LoopStrengthReduce.cpp revision 226890
1//===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into forms suitable for efficient execution
12// on the target.
13//
14// This pass performs a strength reduction on array references inside loops that
15// have as one or more of their components the loop induction variable, it
16// rewrites expressions to take advantage of scaled-index addressing modes
17// available on the target, and it performs a variety of other optimizations
18// related to loop induction variables.
19//
20// Terminology note: this code has a lot of handling for "post-increment" or
21// "post-inc" users. This is not talking about post-increment addressing modes;
22// it is instead talking about code like this:
23//
24//   %i = phi [ 0, %entry ], [ %i.next, %latch ]
25//   ...
26//   %i.next = add %i, 1
27//   %c = icmp eq %i.next, %n
28//
29// The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
30// it's useful to think about these as the same register, with some uses using
31// the value of the register before the add and some using // it after. In this
32// example, the icmp is a post-increment user, since it uses %i.next, which is
33// the value of the induction variable after the increment. The other common
34// case of post-increment users is users outside the loop.
35//
36// TODO: More sophistication in the way Formulae are generated and filtered.
37//
38// TODO: Handle multiple loops at a time.
39//
40// TODO: Should TargetLowering::AddrMode::BaseGV be changed to a ConstantExpr
41//       instead of a GlobalValue?
42//
43// TODO: When truncation is free, truncate ICmp users' operands to make it a
44//       smaller encoding (on x86 at least).
45//
46// TODO: When a negated register is used by an add (such as in a list of
47//       multiple base registers, or as the increment expression in an addrec),
48//       we may not actually need both reg and (-1 * reg) in registers; the
49//       negation can be implemented by using a sub instead of an add. The
50//       lack of support for taking this into consideration when making
51//       register pressure decisions is partly worked around by the "Special"
52//       use kind.
53//
54//===----------------------------------------------------------------------===//
55
56#define DEBUG_TYPE "loop-reduce"
57#include "llvm/Transforms/Scalar.h"
58#include "llvm/Constants.h"
59#include "llvm/Instructions.h"
60#include "llvm/IntrinsicInst.h"
61#include "llvm/DerivedTypes.h"
62#include "llvm/Analysis/IVUsers.h"
63#include "llvm/Analysis/Dominators.h"
64#include "llvm/Analysis/LoopPass.h"
65#include "llvm/Analysis/ScalarEvolutionExpander.h"
66#include "llvm/Assembly/Writer.h"
67#include "llvm/Transforms/Utils/BasicBlockUtils.h"
68#include "llvm/Transforms/Utils/Local.h"
69#include "llvm/ADT/SmallBitVector.h"
70#include "llvm/ADT/SetVector.h"
71#include "llvm/ADT/DenseSet.h"
72#include "llvm/Support/Debug.h"
73#include "llvm/Support/CommandLine.h"
74#include "llvm/Support/ValueHandle.h"
75#include "llvm/Support/raw_ostream.h"
76#include "llvm/Target/TargetLowering.h"
77#include <algorithm>
78using namespace llvm;
79
80namespace llvm {
81cl::opt<bool> EnableNested(
82  "enable-lsr-nested", cl::Hidden, cl::desc("Enable LSR on nested loops"));
83
84cl::opt<bool> EnableRetry(
85    "enable-lsr-retry", cl::Hidden, cl::desc("Enable LSR retry"));
86
87// Temporary flag to cleanup congruent phis after LSR phi expansion.
88// It's currently disabled until we can determine whether it's truly useful or
89// not. The flag should be removed after the v3.0 release.
90cl::opt<bool> EnablePhiElim(
91    "enable-lsr-phielim", cl::Hidden, cl::desc("Enable LSR phi elimination"));
92}
93
94namespace {
95
96/// RegSortData - This class holds data which is used to order reuse candidates.
97class RegSortData {
98public:
99  /// UsedByIndices - This represents the set of LSRUse indices which reference
100  /// a particular register.
101  SmallBitVector UsedByIndices;
102
103  RegSortData() {}
104
105  void print(raw_ostream &OS) const;
106  void dump() const;
107};
108
109}
110
111void RegSortData::print(raw_ostream &OS) const {
112  OS << "[NumUses=" << UsedByIndices.count() << ']';
113}
114
115void RegSortData::dump() const {
116  print(errs()); errs() << '\n';
117}
118
119namespace {
120
121/// RegUseTracker - Map register candidates to information about how they are
122/// used.
123class RegUseTracker {
124  typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
125
126  RegUsesTy RegUsesMap;
127  SmallVector<const SCEV *, 16> RegSequence;
128
129public:
130  void CountRegister(const SCEV *Reg, size_t LUIdx);
131  void DropRegister(const SCEV *Reg, size_t LUIdx);
132  void SwapAndDropUse(size_t LUIdx, size_t LastLUIdx);
133
134  bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
135
136  const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
137
138  void clear();
139
140  typedef SmallVectorImpl<const SCEV *>::iterator iterator;
141  typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
142  iterator begin() { return RegSequence.begin(); }
143  iterator end()   { return RegSequence.end(); }
144  const_iterator begin() const { return RegSequence.begin(); }
145  const_iterator end() const   { return RegSequence.end(); }
146};
147
148}
149
150void
151RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) {
152  std::pair<RegUsesTy::iterator, bool> Pair =
153    RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
154  RegSortData &RSD = Pair.first->second;
155  if (Pair.second)
156    RegSequence.push_back(Reg);
157  RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
158  RSD.UsedByIndices.set(LUIdx);
159}
160
161void
162RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) {
163  RegUsesTy::iterator It = RegUsesMap.find(Reg);
164  assert(It != RegUsesMap.end());
165  RegSortData &RSD = It->second;
166  assert(RSD.UsedByIndices.size() > LUIdx);
167  RSD.UsedByIndices.reset(LUIdx);
168}
169
170void
171RegUseTracker::SwapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
172  assert(LUIdx <= LastLUIdx);
173
174  // Update RegUses. The data structure is not optimized for this purpose;
175  // we must iterate through it and update each of the bit vectors.
176  for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end();
177       I != E; ++I) {
178    SmallBitVector &UsedByIndices = I->second.UsedByIndices;
179    if (LUIdx < UsedByIndices.size())
180      UsedByIndices[LUIdx] =
181        LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0;
182    UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
183  }
184}
185
186bool
187RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
188  RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
189  if (I == RegUsesMap.end())
190    return false;
191  const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
192  int i = UsedByIndices.find_first();
193  if (i == -1) return false;
194  if ((size_t)i != LUIdx) return true;
195  return UsedByIndices.find_next(i) != -1;
196}
197
198const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
199  RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
200  assert(I != RegUsesMap.end() && "Unknown register!");
201  return I->second.UsedByIndices;
202}
203
204void RegUseTracker::clear() {
205  RegUsesMap.clear();
206  RegSequence.clear();
207}
208
209namespace {
210
211/// Formula - This class holds information that describes a formula for
212/// computing satisfying a use. It may include broken-out immediates and scaled
213/// registers.
214struct Formula {
215  /// AM - This is used to represent complex addressing, as well as other kinds
216  /// of interesting uses.
217  TargetLowering::AddrMode AM;
218
219  /// BaseRegs - The list of "base" registers for this use. When this is
220  /// non-empty, AM.HasBaseReg should be set to true.
221  SmallVector<const SCEV *, 2> BaseRegs;
222
223  /// ScaledReg - The 'scaled' register for this use. This should be non-null
224  /// when AM.Scale is not zero.
225  const SCEV *ScaledReg;
226
227  /// UnfoldedOffset - An additional constant offset which added near the
228  /// use. This requires a temporary register, but the offset itself can
229  /// live in an add immediate field rather than a register.
230  int64_t UnfoldedOffset;
231
232  Formula() : ScaledReg(0), UnfoldedOffset(0) {}
233
234  void InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
235
236  unsigned getNumRegs() const;
237  Type *getType() const;
238
239  void DeleteBaseReg(const SCEV *&S);
240
241  bool referencesReg(const SCEV *S) const;
242  bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
243                                  const RegUseTracker &RegUses) const;
244
245  void print(raw_ostream &OS) const;
246  void dump() const;
247};
248
249}
250
251/// DoInitialMatch - Recursion helper for InitialMatch.
252static void DoInitialMatch(const SCEV *S, Loop *L,
253                           SmallVectorImpl<const SCEV *> &Good,
254                           SmallVectorImpl<const SCEV *> &Bad,
255                           ScalarEvolution &SE) {
256  // Collect expressions which properly dominate the loop header.
257  if (SE.properlyDominates(S, L->getHeader())) {
258    Good.push_back(S);
259    return;
260  }
261
262  // Look at add operands.
263  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
264    for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
265         I != E; ++I)
266      DoInitialMatch(*I, L, Good, Bad, SE);
267    return;
268  }
269
270  // Look at addrec operands.
271  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
272    if (!AR->getStart()->isZero()) {
273      DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
274      DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
275                                      AR->getStepRecurrence(SE),
276                                      // FIXME: AR->getNoWrapFlags()
277                                      AR->getLoop(), SCEV::FlagAnyWrap),
278                     L, Good, Bad, SE);
279      return;
280    }
281
282  // Handle a multiplication by -1 (negation) if it didn't fold.
283  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
284    if (Mul->getOperand(0)->isAllOnesValue()) {
285      SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
286      const SCEV *NewMul = SE.getMulExpr(Ops);
287
288      SmallVector<const SCEV *, 4> MyGood;
289      SmallVector<const SCEV *, 4> MyBad;
290      DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
291      const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
292        SE.getEffectiveSCEVType(NewMul->getType())));
293      for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(),
294           E = MyGood.end(); I != E; ++I)
295        Good.push_back(SE.getMulExpr(NegOne, *I));
296      for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(),
297           E = MyBad.end(); I != E; ++I)
298        Bad.push_back(SE.getMulExpr(NegOne, *I));
299      return;
300    }
301
302  // Ok, we can't do anything interesting. Just stuff the whole thing into a
303  // register and hope for the best.
304  Bad.push_back(S);
305}
306
307/// InitialMatch - Incorporate loop-variant parts of S into this Formula,
308/// attempting to keep all loop-invariant and loop-computable values in a
309/// single base register.
310void Formula::InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
311  SmallVector<const SCEV *, 4> Good;
312  SmallVector<const SCEV *, 4> Bad;
313  DoInitialMatch(S, L, Good, Bad, SE);
314  if (!Good.empty()) {
315    const SCEV *Sum = SE.getAddExpr(Good);
316    if (!Sum->isZero())
317      BaseRegs.push_back(Sum);
318    AM.HasBaseReg = true;
319  }
320  if (!Bad.empty()) {
321    const SCEV *Sum = SE.getAddExpr(Bad);
322    if (!Sum->isZero())
323      BaseRegs.push_back(Sum);
324    AM.HasBaseReg = true;
325  }
326}
327
328/// getNumRegs - Return the total number of register operands used by this
329/// formula. This does not include register uses implied by non-constant
330/// addrec strides.
331unsigned Formula::getNumRegs() const {
332  return !!ScaledReg + BaseRegs.size();
333}
334
335/// getType - Return the type of this formula, if it has one, or null
336/// otherwise. This type is meaningless except for the bit size.
337Type *Formula::getType() const {
338  return !BaseRegs.empty() ? BaseRegs.front()->getType() :
339         ScaledReg ? ScaledReg->getType() :
340         AM.BaseGV ? AM.BaseGV->getType() :
341         0;
342}
343
344/// DeleteBaseReg - Delete the given base reg from the BaseRegs list.
345void Formula::DeleteBaseReg(const SCEV *&S) {
346  if (&S != &BaseRegs.back())
347    std::swap(S, BaseRegs.back());
348  BaseRegs.pop_back();
349}
350
351/// referencesReg - Test if this formula references the given register.
352bool Formula::referencesReg(const SCEV *S) const {
353  return S == ScaledReg ||
354         std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end();
355}
356
357/// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers
358/// which are used by uses other than the use with the given index.
359bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
360                                         const RegUseTracker &RegUses) const {
361  if (ScaledReg)
362    if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
363      return true;
364  for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
365       E = BaseRegs.end(); I != E; ++I)
366    if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx))
367      return true;
368  return false;
369}
370
371void Formula::print(raw_ostream &OS) const {
372  bool First = true;
373  if (AM.BaseGV) {
374    if (!First) OS << " + "; else First = false;
375    WriteAsOperand(OS, AM.BaseGV, /*PrintType=*/false);
376  }
377  if (AM.BaseOffs != 0) {
378    if (!First) OS << " + "; else First = false;
379    OS << AM.BaseOffs;
380  }
381  for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
382       E = BaseRegs.end(); I != E; ++I) {
383    if (!First) OS << " + "; else First = false;
384    OS << "reg(" << **I << ')';
385  }
386  if (AM.HasBaseReg && BaseRegs.empty()) {
387    if (!First) OS << " + "; else First = false;
388    OS << "**error: HasBaseReg**";
389  } else if (!AM.HasBaseReg && !BaseRegs.empty()) {
390    if (!First) OS << " + "; else First = false;
391    OS << "**error: !HasBaseReg**";
392  }
393  if (AM.Scale != 0) {
394    if (!First) OS << " + "; else First = false;
395    OS << AM.Scale << "*reg(";
396    if (ScaledReg)
397      OS << *ScaledReg;
398    else
399      OS << "<unknown>";
400    OS << ')';
401  }
402  if (UnfoldedOffset != 0) {
403    if (!First) OS << " + "; else First = false;
404    OS << "imm(" << UnfoldedOffset << ')';
405  }
406}
407
408void Formula::dump() const {
409  print(errs()); errs() << '\n';
410}
411
412/// isAddRecSExtable - Return true if the given addrec can be sign-extended
413/// without changing its value.
414static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
415  Type *WideTy =
416    IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
417  return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
418}
419
420/// isAddSExtable - Return true if the given add can be sign-extended
421/// without changing its value.
422static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
423  Type *WideTy =
424    IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
425  return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
426}
427
428/// isMulSExtable - Return true if the given mul can be sign-extended
429/// without changing its value.
430static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
431  Type *WideTy =
432    IntegerType::get(SE.getContext(),
433                     SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
434  return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
435}
436
437/// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined
438/// and if the remainder is known to be zero,  or null otherwise. If
439/// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified
440/// to Y, ignoring that the multiplication may overflow, which is useful when
441/// the result will be used in a context where the most significant bits are
442/// ignored.
443static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
444                                ScalarEvolution &SE,
445                                bool IgnoreSignificantBits = false) {
446  // Handle the trivial case, which works for any SCEV type.
447  if (LHS == RHS)
448    return SE.getConstant(LHS->getType(), 1);
449
450  // Handle a few RHS special cases.
451  const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
452  if (RC) {
453    const APInt &RA = RC->getValue()->getValue();
454    // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
455    // some folding.
456    if (RA.isAllOnesValue())
457      return SE.getMulExpr(LHS, RC);
458    // Handle x /s 1 as x.
459    if (RA == 1)
460      return LHS;
461  }
462
463  // Check for a division of a constant by a constant.
464  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
465    if (!RC)
466      return 0;
467    const APInt &LA = C->getValue()->getValue();
468    const APInt &RA = RC->getValue()->getValue();
469    if (LA.srem(RA) != 0)
470      return 0;
471    return SE.getConstant(LA.sdiv(RA));
472  }
473
474  // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
475  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
476    if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) {
477      const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
478                                      IgnoreSignificantBits);
479      if (!Step) return 0;
480      const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
481                                       IgnoreSignificantBits);
482      if (!Start) return 0;
483      // FlagNW is independent of the start value, step direction, and is
484      // preserved with smaller magnitude steps.
485      // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
486      return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
487    }
488    return 0;
489  }
490
491  // Distribute the sdiv over add operands, if the add doesn't overflow.
492  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
493    if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
494      SmallVector<const SCEV *, 8> Ops;
495      for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
496           I != E; ++I) {
497        const SCEV *Op = getExactSDiv(*I, RHS, SE,
498                                      IgnoreSignificantBits);
499        if (!Op) return 0;
500        Ops.push_back(Op);
501      }
502      return SE.getAddExpr(Ops);
503    }
504    return 0;
505  }
506
507  // Check for a multiply operand that we can pull RHS out of.
508  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
509    if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
510      SmallVector<const SCEV *, 4> Ops;
511      bool Found = false;
512      for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end();
513           I != E; ++I) {
514        const SCEV *S = *I;
515        if (!Found)
516          if (const SCEV *Q = getExactSDiv(S, RHS, SE,
517                                           IgnoreSignificantBits)) {
518            S = Q;
519            Found = true;
520          }
521        Ops.push_back(S);
522      }
523      return Found ? SE.getMulExpr(Ops) : 0;
524    }
525    return 0;
526  }
527
528  // Otherwise we don't know.
529  return 0;
530}
531
532/// ExtractImmediate - If S involves the addition of a constant integer value,
533/// return that integer value, and mutate S to point to a new SCEV with that
534/// value excluded.
535static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
536  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
537    if (C->getValue()->getValue().getMinSignedBits() <= 64) {
538      S = SE.getConstant(C->getType(), 0);
539      return C->getValue()->getSExtValue();
540    }
541  } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
542    SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
543    int64_t Result = ExtractImmediate(NewOps.front(), SE);
544    if (Result != 0)
545      S = SE.getAddExpr(NewOps);
546    return Result;
547  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
548    SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
549    int64_t Result = ExtractImmediate(NewOps.front(), SE);
550    if (Result != 0)
551      S = SE.getAddRecExpr(NewOps, AR->getLoop(),
552                           // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
553                           SCEV::FlagAnyWrap);
554    return Result;
555  }
556  return 0;
557}
558
559/// ExtractSymbol - If S involves the addition of a GlobalValue address,
560/// return that symbol, and mutate S to point to a new SCEV with that
561/// value excluded.
562static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
563  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
564    if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
565      S = SE.getConstant(GV->getType(), 0);
566      return GV;
567    }
568  } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
569    SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
570    GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
571    if (Result)
572      S = SE.getAddExpr(NewOps);
573    return Result;
574  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
575    SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
576    GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
577    if (Result)
578      S = SE.getAddRecExpr(NewOps, AR->getLoop(),
579                           // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
580                           SCEV::FlagAnyWrap);
581    return Result;
582  }
583  return 0;
584}
585
586/// isAddressUse - Returns true if the specified instruction is using the
587/// specified value as an address.
588static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
589  bool isAddress = isa<LoadInst>(Inst);
590  if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
591    if (SI->getOperand(1) == OperandVal)
592      isAddress = true;
593  } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
594    // Addressing modes can also be folded into prefetches and a variety
595    // of intrinsics.
596    switch (II->getIntrinsicID()) {
597      default: break;
598      case Intrinsic::prefetch:
599      case Intrinsic::x86_sse_storeu_ps:
600      case Intrinsic::x86_sse2_storeu_pd:
601      case Intrinsic::x86_sse2_storeu_dq:
602      case Intrinsic::x86_sse2_storel_dq:
603        if (II->getArgOperand(0) == OperandVal)
604          isAddress = true;
605        break;
606    }
607  }
608  return isAddress;
609}
610
611/// getAccessType - Return the type of the memory being accessed.
612static Type *getAccessType(const Instruction *Inst) {
613  Type *AccessTy = Inst->getType();
614  if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
615    AccessTy = SI->getOperand(0)->getType();
616  else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
617    // Addressing modes can also be folded into prefetches and a variety
618    // of intrinsics.
619    switch (II->getIntrinsicID()) {
620    default: break;
621    case Intrinsic::x86_sse_storeu_ps:
622    case Intrinsic::x86_sse2_storeu_pd:
623    case Intrinsic::x86_sse2_storeu_dq:
624    case Intrinsic::x86_sse2_storel_dq:
625      AccessTy = II->getArgOperand(0)->getType();
626      break;
627    }
628  }
629
630  // All pointers have the same requirements, so canonicalize them to an
631  // arbitrary pointer type to minimize variation.
632  if (PointerType *PTy = dyn_cast<PointerType>(AccessTy))
633    AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
634                                PTy->getAddressSpace());
635
636  return AccessTy;
637}
638
639/// DeleteTriviallyDeadInstructions - If any of the instructions is the
640/// specified set are trivially dead, delete them and see if this makes any of
641/// their operands subsequently dead.
642static bool
643DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
644  bool Changed = false;
645
646  while (!DeadInsts.empty()) {
647    Instruction *I = dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val());
648
649    if (I == 0 || !isInstructionTriviallyDead(I))
650      continue;
651
652    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
653      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
654        *OI = 0;
655        if (U->use_empty())
656          DeadInsts.push_back(U);
657      }
658
659    I->eraseFromParent();
660    Changed = true;
661  }
662
663  return Changed;
664}
665
666namespace {
667
668/// Cost - This class is used to measure and compare candidate formulae.
669class Cost {
670  /// TODO: Some of these could be merged. Also, a lexical ordering
671  /// isn't always optimal.
672  unsigned NumRegs;
673  unsigned AddRecCost;
674  unsigned NumIVMuls;
675  unsigned NumBaseAdds;
676  unsigned ImmCost;
677  unsigned SetupCost;
678
679public:
680  Cost()
681    : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
682      SetupCost(0) {}
683
684  bool operator<(const Cost &Other) const;
685
686  void Loose();
687
688#ifndef NDEBUG
689  // Once any of the metrics loses, they must all remain losers.
690  bool isValid() {
691    return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds
692             | ImmCost | SetupCost) != ~0u)
693      || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds
694           & ImmCost & SetupCost) == ~0u);
695  }
696#endif
697
698  bool isLoser() {
699    assert(isValid() && "invalid cost");
700    return NumRegs == ~0u;
701  }
702
703  void RateFormula(const Formula &F,
704                   SmallPtrSet<const SCEV *, 16> &Regs,
705                   const DenseSet<const SCEV *> &VisitedRegs,
706                   const Loop *L,
707                   const SmallVectorImpl<int64_t> &Offsets,
708                   ScalarEvolution &SE, DominatorTree &DT);
709
710  void print(raw_ostream &OS) const;
711  void dump() const;
712
713private:
714  void RateRegister(const SCEV *Reg,
715                    SmallPtrSet<const SCEV *, 16> &Regs,
716                    const Loop *L,
717                    ScalarEvolution &SE, DominatorTree &DT);
718  void RatePrimaryRegister(const SCEV *Reg,
719                           SmallPtrSet<const SCEV *, 16> &Regs,
720                           const Loop *L,
721                           ScalarEvolution &SE, DominatorTree &DT);
722};
723
724}
725
726/// RateRegister - Tally up interesting quantities from the given register.
727void Cost::RateRegister(const SCEV *Reg,
728                        SmallPtrSet<const SCEV *, 16> &Regs,
729                        const Loop *L,
730                        ScalarEvolution &SE, DominatorTree &DT) {
731  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
732    if (AR->getLoop() == L)
733      AddRecCost += 1; /// TODO: This should be a function of the stride.
734
735    // If this is an addrec for another loop, don't second-guess its addrec phi
736    // nodes. LSR isn't currently smart enough to reason about more than one
737    // loop at a time. LSR has either already run on inner loops, will not run
738    // on other loops, and cannot be expected to change sibling loops. If the
739    // AddRec exists, consider it's register free and leave it alone. Otherwise,
740    // do not consider this formula at all.
741    // FIXME: why do we need to generate such fomulae?
742    else if (!EnableNested || L->contains(AR->getLoop()) ||
743             (!AR->getLoop()->contains(L) &&
744              DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))) {
745      for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
746           PHINode *PN = dyn_cast<PHINode>(I); ++I) {
747        if (SE.isSCEVable(PN->getType()) &&
748            (SE.getEffectiveSCEVType(PN->getType()) ==
749             SE.getEffectiveSCEVType(AR->getType())) &&
750            SE.getSCEV(PN) == AR)
751          return;
752      }
753      if (!EnableNested) {
754        Loose();
755        return;
756      }
757      // If this isn't one of the addrecs that the loop already has, it
758      // would require a costly new phi and add. TODO: This isn't
759      // precisely modeled right now.
760      ++NumBaseAdds;
761      if (!Regs.count(AR->getStart())) {
762        RateRegister(AR->getStart(), Regs, L, SE, DT);
763        if (isLoser())
764          return;
765      }
766    }
767
768    // Add the step value register, if it needs one.
769    // TODO: The non-affine case isn't precisely modeled here.
770    if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
771      if (!Regs.count(AR->getOperand(1))) {
772        RateRegister(AR->getOperand(1), Regs, L, SE, DT);
773        if (isLoser())
774          return;
775      }
776    }
777  }
778  ++NumRegs;
779
780  // Rough heuristic; favor registers which don't require extra setup
781  // instructions in the preheader.
782  if (!isa<SCEVUnknown>(Reg) &&
783      !isa<SCEVConstant>(Reg) &&
784      !(isa<SCEVAddRecExpr>(Reg) &&
785        (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
786         isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
787    ++SetupCost;
788
789    NumIVMuls += isa<SCEVMulExpr>(Reg) &&
790                 SE.hasComputableLoopEvolution(Reg, L);
791}
792
793/// RatePrimaryRegister - Record this register in the set. If we haven't seen it
794/// before, rate it.
795void Cost::RatePrimaryRegister(const SCEV *Reg,
796                               SmallPtrSet<const SCEV *, 16> &Regs,
797                               const Loop *L,
798                               ScalarEvolution &SE, DominatorTree &DT) {
799  if (Regs.insert(Reg))
800    RateRegister(Reg, Regs, L, SE, DT);
801}
802
803void Cost::RateFormula(const Formula &F,
804                       SmallPtrSet<const SCEV *, 16> &Regs,
805                       const DenseSet<const SCEV *> &VisitedRegs,
806                       const Loop *L,
807                       const SmallVectorImpl<int64_t> &Offsets,
808                       ScalarEvolution &SE, DominatorTree &DT) {
809  // Tally up the registers.
810  if (const SCEV *ScaledReg = F.ScaledReg) {
811    if (VisitedRegs.count(ScaledReg)) {
812      Loose();
813      return;
814    }
815    RatePrimaryRegister(ScaledReg, Regs, L, SE, DT);
816    if (isLoser())
817      return;
818  }
819  for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
820       E = F.BaseRegs.end(); I != E; ++I) {
821    const SCEV *BaseReg = *I;
822    if (VisitedRegs.count(BaseReg)) {
823      Loose();
824      return;
825    }
826    RatePrimaryRegister(BaseReg, Regs, L, SE, DT);
827    if (isLoser())
828      return;
829  }
830
831  // Determine how many (unfolded) adds we'll need inside the loop.
832  size_t NumBaseParts = F.BaseRegs.size() + (F.UnfoldedOffset != 0);
833  if (NumBaseParts > 1)
834    NumBaseAdds += NumBaseParts - 1;
835
836  // Tally up the non-zero immediates.
837  for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
838       E = Offsets.end(); I != E; ++I) {
839    int64_t Offset = (uint64_t)*I + F.AM.BaseOffs;
840    if (F.AM.BaseGV)
841      ImmCost += 64; // Handle symbolic values conservatively.
842                     // TODO: This should probably be the pointer size.
843    else if (Offset != 0)
844      ImmCost += APInt(64, Offset, true).getMinSignedBits();
845  }
846  assert(isValid() && "invalid cost");
847}
848
849/// Loose - Set this cost to a losing value.
850void Cost::Loose() {
851  NumRegs = ~0u;
852  AddRecCost = ~0u;
853  NumIVMuls = ~0u;
854  NumBaseAdds = ~0u;
855  ImmCost = ~0u;
856  SetupCost = ~0u;
857}
858
859/// operator< - Choose the lower cost.
860bool Cost::operator<(const Cost &Other) const {
861  if (NumRegs != Other.NumRegs)
862    return NumRegs < Other.NumRegs;
863  if (AddRecCost != Other.AddRecCost)
864    return AddRecCost < Other.AddRecCost;
865  if (NumIVMuls != Other.NumIVMuls)
866    return NumIVMuls < Other.NumIVMuls;
867  if (NumBaseAdds != Other.NumBaseAdds)
868    return NumBaseAdds < Other.NumBaseAdds;
869  if (ImmCost != Other.ImmCost)
870    return ImmCost < Other.ImmCost;
871  if (SetupCost != Other.SetupCost)
872    return SetupCost < Other.SetupCost;
873  return false;
874}
875
876void Cost::print(raw_ostream &OS) const {
877  OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
878  if (AddRecCost != 0)
879    OS << ", with addrec cost " << AddRecCost;
880  if (NumIVMuls != 0)
881    OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
882  if (NumBaseAdds != 0)
883    OS << ", plus " << NumBaseAdds << " base add"
884       << (NumBaseAdds == 1 ? "" : "s");
885  if (ImmCost != 0)
886    OS << ", plus " << ImmCost << " imm cost";
887  if (SetupCost != 0)
888    OS << ", plus " << SetupCost << " setup cost";
889}
890
891void Cost::dump() const {
892  print(errs()); errs() << '\n';
893}
894
895namespace {
896
897/// LSRFixup - An operand value in an instruction which is to be replaced
898/// with some equivalent, possibly strength-reduced, replacement.
899struct LSRFixup {
900  /// UserInst - The instruction which will be updated.
901  Instruction *UserInst;
902
903  /// OperandValToReplace - The operand of the instruction which will
904  /// be replaced. The operand may be used more than once; every instance
905  /// will be replaced.
906  Value *OperandValToReplace;
907
908  /// PostIncLoops - If this user is to use the post-incremented value of an
909  /// induction variable, this variable is non-null and holds the loop
910  /// associated with the induction variable.
911  PostIncLoopSet PostIncLoops;
912
913  /// LUIdx - The index of the LSRUse describing the expression which
914  /// this fixup needs, minus an offset (below).
915  size_t LUIdx;
916
917  /// Offset - A constant offset to be added to the LSRUse expression.
918  /// This allows multiple fixups to share the same LSRUse with different
919  /// offsets, for example in an unrolled loop.
920  int64_t Offset;
921
922  bool isUseFullyOutsideLoop(const Loop *L) const;
923
924  LSRFixup();
925
926  void print(raw_ostream &OS) const;
927  void dump() const;
928};
929
930}
931
932LSRFixup::LSRFixup()
933  : UserInst(0), OperandValToReplace(0), LUIdx(~size_t(0)), Offset(0) {}
934
935/// isUseFullyOutsideLoop - Test whether this fixup always uses its
936/// value outside of the given loop.
937bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
938  // PHI nodes use their value in their incoming blocks.
939  if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
940    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
941      if (PN->getIncomingValue(i) == OperandValToReplace &&
942          L->contains(PN->getIncomingBlock(i)))
943        return false;
944    return true;
945  }
946
947  return !L->contains(UserInst);
948}
949
950void LSRFixup::print(raw_ostream &OS) const {
951  OS << "UserInst=";
952  // Store is common and interesting enough to be worth special-casing.
953  if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
954    OS << "store ";
955    WriteAsOperand(OS, Store->getOperand(0), /*PrintType=*/false);
956  } else if (UserInst->getType()->isVoidTy())
957    OS << UserInst->getOpcodeName();
958  else
959    WriteAsOperand(OS, UserInst, /*PrintType=*/false);
960
961  OS << ", OperandValToReplace=";
962  WriteAsOperand(OS, OperandValToReplace, /*PrintType=*/false);
963
964  for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(),
965       E = PostIncLoops.end(); I != E; ++I) {
966    OS << ", PostIncLoop=";
967    WriteAsOperand(OS, (*I)->getHeader(), /*PrintType=*/false);
968  }
969
970  if (LUIdx != ~size_t(0))
971    OS << ", LUIdx=" << LUIdx;
972
973  if (Offset != 0)
974    OS << ", Offset=" << Offset;
975}
976
977void LSRFixup::dump() const {
978  print(errs()); errs() << '\n';
979}
980
981namespace {
982
983/// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding
984/// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*.
985struct UniquifierDenseMapInfo {
986  static SmallVector<const SCEV *, 2> getEmptyKey() {
987    SmallVector<const SCEV *, 2> V;
988    V.push_back(reinterpret_cast<const SCEV *>(-1));
989    return V;
990  }
991
992  static SmallVector<const SCEV *, 2> getTombstoneKey() {
993    SmallVector<const SCEV *, 2> V;
994    V.push_back(reinterpret_cast<const SCEV *>(-2));
995    return V;
996  }
997
998  static unsigned getHashValue(const SmallVector<const SCEV *, 2> &V) {
999    unsigned Result = 0;
1000    for (SmallVectorImpl<const SCEV *>::const_iterator I = V.begin(),
1001         E = V.end(); I != E; ++I)
1002      Result ^= DenseMapInfo<const SCEV *>::getHashValue(*I);
1003    return Result;
1004  }
1005
1006  static bool isEqual(const SmallVector<const SCEV *, 2> &LHS,
1007                      const SmallVector<const SCEV *, 2> &RHS) {
1008    return LHS == RHS;
1009  }
1010};
1011
1012/// LSRUse - This class holds the state that LSR keeps for each use in
1013/// IVUsers, as well as uses invented by LSR itself. It includes information
1014/// about what kinds of things can be folded into the user, information about
1015/// the user itself, and information about how the use may be satisfied.
1016/// TODO: Represent multiple users of the same expression in common?
1017class LSRUse {
1018  DenseSet<SmallVector<const SCEV *, 2>, UniquifierDenseMapInfo> Uniquifier;
1019
1020public:
1021  /// KindType - An enum for a kind of use, indicating what types of
1022  /// scaled and immediate operands it might support.
1023  enum KindType {
1024    Basic,   ///< A normal use, with no folding.
1025    Special, ///< A special case of basic, allowing -1 scales.
1026    Address, ///< An address use; folding according to TargetLowering
1027    ICmpZero ///< An equality icmp with both operands folded into one.
1028    // TODO: Add a generic icmp too?
1029  };
1030
1031  KindType Kind;
1032  Type *AccessTy;
1033
1034  SmallVector<int64_t, 8> Offsets;
1035  int64_t MinOffset;
1036  int64_t MaxOffset;
1037
1038  /// AllFixupsOutsideLoop - This records whether all of the fixups using this
1039  /// LSRUse are outside of the loop, in which case some special-case heuristics
1040  /// may be used.
1041  bool AllFixupsOutsideLoop;
1042
1043  /// WidestFixupType - This records the widest use type for any fixup using
1044  /// this LSRUse. FindUseWithSimilarFormula can't consider uses with different
1045  /// max fixup widths to be equivalent, because the narrower one may be relying
1046  /// on the implicit truncation to truncate away bogus bits.
1047  Type *WidestFixupType;
1048
1049  /// Formulae - A list of ways to build a value that can satisfy this user.
1050  /// After the list is populated, one of these is selected heuristically and
1051  /// used to formulate a replacement for OperandValToReplace in UserInst.
1052  SmallVector<Formula, 12> Formulae;
1053
1054  /// Regs - The set of register candidates used by all formulae in this LSRUse.
1055  SmallPtrSet<const SCEV *, 4> Regs;
1056
1057  LSRUse(KindType K, Type *T) : Kind(K), AccessTy(T),
1058                                      MinOffset(INT64_MAX),
1059                                      MaxOffset(INT64_MIN),
1060                                      AllFixupsOutsideLoop(true),
1061                                      WidestFixupType(0) {}
1062
1063  bool HasFormulaWithSameRegs(const Formula &F) const;
1064  bool InsertFormula(const Formula &F);
1065  void DeleteFormula(Formula &F);
1066  void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1067
1068  void print(raw_ostream &OS) const;
1069  void dump() const;
1070};
1071
1072}
1073
1074/// HasFormula - Test whether this use as a formula which has the same
1075/// registers as the given formula.
1076bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1077  SmallVector<const SCEV *, 2> Key = F.BaseRegs;
1078  if (F.ScaledReg) Key.push_back(F.ScaledReg);
1079  // Unstable sort by host order ok, because this is only used for uniquifying.
1080  std::sort(Key.begin(), Key.end());
1081  return Uniquifier.count(Key);
1082}
1083
1084/// InsertFormula - If the given formula has not yet been inserted, add it to
1085/// the list, and return true. Return false otherwise.
1086bool LSRUse::InsertFormula(const Formula &F) {
1087  SmallVector<const SCEV *, 2> Key = F.BaseRegs;
1088  if (F.ScaledReg) Key.push_back(F.ScaledReg);
1089  // Unstable sort by host order ok, because this is only used for uniquifying.
1090  std::sort(Key.begin(), Key.end());
1091
1092  if (!Uniquifier.insert(Key).second)
1093    return false;
1094
1095  // Using a register to hold the value of 0 is not profitable.
1096  assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1097         "Zero allocated in a scaled register!");
1098#ifndef NDEBUG
1099  for (SmallVectorImpl<const SCEV *>::const_iterator I =
1100       F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I)
1101    assert(!(*I)->isZero() && "Zero allocated in a base register!");
1102#endif
1103
1104  // Add the formula to the list.
1105  Formulae.push_back(F);
1106
1107  // Record registers now being used by this use.
1108  if (F.ScaledReg) Regs.insert(F.ScaledReg);
1109  Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1110
1111  return true;
1112}
1113
1114/// DeleteFormula - Remove the given formula from this use's list.
1115void LSRUse::DeleteFormula(Formula &F) {
1116  if (&F != &Formulae.back())
1117    std::swap(F, Formulae.back());
1118  Formulae.pop_back();
1119  assert(!Formulae.empty() && "LSRUse has no formulae left!");
1120}
1121
1122/// RecomputeRegs - Recompute the Regs field, and update RegUses.
1123void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1124  // Now that we've filtered out some formulae, recompute the Regs set.
1125  SmallPtrSet<const SCEV *, 4> OldRegs = Regs;
1126  Regs.clear();
1127  for (SmallVectorImpl<Formula>::const_iterator I = Formulae.begin(),
1128       E = Formulae.end(); I != E; ++I) {
1129    const Formula &F = *I;
1130    if (F.ScaledReg) Regs.insert(F.ScaledReg);
1131    Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1132  }
1133
1134  // Update the RegTracker.
1135  for (SmallPtrSet<const SCEV *, 4>::iterator I = OldRegs.begin(),
1136       E = OldRegs.end(); I != E; ++I)
1137    if (!Regs.count(*I))
1138      RegUses.DropRegister(*I, LUIdx);
1139}
1140
1141void LSRUse::print(raw_ostream &OS) const {
1142  OS << "LSR Use: Kind=";
1143  switch (Kind) {
1144  case Basic:    OS << "Basic"; break;
1145  case Special:  OS << "Special"; break;
1146  case ICmpZero: OS << "ICmpZero"; break;
1147  case Address:
1148    OS << "Address of ";
1149    if (AccessTy->isPointerTy())
1150      OS << "pointer"; // the full pointer type could be really verbose
1151    else
1152      OS << *AccessTy;
1153  }
1154
1155  OS << ", Offsets={";
1156  for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
1157       E = Offsets.end(); I != E; ++I) {
1158    OS << *I;
1159    if (llvm::next(I) != E)
1160      OS << ',';
1161  }
1162  OS << '}';
1163
1164  if (AllFixupsOutsideLoop)
1165    OS << ", all-fixups-outside-loop";
1166
1167  if (WidestFixupType)
1168    OS << ", widest fixup type: " << *WidestFixupType;
1169}
1170
1171void LSRUse::dump() const {
1172  print(errs()); errs() << '\n';
1173}
1174
1175/// isLegalUse - Test whether the use described by AM is "legal", meaning it can
1176/// be completely folded into the user instruction at isel time. This includes
1177/// address-mode folding and special icmp tricks.
1178static bool isLegalUse(const TargetLowering::AddrMode &AM,
1179                       LSRUse::KindType Kind, Type *AccessTy,
1180                       const TargetLowering *TLI) {
1181  switch (Kind) {
1182  case LSRUse::Address:
1183    // If we have low-level target information, ask the target if it can
1184    // completely fold this address.
1185    if (TLI) return TLI->isLegalAddressingMode(AM, AccessTy);
1186
1187    // Otherwise, just guess that reg+reg addressing is legal.
1188    return !AM.BaseGV && AM.BaseOffs == 0 && AM.Scale <= 1;
1189
1190  case LSRUse::ICmpZero:
1191    // There's not even a target hook for querying whether it would be legal to
1192    // fold a GV into an ICmp.
1193    if (AM.BaseGV)
1194      return false;
1195
1196    // ICmp only has two operands; don't allow more than two non-trivial parts.
1197    if (AM.Scale != 0 && AM.HasBaseReg && AM.BaseOffs != 0)
1198      return false;
1199
1200    // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1201    // putting the scaled register in the other operand of the icmp.
1202    if (AM.Scale != 0 && AM.Scale != -1)
1203      return false;
1204
1205    // If we have low-level target information, ask the target if it can fold an
1206    // integer immediate on an icmp.
1207    if (AM.BaseOffs != 0) {
1208      if (TLI) return TLI->isLegalICmpImmediate(-(uint64_t)AM.BaseOffs);
1209      return false;
1210    }
1211
1212    return true;
1213
1214  case LSRUse::Basic:
1215    // Only handle single-register values.
1216    return !AM.BaseGV && AM.Scale == 0 && AM.BaseOffs == 0;
1217
1218  case LSRUse::Special:
1219    // Only handle -1 scales, or no scale.
1220    return AM.Scale == 0 || AM.Scale == -1;
1221  }
1222
1223  return false;
1224}
1225
1226static bool isLegalUse(TargetLowering::AddrMode AM,
1227                       int64_t MinOffset, int64_t MaxOffset,
1228                       LSRUse::KindType Kind, Type *AccessTy,
1229                       const TargetLowering *TLI) {
1230  // Check for overflow.
1231  if (((int64_t)((uint64_t)AM.BaseOffs + MinOffset) > AM.BaseOffs) !=
1232      (MinOffset > 0))
1233    return false;
1234  AM.BaseOffs = (uint64_t)AM.BaseOffs + MinOffset;
1235  if (isLegalUse(AM, Kind, AccessTy, TLI)) {
1236    AM.BaseOffs = (uint64_t)AM.BaseOffs - MinOffset;
1237    // Check for overflow.
1238    if (((int64_t)((uint64_t)AM.BaseOffs + MaxOffset) > AM.BaseOffs) !=
1239        (MaxOffset > 0))
1240      return false;
1241    AM.BaseOffs = (uint64_t)AM.BaseOffs + MaxOffset;
1242    return isLegalUse(AM, Kind, AccessTy, TLI);
1243  }
1244  return false;
1245}
1246
1247static bool isAlwaysFoldable(int64_t BaseOffs,
1248                             GlobalValue *BaseGV,
1249                             bool HasBaseReg,
1250                             LSRUse::KindType Kind, Type *AccessTy,
1251                             const TargetLowering *TLI) {
1252  // Fast-path: zero is always foldable.
1253  if (BaseOffs == 0 && !BaseGV) return true;
1254
1255  // Conservatively, create an address with an immediate and a
1256  // base and a scale.
1257  TargetLowering::AddrMode AM;
1258  AM.BaseOffs = BaseOffs;
1259  AM.BaseGV = BaseGV;
1260  AM.HasBaseReg = HasBaseReg;
1261  AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1262
1263  // Canonicalize a scale of 1 to a base register if the formula doesn't
1264  // already have a base register.
1265  if (!AM.HasBaseReg && AM.Scale == 1) {
1266    AM.Scale = 0;
1267    AM.HasBaseReg = true;
1268  }
1269
1270  return isLegalUse(AM, Kind, AccessTy, TLI);
1271}
1272
1273static bool isAlwaysFoldable(const SCEV *S,
1274                             int64_t MinOffset, int64_t MaxOffset,
1275                             bool HasBaseReg,
1276                             LSRUse::KindType Kind, Type *AccessTy,
1277                             const TargetLowering *TLI,
1278                             ScalarEvolution &SE) {
1279  // Fast-path: zero is always foldable.
1280  if (S->isZero()) return true;
1281
1282  // Conservatively, create an address with an immediate and a
1283  // base and a scale.
1284  int64_t BaseOffs = ExtractImmediate(S, SE);
1285  GlobalValue *BaseGV = ExtractSymbol(S, SE);
1286
1287  // If there's anything else involved, it's not foldable.
1288  if (!S->isZero()) return false;
1289
1290  // Fast-path: zero is always foldable.
1291  if (BaseOffs == 0 && !BaseGV) return true;
1292
1293  // Conservatively, create an address with an immediate and a
1294  // base and a scale.
1295  TargetLowering::AddrMode AM;
1296  AM.BaseOffs = BaseOffs;
1297  AM.BaseGV = BaseGV;
1298  AM.HasBaseReg = HasBaseReg;
1299  AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1300
1301  return isLegalUse(AM, MinOffset, MaxOffset, Kind, AccessTy, TLI);
1302}
1303
1304namespace {
1305
1306/// UseMapDenseMapInfo - A DenseMapInfo implementation for holding
1307/// DenseMaps and DenseSets of pairs of const SCEV* and LSRUse::Kind.
1308struct UseMapDenseMapInfo {
1309  static std::pair<const SCEV *, LSRUse::KindType> getEmptyKey() {
1310    return std::make_pair(reinterpret_cast<const SCEV *>(-1), LSRUse::Basic);
1311  }
1312
1313  static std::pair<const SCEV *, LSRUse::KindType> getTombstoneKey() {
1314    return std::make_pair(reinterpret_cast<const SCEV *>(-2), LSRUse::Basic);
1315  }
1316
1317  static unsigned
1318  getHashValue(const std::pair<const SCEV *, LSRUse::KindType> &V) {
1319    unsigned Result = DenseMapInfo<const SCEV *>::getHashValue(V.first);
1320    Result ^= DenseMapInfo<unsigned>::getHashValue(unsigned(V.second));
1321    return Result;
1322  }
1323
1324  static bool isEqual(const std::pair<const SCEV *, LSRUse::KindType> &LHS,
1325                      const std::pair<const SCEV *, LSRUse::KindType> &RHS) {
1326    return LHS == RHS;
1327  }
1328};
1329
1330/// LSRInstance - This class holds state for the main loop strength reduction
1331/// logic.
1332class LSRInstance {
1333  IVUsers &IU;
1334  ScalarEvolution &SE;
1335  DominatorTree &DT;
1336  LoopInfo &LI;
1337  const TargetLowering *const TLI;
1338  Loop *const L;
1339  bool Changed;
1340
1341  /// IVIncInsertPos - This is the insert position that the current loop's
1342  /// induction variable increment should be placed. In simple loops, this is
1343  /// the latch block's terminator. But in more complicated cases, this is a
1344  /// position which will dominate all the in-loop post-increment users.
1345  Instruction *IVIncInsertPos;
1346
1347  /// Factors - Interesting factors between use strides.
1348  SmallSetVector<int64_t, 8> Factors;
1349
1350  /// Types - Interesting use types, to facilitate truncation reuse.
1351  SmallSetVector<Type *, 4> Types;
1352
1353  /// Fixups - The list of operands which are to be replaced.
1354  SmallVector<LSRFixup, 16> Fixups;
1355
1356  /// Uses - The list of interesting uses.
1357  SmallVector<LSRUse, 16> Uses;
1358
1359  /// RegUses - Track which uses use which register candidates.
1360  RegUseTracker RegUses;
1361
1362  void OptimizeShadowIV();
1363  bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1364  ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1365  void OptimizeLoopTermCond();
1366
1367  void CollectInterestingTypesAndFactors();
1368  void CollectFixupsAndInitialFormulae();
1369
1370  LSRFixup &getNewFixup() {
1371    Fixups.push_back(LSRFixup());
1372    return Fixups.back();
1373  }
1374
1375  // Support for sharing of LSRUses between LSRFixups.
1376  typedef DenseMap<std::pair<const SCEV *, LSRUse::KindType>,
1377                   size_t,
1378                   UseMapDenseMapInfo> UseMapTy;
1379  UseMapTy UseMap;
1380
1381  bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1382                          LSRUse::KindType Kind, Type *AccessTy);
1383
1384  std::pair<size_t, int64_t> getUse(const SCEV *&Expr,
1385                                    LSRUse::KindType Kind,
1386                                    Type *AccessTy);
1387
1388  void DeleteUse(LSRUse &LU, size_t LUIdx);
1389
1390  LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1391
1392public:
1393  void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1394  void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1395  void CountRegisters(const Formula &F, size_t LUIdx);
1396  bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1397
1398  void CollectLoopInvariantFixupsAndFormulae();
1399
1400  void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1401                              unsigned Depth = 0);
1402  void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1403  void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1404  void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1405  void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1406  void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1407  void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
1408  void GenerateCrossUseConstantOffsets();
1409  void GenerateAllReuseFormulae();
1410
1411  void FilterOutUndesirableDedicatedRegisters();
1412
1413  size_t EstimateSearchSpaceComplexity() const;
1414  void NarrowSearchSpaceByDetectingSupersets();
1415  void NarrowSearchSpaceByCollapsingUnrolledCode();
1416  void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
1417  void NarrowSearchSpaceByPickingWinnerRegs();
1418  void NarrowSearchSpaceUsingHeuristics();
1419
1420  void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
1421                    Cost &SolutionCost,
1422                    SmallVectorImpl<const Formula *> &Workspace,
1423                    const Cost &CurCost,
1424                    const SmallPtrSet<const SCEV *, 16> &CurRegs,
1425                    DenseSet<const SCEV *> &VisitedRegs) const;
1426  void Solve(SmallVectorImpl<const Formula *> &Solution) const;
1427
1428  BasicBlock::iterator
1429    HoistInsertPosition(BasicBlock::iterator IP,
1430                        const SmallVectorImpl<Instruction *> &Inputs) const;
1431  BasicBlock::iterator AdjustInsertPositionForExpand(BasicBlock::iterator IP,
1432                                                     const LSRFixup &LF,
1433                                                     const LSRUse &LU) const;
1434
1435  Value *Expand(const LSRFixup &LF,
1436                const Formula &F,
1437                BasicBlock::iterator IP,
1438                SCEVExpander &Rewriter,
1439                SmallVectorImpl<WeakVH> &DeadInsts) const;
1440  void RewriteForPHI(PHINode *PN, const LSRFixup &LF,
1441                     const Formula &F,
1442                     SCEVExpander &Rewriter,
1443                     SmallVectorImpl<WeakVH> &DeadInsts,
1444                     Pass *P) const;
1445  void Rewrite(const LSRFixup &LF,
1446               const Formula &F,
1447               SCEVExpander &Rewriter,
1448               SmallVectorImpl<WeakVH> &DeadInsts,
1449               Pass *P) const;
1450  void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
1451                         Pass *P);
1452
1453  LSRInstance(const TargetLowering *tli, Loop *l, Pass *P);
1454
1455  bool getChanged() const { return Changed; }
1456
1457  void print_factors_and_types(raw_ostream &OS) const;
1458  void print_fixups(raw_ostream &OS) const;
1459  void print_uses(raw_ostream &OS) const;
1460  void print(raw_ostream &OS) const;
1461  void dump() const;
1462};
1463
1464}
1465
1466/// OptimizeShadowIV - If IV is used in a int-to-float cast
1467/// inside the loop then try to eliminate the cast operation.
1468void LSRInstance::OptimizeShadowIV() {
1469  const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1470  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1471    return;
1472
1473  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
1474       UI != E; /* empty */) {
1475    IVUsers::const_iterator CandidateUI = UI;
1476    ++UI;
1477    Instruction *ShadowUse = CandidateUI->getUser();
1478    Type *DestTy = NULL;
1479    bool IsSigned = false;
1480
1481    /* If shadow use is a int->float cast then insert a second IV
1482       to eliminate this cast.
1483
1484         for (unsigned i = 0; i < n; ++i)
1485           foo((double)i);
1486
1487       is transformed into
1488
1489         double d = 0.0;
1490         for (unsigned i = 0; i < n; ++i, ++d)
1491           foo(d);
1492    */
1493    if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
1494      IsSigned = false;
1495      DestTy = UCast->getDestTy();
1496    }
1497    else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
1498      IsSigned = true;
1499      DestTy = SCast->getDestTy();
1500    }
1501    if (!DestTy) continue;
1502
1503    if (TLI) {
1504      // If target does not support DestTy natively then do not apply
1505      // this transformation.
1506      EVT DVT = TLI->getValueType(DestTy);
1507      if (!TLI->isTypeLegal(DVT)) continue;
1508    }
1509
1510    PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
1511    if (!PH) continue;
1512    if (PH->getNumIncomingValues() != 2) continue;
1513
1514    Type *SrcTy = PH->getType();
1515    int Mantissa = DestTy->getFPMantissaWidth();
1516    if (Mantissa == -1) continue;
1517    if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
1518      continue;
1519
1520    unsigned Entry, Latch;
1521    if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
1522      Entry = 0;
1523      Latch = 1;
1524    } else {
1525      Entry = 1;
1526      Latch = 0;
1527    }
1528
1529    ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
1530    if (!Init) continue;
1531    Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
1532                                        (double)Init->getSExtValue() :
1533                                        (double)Init->getZExtValue());
1534
1535    BinaryOperator *Incr =
1536      dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
1537    if (!Incr) continue;
1538    if (Incr->getOpcode() != Instruction::Add
1539        && Incr->getOpcode() != Instruction::Sub)
1540      continue;
1541
1542    /* Initialize new IV, double d = 0.0 in above example. */
1543    ConstantInt *C = NULL;
1544    if (Incr->getOperand(0) == PH)
1545      C = dyn_cast<ConstantInt>(Incr->getOperand(1));
1546    else if (Incr->getOperand(1) == PH)
1547      C = dyn_cast<ConstantInt>(Incr->getOperand(0));
1548    else
1549      continue;
1550
1551    if (!C) continue;
1552
1553    // Ignore negative constants, as the code below doesn't handle them
1554    // correctly. TODO: Remove this restriction.
1555    if (!C->getValue().isStrictlyPositive()) continue;
1556
1557    /* Add new PHINode. */
1558    PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
1559
1560    /* create new increment. '++d' in above example. */
1561    Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
1562    BinaryOperator *NewIncr =
1563      BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
1564                               Instruction::FAdd : Instruction::FSub,
1565                             NewPH, CFP, "IV.S.next.", Incr);
1566
1567    NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
1568    NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
1569
1570    /* Remove cast operation */
1571    ShadowUse->replaceAllUsesWith(NewPH);
1572    ShadowUse->eraseFromParent();
1573    Changed = true;
1574    break;
1575  }
1576}
1577
1578/// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
1579/// set the IV user and stride information and return true, otherwise return
1580/// false.
1581bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
1582  for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1583    if (UI->getUser() == Cond) {
1584      // NOTE: we could handle setcc instructions with multiple uses here, but
1585      // InstCombine does it as well for simple uses, it's not clear that it
1586      // occurs enough in real life to handle.
1587      CondUse = UI;
1588      return true;
1589    }
1590  return false;
1591}
1592
1593/// OptimizeMax - Rewrite the loop's terminating condition if it uses
1594/// a max computation.
1595///
1596/// This is a narrow solution to a specific, but acute, problem. For loops
1597/// like this:
1598///
1599///   i = 0;
1600///   do {
1601///     p[i] = 0.0;
1602///   } while (++i < n);
1603///
1604/// the trip count isn't just 'n', because 'n' might not be positive. And
1605/// unfortunately this can come up even for loops where the user didn't use
1606/// a C do-while loop. For example, seemingly well-behaved top-test loops
1607/// will commonly be lowered like this:
1608//
1609///   if (n > 0) {
1610///     i = 0;
1611///     do {
1612///       p[i] = 0.0;
1613///     } while (++i < n);
1614///   }
1615///
1616/// and then it's possible for subsequent optimization to obscure the if
1617/// test in such a way that indvars can't find it.
1618///
1619/// When indvars can't find the if test in loops like this, it creates a
1620/// max expression, which allows it to give the loop a canonical
1621/// induction variable:
1622///
1623///   i = 0;
1624///   max = n < 1 ? 1 : n;
1625///   do {
1626///     p[i] = 0.0;
1627///   } while (++i != max);
1628///
1629/// Canonical induction variables are necessary because the loop passes
1630/// are designed around them. The most obvious example of this is the
1631/// LoopInfo analysis, which doesn't remember trip count values. It
1632/// expects to be able to rediscover the trip count each time it is
1633/// needed, and it does this using a simple analysis that only succeeds if
1634/// the loop has a canonical induction variable.
1635///
1636/// However, when it comes time to generate code, the maximum operation
1637/// can be quite costly, especially if it's inside of an outer loop.
1638///
1639/// This function solves this problem by detecting this type of loop and
1640/// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
1641/// the instructions for the maximum computation.
1642///
1643ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
1644  // Check that the loop matches the pattern we're looking for.
1645  if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
1646      Cond->getPredicate() != CmpInst::ICMP_NE)
1647    return Cond;
1648
1649  SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
1650  if (!Sel || !Sel->hasOneUse()) return Cond;
1651
1652  const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1653  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1654    return Cond;
1655  const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
1656
1657  // Add one to the backedge-taken count to get the trip count.
1658  const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
1659  if (IterationCount != SE.getSCEV(Sel)) return Cond;
1660
1661  // Check for a max calculation that matches the pattern. There's no check
1662  // for ICMP_ULE here because the comparison would be with zero, which
1663  // isn't interesting.
1664  CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1665  const SCEVNAryExpr *Max = 0;
1666  if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
1667    Pred = ICmpInst::ICMP_SLE;
1668    Max = S;
1669  } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
1670    Pred = ICmpInst::ICMP_SLT;
1671    Max = S;
1672  } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
1673    Pred = ICmpInst::ICMP_ULT;
1674    Max = U;
1675  } else {
1676    // No match; bail.
1677    return Cond;
1678  }
1679
1680  // To handle a max with more than two operands, this optimization would
1681  // require additional checking and setup.
1682  if (Max->getNumOperands() != 2)
1683    return Cond;
1684
1685  const SCEV *MaxLHS = Max->getOperand(0);
1686  const SCEV *MaxRHS = Max->getOperand(1);
1687
1688  // ScalarEvolution canonicalizes constants to the left. For < and >, look
1689  // for a comparison with 1. For <= and >=, a comparison with zero.
1690  if (!MaxLHS ||
1691      (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
1692    return Cond;
1693
1694  // Check the relevant induction variable for conformance to
1695  // the pattern.
1696  const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
1697  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
1698  if (!AR || !AR->isAffine() ||
1699      AR->getStart() != One ||
1700      AR->getStepRecurrence(SE) != One)
1701    return Cond;
1702
1703  assert(AR->getLoop() == L &&
1704         "Loop condition operand is an addrec in a different loop!");
1705
1706  // Check the right operand of the select, and remember it, as it will
1707  // be used in the new comparison instruction.
1708  Value *NewRHS = 0;
1709  if (ICmpInst::isTrueWhenEqual(Pred)) {
1710    // Look for n+1, and grab n.
1711    if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
1712      if (isa<ConstantInt>(BO->getOperand(1)) &&
1713          cast<ConstantInt>(BO->getOperand(1))->isOne() &&
1714          SE.getSCEV(BO->getOperand(0)) == MaxRHS)
1715        NewRHS = BO->getOperand(0);
1716    if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
1717      if (isa<ConstantInt>(BO->getOperand(1)) &&
1718          cast<ConstantInt>(BO->getOperand(1))->isOne() &&
1719          SE.getSCEV(BO->getOperand(0)) == MaxRHS)
1720        NewRHS = BO->getOperand(0);
1721    if (!NewRHS)
1722      return Cond;
1723  } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
1724    NewRHS = Sel->getOperand(1);
1725  else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
1726    NewRHS = Sel->getOperand(2);
1727  else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
1728    NewRHS = SU->getValue();
1729  else
1730    // Max doesn't match expected pattern.
1731    return Cond;
1732
1733  // Determine the new comparison opcode. It may be signed or unsigned,
1734  // and the original comparison may be either equality or inequality.
1735  if (Cond->getPredicate() == CmpInst::ICMP_EQ)
1736    Pred = CmpInst::getInversePredicate(Pred);
1737
1738  // Ok, everything looks ok to change the condition into an SLT or SGE and
1739  // delete the max calculation.
1740  ICmpInst *NewCond =
1741    new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
1742
1743  // Delete the max calculation instructions.
1744  Cond->replaceAllUsesWith(NewCond);
1745  CondUse->setUser(NewCond);
1746  Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
1747  Cond->eraseFromParent();
1748  Sel->eraseFromParent();
1749  if (Cmp->use_empty())
1750    Cmp->eraseFromParent();
1751  return NewCond;
1752}
1753
1754/// OptimizeLoopTermCond - Change loop terminating condition to use the
1755/// postinc iv when possible.
1756void
1757LSRInstance::OptimizeLoopTermCond() {
1758  SmallPtrSet<Instruction *, 4> PostIncs;
1759
1760  BasicBlock *LatchBlock = L->getLoopLatch();
1761  SmallVector<BasicBlock*, 8> ExitingBlocks;
1762  L->getExitingBlocks(ExitingBlocks);
1763
1764  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
1765    BasicBlock *ExitingBlock = ExitingBlocks[i];
1766
1767    // Get the terminating condition for the loop if possible.  If we
1768    // can, we want to change it to use a post-incremented version of its
1769    // induction variable, to allow coalescing the live ranges for the IV into
1770    // one register value.
1771
1772    BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
1773    if (!TermBr)
1774      continue;
1775    // FIXME: Overly conservative, termination condition could be an 'or' etc..
1776    if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
1777      continue;
1778
1779    // Search IVUsesByStride to find Cond's IVUse if there is one.
1780    IVStrideUse *CondUse = 0;
1781    ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
1782    if (!FindIVUserForCond(Cond, CondUse))
1783      continue;
1784
1785    // If the trip count is computed in terms of a max (due to ScalarEvolution
1786    // being unable to find a sufficient guard, for example), change the loop
1787    // comparison to use SLT or ULT instead of NE.
1788    // One consequence of doing this now is that it disrupts the count-down
1789    // optimization. That's not always a bad thing though, because in such
1790    // cases it may still be worthwhile to avoid a max.
1791    Cond = OptimizeMax(Cond, CondUse);
1792
1793    // If this exiting block dominates the latch block, it may also use
1794    // the post-inc value if it won't be shared with other uses.
1795    // Check for dominance.
1796    if (!DT.dominates(ExitingBlock, LatchBlock))
1797      continue;
1798
1799    // Conservatively avoid trying to use the post-inc value in non-latch
1800    // exits if there may be pre-inc users in intervening blocks.
1801    if (LatchBlock != ExitingBlock)
1802      for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1803        // Test if the use is reachable from the exiting block. This dominator
1804        // query is a conservative approximation of reachability.
1805        if (&*UI != CondUse &&
1806            !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
1807          // Conservatively assume there may be reuse if the quotient of their
1808          // strides could be a legal scale.
1809          const SCEV *A = IU.getStride(*CondUse, L);
1810          const SCEV *B = IU.getStride(*UI, L);
1811          if (!A || !B) continue;
1812          if (SE.getTypeSizeInBits(A->getType()) !=
1813              SE.getTypeSizeInBits(B->getType())) {
1814            if (SE.getTypeSizeInBits(A->getType()) >
1815                SE.getTypeSizeInBits(B->getType()))
1816              B = SE.getSignExtendExpr(B, A->getType());
1817            else
1818              A = SE.getSignExtendExpr(A, B->getType());
1819          }
1820          if (const SCEVConstant *D =
1821                dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
1822            const ConstantInt *C = D->getValue();
1823            // Stride of one or negative one can have reuse with non-addresses.
1824            if (C->isOne() || C->isAllOnesValue())
1825              goto decline_post_inc;
1826            // Avoid weird situations.
1827            if (C->getValue().getMinSignedBits() >= 64 ||
1828                C->getValue().isMinSignedValue())
1829              goto decline_post_inc;
1830            // Without TLI, assume that any stride might be valid, and so any
1831            // use might be shared.
1832            if (!TLI)
1833              goto decline_post_inc;
1834            // Check for possible scaled-address reuse.
1835            Type *AccessTy = getAccessType(UI->getUser());
1836            TargetLowering::AddrMode AM;
1837            AM.Scale = C->getSExtValue();
1838            if (TLI->isLegalAddressingMode(AM, AccessTy))
1839              goto decline_post_inc;
1840            AM.Scale = -AM.Scale;
1841            if (TLI->isLegalAddressingMode(AM, AccessTy))
1842              goto decline_post_inc;
1843          }
1844        }
1845
1846    DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
1847                 << *Cond << '\n');
1848
1849    // It's possible for the setcc instruction to be anywhere in the loop, and
1850    // possible for it to have multiple users.  If it is not immediately before
1851    // the exiting block branch, move it.
1852    if (&*++BasicBlock::iterator(Cond) != TermBr) {
1853      if (Cond->hasOneUse()) {
1854        Cond->moveBefore(TermBr);
1855      } else {
1856        // Clone the terminating condition and insert into the loopend.
1857        ICmpInst *OldCond = Cond;
1858        Cond = cast<ICmpInst>(Cond->clone());
1859        Cond->setName(L->getHeader()->getName() + ".termcond");
1860        ExitingBlock->getInstList().insert(TermBr, Cond);
1861
1862        // Clone the IVUse, as the old use still exists!
1863        CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
1864        TermBr->replaceUsesOfWith(OldCond, Cond);
1865      }
1866    }
1867
1868    // If we get to here, we know that we can transform the setcc instruction to
1869    // use the post-incremented version of the IV, allowing us to coalesce the
1870    // live ranges for the IV correctly.
1871    CondUse->transformToPostInc(L);
1872    Changed = true;
1873
1874    PostIncs.insert(Cond);
1875  decline_post_inc:;
1876  }
1877
1878  // Determine an insertion point for the loop induction variable increment. It
1879  // must dominate all the post-inc comparisons we just set up, and it must
1880  // dominate the loop latch edge.
1881  IVIncInsertPos = L->getLoopLatch()->getTerminator();
1882  for (SmallPtrSet<Instruction *, 4>::const_iterator I = PostIncs.begin(),
1883       E = PostIncs.end(); I != E; ++I) {
1884    BasicBlock *BB =
1885      DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
1886                                    (*I)->getParent());
1887    if (BB == (*I)->getParent())
1888      IVIncInsertPos = *I;
1889    else if (BB != IVIncInsertPos->getParent())
1890      IVIncInsertPos = BB->getTerminator();
1891  }
1892}
1893
1894/// reconcileNewOffset - Determine if the given use can accommodate a fixup
1895/// at the given offset and other details. If so, update the use and
1896/// return true.
1897bool
1898LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1899                                LSRUse::KindType Kind, Type *AccessTy) {
1900  int64_t NewMinOffset = LU.MinOffset;
1901  int64_t NewMaxOffset = LU.MaxOffset;
1902  Type *NewAccessTy = AccessTy;
1903
1904  // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
1905  // something conservative, however this can pessimize in the case that one of
1906  // the uses will have all its uses outside the loop, for example.
1907  if (LU.Kind != Kind)
1908    return false;
1909  // Conservatively assume HasBaseReg is true for now.
1910  if (NewOffset < LU.MinOffset) {
1911    if (!isAlwaysFoldable(LU.MaxOffset - NewOffset, 0, HasBaseReg,
1912                          Kind, AccessTy, TLI))
1913      return false;
1914    NewMinOffset = NewOffset;
1915  } else if (NewOffset > LU.MaxOffset) {
1916    if (!isAlwaysFoldable(NewOffset - LU.MinOffset, 0, HasBaseReg,
1917                          Kind, AccessTy, TLI))
1918      return false;
1919    NewMaxOffset = NewOffset;
1920  }
1921  // Check for a mismatched access type, and fall back conservatively as needed.
1922  // TODO: Be less conservative when the type is similar and can use the same
1923  // addressing modes.
1924  if (Kind == LSRUse::Address && AccessTy != LU.AccessTy)
1925    NewAccessTy = Type::getVoidTy(AccessTy->getContext());
1926
1927  // Update the use.
1928  LU.MinOffset = NewMinOffset;
1929  LU.MaxOffset = NewMaxOffset;
1930  LU.AccessTy = NewAccessTy;
1931  if (NewOffset != LU.Offsets.back())
1932    LU.Offsets.push_back(NewOffset);
1933  return true;
1934}
1935
1936/// getUse - Return an LSRUse index and an offset value for a fixup which
1937/// needs the given expression, with the given kind and optional access type.
1938/// Either reuse an existing use or create a new one, as needed.
1939std::pair<size_t, int64_t>
1940LSRInstance::getUse(const SCEV *&Expr,
1941                    LSRUse::KindType Kind, Type *AccessTy) {
1942  const SCEV *Copy = Expr;
1943  int64_t Offset = ExtractImmediate(Expr, SE);
1944
1945  // Basic uses can't accept any offset, for example.
1946  if (!isAlwaysFoldable(Offset, 0, /*HasBaseReg=*/true, Kind, AccessTy, TLI)) {
1947    Expr = Copy;
1948    Offset = 0;
1949  }
1950
1951  std::pair<UseMapTy::iterator, bool> P =
1952    UseMap.insert(std::make_pair(std::make_pair(Expr, Kind), 0));
1953  if (!P.second) {
1954    // A use already existed with this base.
1955    size_t LUIdx = P.first->second;
1956    LSRUse &LU = Uses[LUIdx];
1957    if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
1958      // Reuse this use.
1959      return std::make_pair(LUIdx, Offset);
1960  }
1961
1962  // Create a new use.
1963  size_t LUIdx = Uses.size();
1964  P.first->second = LUIdx;
1965  Uses.push_back(LSRUse(Kind, AccessTy));
1966  LSRUse &LU = Uses[LUIdx];
1967
1968  // We don't need to track redundant offsets, but we don't need to go out
1969  // of our way here to avoid them.
1970  if (LU.Offsets.empty() || Offset != LU.Offsets.back())
1971    LU.Offsets.push_back(Offset);
1972
1973  LU.MinOffset = Offset;
1974  LU.MaxOffset = Offset;
1975  return std::make_pair(LUIdx, Offset);
1976}
1977
1978/// DeleteUse - Delete the given use from the Uses list.
1979void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
1980  if (&LU != &Uses.back())
1981    std::swap(LU, Uses.back());
1982  Uses.pop_back();
1983
1984  // Update RegUses.
1985  RegUses.SwapAndDropUse(LUIdx, Uses.size());
1986}
1987
1988/// FindUseWithFormula - Look for a use distinct from OrigLU which is has
1989/// a formula that has the same registers as the given formula.
1990LSRUse *
1991LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
1992                                       const LSRUse &OrigLU) {
1993  // Search all uses for the formula. This could be more clever.
1994  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
1995    LSRUse &LU = Uses[LUIdx];
1996    // Check whether this use is close enough to OrigLU, to see whether it's
1997    // worthwhile looking through its formulae.
1998    // Ignore ICmpZero uses because they may contain formulae generated by
1999    // GenerateICmpZeroScales, in which case adding fixup offsets may
2000    // be invalid.
2001    if (&LU != &OrigLU &&
2002        LU.Kind != LSRUse::ICmpZero &&
2003        LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2004        LU.WidestFixupType == OrigLU.WidestFixupType &&
2005        LU.HasFormulaWithSameRegs(OrigF)) {
2006      // Scan through this use's formulae.
2007      for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
2008           E = LU.Formulae.end(); I != E; ++I) {
2009        const Formula &F = *I;
2010        // Check to see if this formula has the same registers and symbols
2011        // as OrigF.
2012        if (F.BaseRegs == OrigF.BaseRegs &&
2013            F.ScaledReg == OrigF.ScaledReg &&
2014            F.AM.BaseGV == OrigF.AM.BaseGV &&
2015            F.AM.Scale == OrigF.AM.Scale &&
2016            F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2017          if (F.AM.BaseOffs == 0)
2018            return &LU;
2019          // This is the formula where all the registers and symbols matched;
2020          // there aren't going to be any others. Since we declined it, we
2021          // can skip the rest of the formulae and procede to the next LSRUse.
2022          break;
2023        }
2024      }
2025    }
2026  }
2027
2028  // Nothing looked good.
2029  return 0;
2030}
2031
2032void LSRInstance::CollectInterestingTypesAndFactors() {
2033  SmallSetVector<const SCEV *, 4> Strides;
2034
2035  // Collect interesting types and strides.
2036  SmallVector<const SCEV *, 4> Worklist;
2037  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
2038    const SCEV *Expr = IU.getExpr(*UI);
2039
2040    // Collect interesting types.
2041    Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2042
2043    // Add strides for mentioned loops.
2044    Worklist.push_back(Expr);
2045    do {
2046      const SCEV *S = Worklist.pop_back_val();
2047      if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2048        Strides.insert(AR->getStepRecurrence(SE));
2049        Worklist.push_back(AR->getStart());
2050      } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2051        Worklist.append(Add->op_begin(), Add->op_end());
2052      }
2053    } while (!Worklist.empty());
2054  }
2055
2056  // Compute interesting factors from the set of interesting strides.
2057  for (SmallSetVector<const SCEV *, 4>::const_iterator
2058       I = Strides.begin(), E = Strides.end(); I != E; ++I)
2059    for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2060         llvm::next(I); NewStrideIter != E; ++NewStrideIter) {
2061      const SCEV *OldStride = *I;
2062      const SCEV *NewStride = *NewStrideIter;
2063
2064      if (SE.getTypeSizeInBits(OldStride->getType()) !=
2065          SE.getTypeSizeInBits(NewStride->getType())) {
2066        if (SE.getTypeSizeInBits(OldStride->getType()) >
2067            SE.getTypeSizeInBits(NewStride->getType()))
2068          NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2069        else
2070          OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2071      }
2072      if (const SCEVConstant *Factor =
2073            dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2074                                                        SE, true))) {
2075        if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
2076          Factors.insert(Factor->getValue()->getValue().getSExtValue());
2077      } else if (const SCEVConstant *Factor =
2078                   dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2079                                                               NewStride,
2080                                                               SE, true))) {
2081        if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
2082          Factors.insert(Factor->getValue()->getValue().getSExtValue());
2083      }
2084    }
2085
2086  // If all uses use the same type, don't bother looking for truncation-based
2087  // reuse.
2088  if (Types.size() == 1)
2089    Types.clear();
2090
2091  DEBUG(print_factors_and_types(dbgs()));
2092}
2093
2094void LSRInstance::CollectFixupsAndInitialFormulae() {
2095  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
2096    // Record the uses.
2097    LSRFixup &LF = getNewFixup();
2098    LF.UserInst = UI->getUser();
2099    LF.OperandValToReplace = UI->getOperandValToReplace();
2100    LF.PostIncLoops = UI->getPostIncLoops();
2101
2102    LSRUse::KindType Kind = LSRUse::Basic;
2103    Type *AccessTy = 0;
2104    if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) {
2105      Kind = LSRUse::Address;
2106      AccessTy = getAccessType(LF.UserInst);
2107    }
2108
2109    const SCEV *S = IU.getExpr(*UI);
2110
2111    // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
2112    // (N - i == 0), and this allows (N - i) to be the expression that we work
2113    // with rather than just N or i, so we can consider the register
2114    // requirements for both N and i at the same time. Limiting this code to
2115    // equality icmps is not a problem because all interesting loops use
2116    // equality icmps, thanks to IndVarSimplify.
2117    if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst))
2118      if (CI->isEquality()) {
2119        // Swap the operands if needed to put the OperandValToReplace on the
2120        // left, for consistency.
2121        Value *NV = CI->getOperand(1);
2122        if (NV == LF.OperandValToReplace) {
2123          CI->setOperand(1, CI->getOperand(0));
2124          CI->setOperand(0, NV);
2125          NV = CI->getOperand(1);
2126          Changed = true;
2127        }
2128
2129        // x == y  -->  x - y == 0
2130        const SCEV *N = SE.getSCEV(NV);
2131        if (SE.isLoopInvariant(N, L)) {
2132          // S is normalized, so normalize N before folding it into S
2133          // to keep the result normalized.
2134          N = TransformForPostIncUse(Normalize, N, CI, 0,
2135                                     LF.PostIncLoops, SE, DT);
2136          Kind = LSRUse::ICmpZero;
2137          S = SE.getMinusSCEV(N, S);
2138        }
2139
2140        // -1 and the negations of all interesting strides (except the negation
2141        // of -1) are now also interesting.
2142        for (size_t i = 0, e = Factors.size(); i != e; ++i)
2143          if (Factors[i] != -1)
2144            Factors.insert(-(uint64_t)Factors[i]);
2145        Factors.insert(-1);
2146      }
2147
2148    // Set up the initial formula for this use.
2149    std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
2150    LF.LUIdx = P.first;
2151    LF.Offset = P.second;
2152    LSRUse &LU = Uses[LF.LUIdx];
2153    LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
2154    if (!LU.WidestFixupType ||
2155        SE.getTypeSizeInBits(LU.WidestFixupType) <
2156        SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
2157      LU.WidestFixupType = LF.OperandValToReplace->getType();
2158
2159    // If this is the first use of this LSRUse, give it a formula.
2160    if (LU.Formulae.empty()) {
2161      InsertInitialFormula(S, LU, LF.LUIdx);
2162      CountRegisters(LU.Formulae.back(), LF.LUIdx);
2163    }
2164  }
2165
2166  DEBUG(print_fixups(dbgs()));
2167}
2168
2169/// InsertInitialFormula - Insert a formula for the given expression into
2170/// the given use, separating out loop-variant portions from loop-invariant
2171/// and loop-computable portions.
2172void
2173LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
2174  Formula F;
2175  F.InitialMatch(S, L, SE);
2176  bool Inserted = InsertFormula(LU, LUIdx, F);
2177  assert(Inserted && "Initial formula already exists!"); (void)Inserted;
2178}
2179
2180/// InsertSupplementalFormula - Insert a simple single-register formula for
2181/// the given expression into the given use.
2182void
2183LSRInstance::InsertSupplementalFormula(const SCEV *S,
2184                                       LSRUse &LU, size_t LUIdx) {
2185  Formula F;
2186  F.BaseRegs.push_back(S);
2187  F.AM.HasBaseReg = true;
2188  bool Inserted = InsertFormula(LU, LUIdx, F);
2189  assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
2190}
2191
2192/// CountRegisters - Note which registers are used by the given formula,
2193/// updating RegUses.
2194void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
2195  if (F.ScaledReg)
2196    RegUses.CountRegister(F.ScaledReg, LUIdx);
2197  for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
2198       E = F.BaseRegs.end(); I != E; ++I)
2199    RegUses.CountRegister(*I, LUIdx);
2200}
2201
2202/// InsertFormula - If the given formula has not yet been inserted, add it to
2203/// the list, and return true. Return false otherwise.
2204bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
2205  if (!LU.InsertFormula(F))
2206    return false;
2207
2208  CountRegisters(F, LUIdx);
2209  return true;
2210}
2211
2212/// CollectLoopInvariantFixupsAndFormulae - Check for other uses of
2213/// loop-invariant values which we're tracking. These other uses will pin these
2214/// values in registers, making them less profitable for elimination.
2215/// TODO: This currently misses non-constant addrec step registers.
2216/// TODO: Should this give more weight to users inside the loop?
2217void
2218LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
2219  SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
2220  SmallPtrSet<const SCEV *, 8> Inserted;
2221
2222  while (!Worklist.empty()) {
2223    const SCEV *S = Worklist.pop_back_val();
2224
2225    if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
2226      Worklist.append(N->op_begin(), N->op_end());
2227    else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
2228      Worklist.push_back(C->getOperand());
2229    else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2230      Worklist.push_back(D->getLHS());
2231      Worklist.push_back(D->getRHS());
2232    } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2233      if (!Inserted.insert(U)) continue;
2234      const Value *V = U->getValue();
2235      if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
2236        // Look for instructions defined outside the loop.
2237        if (L->contains(Inst)) continue;
2238      } else if (isa<UndefValue>(V))
2239        // Undef doesn't have a live range, so it doesn't matter.
2240        continue;
2241      for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
2242           UI != UE; ++UI) {
2243        const Instruction *UserInst = dyn_cast<Instruction>(*UI);
2244        // Ignore non-instructions.
2245        if (!UserInst)
2246          continue;
2247        // Ignore instructions in other functions (as can happen with
2248        // Constants).
2249        if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
2250          continue;
2251        // Ignore instructions not dominated by the loop.
2252        const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
2253          UserInst->getParent() :
2254          cast<PHINode>(UserInst)->getIncomingBlock(
2255            PHINode::getIncomingValueNumForOperand(UI.getOperandNo()));
2256        if (!DT.dominates(L->getHeader(), UseBB))
2257          continue;
2258        // Ignore uses which are part of other SCEV expressions, to avoid
2259        // analyzing them multiple times.
2260        if (SE.isSCEVable(UserInst->getType())) {
2261          const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
2262          // If the user is a no-op, look through to its uses.
2263          if (!isa<SCEVUnknown>(UserS))
2264            continue;
2265          if (UserS == U) {
2266            Worklist.push_back(
2267              SE.getUnknown(const_cast<Instruction *>(UserInst)));
2268            continue;
2269          }
2270        }
2271        // Ignore icmp instructions which are already being analyzed.
2272        if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
2273          unsigned OtherIdx = !UI.getOperandNo();
2274          Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
2275          if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
2276            continue;
2277        }
2278
2279        LSRFixup &LF = getNewFixup();
2280        LF.UserInst = const_cast<Instruction *>(UserInst);
2281        LF.OperandValToReplace = UI.getUse();
2282        std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, 0);
2283        LF.LUIdx = P.first;
2284        LF.Offset = P.second;
2285        LSRUse &LU = Uses[LF.LUIdx];
2286        LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
2287        if (!LU.WidestFixupType ||
2288            SE.getTypeSizeInBits(LU.WidestFixupType) <
2289            SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
2290          LU.WidestFixupType = LF.OperandValToReplace->getType();
2291        InsertSupplementalFormula(U, LU, LF.LUIdx);
2292        CountRegisters(LU.Formulae.back(), Uses.size() - 1);
2293        break;
2294      }
2295    }
2296  }
2297}
2298
2299/// CollectSubexprs - Split S into subexpressions which can be pulled out into
2300/// separate registers. If C is non-null, multiply each subexpression by C.
2301static void CollectSubexprs(const SCEV *S, const SCEVConstant *C,
2302                            SmallVectorImpl<const SCEV *> &Ops,
2303                            const Loop *L,
2304                            ScalarEvolution &SE) {
2305  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2306    // Break out add operands.
2307    for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
2308         I != E; ++I)
2309      CollectSubexprs(*I, C, Ops, L, SE);
2310    return;
2311  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2312    // Split a non-zero base out of an addrec.
2313    if (!AR->getStart()->isZero()) {
2314      CollectSubexprs(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
2315                                       AR->getStepRecurrence(SE),
2316                                       AR->getLoop(),
2317                                       //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
2318                                       SCEV::FlagAnyWrap),
2319                      C, Ops, L, SE);
2320      CollectSubexprs(AR->getStart(), C, Ops, L, SE);
2321      return;
2322    }
2323  } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2324    // Break (C * (a + b + c)) into C*a + C*b + C*c.
2325    if (Mul->getNumOperands() == 2)
2326      if (const SCEVConstant *Op0 =
2327            dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2328        CollectSubexprs(Mul->getOperand(1),
2329                        C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0,
2330                        Ops, L, SE);
2331        return;
2332      }
2333  }
2334
2335  // Otherwise use the value itself, optionally with a scale applied.
2336  Ops.push_back(C ? SE.getMulExpr(C, S) : S);
2337}
2338
2339/// GenerateReassociations - Split out subexpressions from adds and the bases of
2340/// addrecs.
2341void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
2342                                         Formula Base,
2343                                         unsigned Depth) {
2344  // Arbitrarily cap recursion to protect compile time.
2345  if (Depth >= 3) return;
2346
2347  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2348    const SCEV *BaseReg = Base.BaseRegs[i];
2349
2350    SmallVector<const SCEV *, 8> AddOps;
2351    CollectSubexprs(BaseReg, 0, AddOps, L, SE);
2352
2353    if (AddOps.size() == 1) continue;
2354
2355    for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
2356         JE = AddOps.end(); J != JE; ++J) {
2357
2358      // Loop-variant "unknown" values are uninteresting; we won't be able to
2359      // do anything meaningful with them.
2360      if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
2361        continue;
2362
2363      // Don't pull a constant into a register if the constant could be folded
2364      // into an immediate field.
2365      if (isAlwaysFoldable(*J, LU.MinOffset, LU.MaxOffset,
2366                           Base.getNumRegs() > 1,
2367                           LU.Kind, LU.AccessTy, TLI, SE))
2368        continue;
2369
2370      // Collect all operands except *J.
2371      SmallVector<const SCEV *, 8> InnerAddOps
2372        (((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
2373      InnerAddOps.append
2374        (llvm::next(J), ((const SmallVector<const SCEV *, 8> &)AddOps).end());
2375
2376      // Don't leave just a constant behind in a register if the constant could
2377      // be folded into an immediate field.
2378      if (InnerAddOps.size() == 1 &&
2379          isAlwaysFoldable(InnerAddOps[0], LU.MinOffset, LU.MaxOffset,
2380                           Base.getNumRegs() > 1,
2381                           LU.Kind, LU.AccessTy, TLI, SE))
2382        continue;
2383
2384      const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
2385      if (InnerSum->isZero())
2386        continue;
2387      Formula F = Base;
2388
2389      // Add the remaining pieces of the add back into the new formula.
2390      const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
2391      if (TLI && InnerSumSC &&
2392          SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
2393          TLI->isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
2394                                   InnerSumSC->getValue()->getZExtValue())) {
2395        F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset +
2396                           InnerSumSC->getValue()->getZExtValue();
2397        F.BaseRegs.erase(F.BaseRegs.begin() + i);
2398      } else
2399        F.BaseRegs[i] = InnerSum;
2400
2401      // Add J as its own register, or an unfolded immediate.
2402      const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
2403      if (TLI && SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
2404          TLI->isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
2405                                   SC->getValue()->getZExtValue()))
2406        F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset +
2407                           SC->getValue()->getZExtValue();
2408      else
2409        F.BaseRegs.push_back(*J);
2410
2411      if (InsertFormula(LU, LUIdx, F))
2412        // If that formula hadn't been seen before, recurse to find more like
2413        // it.
2414        GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth+1);
2415    }
2416  }
2417}
2418
2419/// GenerateCombinations - Generate a formula consisting of all of the
2420/// loop-dominating registers added into a single register.
2421void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
2422                                       Formula Base) {
2423  // This method is only interesting on a plurality of registers.
2424  if (Base.BaseRegs.size() <= 1) return;
2425
2426  Formula F = Base;
2427  F.BaseRegs.clear();
2428  SmallVector<const SCEV *, 4> Ops;
2429  for (SmallVectorImpl<const SCEV *>::const_iterator
2430       I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) {
2431    const SCEV *BaseReg = *I;
2432    if (SE.properlyDominates(BaseReg, L->getHeader()) &&
2433        !SE.hasComputableLoopEvolution(BaseReg, L))
2434      Ops.push_back(BaseReg);
2435    else
2436      F.BaseRegs.push_back(BaseReg);
2437  }
2438  if (Ops.size() > 1) {
2439    const SCEV *Sum = SE.getAddExpr(Ops);
2440    // TODO: If Sum is zero, it probably means ScalarEvolution missed an
2441    // opportunity to fold something. For now, just ignore such cases
2442    // rather than proceed with zero in a register.
2443    if (!Sum->isZero()) {
2444      F.BaseRegs.push_back(Sum);
2445      (void)InsertFormula(LU, LUIdx, F);
2446    }
2447  }
2448}
2449
2450/// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets.
2451void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
2452                                          Formula Base) {
2453  // We can't add a symbolic offset if the address already contains one.
2454  if (Base.AM.BaseGV) return;
2455
2456  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2457    const SCEV *G = Base.BaseRegs[i];
2458    GlobalValue *GV = ExtractSymbol(G, SE);
2459    if (G->isZero() || !GV)
2460      continue;
2461    Formula F = Base;
2462    F.AM.BaseGV = GV;
2463    if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
2464                    LU.Kind, LU.AccessTy, TLI))
2465      continue;
2466    F.BaseRegs[i] = G;
2467    (void)InsertFormula(LU, LUIdx, F);
2468  }
2469}
2470
2471/// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
2472void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
2473                                          Formula Base) {
2474  // TODO: For now, just add the min and max offset, because it usually isn't
2475  // worthwhile looking at everything inbetween.
2476  SmallVector<int64_t, 2> Worklist;
2477  Worklist.push_back(LU.MinOffset);
2478  if (LU.MaxOffset != LU.MinOffset)
2479    Worklist.push_back(LU.MaxOffset);
2480
2481  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2482    const SCEV *G = Base.BaseRegs[i];
2483
2484    for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(),
2485         E = Worklist.end(); I != E; ++I) {
2486      Formula F = Base;
2487      F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs - *I;
2488      if (isLegalUse(F.AM, LU.MinOffset - *I, LU.MaxOffset - *I,
2489                     LU.Kind, LU.AccessTy, TLI)) {
2490        // Add the offset to the base register.
2491        const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), *I), G);
2492        // If it cancelled out, drop the base register, otherwise update it.
2493        if (NewG->isZero()) {
2494          std::swap(F.BaseRegs[i], F.BaseRegs.back());
2495          F.BaseRegs.pop_back();
2496        } else
2497          F.BaseRegs[i] = NewG;
2498
2499        (void)InsertFormula(LU, LUIdx, F);
2500      }
2501    }
2502
2503    int64_t Imm = ExtractImmediate(G, SE);
2504    if (G->isZero() || Imm == 0)
2505      continue;
2506    Formula F = Base;
2507    F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Imm;
2508    if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
2509                    LU.Kind, LU.AccessTy, TLI))
2510      continue;
2511    F.BaseRegs[i] = G;
2512    (void)InsertFormula(LU, LUIdx, F);
2513  }
2514}
2515
2516/// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up
2517/// the comparison. For example, x == y -> x*c == y*c.
2518void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
2519                                         Formula Base) {
2520  if (LU.Kind != LSRUse::ICmpZero) return;
2521
2522  // Determine the integer type for the base formula.
2523  Type *IntTy = Base.getType();
2524  if (!IntTy) return;
2525  if (SE.getTypeSizeInBits(IntTy) > 64) return;
2526
2527  // Don't do this if there is more than one offset.
2528  if (LU.MinOffset != LU.MaxOffset) return;
2529
2530  assert(!Base.AM.BaseGV && "ICmpZero use is not legal!");
2531
2532  // Check each interesting stride.
2533  for (SmallSetVector<int64_t, 8>::const_iterator
2534       I = Factors.begin(), E = Factors.end(); I != E; ++I) {
2535    int64_t Factor = *I;
2536
2537    // Check that the multiplication doesn't overflow.
2538    if (Base.AM.BaseOffs == INT64_MIN && Factor == -1)
2539      continue;
2540    int64_t NewBaseOffs = (uint64_t)Base.AM.BaseOffs * Factor;
2541    if (NewBaseOffs / Factor != Base.AM.BaseOffs)
2542      continue;
2543
2544    // Check that multiplying with the use offset doesn't overflow.
2545    int64_t Offset = LU.MinOffset;
2546    if (Offset == INT64_MIN && Factor == -1)
2547      continue;
2548    Offset = (uint64_t)Offset * Factor;
2549    if (Offset / Factor != LU.MinOffset)
2550      continue;
2551
2552    Formula F = Base;
2553    F.AM.BaseOffs = NewBaseOffs;
2554
2555    // Check that this scale is legal.
2556    if (!isLegalUse(F.AM, Offset, Offset, LU.Kind, LU.AccessTy, TLI))
2557      continue;
2558
2559    // Compensate for the use having MinOffset built into it.
2560    F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Offset - LU.MinOffset;
2561
2562    const SCEV *FactorS = SE.getConstant(IntTy, Factor);
2563
2564    // Check that multiplying with each base register doesn't overflow.
2565    for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
2566      F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
2567      if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
2568        goto next;
2569    }
2570
2571    // Check that multiplying with the scaled register doesn't overflow.
2572    if (F.ScaledReg) {
2573      F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
2574      if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
2575        continue;
2576    }
2577
2578    // Check that multiplying with the unfolded offset doesn't overflow.
2579    if (F.UnfoldedOffset != 0) {
2580      if (F.UnfoldedOffset == INT64_MIN && Factor == -1)
2581        continue;
2582      F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
2583      if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
2584        continue;
2585    }
2586
2587    // If we make it here and it's legal, add it.
2588    (void)InsertFormula(LU, LUIdx, F);
2589  next:;
2590  }
2591}
2592
2593/// GenerateScales - Generate stride factor reuse formulae by making use of
2594/// scaled-offset address modes, for example.
2595void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
2596  // Determine the integer type for the base formula.
2597  Type *IntTy = Base.getType();
2598  if (!IntTy) return;
2599
2600  // If this Formula already has a scaled register, we can't add another one.
2601  if (Base.AM.Scale != 0) return;
2602
2603  // Check each interesting stride.
2604  for (SmallSetVector<int64_t, 8>::const_iterator
2605       I = Factors.begin(), E = Factors.end(); I != E; ++I) {
2606    int64_t Factor = *I;
2607
2608    Base.AM.Scale = Factor;
2609    Base.AM.HasBaseReg = Base.BaseRegs.size() > 1;
2610    // Check whether this scale is going to be legal.
2611    if (!isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
2612                    LU.Kind, LU.AccessTy, TLI)) {
2613      // As a special-case, handle special out-of-loop Basic users specially.
2614      // TODO: Reconsider this special case.
2615      if (LU.Kind == LSRUse::Basic &&
2616          isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
2617                     LSRUse::Special, LU.AccessTy, TLI) &&
2618          LU.AllFixupsOutsideLoop)
2619        LU.Kind = LSRUse::Special;
2620      else
2621        continue;
2622    }
2623    // For an ICmpZero, negating a solitary base register won't lead to
2624    // new solutions.
2625    if (LU.Kind == LSRUse::ICmpZero &&
2626        !Base.AM.HasBaseReg && Base.AM.BaseOffs == 0 && !Base.AM.BaseGV)
2627      continue;
2628    // For each addrec base reg, apply the scale, if possible.
2629    for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
2630      if (const SCEVAddRecExpr *AR =
2631            dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
2632        const SCEV *FactorS = SE.getConstant(IntTy, Factor);
2633        if (FactorS->isZero())
2634          continue;
2635        // Divide out the factor, ignoring high bits, since we'll be
2636        // scaling the value back up in the end.
2637        if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
2638          // TODO: This could be optimized to avoid all the copying.
2639          Formula F = Base;
2640          F.ScaledReg = Quotient;
2641          F.DeleteBaseReg(F.BaseRegs[i]);
2642          (void)InsertFormula(LU, LUIdx, F);
2643        }
2644      }
2645  }
2646}
2647
2648/// GenerateTruncates - Generate reuse formulae from different IV types.
2649void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
2650  // This requires TargetLowering to tell us which truncates are free.
2651  if (!TLI) return;
2652
2653  // Don't bother truncating symbolic values.
2654  if (Base.AM.BaseGV) return;
2655
2656  // Determine the integer type for the base formula.
2657  Type *DstTy = Base.getType();
2658  if (!DstTy) return;
2659  DstTy = SE.getEffectiveSCEVType(DstTy);
2660
2661  for (SmallSetVector<Type *, 4>::const_iterator
2662       I = Types.begin(), E = Types.end(); I != E; ++I) {
2663    Type *SrcTy = *I;
2664    if (SrcTy != DstTy && TLI->isTruncateFree(SrcTy, DstTy)) {
2665      Formula F = Base;
2666
2667      if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I);
2668      for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(),
2669           JE = F.BaseRegs.end(); J != JE; ++J)
2670        *J = SE.getAnyExtendExpr(*J, SrcTy);
2671
2672      // TODO: This assumes we've done basic processing on all uses and
2673      // have an idea what the register usage is.
2674      if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
2675        continue;
2676
2677      (void)InsertFormula(LU, LUIdx, F);
2678    }
2679  }
2680}
2681
2682namespace {
2683
2684/// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to
2685/// defer modifications so that the search phase doesn't have to worry about
2686/// the data structures moving underneath it.
2687struct WorkItem {
2688  size_t LUIdx;
2689  int64_t Imm;
2690  const SCEV *OrigReg;
2691
2692  WorkItem(size_t LI, int64_t I, const SCEV *R)
2693    : LUIdx(LI), Imm(I), OrigReg(R) {}
2694
2695  void print(raw_ostream &OS) const;
2696  void dump() const;
2697};
2698
2699}
2700
2701void WorkItem::print(raw_ostream &OS) const {
2702  OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
2703     << " , add offset " << Imm;
2704}
2705
2706void WorkItem::dump() const {
2707  print(errs()); errs() << '\n';
2708}
2709
2710/// GenerateCrossUseConstantOffsets - Look for registers which are a constant
2711/// distance apart and try to form reuse opportunities between them.
2712void LSRInstance::GenerateCrossUseConstantOffsets() {
2713  // Group the registers by their value without any added constant offset.
2714  typedef std::map<int64_t, const SCEV *> ImmMapTy;
2715  typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy;
2716  RegMapTy Map;
2717  DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
2718  SmallVector<const SCEV *, 8> Sequence;
2719  for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
2720       I != E; ++I) {
2721    const SCEV *Reg = *I;
2722    int64_t Imm = ExtractImmediate(Reg, SE);
2723    std::pair<RegMapTy::iterator, bool> Pair =
2724      Map.insert(std::make_pair(Reg, ImmMapTy()));
2725    if (Pair.second)
2726      Sequence.push_back(Reg);
2727    Pair.first->second.insert(std::make_pair(Imm, *I));
2728    UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I);
2729  }
2730
2731  // Now examine each set of registers with the same base value. Build up
2732  // a list of work to do and do the work in a separate step so that we're
2733  // not adding formulae and register counts while we're searching.
2734  SmallVector<WorkItem, 32> WorkItems;
2735  SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
2736  for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(),
2737       E = Sequence.end(); I != E; ++I) {
2738    const SCEV *Reg = *I;
2739    const ImmMapTy &Imms = Map.find(Reg)->second;
2740
2741    // It's not worthwhile looking for reuse if there's only one offset.
2742    if (Imms.size() == 1)
2743      continue;
2744
2745    DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
2746          for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
2747               J != JE; ++J)
2748            dbgs() << ' ' << J->first;
2749          dbgs() << '\n');
2750
2751    // Examine each offset.
2752    for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
2753         J != JE; ++J) {
2754      const SCEV *OrigReg = J->second;
2755
2756      int64_t JImm = J->first;
2757      const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
2758
2759      if (!isa<SCEVConstant>(OrigReg) &&
2760          UsedByIndicesMap[Reg].count() == 1) {
2761        DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
2762        continue;
2763      }
2764
2765      // Conservatively examine offsets between this orig reg a few selected
2766      // other orig regs.
2767      ImmMapTy::const_iterator OtherImms[] = {
2768        Imms.begin(), prior(Imms.end()),
2769        Imms.lower_bound((Imms.begin()->first + prior(Imms.end())->first) / 2)
2770      };
2771      for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
2772        ImmMapTy::const_iterator M = OtherImms[i];
2773        if (M == J || M == JE) continue;
2774
2775        // Compute the difference between the two.
2776        int64_t Imm = (uint64_t)JImm - M->first;
2777        for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
2778             LUIdx = UsedByIndices.find_next(LUIdx))
2779          // Make a memo of this use, offset, and register tuple.
2780          if (UniqueItems.insert(std::make_pair(LUIdx, Imm)))
2781            WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
2782      }
2783    }
2784  }
2785
2786  Map.clear();
2787  Sequence.clear();
2788  UsedByIndicesMap.clear();
2789  UniqueItems.clear();
2790
2791  // Now iterate through the worklist and add new formulae.
2792  for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(),
2793       E = WorkItems.end(); I != E; ++I) {
2794    const WorkItem &WI = *I;
2795    size_t LUIdx = WI.LUIdx;
2796    LSRUse &LU = Uses[LUIdx];
2797    int64_t Imm = WI.Imm;
2798    const SCEV *OrigReg = WI.OrigReg;
2799
2800    Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
2801    const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
2802    unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
2803
2804    // TODO: Use a more targeted data structure.
2805    for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
2806      const Formula &F = LU.Formulae[L];
2807      // Use the immediate in the scaled register.
2808      if (F.ScaledReg == OrigReg) {
2809        int64_t Offs = (uint64_t)F.AM.BaseOffs +
2810                       Imm * (uint64_t)F.AM.Scale;
2811        // Don't create 50 + reg(-50).
2812        if (F.referencesReg(SE.getSCEV(
2813                   ConstantInt::get(IntTy, -(uint64_t)Offs))))
2814          continue;
2815        Formula NewF = F;
2816        NewF.AM.BaseOffs = Offs;
2817        if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
2818                        LU.Kind, LU.AccessTy, TLI))
2819          continue;
2820        NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
2821
2822        // If the new scale is a constant in a register, and adding the constant
2823        // value to the immediate would produce a value closer to zero than the
2824        // immediate itself, then the formula isn't worthwhile.
2825        if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
2826          if (C->getValue()->isNegative() !=
2827                (NewF.AM.BaseOffs < 0) &&
2828              (C->getValue()->getValue().abs() * APInt(BitWidth, F.AM.Scale))
2829                .ule(abs64(NewF.AM.BaseOffs)))
2830            continue;
2831
2832        // OK, looks good.
2833        (void)InsertFormula(LU, LUIdx, NewF);
2834      } else {
2835        // Use the immediate in a base register.
2836        for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
2837          const SCEV *BaseReg = F.BaseRegs[N];
2838          if (BaseReg != OrigReg)
2839            continue;
2840          Formula NewF = F;
2841          NewF.AM.BaseOffs = (uint64_t)NewF.AM.BaseOffs + Imm;
2842          if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
2843                          LU.Kind, LU.AccessTy, TLI)) {
2844            if (!TLI ||
2845                !TLI->isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
2846              continue;
2847            NewF = F;
2848            NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
2849          }
2850          NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
2851
2852          // If the new formula has a constant in a register, and adding the
2853          // constant value to the immediate would produce a value closer to
2854          // zero than the immediate itself, then the formula isn't worthwhile.
2855          for (SmallVectorImpl<const SCEV *>::const_iterator
2856               J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end();
2857               J != JE; ++J)
2858            if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J))
2859              if ((C->getValue()->getValue() + NewF.AM.BaseOffs).abs().slt(
2860                   abs64(NewF.AM.BaseOffs)) &&
2861                  (C->getValue()->getValue() +
2862                   NewF.AM.BaseOffs).countTrailingZeros() >=
2863                   CountTrailingZeros_64(NewF.AM.BaseOffs))
2864                goto skip_formula;
2865
2866          // Ok, looks good.
2867          (void)InsertFormula(LU, LUIdx, NewF);
2868          break;
2869        skip_formula:;
2870        }
2871      }
2872    }
2873  }
2874}
2875
2876/// GenerateAllReuseFormulae - Generate formulae for each use.
2877void
2878LSRInstance::GenerateAllReuseFormulae() {
2879  // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
2880  // queries are more precise.
2881  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2882    LSRUse &LU = Uses[LUIdx];
2883    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2884      GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
2885    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2886      GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
2887  }
2888  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2889    LSRUse &LU = Uses[LUIdx];
2890    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2891      GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
2892    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2893      GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
2894    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2895      GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
2896    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2897      GenerateScales(LU, LUIdx, LU.Formulae[i]);
2898  }
2899  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2900    LSRUse &LU = Uses[LUIdx];
2901    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2902      GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
2903  }
2904
2905  GenerateCrossUseConstantOffsets();
2906
2907  DEBUG(dbgs() << "\n"
2908                  "After generating reuse formulae:\n";
2909        print_uses(dbgs()));
2910}
2911
2912/// If there are multiple formulae with the same set of registers used
2913/// by other uses, pick the best one and delete the others.
2914void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
2915  DenseSet<const SCEV *> VisitedRegs;
2916  SmallPtrSet<const SCEV *, 16> Regs;
2917#ifndef NDEBUG
2918  bool ChangedFormulae = false;
2919#endif
2920
2921  // Collect the best formula for each unique set of shared registers. This
2922  // is reset for each use.
2923  typedef DenseMap<SmallVector<const SCEV *, 2>, size_t, UniquifierDenseMapInfo>
2924    BestFormulaeTy;
2925  BestFormulaeTy BestFormulae;
2926
2927  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2928    LSRUse &LU = Uses[LUIdx];
2929    DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
2930
2931    bool Any = false;
2932    for (size_t FIdx = 0, NumForms = LU.Formulae.size();
2933         FIdx != NumForms; ++FIdx) {
2934      Formula &F = LU.Formulae[FIdx];
2935
2936      SmallVector<const SCEV *, 2> Key;
2937      for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(),
2938           JE = F.BaseRegs.end(); J != JE; ++J) {
2939        const SCEV *Reg = *J;
2940        if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
2941          Key.push_back(Reg);
2942      }
2943      if (F.ScaledReg &&
2944          RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
2945        Key.push_back(F.ScaledReg);
2946      // Unstable sort by host order ok, because this is only used for
2947      // uniquifying.
2948      std::sort(Key.begin(), Key.end());
2949
2950      std::pair<BestFormulaeTy::const_iterator, bool> P =
2951        BestFormulae.insert(std::make_pair(Key, FIdx));
2952      if (!P.second) {
2953        Formula &Best = LU.Formulae[P.first->second];
2954
2955        Cost CostF;
2956        CostF.RateFormula(F, Regs, VisitedRegs, L, LU.Offsets, SE, DT);
2957        Regs.clear();
2958        Cost CostBest;
2959        CostBest.RateFormula(Best, Regs, VisitedRegs, L, LU.Offsets, SE, DT);
2960        Regs.clear();
2961        if (CostF < CostBest)
2962          std::swap(F, Best);
2963        DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
2964              dbgs() << "\n"
2965                        "    in favor of formula "; Best.print(dbgs());
2966              dbgs() << '\n');
2967#ifndef NDEBUG
2968        ChangedFormulae = true;
2969#endif
2970        LU.DeleteFormula(F);
2971        --FIdx;
2972        --NumForms;
2973        Any = true;
2974        continue;
2975      }
2976    }
2977
2978    // Now that we've filtered out some formulae, recompute the Regs set.
2979    if (Any)
2980      LU.RecomputeRegs(LUIdx, RegUses);
2981
2982    // Reset this to prepare for the next use.
2983    BestFormulae.clear();
2984  }
2985
2986  DEBUG(if (ChangedFormulae) {
2987          dbgs() << "\n"
2988                    "After filtering out undesirable candidates:\n";
2989          print_uses(dbgs());
2990        });
2991}
2992
2993// This is a rough guess that seems to work fairly well.
2994static const size_t ComplexityLimit = UINT16_MAX;
2995
2996/// EstimateSearchSpaceComplexity - Estimate the worst-case number of
2997/// solutions the solver might have to consider. It almost never considers
2998/// this many solutions because it prune the search space, but the pruning
2999/// isn't always sufficient.
3000size_t LSRInstance::EstimateSearchSpaceComplexity() const {
3001  size_t Power = 1;
3002  for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
3003       E = Uses.end(); I != E; ++I) {
3004    size_t FSize = I->Formulae.size();
3005    if (FSize >= ComplexityLimit) {
3006      Power = ComplexityLimit;
3007      break;
3008    }
3009    Power *= FSize;
3010    if (Power >= ComplexityLimit)
3011      break;
3012  }
3013  return Power;
3014}
3015
3016/// NarrowSearchSpaceByDetectingSupersets - When one formula uses a superset
3017/// of the registers of another formula, it won't help reduce register
3018/// pressure (though it may not necessarily hurt register pressure); remove
3019/// it to simplify the system.
3020void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
3021  if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
3022    DEBUG(dbgs() << "The search space is too complex.\n");
3023
3024    DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
3025                    "which use a superset of registers used by other "
3026                    "formulae.\n");
3027
3028    for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3029      LSRUse &LU = Uses[LUIdx];
3030      bool Any = false;
3031      for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
3032        Formula &F = LU.Formulae[i];
3033        // Look for a formula with a constant or GV in a register. If the use
3034        // also has a formula with that same value in an immediate field,
3035        // delete the one that uses a register.
3036        for (SmallVectorImpl<const SCEV *>::const_iterator
3037             I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
3038          if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
3039            Formula NewF = F;
3040            NewF.AM.BaseOffs += C->getValue()->getSExtValue();
3041            NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
3042                                (I - F.BaseRegs.begin()));
3043            if (LU.HasFormulaWithSameRegs(NewF)) {
3044              DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
3045              LU.DeleteFormula(F);
3046              --i;
3047              --e;
3048              Any = true;
3049              break;
3050            }
3051          } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
3052            if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
3053              if (!F.AM.BaseGV) {
3054                Formula NewF = F;
3055                NewF.AM.BaseGV = GV;
3056                NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
3057                                    (I - F.BaseRegs.begin()));
3058                if (LU.HasFormulaWithSameRegs(NewF)) {
3059                  DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
3060                        dbgs() << '\n');
3061                  LU.DeleteFormula(F);
3062                  --i;
3063                  --e;
3064                  Any = true;
3065                  break;
3066                }
3067              }
3068          }
3069        }
3070      }
3071      if (Any)
3072        LU.RecomputeRegs(LUIdx, RegUses);
3073    }
3074
3075    DEBUG(dbgs() << "After pre-selection:\n";
3076          print_uses(dbgs()));
3077  }
3078}
3079
3080/// NarrowSearchSpaceByCollapsingUnrolledCode - When there are many registers
3081/// for expressions like A, A+1, A+2, etc., allocate a single register for
3082/// them.
3083void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
3084  if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
3085    DEBUG(dbgs() << "The search space is too complex.\n");
3086
3087    DEBUG(dbgs() << "Narrowing the search space by assuming that uses "
3088                    "separated by a constant offset will use the same "
3089                    "registers.\n");
3090
3091    // This is especially useful for unrolled loops.
3092
3093    for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3094      LSRUse &LU = Uses[LUIdx];
3095      for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
3096           E = LU.Formulae.end(); I != E; ++I) {
3097        const Formula &F = *I;
3098        if (F.AM.BaseOffs != 0 && F.AM.Scale == 0) {
3099          if (LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU)) {
3100            if (reconcileNewOffset(*LUThatHas, F.AM.BaseOffs,
3101                                   /*HasBaseReg=*/false,
3102                                   LU.Kind, LU.AccessTy)) {
3103              DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs());
3104                    dbgs() << '\n');
3105
3106              LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
3107
3108              // Update the relocs to reference the new use.
3109              for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(),
3110                   E = Fixups.end(); I != E; ++I) {
3111                LSRFixup &Fixup = *I;
3112                if (Fixup.LUIdx == LUIdx) {
3113                  Fixup.LUIdx = LUThatHas - &Uses.front();
3114                  Fixup.Offset += F.AM.BaseOffs;
3115                  // Add the new offset to LUThatHas' offset list.
3116                  if (LUThatHas->Offsets.back() != Fixup.Offset) {
3117                    LUThatHas->Offsets.push_back(Fixup.Offset);
3118                    if (Fixup.Offset > LUThatHas->MaxOffset)
3119                      LUThatHas->MaxOffset = Fixup.Offset;
3120                    if (Fixup.Offset < LUThatHas->MinOffset)
3121                      LUThatHas->MinOffset = Fixup.Offset;
3122                  }
3123                  DEBUG(dbgs() << "New fixup has offset "
3124                               << Fixup.Offset << '\n');
3125                }
3126                if (Fixup.LUIdx == NumUses-1)
3127                  Fixup.LUIdx = LUIdx;
3128              }
3129
3130              // Delete formulae from the new use which are no longer legal.
3131              bool Any = false;
3132              for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
3133                Formula &F = LUThatHas->Formulae[i];
3134                if (!isLegalUse(F.AM,
3135                                LUThatHas->MinOffset, LUThatHas->MaxOffset,
3136                                LUThatHas->Kind, LUThatHas->AccessTy, TLI)) {
3137                  DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
3138                        dbgs() << '\n');
3139                  LUThatHas->DeleteFormula(F);
3140                  --i;
3141                  --e;
3142                  Any = true;
3143                }
3144              }
3145              if (Any)
3146                LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
3147
3148              // Delete the old use.
3149              DeleteUse(LU, LUIdx);
3150              --LUIdx;
3151              --NumUses;
3152              break;
3153            }
3154          }
3155        }
3156      }
3157    }
3158
3159    DEBUG(dbgs() << "After pre-selection:\n";
3160          print_uses(dbgs()));
3161  }
3162}
3163
3164/// NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters - Call
3165/// FilterOutUndesirableDedicatedRegisters again, if necessary, now that
3166/// we've done more filtering, as it may be able to find more formulae to
3167/// eliminate.
3168void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
3169  if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
3170    DEBUG(dbgs() << "The search space is too complex.\n");
3171
3172    DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
3173                    "undesirable dedicated registers.\n");
3174
3175    FilterOutUndesirableDedicatedRegisters();
3176
3177    DEBUG(dbgs() << "After pre-selection:\n";
3178          print_uses(dbgs()));
3179  }
3180}
3181
3182/// NarrowSearchSpaceByPickingWinnerRegs - Pick a register which seems likely
3183/// to be profitable, and then in any use which has any reference to that
3184/// register, delete all formulae which do not reference that register.
3185void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
3186  // With all other options exhausted, loop until the system is simple
3187  // enough to handle.
3188  SmallPtrSet<const SCEV *, 4> Taken;
3189  while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
3190    // Ok, we have too many of formulae on our hands to conveniently handle.
3191    // Use a rough heuristic to thin out the list.
3192    DEBUG(dbgs() << "The search space is too complex.\n");
3193
3194    // Pick the register which is used by the most LSRUses, which is likely
3195    // to be a good reuse register candidate.
3196    const SCEV *Best = 0;
3197    unsigned BestNum = 0;
3198    for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
3199         I != E; ++I) {
3200      const SCEV *Reg = *I;
3201      if (Taken.count(Reg))
3202        continue;
3203      if (!Best)
3204        Best = Reg;
3205      else {
3206        unsigned Count = RegUses.getUsedByIndices(Reg).count();
3207        if (Count > BestNum) {
3208          Best = Reg;
3209          BestNum = Count;
3210        }
3211      }
3212    }
3213
3214    DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
3215                 << " will yield profitable reuse.\n");
3216    Taken.insert(Best);
3217
3218    // In any use with formulae which references this register, delete formulae
3219    // which don't reference it.
3220    for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3221      LSRUse &LU = Uses[LUIdx];
3222      if (!LU.Regs.count(Best)) continue;
3223
3224      bool Any = false;
3225      for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
3226        Formula &F = LU.Formulae[i];
3227        if (!F.referencesReg(Best)) {
3228          DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
3229          LU.DeleteFormula(F);
3230          --e;
3231          --i;
3232          Any = true;
3233          assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
3234          continue;
3235        }
3236      }
3237
3238      if (Any)
3239        LU.RecomputeRegs(LUIdx, RegUses);
3240    }
3241
3242    DEBUG(dbgs() << "After pre-selection:\n";
3243          print_uses(dbgs()));
3244  }
3245}
3246
3247/// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of
3248/// formulae to choose from, use some rough heuristics to prune down the number
3249/// of formulae. This keeps the main solver from taking an extraordinary amount
3250/// of time in some worst-case scenarios.
3251void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
3252  NarrowSearchSpaceByDetectingSupersets();
3253  NarrowSearchSpaceByCollapsingUnrolledCode();
3254  NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
3255  NarrowSearchSpaceByPickingWinnerRegs();
3256}
3257
3258/// SolveRecurse - This is the recursive solver.
3259void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
3260                               Cost &SolutionCost,
3261                               SmallVectorImpl<const Formula *> &Workspace,
3262                               const Cost &CurCost,
3263                               const SmallPtrSet<const SCEV *, 16> &CurRegs,
3264                               DenseSet<const SCEV *> &VisitedRegs) const {
3265  // Some ideas:
3266  //  - prune more:
3267  //    - use more aggressive filtering
3268  //    - sort the formula so that the most profitable solutions are found first
3269  //    - sort the uses too
3270  //  - search faster:
3271  //    - don't compute a cost, and then compare. compare while computing a cost
3272  //      and bail early.
3273  //    - track register sets with SmallBitVector
3274
3275  const LSRUse &LU = Uses[Workspace.size()];
3276
3277  // If this use references any register that's already a part of the
3278  // in-progress solution, consider it a requirement that a formula must
3279  // reference that register in order to be considered. This prunes out
3280  // unprofitable searching.
3281  SmallSetVector<const SCEV *, 4> ReqRegs;
3282  for (SmallPtrSet<const SCEV *, 16>::const_iterator I = CurRegs.begin(),
3283       E = CurRegs.end(); I != E; ++I)
3284    if (LU.Regs.count(*I))
3285      ReqRegs.insert(*I);
3286
3287  bool AnySatisfiedReqRegs = false;
3288  SmallPtrSet<const SCEV *, 16> NewRegs;
3289  Cost NewCost;
3290retry:
3291  for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
3292       E = LU.Formulae.end(); I != E; ++I) {
3293    const Formula &F = *I;
3294
3295    // Ignore formulae which do not use any of the required registers.
3296    for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(),
3297         JE = ReqRegs.end(); J != JE; ++J) {
3298      const SCEV *Reg = *J;
3299      if ((!F.ScaledReg || F.ScaledReg != Reg) &&
3300          std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) ==
3301          F.BaseRegs.end())
3302        goto skip;
3303    }
3304    AnySatisfiedReqRegs = true;
3305
3306    // Evaluate the cost of the current formula. If it's already worse than
3307    // the current best, prune the search at that point.
3308    NewCost = CurCost;
3309    NewRegs = CurRegs;
3310    NewCost.RateFormula(F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT);
3311    if (NewCost < SolutionCost) {
3312      Workspace.push_back(&F);
3313      if (Workspace.size() != Uses.size()) {
3314        SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
3315                     NewRegs, VisitedRegs);
3316        if (F.getNumRegs() == 1 && Workspace.size() == 1)
3317          VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
3318      } else {
3319        DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
3320              dbgs() << ". Regs:";
3321              for (SmallPtrSet<const SCEV *, 16>::const_iterator
3322                   I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I)
3323                dbgs() << ' ' << **I;
3324              dbgs() << '\n');
3325
3326        SolutionCost = NewCost;
3327        Solution = Workspace;
3328      }
3329      Workspace.pop_back();
3330    }
3331  skip:;
3332  }
3333
3334  if (!EnableRetry && !AnySatisfiedReqRegs)
3335    return;
3336
3337  // If none of the formulae had all of the required registers, relax the
3338  // constraint so that we don't exclude all formulae.
3339  if (!AnySatisfiedReqRegs) {
3340    assert(!ReqRegs.empty() && "Solver failed even without required registers");
3341    ReqRegs.clear();
3342    goto retry;
3343  }
3344}
3345
3346/// Solve - Choose one formula from each use. Return the results in the given
3347/// Solution vector.
3348void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
3349  SmallVector<const Formula *, 8> Workspace;
3350  Cost SolutionCost;
3351  SolutionCost.Loose();
3352  Cost CurCost;
3353  SmallPtrSet<const SCEV *, 16> CurRegs;
3354  DenseSet<const SCEV *> VisitedRegs;
3355  Workspace.reserve(Uses.size());
3356
3357  // SolveRecurse does all the work.
3358  SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
3359               CurRegs, VisitedRegs);
3360  if (Solution.empty()) {
3361    DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
3362    return;
3363  }
3364
3365  // Ok, we've now made all our decisions.
3366  DEBUG(dbgs() << "\n"
3367                  "The chosen solution requires "; SolutionCost.print(dbgs());
3368        dbgs() << ":\n";
3369        for (size_t i = 0, e = Uses.size(); i != e; ++i) {
3370          dbgs() << "  ";
3371          Uses[i].print(dbgs());
3372          dbgs() << "\n"
3373                    "    ";
3374          Solution[i]->print(dbgs());
3375          dbgs() << '\n';
3376        });
3377
3378  assert(Solution.size() == Uses.size() && "Malformed solution!");
3379}
3380
3381/// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up
3382/// the dominator tree far as we can go while still being dominated by the
3383/// input positions. This helps canonicalize the insert position, which
3384/// encourages sharing.
3385BasicBlock::iterator
3386LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
3387                                 const SmallVectorImpl<Instruction *> &Inputs)
3388                                                                         const {
3389  for (;;) {
3390    const Loop *IPLoop = LI.getLoopFor(IP->getParent());
3391    unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
3392
3393    BasicBlock *IDom;
3394    for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
3395      if (!Rung) return IP;
3396      Rung = Rung->getIDom();
3397      if (!Rung) return IP;
3398      IDom = Rung->getBlock();
3399
3400      // Don't climb into a loop though.
3401      const Loop *IDomLoop = LI.getLoopFor(IDom);
3402      unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
3403      if (IDomDepth <= IPLoopDepth &&
3404          (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
3405        break;
3406    }
3407
3408    bool AllDominate = true;
3409    Instruction *BetterPos = 0;
3410    Instruction *Tentative = IDom->getTerminator();
3411    for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(),
3412         E = Inputs.end(); I != E; ++I) {
3413      Instruction *Inst = *I;
3414      if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
3415        AllDominate = false;
3416        break;
3417      }
3418      // Attempt to find an insert position in the middle of the block,
3419      // instead of at the end, so that it can be used for other expansions.
3420      if (IDom == Inst->getParent() &&
3421          (!BetterPos || DT.dominates(BetterPos, Inst)))
3422        BetterPos = llvm::next(BasicBlock::iterator(Inst));
3423    }
3424    if (!AllDominate)
3425      break;
3426    if (BetterPos)
3427      IP = BetterPos;
3428    else
3429      IP = Tentative;
3430  }
3431
3432  return IP;
3433}
3434
3435/// AdjustInsertPositionForExpand - Determine an input position which will be
3436/// dominated by the operands and which will dominate the result.
3437BasicBlock::iterator
3438LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator IP,
3439                                           const LSRFixup &LF,
3440                                           const LSRUse &LU) const {
3441  // Collect some instructions which must be dominated by the
3442  // expanding replacement. These must be dominated by any operands that
3443  // will be required in the expansion.
3444  SmallVector<Instruction *, 4> Inputs;
3445  if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
3446    Inputs.push_back(I);
3447  if (LU.Kind == LSRUse::ICmpZero)
3448    if (Instruction *I =
3449          dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
3450      Inputs.push_back(I);
3451  if (LF.PostIncLoops.count(L)) {
3452    if (LF.isUseFullyOutsideLoop(L))
3453      Inputs.push_back(L->getLoopLatch()->getTerminator());
3454    else
3455      Inputs.push_back(IVIncInsertPos);
3456  }
3457  // The expansion must also be dominated by the increment positions of any
3458  // loops it for which it is using post-inc mode.
3459  for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(),
3460       E = LF.PostIncLoops.end(); I != E; ++I) {
3461    const Loop *PIL = *I;
3462    if (PIL == L) continue;
3463
3464    // Be dominated by the loop exit.
3465    SmallVector<BasicBlock *, 4> ExitingBlocks;
3466    PIL->getExitingBlocks(ExitingBlocks);
3467    if (!ExitingBlocks.empty()) {
3468      BasicBlock *BB = ExitingBlocks[0];
3469      for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
3470        BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
3471      Inputs.push_back(BB->getTerminator());
3472    }
3473  }
3474
3475  // Then, climb up the immediate dominator tree as far as we can go while
3476  // still being dominated by the input positions.
3477  IP = HoistInsertPosition(IP, Inputs);
3478
3479  // Don't insert instructions before PHI nodes.
3480  while (isa<PHINode>(IP)) ++IP;
3481
3482  // Ignore landingpad instructions.
3483  while (isa<LandingPadInst>(IP)) ++IP;
3484
3485  // Ignore debug intrinsics.
3486  while (isa<DbgInfoIntrinsic>(IP)) ++IP;
3487
3488  return IP;
3489}
3490
3491/// Expand - Emit instructions for the leading candidate expression for this
3492/// LSRUse (this is called "expanding").
3493Value *LSRInstance::Expand(const LSRFixup &LF,
3494                           const Formula &F,
3495                           BasicBlock::iterator IP,
3496                           SCEVExpander &Rewriter,
3497                           SmallVectorImpl<WeakVH> &DeadInsts) const {
3498  const LSRUse &LU = Uses[LF.LUIdx];
3499
3500  // Determine an input position which will be dominated by the operands and
3501  // which will dominate the result.
3502  IP = AdjustInsertPositionForExpand(IP, LF, LU);
3503
3504  // Inform the Rewriter if we have a post-increment use, so that it can
3505  // perform an advantageous expansion.
3506  Rewriter.setPostInc(LF.PostIncLoops);
3507
3508  // This is the type that the user actually needs.
3509  Type *OpTy = LF.OperandValToReplace->getType();
3510  // This will be the type that we'll initially expand to.
3511  Type *Ty = F.getType();
3512  if (!Ty)
3513    // No type known; just expand directly to the ultimate type.
3514    Ty = OpTy;
3515  else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
3516    // Expand directly to the ultimate type if it's the right size.
3517    Ty = OpTy;
3518  // This is the type to do integer arithmetic in.
3519  Type *IntTy = SE.getEffectiveSCEVType(Ty);
3520
3521  // Build up a list of operands to add together to form the full base.
3522  SmallVector<const SCEV *, 8> Ops;
3523
3524  // Expand the BaseRegs portion.
3525  for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
3526       E = F.BaseRegs.end(); I != E; ++I) {
3527    const SCEV *Reg = *I;
3528    assert(!Reg->isZero() && "Zero allocated in a base register!");
3529
3530    // If we're expanding for a post-inc user, make the post-inc adjustment.
3531    PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
3532    Reg = TransformForPostIncUse(Denormalize, Reg,
3533                                 LF.UserInst, LF.OperandValToReplace,
3534                                 Loops, SE, DT);
3535
3536    Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, 0, IP)));
3537  }
3538
3539  // Flush the operand list to suppress SCEVExpander hoisting.
3540  if (!Ops.empty()) {
3541    Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
3542    Ops.clear();
3543    Ops.push_back(SE.getUnknown(FullV));
3544  }
3545
3546  // Expand the ScaledReg portion.
3547  Value *ICmpScaledV = 0;
3548  if (F.AM.Scale != 0) {
3549    const SCEV *ScaledS = F.ScaledReg;
3550
3551    // If we're expanding for a post-inc user, make the post-inc adjustment.
3552    PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
3553    ScaledS = TransformForPostIncUse(Denormalize, ScaledS,
3554                                     LF.UserInst, LF.OperandValToReplace,
3555                                     Loops, SE, DT);
3556
3557    if (LU.Kind == LSRUse::ICmpZero) {
3558      // An interesting way of "folding" with an icmp is to use a negated
3559      // scale, which we'll implement by inserting it into the other operand
3560      // of the icmp.
3561      assert(F.AM.Scale == -1 &&
3562             "The only scale supported by ICmpZero uses is -1!");
3563      ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP);
3564    } else {
3565      // Otherwise just expand the scaled register and an explicit scale,
3566      // which is expected to be matched as part of the address.
3567      ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP));
3568      ScaledS = SE.getMulExpr(ScaledS,
3569                              SE.getConstant(ScaledS->getType(), F.AM.Scale));
3570      Ops.push_back(ScaledS);
3571
3572      // Flush the operand list to suppress SCEVExpander hoisting.
3573      Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
3574      Ops.clear();
3575      Ops.push_back(SE.getUnknown(FullV));
3576    }
3577  }
3578
3579  // Expand the GV portion.
3580  if (F.AM.BaseGV) {
3581    Ops.push_back(SE.getUnknown(F.AM.BaseGV));
3582
3583    // Flush the operand list to suppress SCEVExpander hoisting.
3584    Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
3585    Ops.clear();
3586    Ops.push_back(SE.getUnknown(FullV));
3587  }
3588
3589  // Expand the immediate portion.
3590  int64_t Offset = (uint64_t)F.AM.BaseOffs + LF.Offset;
3591  if (Offset != 0) {
3592    if (LU.Kind == LSRUse::ICmpZero) {
3593      // The other interesting way of "folding" with an ICmpZero is to use a
3594      // negated immediate.
3595      if (!ICmpScaledV)
3596        ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
3597      else {
3598        Ops.push_back(SE.getUnknown(ICmpScaledV));
3599        ICmpScaledV = ConstantInt::get(IntTy, Offset);
3600      }
3601    } else {
3602      // Just add the immediate values. These again are expected to be matched
3603      // as part of the address.
3604      Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
3605    }
3606  }
3607
3608  // Expand the unfolded offset portion.
3609  int64_t UnfoldedOffset = F.UnfoldedOffset;
3610  if (UnfoldedOffset != 0) {
3611    // Just add the immediate values.
3612    Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
3613                                                       UnfoldedOffset)));
3614  }
3615
3616  // Emit instructions summing all the operands.
3617  const SCEV *FullS = Ops.empty() ?
3618                      SE.getConstant(IntTy, 0) :
3619                      SE.getAddExpr(Ops);
3620  Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP);
3621
3622  // We're done expanding now, so reset the rewriter.
3623  Rewriter.clearPostInc();
3624
3625  // An ICmpZero Formula represents an ICmp which we're handling as a
3626  // comparison against zero. Now that we've expanded an expression for that
3627  // form, update the ICmp's other operand.
3628  if (LU.Kind == LSRUse::ICmpZero) {
3629    ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
3630    DeadInsts.push_back(CI->getOperand(1));
3631    assert(!F.AM.BaseGV && "ICmp does not support folding a global value and "
3632                           "a scale at the same time!");
3633    if (F.AM.Scale == -1) {
3634      if (ICmpScaledV->getType() != OpTy) {
3635        Instruction *Cast =
3636          CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
3637                                                   OpTy, false),
3638                           ICmpScaledV, OpTy, "tmp", CI);
3639        ICmpScaledV = Cast;
3640      }
3641      CI->setOperand(1, ICmpScaledV);
3642    } else {
3643      assert(F.AM.Scale == 0 &&
3644             "ICmp does not support folding a global value and "
3645             "a scale at the same time!");
3646      Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
3647                                           -(uint64_t)Offset);
3648      if (C->getType() != OpTy)
3649        C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
3650                                                          OpTy, false),
3651                                  C, OpTy);
3652
3653      CI->setOperand(1, C);
3654    }
3655  }
3656
3657  return FullV;
3658}
3659
3660/// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use
3661/// of their operands effectively happens in their predecessor blocks, so the
3662/// expression may need to be expanded in multiple places.
3663void LSRInstance::RewriteForPHI(PHINode *PN,
3664                                const LSRFixup &LF,
3665                                const Formula &F,
3666                                SCEVExpander &Rewriter,
3667                                SmallVectorImpl<WeakVH> &DeadInsts,
3668                                Pass *P) const {
3669  DenseMap<BasicBlock *, Value *> Inserted;
3670  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
3671    if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
3672      BasicBlock *BB = PN->getIncomingBlock(i);
3673
3674      // If this is a critical edge, split the edge so that we do not insert
3675      // the code on all predecessor/successor paths.  We do this unless this
3676      // is the canonical backedge for this loop, which complicates post-inc
3677      // users.
3678      if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
3679          !isa<IndirectBrInst>(BB->getTerminator())) {
3680        BasicBlock *Parent = PN->getParent();
3681        Loop *PNLoop = LI.getLoopFor(Parent);
3682        if (!PNLoop || Parent != PNLoop->getHeader()) {
3683          // Split the critical edge.
3684          BasicBlock *NewBB = 0;
3685          if (!Parent->isLandingPad()) {
3686            NewBB = SplitCriticalEdge(BB, Parent, P,
3687                                      /*MergeIdenticalEdges=*/true,
3688                                      /*DontDeleteUselessPhis=*/true);
3689          } else {
3690            SmallVector<BasicBlock*, 2> NewBBs;
3691            SplitLandingPadPredecessors(Parent, BB, "", "", P, NewBBs);
3692            NewBB = NewBBs[0];
3693          }
3694
3695          // If PN is outside of the loop and BB is in the loop, we want to
3696          // move the block to be immediately before the PHI block, not
3697          // immediately after BB.
3698          if (L->contains(BB) && !L->contains(PN))
3699            NewBB->moveBefore(PN->getParent());
3700
3701          // Splitting the edge can reduce the number of PHI entries we have.
3702          e = PN->getNumIncomingValues();
3703          BB = NewBB;
3704          i = PN->getBasicBlockIndex(BB);
3705        }
3706      }
3707
3708      std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
3709        Inserted.insert(std::make_pair(BB, static_cast<Value *>(0)));
3710      if (!Pair.second)
3711        PN->setIncomingValue(i, Pair.first->second);
3712      else {
3713        Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts);
3714
3715        // If this is reuse-by-noop-cast, insert the noop cast.
3716        Type *OpTy = LF.OperandValToReplace->getType();
3717        if (FullV->getType() != OpTy)
3718          FullV =
3719            CastInst::Create(CastInst::getCastOpcode(FullV, false,
3720                                                     OpTy, false),
3721                             FullV, LF.OperandValToReplace->getType(),
3722                             "tmp", BB->getTerminator());
3723
3724        PN->setIncomingValue(i, FullV);
3725        Pair.first->second = FullV;
3726      }
3727    }
3728}
3729
3730/// Rewrite - Emit instructions for the leading candidate expression for this
3731/// LSRUse (this is called "expanding"), and update the UserInst to reference
3732/// the newly expanded value.
3733void LSRInstance::Rewrite(const LSRFixup &LF,
3734                          const Formula &F,
3735                          SCEVExpander &Rewriter,
3736                          SmallVectorImpl<WeakVH> &DeadInsts,
3737                          Pass *P) const {
3738  // First, find an insertion point that dominates UserInst. For PHI nodes,
3739  // find the nearest block which dominates all the relevant uses.
3740  if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
3741    RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P);
3742  } else {
3743    Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts);
3744
3745    // If this is reuse-by-noop-cast, insert the noop cast.
3746    Type *OpTy = LF.OperandValToReplace->getType();
3747    if (FullV->getType() != OpTy) {
3748      Instruction *Cast =
3749        CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
3750                         FullV, OpTy, "tmp", LF.UserInst);
3751      FullV = Cast;
3752    }
3753
3754    // Update the user. ICmpZero is handled specially here (for now) because
3755    // Expand may have updated one of the operands of the icmp already, and
3756    // its new value may happen to be equal to LF.OperandValToReplace, in
3757    // which case doing replaceUsesOfWith leads to replacing both operands
3758    // with the same value. TODO: Reorganize this.
3759    if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero)
3760      LF.UserInst->setOperand(0, FullV);
3761    else
3762      LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
3763  }
3764
3765  DeadInsts.push_back(LF.OperandValToReplace);
3766}
3767
3768/// ImplementSolution - Rewrite all the fixup locations with new values,
3769/// following the chosen solution.
3770void
3771LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
3772                               Pass *P) {
3773  // Keep track of instructions we may have made dead, so that
3774  // we can remove them after we are done working.
3775  SmallVector<WeakVH, 16> DeadInsts;
3776
3777  SCEVExpander Rewriter(SE, "lsr");
3778  Rewriter.disableCanonicalMode();
3779  Rewriter.enableLSRMode();
3780  Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
3781
3782  // Expand the new value definitions and update the users.
3783  for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
3784       E = Fixups.end(); I != E; ++I) {
3785    const LSRFixup &Fixup = *I;
3786
3787    Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P);
3788
3789    Changed = true;
3790  }
3791
3792  // Clean up after ourselves. This must be done before deleting any
3793  // instructions.
3794  Rewriter.clear();
3795
3796  Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
3797}
3798
3799LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P)
3800  : IU(P->getAnalysis<IVUsers>()),
3801    SE(P->getAnalysis<ScalarEvolution>()),
3802    DT(P->getAnalysis<DominatorTree>()),
3803    LI(P->getAnalysis<LoopInfo>()),
3804    TLI(tli), L(l), Changed(false), IVIncInsertPos(0) {
3805
3806  // If LoopSimplify form is not available, stay out of trouble.
3807  if (!L->isLoopSimplifyForm()) return;
3808
3809  // If there's no interesting work to be done, bail early.
3810  if (IU.empty()) return;
3811
3812  DEBUG(dbgs() << "\nLSR on loop ";
3813        WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false);
3814        dbgs() << ":\n");
3815
3816  // First, perform some low-level loop optimizations.
3817  OptimizeShadowIV();
3818  OptimizeLoopTermCond();
3819
3820  // If loop preparation eliminates all interesting IV users, bail.
3821  if (IU.empty()) return;
3822
3823  // Skip nested loops until we can model them better with formulae.
3824  if (!EnableNested && !L->empty()) {
3825
3826    if (EnablePhiElim) {
3827      // Remove any extra phis created by processing inner loops.
3828      SmallVector<WeakVH, 16> DeadInsts;
3829      SCEVExpander Rewriter(SE, "lsr");
3830      Changed |= Rewriter.replaceCongruentIVs(L, &DT, DeadInsts);
3831      Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
3832    }
3833    DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
3834    return;
3835  }
3836
3837  // Start collecting data and preparing for the solver.
3838  CollectInterestingTypesAndFactors();
3839  CollectFixupsAndInitialFormulae();
3840  CollectLoopInvariantFixupsAndFormulae();
3841
3842  DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
3843        print_uses(dbgs()));
3844
3845  // Now use the reuse data to generate a bunch of interesting ways
3846  // to formulate the values needed for the uses.
3847  GenerateAllReuseFormulae();
3848
3849  FilterOutUndesirableDedicatedRegisters();
3850  NarrowSearchSpaceUsingHeuristics();
3851
3852  SmallVector<const Formula *, 8> Solution;
3853  Solve(Solution);
3854
3855  // Release memory that is no longer needed.
3856  Factors.clear();
3857  Types.clear();
3858  RegUses.clear();
3859
3860  if (Solution.empty())
3861    return;
3862
3863#ifndef NDEBUG
3864  // Formulae should be legal.
3865  for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
3866       E = Uses.end(); I != E; ++I) {
3867     const LSRUse &LU = *I;
3868     for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
3869          JE = LU.Formulae.end(); J != JE; ++J)
3870        assert(isLegalUse(J->AM, LU.MinOffset, LU.MaxOffset,
3871                          LU.Kind, LU.AccessTy, TLI) &&
3872               "Illegal formula generated!");
3873  };
3874#endif
3875
3876  // Now that we've decided what we want, make it so.
3877  ImplementSolution(Solution, P);
3878
3879  if (EnablePhiElim) {
3880    // Remove any extra phis created by processing inner loops.
3881    SmallVector<WeakVH, 16> DeadInsts;
3882    SCEVExpander Rewriter(SE, "lsr");
3883    Changed |= Rewriter.replaceCongruentIVs(L, &DT, DeadInsts);
3884    Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
3885  }
3886}
3887
3888void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
3889  if (Factors.empty() && Types.empty()) return;
3890
3891  OS << "LSR has identified the following interesting factors and types: ";
3892  bool First = true;
3893
3894  for (SmallSetVector<int64_t, 8>::const_iterator
3895       I = Factors.begin(), E = Factors.end(); I != E; ++I) {
3896    if (!First) OS << ", ";
3897    First = false;
3898    OS << '*' << *I;
3899  }
3900
3901  for (SmallSetVector<Type *, 4>::const_iterator
3902       I = Types.begin(), E = Types.end(); I != E; ++I) {
3903    if (!First) OS << ", ";
3904    First = false;
3905    OS << '(' << **I << ')';
3906  }
3907  OS << '\n';
3908}
3909
3910void LSRInstance::print_fixups(raw_ostream &OS) const {
3911  OS << "LSR is examining the following fixup sites:\n";
3912  for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
3913       E = Fixups.end(); I != E; ++I) {
3914    dbgs() << "  ";
3915    I->print(OS);
3916    OS << '\n';
3917  }
3918}
3919
3920void LSRInstance::print_uses(raw_ostream &OS) const {
3921  OS << "LSR is examining the following uses:\n";
3922  for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
3923       E = Uses.end(); I != E; ++I) {
3924    const LSRUse &LU = *I;
3925    dbgs() << "  ";
3926    LU.print(OS);
3927    OS << '\n';
3928    for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
3929         JE = LU.Formulae.end(); J != JE; ++J) {
3930      OS << "    ";
3931      J->print(OS);
3932      OS << '\n';
3933    }
3934  }
3935}
3936
3937void LSRInstance::print(raw_ostream &OS) const {
3938  print_factors_and_types(OS);
3939  print_fixups(OS);
3940  print_uses(OS);
3941}
3942
3943void LSRInstance::dump() const {
3944  print(errs()); errs() << '\n';
3945}
3946
3947namespace {
3948
3949class LoopStrengthReduce : public LoopPass {
3950  /// TLI - Keep a pointer of a TargetLowering to consult for determining
3951  /// transformation profitability.
3952  const TargetLowering *const TLI;
3953
3954public:
3955  static char ID; // Pass ID, replacement for typeid
3956  explicit LoopStrengthReduce(const TargetLowering *tli = 0);
3957
3958private:
3959  bool runOnLoop(Loop *L, LPPassManager &LPM);
3960  void getAnalysisUsage(AnalysisUsage &AU) const;
3961};
3962
3963}
3964
3965char LoopStrengthReduce::ID = 0;
3966INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
3967                "Loop Strength Reduction", false, false)
3968INITIALIZE_PASS_DEPENDENCY(DominatorTree)
3969INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
3970INITIALIZE_PASS_DEPENDENCY(IVUsers)
3971INITIALIZE_PASS_DEPENDENCY(LoopInfo)
3972INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
3973INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
3974                "Loop Strength Reduction", false, false)
3975
3976
3977Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
3978  return new LoopStrengthReduce(TLI);
3979}
3980
3981LoopStrengthReduce::LoopStrengthReduce(const TargetLowering *tli)
3982  : LoopPass(ID), TLI(tli) {
3983    initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
3984  }
3985
3986void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
3987  // We split critical edges, so we change the CFG.  However, we do update
3988  // many analyses if they are around.
3989  AU.addPreservedID(LoopSimplifyID);
3990
3991  AU.addRequired<LoopInfo>();
3992  AU.addPreserved<LoopInfo>();
3993  AU.addRequiredID(LoopSimplifyID);
3994  AU.addRequired<DominatorTree>();
3995  AU.addPreserved<DominatorTree>();
3996  AU.addRequired<ScalarEvolution>();
3997  AU.addPreserved<ScalarEvolution>();
3998  // Requiring LoopSimplify a second time here prevents IVUsers from running
3999  // twice, since LoopSimplify was invalidated by running ScalarEvolution.
4000  AU.addRequiredID(LoopSimplifyID);
4001  AU.addRequired<IVUsers>();
4002  AU.addPreserved<IVUsers>();
4003}
4004
4005bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
4006  bool Changed = false;
4007
4008  // Run the main LSR transformation.
4009  Changed |= LSRInstance(TLI, L, this).getChanged();
4010
4011  // At this point, it is worth checking to see if any recurrence PHIs are also
4012  // dead, so that we can remove them as well.
4013  Changed |= DeleteDeadPHIs(L->getHeader());
4014
4015  return Changed;
4016}
4017