSlices::iterator I = B; I != E; ++I) {
3138    DEBUG(dbgs() << "  rewriting ");
3139    DEBUG(S.printSlice(dbgs(), I, ""));
3140    Promotable &= Rewriter.visit(I);
3141    ++NumUses;
3142  }
3143
3144  NumAllocaPartitionUses += NumUses;
3145  MaxUsesPerAllocaPartition =
3146      std::max<unsigned>(NumUses, MaxUsesPerAllocaPartition);
3147
3148  if (Promotable && !Rewriter.isUsedByRewrittenSpeculatableInstructions()) {
3149    DEBUG(dbgs() << "  and queuing for promotion\n");
3150    PromotableAllocas.push_back(NewAI);
3151  } else if (NewAI != &AI ||
3152             (Promotable &&
3153              Rewriter.isUsedByRewrittenSpeculatableInstructions())) {
3154    // If we can't promote the alloca, iterate on it to check for new
3155    // refinements exposed by splitting the current alloca. Don't iterate on an
3156    // alloca which didn't actually change and didn't get promoted.
3157    //
3158    // Alternatively, if we could promote the alloca but have speculatable
3159    // instructions then we will speculate them after finishing our processing
3160    // of the original alloca. Mark the new one for re-visiting in the next
3161    // iteration so the speculated operations can be rewritten.
3162    //
3163    // FIXME: We should actually track whether the rewriter changed anything.
3164    Worklist.insert(NewAI);
3165  }
3166
3167  // Drop any post-promotion work items if promotion didn't happen.
3168  if (!Promotable) {
3169    while (PostPromotionWorklist.size() > PPWOldSize)
3170      PostPromotionWorklist.pop_back();
3171    while (SpeculatablePHIs.size() > SPOldSize)
3172      SpeculatablePHIs.pop_back();
3173    while (SpeculatableSelects.size() > SSOldSize)
3174      SpeculatableSelects.pop_back();
3175  }
3176
3177  return true;
3178}
3179
3180namespace {
3181struct IsSliceEndLessOrEqualTo {
3182  uint64_t UpperBound;
3183
3184  IsSliceEndLessOrEqualTo(uint64_t UpperBound) : UpperBound(UpperBound) {}
3185
3186  bool operator()(const AllocaSlices::iterator &I) {
3187    return I->endOffset() <= UpperBound;
3188  }
3189};
3190}
3191
3192static void
3193removeFinishedSplitUses(SmallVectorImpl<AllocaSlices::iterator> &SplitUses,
3194                        uint64_t &MaxSplitUseEndOffset, uint64_t Offset) {
3195  if (Offset >= MaxSplitUseEndOffset) {
3196    SplitUses.clear();
3197    MaxSplitUseEndOffset = 0;
3198    return;
3199  }
3200
3201  size_t SplitUsesOldSize = SplitUses.size();
3202  SplitUses.erase(std::remove_if(SplitUses.begin(), SplitUses.end(),
3203                                 IsSliceEndLessOrEqualTo(Offset)),
3204                  SplitUses.end());
3205  if (SplitUsesOldSize == SplitUses.size())
3206    return;
3207
3208  // Recompute the max. While this is linear, so is remove_if.
3209  MaxSplitUseEndOffset = 0;
3210  for (SmallVectorImpl<AllocaSlices::iterator>::iterator
3211           SUI = SplitUses.begin(),
3212           SUE = SplitUses.end();
3213       SUI != SUE; ++SUI)
3214    MaxSplitUseEndOffset = std::max((*SUI)->endOffset(), MaxSplitUseEndOffset);
3215}
3216
3217/// \brief Walks the slices of an alloca and form partitions based on them,
3218/// rewriting each of their uses.
3219bool SROA::splitAlloca(AllocaInst &AI, AllocaSlices &S) {
3220  if (S.begin() == S.end())
3221    return false;
3222
3223  unsigned NumPartitions = 0;
3224  bool Changed = false;
3225  SmallVector<AllocaSlices::iterator, 4> SplitUses;
3226  uint64_t MaxSplitUseEndOffset = 0;
3227
3228  uint64_t BeginOffset = S.begin()->beginOffset();
3229
3230  for (AllocaSlices::iterator SI = S.begin(), SJ = llvm::next(SI), SE = S.end();
3231       SI != SE; SI = SJ) {
3232    uint64_t MaxEndOffset = SI->endOffset();
3233
3234    if (!SI->isSplittable()) {
3235      // When we're forming an unsplittable region, it must always start at the
3236      // first slice and will extend through its end.
3237      assert(BeginOffset == SI->beginOffset());
3238
3239      // Form a partition including all of the overlapping slices with this
3240      // unsplittable slice.
3241      while (SJ != SE && SJ->beginOffset() < MaxEndOffset) {
3242        if (!SJ->isSplittable())
3243          MaxEndOffset = std::max(MaxEndOffset, SJ->endOffset());
3244        ++SJ;
3245      }
3246    } else {
3247      assert(SI->isSplittable()); // Established above.
3248
3249      // Collect all of the overlapping splittable slices.
3250      while (SJ != SE && SJ->beginOffset() < MaxEndOffset &&
3251             SJ->isSplittable()) {
3252        MaxEndOffset = std::max(MaxEndOffset, SJ->endOffset());
3253        ++SJ;
3254      }
3255
3256      // Back up MaxEndOffset and SJ if we ended the span early when
3257      // encountering an unsplittable slice.
3258      if (SJ != SE && SJ->beginOffset() < MaxEndOffset) {
3259        assert(!SJ->isSplittable());
3260        MaxEndOffset = SJ->beginOffset();
3261      }
3262    }
3263
3264    // Check if we have managed to move the end offset forward yet. If so,
3265    // we'll have to rewrite uses and erase old split uses.
3266    if (BeginOffset < MaxEndOffset) {
3267      // Rewrite a sequence of overlapping slices.
3268      Changed |=
3269          rewritePartition(AI, S, SI, SJ, BeginOffset, MaxEndOffset, SplitUses);
3270      ++NumPartitions;
3271
3272      removeFinishedSplitUses(SplitUses, MaxSplitUseEndOffset, MaxEndOffset);
3273    }
3274
3275    // Accumulate all the splittable slices from the [SI,SJ) region which
3276    // overlap going forward.
3277    for (AllocaSlices::iterator SK = SI; SK != SJ; ++SK)
3278      if (SK->isSplittable() && SK->endOffset() > MaxEndOffset) {
3279        SplitUses.push_back(SK);
3280        MaxSplitUseEndOffset = std::max(SK->endOffset(), MaxSplitUseEndOffset);
3281      }
3282
3283    // If we're already at the end and we have no split uses, we're done.
3284    if (SJ == SE && SplitUses.empty())
3285      break;
3286
3287    // If we have no split uses or no gap in offsets, we're ready to move to
3288    // the next slice.
3289    if (SplitUses.empty() || (SJ != SE && MaxEndOffset == SJ->beginOffset())) {
3290      BeginOffset = SJ->beginOffset();
3291      continue;
3292    }
3293
3294    // Even if we have split slices, if the next slice is splittable and the
3295    // split slices reach it, we can simply set up the beginning offset of the
3296    // next iteration to bridge between them.
3297    if (SJ != SE && SJ->isSplittable() &&
3298        MaxSplitUseEndOffset > SJ->beginOffset()) {
3299      BeginOffset = MaxEndOffset;
3300      continue;
3301    }
3302
3303    // Otherwise, we have a tail of split slices. Rewrite them with an empty
3304    // range of slices.
3305    uint64_t PostSplitEndOffset =
3306        SJ == SE ? MaxSplitUseEndOffset : SJ->beginOffset();
3307
3308    Changed |= rewritePartition(AI, S, SJ, SJ, MaxEndOffset, PostSplitEndOffset,
3309                                SplitUses);
3310    ++NumPartitions;
3311
3312    if (SJ == SE)
3313      break; // Skip the rest, we don't need to do any cleanup.
3314
3315    removeFinishedSplitUses(SplitUses, MaxSplitUseEndOffset,
3316                            PostSplitEndOffset);
3317
3318    // Now just reset the begin offset for the next iteration.
3319    BeginOffset = SJ->beginOffset();
3320  }
3321
3322  NumAllocaPartitions += NumPartitions;
3323  MaxPartitionsPerAlloca =
3324      std::max<unsigned>(NumPartitions, MaxPartitionsPerAlloca);
3325
3326  return Changed;
3327}
3328
3329/// \brief Analyze an alloca for SROA.
3330///
3331/// This analyzes the alloca to ensure we can reason about it, builds
3332/// the slices of the alloca, and then hands it off to be split and
3333/// rewritten as needed.
3334bool SROA::runOnAlloca(AllocaInst &AI) {
3335  DEBUG(dbgs() << "SROA alloca: " << AI << "\n");
3336  ++NumAllocasAnalyzed;
3337
3338  // Special case dead allocas, as they're trivial.
3339  if (AI.use_empty()) {
3340    AI.eraseFromParent();
3341    return true;
3342  }
3343
3344  // Skip alloca forms that this analysis can't handle.
3345  if (AI.isArrayAllocation() || !AI.getAllocatedType()->isSized() ||
3346      DL->getTypeAllocSize(AI.getAllocatedType()) == 0)
3347    return false;
3348
3349  bool Changed = false;
3350
3351  // First, split any FCA loads and stores touching this alloca to promote
3352  // better splitting and promotion opportunities.
3353  AggLoadStoreRewriter AggRewriter(*DL);
3354  Changed |= AggRewriter.rewrite(AI);
3355
3356  // Build the slices using a recursive instruction-visiting builder.
3357  AllocaSlices S(*DL, AI);
3358  DEBUG(S.print(dbgs()));
3359  if (S.isEscaped())
3360    return Changed;
3361
3362  // Delete all the dead users of this alloca before splitting and rewriting it.
3363  for (AllocaSlices::dead_user_iterator DI = S.dead_user_begin(),
3364                                        DE = S.dead_user_end();
3365       DI != DE; ++DI) {
3366    Changed = true;
3367    (*DI)->replaceAllUsesWith(UndefValue::get((*DI)->getType()));
3368    DeadInsts.insert(*DI);
3369  }
3370  for (AllocaSlices::dead_op_iterator DO = S.dead_op_begin(),
3371                                      DE = S.dead_op_end();
3372       DO != DE; ++DO) {
3373    Value *OldV = **DO;
3374    // Clobber the use with an undef value.
3375    **DO = UndefValue::get(OldV->getType());
3376    if (Instruction *OldI = dyn_cast<Instruction>(OldV))
3377      if (isInstructionTriviallyDead(OldI)) {
3378        Changed = true;
3379        DeadInsts.insert(OldI);
3380      }
3381  }
3382
3383  // No slices to split. Leave the dead alloca for a later pass to clean up.
3384  if (S.begin() == S.end())
3385    return Changed;
3386
3387  Changed |= splitAlloca(AI, S);
3388
3389  DEBUG(dbgs() << "  Speculating PHIs\n");
3390  while (!SpeculatablePHIs.empty())
3391    speculatePHINodeLoads(*SpeculatablePHIs.pop_back_val());
3392
3393  DEBUG(dbgs() << "  Speculating Selects\n");
3394  while (!SpeculatableSelects.empty())
3395    speculateSelectInstLoads(*SpeculatableSelects.pop_back_val());
3396
3397  return Changed;
3398}
3399
3400/// \brief Delete the dead instructions accumulated in this run.
3401///
3402/// Recursively deletes the dead instructions we've accumulated. This is done
3403/// at the very end to maximize locality of the recursive delete and to
3404/// minimize the problems of invalidated instruction pointers as such pointers
3405/// are used heavily in the intermediate stages of the algorithm.
3406///
3407/// We also record the alloca instructions deleted here so that they aren't
3408/// subsequently handed to mem2reg to promote.
3409void SROA::deleteDeadInstructions(SmallPtrSet<AllocaInst*, 4> &DeletedAllocas) {
3410  while (!DeadInsts.empty()) {
3411    Instruction *I = DeadInsts.pop_back_val();
3412    DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n");
3413
3414    I->replaceAllUsesWith(UndefValue::get(I->getType()));
3415
3416    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
3417      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
3418        // Zero out the operand and see if it becomes trivially dead.
3419        *OI = 0;
3420        if (isInstructionTriviallyDead(U))
3421          DeadInsts.insert(U);
3422      }
3423
3424    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
3425      DeletedAllocas.insert(AI);
3426
3427    ++NumDeleted;
3428    I->eraseFromParent();
3429  }
3430}
3431
3432static void enqueueUsersInWorklist(Instruction &I,
3433                                   SmallVectorImpl<Instruction *> &Worklist,
3434                                   SmallPtrSet<Instruction *, 8> &Visited) {
3435  for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE;
3436       ++UI)
3437    if (Visited.insert(cast<Instruction>(*UI)))
3438      Worklist.push_back(cast<Instruction>(*UI));
3439}
3440
3441/// \brief Promote the allocas, using the best available technique.
3442///
3443/// This attempts to promote whatever allocas have been identified as viable in
3444/// the PromotableAllocas list. If that list is empty, there is nothing to do.
3445/// If there is a domtree available, we attempt to promote using the full power
3446/// of mem2reg. Otherwise, we build and use the AllocaPromoter above which is
3447/// based on the SSAUpdater utilities. This function returns whether any
3448/// promotion occurred.
3449bool SROA::promoteAllocas(Function &F) {
3450  if (PromotableAllocas.empty())
3451    return false;
3452
3453  NumPromoted += PromotableAllocas.size();
3454
3455  if (DT && !ForceSSAUpdater) {
3456    DEBUG(dbgs() << "Promoting allocas with mem2reg...\n");
3457    PromoteMemToReg(PromotableAllocas, *DT);
3458    PromotableAllocas.clear();
3459    return true;
3460  }
3461
3462  DEBUG(dbgs() << "Promoting allocas with SSAUpdater...\n");
3463  SSAUpdater SSA;
3464  DIBuilder DIB(*F.getParent());
3465  SmallVector<Instruction *, 64> Insts;
3466
3467  // We need a worklist to walk the uses of each alloca.
3468  SmallVector<Instruction *, 8> Worklist;
3469  SmallPtrSet<Instruction *, 8> Visited;
3470  SmallVector<Instruction *, 32> DeadInsts;
3471
3472  for (unsigned Idx = 0, Size = PromotableAllocas.size(); Idx != Size; ++Idx) {
3473    AllocaInst *AI = PromotableAllocas[Idx];
3474    Insts.clear();
3475    Worklist.clear();
3476    Visited.clear();
3477
3478    enqueueUsersInWorklist(*AI, Worklist, Visited);
3479
3480    while (!Worklist.empty()) {
3481      Instruction *I = Worklist.pop_back_val();
3482
3483      // FIXME: Currently the SSAUpdater infrastructure doesn't reason about
3484      // lifetime intrinsics and so we strip them (and the bitcasts+GEPs
3485      // leading to them) here. Eventually it should use them to optimize the
3486      // scalar values produced.
3487      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
3488        assert(II->getIntrinsicID() == Intrinsic::lifetime_start ||
3489               II->getIntrinsicID() == Intrinsic::lifetime_end);
3490        II->eraseFromParent();
3491        continue;
3492      }
3493
3494      // Push the loads and stores we find onto the list. SROA will already
3495      // have validated that all loads and stores are viable candidates for
3496      // promotion.
3497      if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
3498        assert(LI->getType() == AI->getAllocatedType());
3499        Insts.push_back(LI);
3500        continue;
3501      }
3502      if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
3503        assert(SI->getValueOperand()->getType() == AI->getAllocatedType());
3504        Insts.push_back(SI);
3505        continue;
3506      }
3507
3508      // For everything else, we know that only no-op bitcasts and GEPs will
3509      // make it this far, just recurse through them and recall them for later
3510      // removal.
3511      DeadInsts.push_back(I);
3512      enqueueUsersInWorklist(*I, Worklist, Visited);
3513    }
3514    AllocaPromoter(Insts, SSA, *AI, DIB).run(Insts);
3515    while (!DeadInsts.empty())
3516      DeadInsts.pop_back_val()->eraseFromParent();
3517    AI->eraseFromParent();
3518  }
3519
3520  PromotableAllocas.clear();
3521  return true;
3522}
3523
3524namespace {
3525  /// \brief A predicate to test whether an alloca belongs to a set.
3526  class IsAllocaInSet {
3527    typedef SmallPtrSet<AllocaInst *, 4> SetType;
3528    const SetType &Set;
3529
3530  public:
3531    typedef AllocaInst *argument_type;
3532
3533    IsAllocaInSet(const SetType &Set) : Set(Set) {}
3534    bool operator()(AllocaInst *AI) const { return Set.count(AI); }
3535  };
3536}
3537
3538bool SROA::runOnFunction(Function &F) {
3539  DEBUG(dbgs() << "SROA function: " << F.getName() << "\n");
3540  C = &F.getContext();
3541  DL = getAnalysisIfAvailable<DataLayout>();
3542  if (!DL) {
3543    DEBUG(dbgs() << "  Skipping SROA -- no target data!\n");
3544    return false;
3545  }
3546  DT = getAnalysisIfAvailable<DominatorTree>();
3547
3548  BasicBlock &EntryBB = F.getEntryBlock();
3549  for (BasicBlock::iterator I = EntryBB.begin(), E = llvm::prior(EntryBB.end());
3550       I != E; ++I)
3551    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
3552      Worklist.insert(AI);
3553
3554  bool Changed = false;
3555  // A set of deleted alloca instruction pointers which should be removed from
3556  // the list of promotable allocas.
3557  SmallPtrSet<AllocaInst *, 4> DeletedAllocas;
3558
3559  do {
3560    while (!Worklist.empty()) {
3561      Changed |= runOnAlloca(*Worklist.pop_back_val());
3562      deleteDeadInstructions(DeletedAllocas);
3563
3564      // Remove the deleted allocas from various lists so that we don't try to
3565      // continue processing them.
3566      if (!DeletedAllocas.empty()) {
3567        Worklist.remove_if(IsAllocaInSet(DeletedAllocas));
3568        PostPromotionWorklist.remove_if(IsAllocaInSet(DeletedAllocas));
3569        PromotableAllocas.erase(std::remove_if(PromotableAllocas.begin(),
3570                                               PromotableAllocas.end(),
3571                                               IsAllocaInSet(DeletedAllocas)),
3572                                PromotableAllocas.end());
3573        DeletedAllocas.clear();
3574      }
3575    }
3576
3577    Changed |= promoteAllocas(F);
3578
3579    Worklist = PostPromotionWorklist;
3580    PostPromotionWorklist.clear();
3581  } while (!Worklist.empty());
3582
3583  return Changed;
3584}
3585
3586void SROA::getAnalysisUsage(AnalysisUsage &AU) const {
3587  if (RequiresDomTree)
3588    AU.addRequired<DominatorTree>();
3589  AU.setPreservesCFG();
3590}
3591