LoopStrengthReduce.cpp revision 210299
1//===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into forms suitable for efficient execution
12// on the target.
13//
14// This pass performs a strength reduction on array references inside loops that
15// have as one or more of their components the loop induction variable, it
16// rewrites expressions to take advantage of scaled-index addressing modes
17// available on the target, and it performs a variety of other optimizations
18// related to loop induction variables.
19//
20// Terminology note: this code has a lot of handling for "post-increment" or
21// "post-inc" users. This is not talking about post-increment addressing modes;
22// it is instead talking about code like this:
23//
24//   %i = phi [ 0, %entry ], [ %i.next, %latch ]
25//   ...
26//   %i.next = add %i, 1
27//   %c = icmp eq %i.next, %n
28//
29// The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
30// it's useful to think about these as the same register, with some uses using
31// the value of the register before the add and some using // it after. In this
32// example, the icmp is a post-increment user, since it uses %i.next, which is
33// the value of the induction variable after the increment. The other common
34// case of post-increment users is users outside the loop.
35//
36// TODO: More sophistication in the way Formulae are generated and filtered.
37//
38// TODO: Handle multiple loops at a time.
39//
40// TODO: Should TargetLowering::AddrMode::BaseGV be changed to a ConstantExpr
41//       instead of a GlobalValue?
42//
43// TODO: When truncation is free, truncate ICmp users' operands to make it a
44//       smaller encoding (on x86 at least).
45//
46// TODO: When a negated register is used by an add (such as in a list of
47//       multiple base registers, or as the increment expression in an addrec),
48//       we may not actually need both reg and (-1 * reg) in registers; the
49//       negation can be implemented by using a sub instead of an add. The
50//       lack of support for taking this into consideration when making
51//       register pressure decisions is partly worked around by the "Special"
52//       use kind.
53//
54//===----------------------------------------------------------------------===//
55
56#define DEBUG_TYPE "loop-reduce"
57#include "llvm/Transforms/Scalar.h"
58#include "llvm/Constants.h"
59#include "llvm/Instructions.h"
60#include "llvm/IntrinsicInst.h"
61#include "llvm/DerivedTypes.h"
62#include "llvm/Analysis/IVUsers.h"
63#include "llvm/Analysis/Dominators.h"
64#include "llvm/Analysis/LoopPass.h"
65#include "llvm/Analysis/ScalarEvolutionExpander.h"
66#include "llvm/Transforms/Utils/BasicBlockUtils.h"
67#include "llvm/Transforms/Utils/Local.h"
68#include "llvm/ADT/SmallBitVector.h"
69#include "llvm/ADT/SetVector.h"
70#include "llvm/ADT/DenseSet.h"
71#include "llvm/Support/Debug.h"
72#include "llvm/Support/ValueHandle.h"
73#include "llvm/Support/raw_ostream.h"
74#include "llvm/Target/TargetLowering.h"
75#include <algorithm>
76using namespace llvm;
77
78namespace {
79
80/// RegSortData - This class holds data which is used to order reuse candidates.
81class RegSortData {
82public:
83  /// UsedByIndices - This represents the set of LSRUse indices which reference
84  /// a particular register.
85  SmallBitVector UsedByIndices;
86
87  RegSortData() {}
88
89  void print(raw_ostream &OS) const;
90  void dump() const;
91};
92
93}
94
95void RegSortData::print(raw_ostream &OS) const {
96  OS << "[NumUses=" << UsedByIndices.count() << ']';
97}
98
99void RegSortData::dump() const {
100  print(errs()); errs() << '\n';
101}
102
103namespace {
104
105/// RegUseTracker - Map register candidates to information about how they are
106/// used.
107class RegUseTracker {
108  typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
109
110  RegUsesTy RegUsesMap;
111  SmallVector<const SCEV *, 16> RegSequence;
112
113public:
114  void CountRegister(const SCEV *Reg, size_t LUIdx);
115  void DropRegister(const SCEV *Reg, size_t LUIdx);
116  void DropUse(size_t LUIdx);
117
118  bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
119
120  const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
121
122  void clear();
123
124  typedef SmallVectorImpl<const SCEV *>::iterator iterator;
125  typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
126  iterator begin() { return RegSequence.begin(); }
127  iterator end()   { return RegSequence.end(); }
128  const_iterator begin() const { return RegSequence.begin(); }
129  const_iterator end() const   { return RegSequence.end(); }
130};
131
132}
133
134void
135RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) {
136  std::pair<RegUsesTy::iterator, bool> Pair =
137    RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
138  RegSortData &RSD = Pair.first->second;
139  if (Pair.second)
140    RegSequence.push_back(Reg);
141  RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
142  RSD.UsedByIndices.set(LUIdx);
143}
144
145void
146RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) {
147  RegUsesTy::iterator It = RegUsesMap.find(Reg);
148  assert(It != RegUsesMap.end());
149  RegSortData &RSD = It->second;
150  assert(RSD.UsedByIndices.size() > LUIdx);
151  RSD.UsedByIndices.reset(LUIdx);
152}
153
154void
155RegUseTracker::DropUse(size_t LUIdx) {
156  // Remove the use index from every register's use list.
157  for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end();
158       I != E; ++I)
159    I->second.UsedByIndices.reset(LUIdx);
160}
161
162bool
163RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
164  if (!RegUsesMap.count(Reg)) return false;
165  const SmallBitVector &UsedByIndices =
166    RegUsesMap.find(Reg)->second.UsedByIndices;
167  int i = UsedByIndices.find_first();
168  if (i == -1) return false;
169  if ((size_t)i != LUIdx) return true;
170  return UsedByIndices.find_next(i) != -1;
171}
172
173const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
174  RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
175  assert(I != RegUsesMap.end() && "Unknown register!");
176  return I->second.UsedByIndices;
177}
178
179void RegUseTracker::clear() {
180  RegUsesMap.clear();
181  RegSequence.clear();
182}
183
184namespace {
185
186/// Formula - This class holds information that describes a formula for
187/// computing satisfying a use. It may include broken-out immediates and scaled
188/// registers.
189struct Formula {
190  /// AM - This is used to represent complex addressing, as well as other kinds
191  /// of interesting uses.
192  TargetLowering::AddrMode AM;
193
194  /// BaseRegs - The list of "base" registers for this use. When this is
195  /// non-empty, AM.HasBaseReg should be set to true.
196  SmallVector<const SCEV *, 2> BaseRegs;
197
198  /// ScaledReg - The 'scaled' register for this use. This should be non-null
199  /// when AM.Scale is not zero.
200  const SCEV *ScaledReg;
201
202  Formula() : ScaledReg(0) {}
203
204  void InitialMatch(const SCEV *S, Loop *L,
205                    ScalarEvolution &SE, DominatorTree &DT);
206
207  unsigned getNumRegs() const;
208  const Type *getType() const;
209
210  void DeleteBaseReg(const SCEV *&S);
211
212  bool referencesReg(const SCEV *S) const;
213  bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
214                                  const RegUseTracker &RegUses) const;
215
216  void print(raw_ostream &OS) const;
217  void dump() const;
218};
219
220}
221
222/// DoInitialMatch - Recursion helper for InitialMatch.
223static void DoInitialMatch(const SCEV *S, Loop *L,
224                           SmallVectorImpl<const SCEV *> &Good,
225                           SmallVectorImpl<const SCEV *> &Bad,
226                           ScalarEvolution &SE, DominatorTree &DT) {
227  // Collect expressions which properly dominate the loop header.
228  if (S->properlyDominates(L->getHeader(), &DT)) {
229    Good.push_back(S);
230    return;
231  }
232
233  // Look at add operands.
234  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
235    for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
236         I != E; ++I)
237      DoInitialMatch(*I, L, Good, Bad, SE, DT);
238    return;
239  }
240
241  // Look at addrec operands.
242  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
243    if (!AR->getStart()->isZero()) {
244      DoInitialMatch(AR->getStart(), L, Good, Bad, SE, DT);
245      DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
246                                      AR->getStepRecurrence(SE),
247                                      AR->getLoop()),
248                     L, Good, Bad, SE, DT);
249      return;
250    }
251
252  // Handle a multiplication by -1 (negation) if it didn't fold.
253  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
254    if (Mul->getOperand(0)->isAllOnesValue()) {
255      SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
256      const SCEV *NewMul = SE.getMulExpr(Ops);
257
258      SmallVector<const SCEV *, 4> MyGood;
259      SmallVector<const SCEV *, 4> MyBad;
260      DoInitialMatch(NewMul, L, MyGood, MyBad, SE, DT);
261      const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
262        SE.getEffectiveSCEVType(NewMul->getType())));
263      for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(),
264           E = MyGood.end(); I != E; ++I)
265        Good.push_back(SE.getMulExpr(NegOne, *I));
266      for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(),
267           E = MyBad.end(); I != E; ++I)
268        Bad.push_back(SE.getMulExpr(NegOne, *I));
269      return;
270    }
271
272  // Ok, we can't do anything interesting. Just stuff the whole thing into a
273  // register and hope for the best.
274  Bad.push_back(S);
275}
276
277/// InitialMatch - Incorporate loop-variant parts of S into this Formula,
278/// attempting to keep all loop-invariant and loop-computable values in a
279/// single base register.
280void Formula::InitialMatch(const SCEV *S, Loop *L,
281                           ScalarEvolution &SE, DominatorTree &DT) {
282  SmallVector<const SCEV *, 4> Good;
283  SmallVector<const SCEV *, 4> Bad;
284  DoInitialMatch(S, L, Good, Bad, SE, DT);
285  if (!Good.empty()) {
286    const SCEV *Sum = SE.getAddExpr(Good);
287    if (!Sum->isZero())
288      BaseRegs.push_back(Sum);
289    AM.HasBaseReg = true;
290  }
291  if (!Bad.empty()) {
292    const SCEV *Sum = SE.getAddExpr(Bad);
293    if (!Sum->isZero())
294      BaseRegs.push_back(Sum);
295    AM.HasBaseReg = true;
296  }
297}
298
299/// getNumRegs - Return the total number of register operands used by this
300/// formula. This does not include register uses implied by non-constant
301/// addrec strides.
302unsigned Formula::getNumRegs() const {
303  return !!ScaledReg + BaseRegs.size();
304}
305
306/// getType - Return the type of this formula, if it has one, or null
307/// otherwise. This type is meaningless except for the bit size.
308const Type *Formula::getType() const {
309  return !BaseRegs.empty() ? BaseRegs.front()->getType() :
310         ScaledReg ? ScaledReg->getType() :
311         AM.BaseGV ? AM.BaseGV->getType() :
312         0;
313}
314
315/// DeleteBaseReg - Delete the given base reg from the BaseRegs list.
316void Formula::DeleteBaseReg(const SCEV *&S) {
317  if (&S != &BaseRegs.back())
318    std::swap(S, BaseRegs.back());
319  BaseRegs.pop_back();
320}
321
322/// referencesReg - Test if this formula references the given register.
323bool Formula::referencesReg(const SCEV *S) const {
324  return S == ScaledReg ||
325         std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end();
326}
327
328/// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers
329/// which are used by uses other than the use with the given index.
330bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
331                                         const RegUseTracker &RegUses) const {
332  if (ScaledReg)
333    if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
334      return true;
335  for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
336       E = BaseRegs.end(); I != E; ++I)
337    if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx))
338      return true;
339  return false;
340}
341
342void Formula::print(raw_ostream &OS) const {
343  bool First = true;
344  if (AM.BaseGV) {
345    if (!First) OS << " + "; else First = false;
346    WriteAsOperand(OS, AM.BaseGV, /*PrintType=*/false);
347  }
348  if (AM.BaseOffs != 0) {
349    if (!First) OS << " + "; else First = false;
350    OS << AM.BaseOffs;
351  }
352  for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
353       E = BaseRegs.end(); I != E; ++I) {
354    if (!First) OS << " + "; else First = false;
355    OS << "reg(" << **I << ')';
356  }
357  if (AM.HasBaseReg && BaseRegs.empty()) {
358    if (!First) OS << " + "; else First = false;
359    OS << "**error: HasBaseReg**";
360  } else if (!AM.HasBaseReg && !BaseRegs.empty()) {
361    if (!First) OS << " + "; else First = false;
362    OS << "**error: !HasBaseReg**";
363  }
364  if (AM.Scale != 0) {
365    if (!First) OS << " + "; else First = false;
366    OS << AM.Scale << "*reg(";
367    if (ScaledReg)
368      OS << *ScaledReg;
369    else
370      OS << "<unknown>";
371    OS << ')';
372  }
373}
374
375void Formula::dump() const {
376  print(errs()); errs() << '\n';
377}
378
379/// isAddRecSExtable - Return true if the given addrec can be sign-extended
380/// without changing its value.
381static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
382  const Type *WideTy =
383    IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
384  return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
385}
386
387/// isAddSExtable - Return true if the given add can be sign-extended
388/// without changing its value.
389static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
390  const Type *WideTy =
391    IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
392  return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
393}
394
395/// isMulSExtable - Return true if the given mul can be sign-extended
396/// without changing its value.
397static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
398  const Type *WideTy =
399    IntegerType::get(SE.getContext(),
400                     SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
401  return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
402}
403
404/// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined
405/// and if the remainder is known to be zero,  or null otherwise. If
406/// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified
407/// to Y, ignoring that the multiplication may overflow, which is useful when
408/// the result will be used in a context where the most significant bits are
409/// ignored.
410static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
411                                ScalarEvolution &SE,
412                                bool IgnoreSignificantBits = false) {
413  // Handle the trivial case, which works for any SCEV type.
414  if (LHS == RHS)
415    return SE.getConstant(LHS->getType(), 1);
416
417  // Handle a few RHS special cases.
418  const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
419  if (RC) {
420    const APInt &RA = RC->getValue()->getValue();
421    // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
422    // some folding.
423    if (RA.isAllOnesValue())
424      return SE.getMulExpr(LHS, RC);
425    // Handle x /s 1 as x.
426    if (RA == 1)
427      return LHS;
428  }
429
430  // Check for a division of a constant by a constant.
431  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
432    if (!RC)
433      return 0;
434    const APInt &LA = C->getValue()->getValue();
435    const APInt &RA = RC->getValue()->getValue();
436    if (LA.srem(RA) != 0)
437      return 0;
438    return SE.getConstant(LA.sdiv(RA));
439  }
440
441  // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
442  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
443    if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) {
444      const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
445                                       IgnoreSignificantBits);
446      if (!Start) return 0;
447      const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
448                                      IgnoreSignificantBits);
449      if (!Step) return 0;
450      return SE.getAddRecExpr(Start, Step, AR->getLoop());
451    }
452    return 0;
453  }
454
455  // Distribute the sdiv over add operands, if the add doesn't overflow.
456  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
457    if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
458      SmallVector<const SCEV *, 8> Ops;
459      for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
460           I != E; ++I) {
461        const SCEV *Op = getExactSDiv(*I, RHS, SE,
462                                      IgnoreSignificantBits);
463        if (!Op) return 0;
464        Ops.push_back(Op);
465      }
466      return SE.getAddExpr(Ops);
467    }
468    return 0;
469  }
470
471  // Check for a multiply operand that we can pull RHS out of.
472  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
473    if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
474      SmallVector<const SCEV *, 4> Ops;
475      bool Found = false;
476      for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end();
477           I != E; ++I) {
478        const SCEV *S = *I;
479        if (!Found)
480          if (const SCEV *Q = getExactSDiv(S, RHS, SE,
481                                           IgnoreSignificantBits)) {
482            S = Q;
483            Found = true;
484          }
485        Ops.push_back(S);
486      }
487      return Found ? SE.getMulExpr(Ops) : 0;
488    }
489    return 0;
490  }
491
492  // Otherwise we don't know.
493  return 0;
494}
495
496/// ExtractImmediate - If S involves the addition of a constant integer value,
497/// return that integer value, and mutate S to point to a new SCEV with that
498/// value excluded.
499static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
500  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
501    if (C->getValue()->getValue().getMinSignedBits() <= 64) {
502      S = SE.getConstant(C->getType(), 0);
503      return C->getValue()->getSExtValue();
504    }
505  } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
506    SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
507    int64_t Result = ExtractImmediate(NewOps.front(), SE);
508    S = SE.getAddExpr(NewOps);
509    return Result;
510  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
511    SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
512    int64_t Result = ExtractImmediate(NewOps.front(), SE);
513    S = SE.getAddRecExpr(NewOps, AR->getLoop());
514    return Result;
515  }
516  return 0;
517}
518
519/// ExtractSymbol - If S involves the addition of a GlobalValue address,
520/// return that symbol, and mutate S to point to a new SCEV with that
521/// value excluded.
522static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
523  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
524    if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
525      S = SE.getConstant(GV->getType(), 0);
526      return GV;
527    }
528  } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
529    SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
530    GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
531    S = SE.getAddExpr(NewOps);
532    return Result;
533  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
534    SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
535    GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
536    S = SE.getAddRecExpr(NewOps, AR->getLoop());
537    return Result;
538  }
539  return 0;
540}
541
542/// isAddressUse - Returns true if the specified instruction is using the
543/// specified value as an address.
544static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
545  bool isAddress = isa<LoadInst>(Inst);
546  if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
547    if (SI->getOperand(1) == OperandVal)
548      isAddress = true;
549  } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
550    // Addressing modes can also be folded into prefetches and a variety
551    // of intrinsics.
552    switch (II->getIntrinsicID()) {
553      default: break;
554      case Intrinsic::prefetch:
555      case Intrinsic::x86_sse2_loadu_dq:
556      case Intrinsic::x86_sse2_loadu_pd:
557      case Intrinsic::x86_sse_loadu_ps:
558      case Intrinsic::x86_sse_storeu_ps:
559      case Intrinsic::x86_sse2_storeu_pd:
560      case Intrinsic::x86_sse2_storeu_dq:
561      case Intrinsic::x86_sse2_storel_dq:
562        if (II->getArgOperand(0) == OperandVal)
563          isAddress = true;
564        break;
565    }
566  }
567  return isAddress;
568}
569
570/// getAccessType - Return the type of the memory being accessed.
571static const Type *getAccessType(const Instruction *Inst) {
572  const Type *AccessTy = Inst->getType();
573  if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
574    AccessTy = SI->getOperand(0)->getType();
575  else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
576    // Addressing modes can also be folded into prefetches and a variety
577    // of intrinsics.
578    switch (II->getIntrinsicID()) {
579    default: break;
580    case Intrinsic::x86_sse_storeu_ps:
581    case Intrinsic::x86_sse2_storeu_pd:
582    case Intrinsic::x86_sse2_storeu_dq:
583    case Intrinsic::x86_sse2_storel_dq:
584      AccessTy = II->getArgOperand(0)->getType();
585      break;
586    }
587  }
588
589  // All pointers have the same requirements, so canonicalize them to an
590  // arbitrary pointer type to minimize variation.
591  if (const PointerType *PTy = dyn_cast<PointerType>(AccessTy))
592    AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
593                                PTy->getAddressSpace());
594
595  return AccessTy;
596}
597
598/// DeleteTriviallyDeadInstructions - If any of the instructions is the
599/// specified set are trivially dead, delete them and see if this makes any of
600/// their operands subsequently dead.
601static bool
602DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
603  bool Changed = false;
604
605  while (!DeadInsts.empty()) {
606    Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val());
607
608    if (I == 0 || !isInstructionTriviallyDead(I))
609      continue;
610
611    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
612      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
613        *OI = 0;
614        if (U->use_empty())
615          DeadInsts.push_back(U);
616      }
617
618    I->eraseFromParent();
619    Changed = true;
620  }
621
622  return Changed;
623}
624
625namespace {
626
627/// Cost - This class is used to measure and compare candidate formulae.
628class Cost {
629  /// TODO: Some of these could be merged. Also, a lexical ordering
630  /// isn't always optimal.
631  unsigned NumRegs;
632  unsigned AddRecCost;
633  unsigned NumIVMuls;
634  unsigned NumBaseAdds;
635  unsigned ImmCost;
636  unsigned SetupCost;
637
638public:
639  Cost()
640    : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
641      SetupCost(0) {}
642
643  unsigned getNumRegs() const { return NumRegs; }
644
645  bool operator<(const Cost &Other) const;
646
647  void Loose();
648
649  void RateFormula(const Formula &F,
650                   SmallPtrSet<const SCEV *, 16> &Regs,
651                   const DenseSet<const SCEV *> &VisitedRegs,
652                   const Loop *L,
653                   const SmallVectorImpl<int64_t> &Offsets,
654                   ScalarEvolution &SE, DominatorTree &DT);
655
656  void print(raw_ostream &OS) const;
657  void dump() const;
658
659private:
660  void RateRegister(const SCEV *Reg,
661                    SmallPtrSet<const SCEV *, 16> &Regs,
662                    const Loop *L,
663                    ScalarEvolution &SE, DominatorTree &DT);
664  void RatePrimaryRegister(const SCEV *Reg,
665                           SmallPtrSet<const SCEV *, 16> &Regs,
666                           const Loop *L,
667                           ScalarEvolution &SE, DominatorTree &DT);
668};
669
670}
671
672/// RateRegister - Tally up interesting quantities from the given register.
673void Cost::RateRegister(const SCEV *Reg,
674                        SmallPtrSet<const SCEV *, 16> &Regs,
675                        const Loop *L,
676                        ScalarEvolution &SE, DominatorTree &DT) {
677  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
678    if (AR->getLoop() == L)
679      AddRecCost += 1; /// TODO: This should be a function of the stride.
680
681    // If this is an addrec for a loop that's already been visited by LSR,
682    // don't second-guess its addrec phi nodes. LSR isn't currently smart
683    // enough to reason about more than one loop at a time. Consider these
684    // registers free and leave them alone.
685    else if (L->contains(AR->getLoop()) ||
686             (!AR->getLoop()->contains(L) &&
687              DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))) {
688      for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
689           PHINode *PN = dyn_cast<PHINode>(I); ++I)
690        if (SE.isSCEVable(PN->getType()) &&
691            (SE.getEffectiveSCEVType(PN->getType()) ==
692             SE.getEffectiveSCEVType(AR->getType())) &&
693            SE.getSCEV(PN) == AR)
694          return;
695
696      // If this isn't one of the addrecs that the loop already has, it
697      // would require a costly new phi and add. TODO: This isn't
698      // precisely modeled right now.
699      ++NumBaseAdds;
700      if (!Regs.count(AR->getStart()))
701        RateRegister(AR->getStart(), Regs, L, SE, DT);
702    }
703
704    // Add the step value register, if it needs one.
705    // TODO: The non-affine case isn't precisely modeled here.
706    if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1)))
707      if (!Regs.count(AR->getStart()))
708        RateRegister(AR->getOperand(1), Regs, L, SE, DT);
709  }
710  ++NumRegs;
711
712  // Rough heuristic; favor registers which don't require extra setup
713  // instructions in the preheader.
714  if (!isa<SCEVUnknown>(Reg) &&
715      !isa<SCEVConstant>(Reg) &&
716      !(isa<SCEVAddRecExpr>(Reg) &&
717        (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
718         isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
719    ++SetupCost;
720}
721
722/// RatePrimaryRegister - Record this register in the set. If we haven't seen it
723/// before, rate it.
724void Cost::RatePrimaryRegister(const SCEV *Reg,
725                               SmallPtrSet<const SCEV *, 16> &Regs,
726                               const Loop *L,
727                               ScalarEvolution &SE, DominatorTree &DT) {
728  if (Regs.insert(Reg))
729    RateRegister(Reg, Regs, L, SE, DT);
730}
731
732void Cost::RateFormula(const Formula &F,
733                       SmallPtrSet<const SCEV *, 16> &Regs,
734                       const DenseSet<const SCEV *> &VisitedRegs,
735                       const Loop *L,
736                       const SmallVectorImpl<int64_t> &Offsets,
737                       ScalarEvolution &SE, DominatorTree &DT) {
738  // Tally up the registers.
739  if (const SCEV *ScaledReg = F.ScaledReg) {
740    if (VisitedRegs.count(ScaledReg)) {
741      Loose();
742      return;
743    }
744    RatePrimaryRegister(ScaledReg, Regs, L, SE, DT);
745  }
746  for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
747       E = F.BaseRegs.end(); I != E; ++I) {
748    const SCEV *BaseReg = *I;
749    if (VisitedRegs.count(BaseReg)) {
750      Loose();
751      return;
752    }
753    RatePrimaryRegister(BaseReg, Regs, L, SE, DT);
754
755    NumIVMuls += isa<SCEVMulExpr>(BaseReg) &&
756                 BaseReg->hasComputableLoopEvolution(L);
757  }
758
759  if (F.BaseRegs.size() > 1)
760    NumBaseAdds += F.BaseRegs.size() - 1;
761
762  // Tally up the non-zero immediates.
763  for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
764       E = Offsets.end(); I != E; ++I) {
765    int64_t Offset = (uint64_t)*I + F.AM.BaseOffs;
766    if (F.AM.BaseGV)
767      ImmCost += 64; // Handle symbolic values conservatively.
768                     // TODO: This should probably be the pointer size.
769    else if (Offset != 0)
770      ImmCost += APInt(64, Offset, true).getMinSignedBits();
771  }
772}
773
774/// Loose - Set this cost to a loosing value.
775void Cost::Loose() {
776  NumRegs = ~0u;
777  AddRecCost = ~0u;
778  NumIVMuls = ~0u;
779  NumBaseAdds = ~0u;
780  ImmCost = ~0u;
781  SetupCost = ~0u;
782}
783
784/// operator< - Choose the lower cost.
785bool Cost::operator<(const Cost &Other) const {
786  if (NumRegs != Other.NumRegs)
787    return NumRegs < Other.NumRegs;
788  if (AddRecCost != Other.AddRecCost)
789    return AddRecCost < Other.AddRecCost;
790  if (NumIVMuls != Other.NumIVMuls)
791    return NumIVMuls < Other.NumIVMuls;
792  if (NumBaseAdds != Other.NumBaseAdds)
793    return NumBaseAdds < Other.NumBaseAdds;
794  if (ImmCost != Other.ImmCost)
795    return ImmCost < Other.ImmCost;
796  if (SetupCost != Other.SetupCost)
797    return SetupCost < Other.SetupCost;
798  return false;
799}
800
801void Cost::print(raw_ostream &OS) const {
802  OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
803  if (AddRecCost != 0)
804    OS << ", with addrec cost " << AddRecCost;
805  if (NumIVMuls != 0)
806    OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
807  if (NumBaseAdds != 0)
808    OS << ", plus " << NumBaseAdds << " base add"
809       << (NumBaseAdds == 1 ? "" : "s");
810  if (ImmCost != 0)
811    OS << ", plus " << ImmCost << " imm cost";
812  if (SetupCost != 0)
813    OS << ", plus " << SetupCost << " setup cost";
814}
815
816void Cost::dump() const {
817  print(errs()); errs() << '\n';
818}
819
820namespace {
821
822/// LSRFixup - An operand value in an instruction which is to be replaced
823/// with some equivalent, possibly strength-reduced, replacement.
824struct LSRFixup {
825  /// UserInst - The instruction which will be updated.
826  Instruction *UserInst;
827
828  /// OperandValToReplace - The operand of the instruction which will
829  /// be replaced. The operand may be used more than once; every instance
830  /// will be replaced.
831  Value *OperandValToReplace;
832
833  /// PostIncLoops - If this user is to use the post-incremented value of an
834  /// induction variable, this variable is non-null and holds the loop
835  /// associated with the induction variable.
836  PostIncLoopSet PostIncLoops;
837
838  /// LUIdx - The index of the LSRUse describing the expression which
839  /// this fixup needs, minus an offset (below).
840  size_t LUIdx;
841
842  /// Offset - A constant offset to be added to the LSRUse expression.
843  /// This allows multiple fixups to share the same LSRUse with different
844  /// offsets, for example in an unrolled loop.
845  int64_t Offset;
846
847  bool isUseFullyOutsideLoop(const Loop *L) const;
848
849  LSRFixup();
850
851  void print(raw_ostream &OS) const;
852  void dump() const;
853};
854
855}
856
857LSRFixup::LSRFixup()
858  : UserInst(0), OperandValToReplace(0), LUIdx(~size_t(0)), Offset(0) {}
859
860/// isUseFullyOutsideLoop - Test whether this fixup always uses its
861/// value outside of the given loop.
862bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
863  // PHI nodes use their value in their incoming blocks.
864  if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
865    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
866      if (PN->getIncomingValue(i) == OperandValToReplace &&
867          L->contains(PN->getIncomingBlock(i)))
868        return false;
869    return true;
870  }
871
872  return !L->contains(UserInst);
873}
874
875void LSRFixup::print(raw_ostream &OS) const {
876  OS << "UserInst=";
877  // Store is common and interesting enough to be worth special-casing.
878  if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
879    OS << "store ";
880    WriteAsOperand(OS, Store->getOperand(0), /*PrintType=*/false);
881  } else if (UserInst->getType()->isVoidTy())
882    OS << UserInst->getOpcodeName();
883  else
884    WriteAsOperand(OS, UserInst, /*PrintType=*/false);
885
886  OS << ", OperandValToReplace=";
887  WriteAsOperand(OS, OperandValToReplace, /*PrintType=*/false);
888
889  for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(),
890       E = PostIncLoops.end(); I != E; ++I) {
891    OS << ", PostIncLoop=";
892    WriteAsOperand(OS, (*I)->getHeader(), /*PrintType=*/false);
893  }
894
895  if (LUIdx != ~size_t(0))
896    OS << ", LUIdx=" << LUIdx;
897
898  if (Offset != 0)
899    OS << ", Offset=" << Offset;
900}
901
902void LSRFixup::dump() const {
903  print(errs()); errs() << '\n';
904}
905
906namespace {
907
908/// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding
909/// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*.
910struct UniquifierDenseMapInfo {
911  static SmallVector<const SCEV *, 2> getEmptyKey() {
912    SmallVector<const SCEV *, 2> V;
913    V.push_back(reinterpret_cast<const SCEV *>(-1));
914    return V;
915  }
916
917  static SmallVector<const SCEV *, 2> getTombstoneKey() {
918    SmallVector<const SCEV *, 2> V;
919    V.push_back(reinterpret_cast<const SCEV *>(-2));
920    return V;
921  }
922
923  static unsigned getHashValue(const SmallVector<const SCEV *, 2> &V) {
924    unsigned Result = 0;
925    for (SmallVectorImpl<const SCEV *>::const_iterator I = V.begin(),
926         E = V.end(); I != E; ++I)
927      Result ^= DenseMapInfo<const SCEV *>::getHashValue(*I);
928    return Result;
929  }
930
931  static bool isEqual(const SmallVector<const SCEV *, 2> &LHS,
932                      const SmallVector<const SCEV *, 2> &RHS) {
933    return LHS == RHS;
934  }
935};
936
937/// LSRUse - This class holds the state that LSR keeps for each use in
938/// IVUsers, as well as uses invented by LSR itself. It includes information
939/// about what kinds of things can be folded into the user, information about
940/// the user itself, and information about how the use may be satisfied.
941/// TODO: Represent multiple users of the same expression in common?
942class LSRUse {
943  DenseSet<SmallVector<const SCEV *, 2>, UniquifierDenseMapInfo> Uniquifier;
944
945public:
946  /// KindType - An enum for a kind of use, indicating what types of
947  /// scaled and immediate operands it might support.
948  enum KindType {
949    Basic,   ///< A normal use, with no folding.
950    Special, ///< A special case of basic, allowing -1 scales.
951    Address, ///< An address use; folding according to TargetLowering
952    ICmpZero ///< An equality icmp with both operands folded into one.
953    // TODO: Add a generic icmp too?
954  };
955
956  KindType Kind;
957  const Type *AccessTy;
958
959  SmallVector<int64_t, 8> Offsets;
960  int64_t MinOffset;
961  int64_t MaxOffset;
962
963  /// AllFixupsOutsideLoop - This records whether all of the fixups using this
964  /// LSRUse are outside of the loop, in which case some special-case heuristics
965  /// may be used.
966  bool AllFixupsOutsideLoop;
967
968  /// Formulae - A list of ways to build a value that can satisfy this user.
969  /// After the list is populated, one of these is selected heuristically and
970  /// used to formulate a replacement for OperandValToReplace in UserInst.
971  SmallVector<Formula, 12> Formulae;
972
973  /// Regs - The set of register candidates used by all formulae in this LSRUse.
974  SmallPtrSet<const SCEV *, 4> Regs;
975
976  LSRUse(KindType K, const Type *T) : Kind(K), AccessTy(T),
977                                      MinOffset(INT64_MAX),
978                                      MaxOffset(INT64_MIN),
979                                      AllFixupsOutsideLoop(true) {}
980
981  bool HasFormulaWithSameRegs(const Formula &F) const;
982  bool InsertFormula(const Formula &F);
983  void DeleteFormula(Formula &F);
984  void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
985
986  void check() const;
987
988  void print(raw_ostream &OS) const;
989  void dump() const;
990};
991
992}
993
994/// HasFormula - Test whether this use as a formula which has the same
995/// registers as the given formula.
996bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
997  SmallVector<const SCEV *, 2> Key = F.BaseRegs;
998  if (F.ScaledReg) Key.push_back(F.ScaledReg);
999  // Unstable sort by host order ok, because this is only used for uniquifying.
1000  std::sort(Key.begin(), Key.end());
1001  return Uniquifier.count(Key);
1002}
1003
1004/// InsertFormula - If the given formula has not yet been inserted, add it to
1005/// the list, and return true. Return false otherwise.
1006bool LSRUse::InsertFormula(const Formula &F) {
1007  SmallVector<const SCEV *, 2> Key = F.BaseRegs;
1008  if (F.ScaledReg) Key.push_back(F.ScaledReg);
1009  // Unstable sort by host order ok, because this is only used for uniquifying.
1010  std::sort(Key.begin(), Key.end());
1011
1012  if (!Uniquifier.insert(Key).second)
1013    return false;
1014
1015  // Using a register to hold the value of 0 is not profitable.
1016  assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1017         "Zero allocated in a scaled register!");
1018#ifndef NDEBUG
1019  for (SmallVectorImpl<const SCEV *>::const_iterator I =
1020       F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I)
1021    assert(!(*I)->isZero() && "Zero allocated in a base register!");
1022#endif
1023
1024  // Add the formula to the list.
1025  Formulae.push_back(F);
1026
1027  // Record registers now being used by this use.
1028  if (F.ScaledReg) Regs.insert(F.ScaledReg);
1029  Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1030
1031  return true;
1032}
1033
1034/// DeleteFormula - Remove the given formula from this use's list.
1035void LSRUse::DeleteFormula(Formula &F) {
1036  if (&F != &Formulae.back())
1037    std::swap(F, Formulae.back());
1038  Formulae.pop_back();
1039  assert(!Formulae.empty() && "LSRUse has no formulae left!");
1040}
1041
1042/// RecomputeRegs - Recompute the Regs field, and update RegUses.
1043void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1044  // Now that we've filtered out some formulae, recompute the Regs set.
1045  SmallPtrSet<const SCEV *, 4> OldRegs = Regs;
1046  Regs.clear();
1047  for (SmallVectorImpl<Formula>::const_iterator I = Formulae.begin(),
1048       E = Formulae.end(); I != E; ++I) {
1049    const Formula &F = *I;
1050    if (F.ScaledReg) Regs.insert(F.ScaledReg);
1051    Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1052  }
1053
1054  // Update the RegTracker.
1055  for (SmallPtrSet<const SCEV *, 4>::iterator I = OldRegs.begin(),
1056       E = OldRegs.end(); I != E; ++I)
1057    if (!Regs.count(*I))
1058      RegUses.DropRegister(*I, LUIdx);
1059}
1060
1061void LSRUse::print(raw_ostream &OS) const {
1062  OS << "LSR Use: Kind=";
1063  switch (Kind) {
1064  case Basic:    OS << "Basic"; break;
1065  case Special:  OS << "Special"; break;
1066  case ICmpZero: OS << "ICmpZero"; break;
1067  case Address:
1068    OS << "Address of ";
1069    if (AccessTy->isPointerTy())
1070      OS << "pointer"; // the full pointer type could be really verbose
1071    else
1072      OS << *AccessTy;
1073  }
1074
1075  OS << ", Offsets={";
1076  for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
1077       E = Offsets.end(); I != E; ++I) {
1078    OS << *I;
1079    if (next(I) != E)
1080      OS << ',';
1081  }
1082  OS << '}';
1083
1084  if (AllFixupsOutsideLoop)
1085    OS << ", all-fixups-outside-loop";
1086}
1087
1088void LSRUse::dump() const {
1089  print(errs()); errs() << '\n';
1090}
1091
1092/// isLegalUse - Test whether the use described by AM is "legal", meaning it can
1093/// be completely folded into the user instruction at isel time. This includes
1094/// address-mode folding and special icmp tricks.
1095static bool isLegalUse(const TargetLowering::AddrMode &AM,
1096                       LSRUse::KindType Kind, const Type *AccessTy,
1097                       const TargetLowering *TLI) {
1098  switch (Kind) {
1099  case LSRUse::Address:
1100    // If we have low-level target information, ask the target if it can
1101    // completely fold this address.
1102    if (TLI) return TLI->isLegalAddressingMode(AM, AccessTy);
1103
1104    // Otherwise, just guess that reg+reg addressing is legal.
1105    return !AM.BaseGV && AM.BaseOffs == 0 && AM.Scale <= 1;
1106
1107  case LSRUse::ICmpZero:
1108    // There's not even a target hook for querying whether it would be legal to
1109    // fold a GV into an ICmp.
1110    if (AM.BaseGV)
1111      return false;
1112
1113    // ICmp only has two operands; don't allow more than two non-trivial parts.
1114    if (AM.Scale != 0 && AM.HasBaseReg && AM.BaseOffs != 0)
1115      return false;
1116
1117    // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1118    // putting the scaled register in the other operand of the icmp.
1119    if (AM.Scale != 0 && AM.Scale != -1)
1120      return false;
1121
1122    // If we have low-level target information, ask the target if it can fold an
1123    // integer immediate on an icmp.
1124    if (AM.BaseOffs != 0) {
1125      if (TLI) return TLI->isLegalICmpImmediate(-AM.BaseOffs);
1126      return false;
1127    }
1128
1129    return true;
1130
1131  case LSRUse::Basic:
1132    // Only handle single-register values.
1133    return !AM.BaseGV && AM.Scale == 0 && AM.BaseOffs == 0;
1134
1135  case LSRUse::Special:
1136    // Only handle -1 scales, or no scale.
1137    return AM.Scale == 0 || AM.Scale == -1;
1138  }
1139
1140  return false;
1141}
1142
1143static bool isLegalUse(TargetLowering::AddrMode AM,
1144                       int64_t MinOffset, int64_t MaxOffset,
1145                       LSRUse::KindType Kind, const Type *AccessTy,
1146                       const TargetLowering *TLI) {
1147  // Check for overflow.
1148  if (((int64_t)((uint64_t)AM.BaseOffs + MinOffset) > AM.BaseOffs) !=
1149      (MinOffset > 0))
1150    return false;
1151  AM.BaseOffs = (uint64_t)AM.BaseOffs + MinOffset;
1152  if (isLegalUse(AM, Kind, AccessTy, TLI)) {
1153    AM.BaseOffs = (uint64_t)AM.BaseOffs - MinOffset;
1154    // Check for overflow.
1155    if (((int64_t)((uint64_t)AM.BaseOffs + MaxOffset) > AM.BaseOffs) !=
1156        (MaxOffset > 0))
1157      return false;
1158    AM.BaseOffs = (uint64_t)AM.BaseOffs + MaxOffset;
1159    return isLegalUse(AM, Kind, AccessTy, TLI);
1160  }
1161  return false;
1162}
1163
1164static bool isAlwaysFoldable(int64_t BaseOffs,
1165                             GlobalValue *BaseGV,
1166                             bool HasBaseReg,
1167                             LSRUse::KindType Kind, const Type *AccessTy,
1168                             const TargetLowering *TLI) {
1169  // Fast-path: zero is always foldable.
1170  if (BaseOffs == 0 && !BaseGV) return true;
1171
1172  // Conservatively, create an address with an immediate and a
1173  // base and a scale.
1174  TargetLowering::AddrMode AM;
1175  AM.BaseOffs = BaseOffs;
1176  AM.BaseGV = BaseGV;
1177  AM.HasBaseReg = HasBaseReg;
1178  AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1179
1180  // Canonicalize a scale of 1 to a base register if the formula doesn't
1181  // already have a base register.
1182  if (!AM.HasBaseReg && AM.Scale == 1) {
1183    AM.Scale = 0;
1184    AM.HasBaseReg = true;
1185  }
1186
1187  return isLegalUse(AM, Kind, AccessTy, TLI);
1188}
1189
1190static bool isAlwaysFoldable(const SCEV *S,
1191                             int64_t MinOffset, int64_t MaxOffset,
1192                             bool HasBaseReg,
1193                             LSRUse::KindType Kind, const Type *AccessTy,
1194                             const TargetLowering *TLI,
1195                             ScalarEvolution &SE) {
1196  // Fast-path: zero is always foldable.
1197  if (S->isZero()) return true;
1198
1199  // Conservatively, create an address with an immediate and a
1200  // base and a scale.
1201  int64_t BaseOffs = ExtractImmediate(S, SE);
1202  GlobalValue *BaseGV = ExtractSymbol(S, SE);
1203
1204  // If there's anything else involved, it's not foldable.
1205  if (!S->isZero()) return false;
1206
1207  // Fast-path: zero is always foldable.
1208  if (BaseOffs == 0 && !BaseGV) return true;
1209
1210  // Conservatively, create an address with an immediate and a
1211  // base and a scale.
1212  TargetLowering::AddrMode AM;
1213  AM.BaseOffs = BaseOffs;
1214  AM.BaseGV = BaseGV;
1215  AM.HasBaseReg = HasBaseReg;
1216  AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1217
1218  return isLegalUse(AM, MinOffset, MaxOffset, Kind, AccessTy, TLI);
1219}
1220
1221namespace {
1222
1223/// UseMapDenseMapInfo - A DenseMapInfo implementation for holding
1224/// DenseMaps and DenseSets of pairs of const SCEV* and LSRUse::Kind.
1225struct UseMapDenseMapInfo {
1226  static std::pair<const SCEV *, LSRUse::KindType> getEmptyKey() {
1227    return std::make_pair(reinterpret_cast<const SCEV *>(-1), LSRUse::Basic);
1228  }
1229
1230  static std::pair<const SCEV *, LSRUse::KindType> getTombstoneKey() {
1231    return std::make_pair(reinterpret_cast<const SCEV *>(-2), LSRUse::Basic);
1232  }
1233
1234  static unsigned
1235  getHashValue(const std::pair<const SCEV *, LSRUse::KindType> &V) {
1236    unsigned Result = DenseMapInfo<const SCEV *>::getHashValue(V.first);
1237    Result ^= DenseMapInfo<unsigned>::getHashValue(unsigned(V.second));
1238    return Result;
1239  }
1240
1241  static bool isEqual(const std::pair<const SCEV *, LSRUse::KindType> &LHS,
1242                      const std::pair<const SCEV *, LSRUse::KindType> &RHS) {
1243    return LHS == RHS;
1244  }
1245};
1246
1247/// FormulaSorter - This class implements an ordering for formulae which sorts
1248/// the by their standalone cost.
1249class FormulaSorter {
1250  /// These two sets are kept empty, so that we compute standalone costs.
1251  DenseSet<const SCEV *> VisitedRegs;
1252  SmallPtrSet<const SCEV *, 16> Regs;
1253  Loop *L;
1254  LSRUse *LU;
1255  ScalarEvolution &SE;
1256  DominatorTree &DT;
1257
1258public:
1259  FormulaSorter(Loop *l, LSRUse &lu, ScalarEvolution &se, DominatorTree &dt)
1260    : L(l), LU(&lu), SE(se), DT(dt) {}
1261
1262  bool operator()(const Formula &A, const Formula &B) {
1263    Cost CostA;
1264    CostA.RateFormula(A, Regs, VisitedRegs, L, LU->Offsets, SE, DT);
1265    Regs.clear();
1266    Cost CostB;
1267    CostB.RateFormula(B, Regs, VisitedRegs, L, LU->Offsets, SE, DT);
1268    Regs.clear();
1269    return CostA < CostB;
1270  }
1271};
1272
1273/// LSRInstance - This class holds state for the main loop strength reduction
1274/// logic.
1275class LSRInstance {
1276  IVUsers &IU;
1277  ScalarEvolution &SE;
1278  DominatorTree &DT;
1279  LoopInfo &LI;
1280  const TargetLowering *const TLI;
1281  Loop *const L;
1282  bool Changed;
1283
1284  /// IVIncInsertPos - This is the insert position that the current loop's
1285  /// induction variable increment should be placed. In simple loops, this is
1286  /// the latch block's terminator. But in more complicated cases, this is a
1287  /// position which will dominate all the in-loop post-increment users.
1288  Instruction *IVIncInsertPos;
1289
1290  /// Factors - Interesting factors between use strides.
1291  SmallSetVector<int64_t, 8> Factors;
1292
1293  /// Types - Interesting use types, to facilitate truncation reuse.
1294  SmallSetVector<const Type *, 4> Types;
1295
1296  /// Fixups - The list of operands which are to be replaced.
1297  SmallVector<LSRFixup, 16> Fixups;
1298
1299  /// Uses - The list of interesting uses.
1300  SmallVector<LSRUse, 16> Uses;
1301
1302  /// RegUses - Track which uses use which register candidates.
1303  RegUseTracker RegUses;
1304
1305  void OptimizeShadowIV();
1306  bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1307  ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1308  void OptimizeLoopTermCond();
1309
1310  void CollectInterestingTypesAndFactors();
1311  void CollectFixupsAndInitialFormulae();
1312
1313  LSRFixup &getNewFixup() {
1314    Fixups.push_back(LSRFixup());
1315    return Fixups.back();
1316  }
1317
1318  // Support for sharing of LSRUses between LSRFixups.
1319  typedef DenseMap<std::pair<const SCEV *, LSRUse::KindType>,
1320                   size_t,
1321                   UseMapDenseMapInfo> UseMapTy;
1322  UseMapTy UseMap;
1323
1324  bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1325                          LSRUse::KindType Kind, const Type *AccessTy);
1326
1327  std::pair<size_t, int64_t> getUse(const SCEV *&Expr,
1328                                    LSRUse::KindType Kind,
1329                                    const Type *AccessTy);
1330
1331  void DeleteUse(LSRUse &LU);
1332
1333  LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1334
1335public:
1336  void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1337  void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1338  void CountRegisters(const Formula &F, size_t LUIdx);
1339  bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1340
1341  void CollectLoopInvariantFixupsAndFormulae();
1342
1343  void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1344                              unsigned Depth = 0);
1345  void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1346  void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1347  void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1348  void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1349  void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1350  void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
1351  void GenerateCrossUseConstantOffsets();
1352  void GenerateAllReuseFormulae();
1353
1354  void FilterOutUndesirableDedicatedRegisters();
1355
1356  size_t EstimateSearchSpaceComplexity() const;
1357  void NarrowSearchSpaceUsingHeuristics();
1358
1359  void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
1360                    Cost &SolutionCost,
1361                    SmallVectorImpl<const Formula *> &Workspace,
1362                    const Cost &CurCost,
1363                    const SmallPtrSet<const SCEV *, 16> &CurRegs,
1364                    DenseSet<const SCEV *> &VisitedRegs) const;
1365  void Solve(SmallVectorImpl<const Formula *> &Solution) const;
1366
1367  BasicBlock::iterator
1368    HoistInsertPosition(BasicBlock::iterator IP,
1369                        const SmallVectorImpl<Instruction *> &Inputs) const;
1370  BasicBlock::iterator AdjustInsertPositionForExpand(BasicBlock::iterator IP,
1371                                                     const LSRFixup &LF,
1372                                                     const LSRUse &LU) const;
1373
1374  Value *Expand(const LSRFixup &LF,
1375                const Formula &F,
1376                BasicBlock::iterator IP,
1377                SCEVExpander &Rewriter,
1378                SmallVectorImpl<WeakVH> &DeadInsts) const;
1379  void RewriteForPHI(PHINode *PN, const LSRFixup &LF,
1380                     const Formula &F,
1381                     SCEVExpander &Rewriter,
1382                     SmallVectorImpl<WeakVH> &DeadInsts,
1383                     Pass *P) const;
1384  void Rewrite(const LSRFixup &LF,
1385               const Formula &F,
1386               SCEVExpander &Rewriter,
1387               SmallVectorImpl<WeakVH> &DeadInsts,
1388               Pass *P) const;
1389  void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
1390                         Pass *P);
1391
1392  LSRInstance(const TargetLowering *tli, Loop *l, Pass *P);
1393
1394  bool getChanged() const { return Changed; }
1395
1396  void print_factors_and_types(raw_ostream &OS) const;
1397  void print_fixups(raw_ostream &OS) const;
1398  void print_uses(raw_ostream &OS) const;
1399  void print(raw_ostream &OS) const;
1400  void dump() const;
1401};
1402
1403}
1404
1405/// OptimizeShadowIV - If IV is used in a int-to-float cast
1406/// inside the loop then try to eliminate the cast operation.
1407void LSRInstance::OptimizeShadowIV() {
1408  const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1409  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1410    return;
1411
1412  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
1413       UI != E; /* empty */) {
1414    IVUsers::const_iterator CandidateUI = UI;
1415    ++UI;
1416    Instruction *ShadowUse = CandidateUI->getUser();
1417    const Type *DestTy = NULL;
1418
1419    /* If shadow use is a int->float cast then insert a second IV
1420       to eliminate this cast.
1421
1422         for (unsigned i = 0; i < n; ++i)
1423           foo((double)i);
1424
1425       is transformed into
1426
1427         double d = 0.0;
1428         for (unsigned i = 0; i < n; ++i, ++d)
1429           foo(d);
1430    */
1431    if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser()))
1432      DestTy = UCast->getDestTy();
1433    else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser()))
1434      DestTy = SCast->getDestTy();
1435    if (!DestTy) continue;
1436
1437    if (TLI) {
1438      // If target does not support DestTy natively then do not apply
1439      // this transformation.
1440      EVT DVT = TLI->getValueType(DestTy);
1441      if (!TLI->isTypeLegal(DVT)) continue;
1442    }
1443
1444    PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
1445    if (!PH) continue;
1446    if (PH->getNumIncomingValues() != 2) continue;
1447
1448    const Type *SrcTy = PH->getType();
1449    int Mantissa = DestTy->getFPMantissaWidth();
1450    if (Mantissa == -1) continue;
1451    if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
1452      continue;
1453
1454    unsigned Entry, Latch;
1455    if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
1456      Entry = 0;
1457      Latch = 1;
1458    } else {
1459      Entry = 1;
1460      Latch = 0;
1461    }
1462
1463    ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
1464    if (!Init) continue;
1465    Constant *NewInit = ConstantFP::get(DestTy, Init->getZExtValue());
1466
1467    BinaryOperator *Incr =
1468      dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
1469    if (!Incr) continue;
1470    if (Incr->getOpcode() != Instruction::Add
1471        && Incr->getOpcode() != Instruction::Sub)
1472      continue;
1473
1474    /* Initialize new IV, double d = 0.0 in above example. */
1475    ConstantInt *C = NULL;
1476    if (Incr->getOperand(0) == PH)
1477      C = dyn_cast<ConstantInt>(Incr->getOperand(1));
1478    else if (Incr->getOperand(1) == PH)
1479      C = dyn_cast<ConstantInt>(Incr->getOperand(0));
1480    else
1481      continue;
1482
1483    if (!C) continue;
1484
1485    // Ignore negative constants, as the code below doesn't handle them
1486    // correctly. TODO: Remove this restriction.
1487    if (!C->getValue().isStrictlyPositive()) continue;
1488
1489    /* Add new PHINode. */
1490    PHINode *NewPH = PHINode::Create(DestTy, "IV.S.", PH);
1491
1492    /* create new increment. '++d' in above example. */
1493    Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
1494    BinaryOperator *NewIncr =
1495      BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
1496                               Instruction::FAdd : Instruction::FSub,
1497                             NewPH, CFP, "IV.S.next.", Incr);
1498
1499    NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
1500    NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
1501
1502    /* Remove cast operation */
1503    ShadowUse->replaceAllUsesWith(NewPH);
1504    ShadowUse->eraseFromParent();
1505    Changed = true;
1506    break;
1507  }
1508}
1509
1510/// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
1511/// set the IV user and stride information and return true, otherwise return
1512/// false.
1513bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
1514  for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1515    if (UI->getUser() == Cond) {
1516      // NOTE: we could handle setcc instructions with multiple uses here, but
1517      // InstCombine does it as well for simple uses, it's not clear that it
1518      // occurs enough in real life to handle.
1519      CondUse = UI;
1520      return true;
1521    }
1522  return false;
1523}
1524
1525/// OptimizeMax - Rewrite the loop's terminating condition if it uses
1526/// a max computation.
1527///
1528/// This is a narrow solution to a specific, but acute, problem. For loops
1529/// like this:
1530///
1531///   i = 0;
1532///   do {
1533///     p[i] = 0.0;
1534///   } while (++i < n);
1535///
1536/// the trip count isn't just 'n', because 'n' might not be positive. And
1537/// unfortunately this can come up even for loops where the user didn't use
1538/// a C do-while loop. For example, seemingly well-behaved top-test loops
1539/// will commonly be lowered like this:
1540//
1541///   if (n > 0) {
1542///     i = 0;
1543///     do {
1544///       p[i] = 0.0;
1545///     } while (++i < n);
1546///   }
1547///
1548/// and then it's possible for subsequent optimization to obscure the if
1549/// test in such a way that indvars can't find it.
1550///
1551/// When indvars can't find the if test in loops like this, it creates a
1552/// max expression, which allows it to give the loop a canonical
1553/// induction variable:
1554///
1555///   i = 0;
1556///   max = n < 1 ? 1 : n;
1557///   do {
1558///     p[i] = 0.0;
1559///   } while (++i != max);
1560///
1561/// Canonical induction variables are necessary because the loop passes
1562/// are designed around them. The most obvious example of this is the
1563/// LoopInfo analysis, which doesn't remember trip count values. It
1564/// expects to be able to rediscover the trip count each time it is
1565/// needed, and it does this using a simple analysis that only succeeds if
1566/// the loop has a canonical induction variable.
1567///
1568/// However, when it comes time to generate code, the maximum operation
1569/// can be quite costly, especially if it's inside of an outer loop.
1570///
1571/// This function solves this problem by detecting this type of loop and
1572/// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
1573/// the instructions for the maximum computation.
1574///
1575ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
1576  // Check that the loop matches the pattern we're looking for.
1577  if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
1578      Cond->getPredicate() != CmpInst::ICMP_NE)
1579    return Cond;
1580
1581  SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
1582  if (!Sel || !Sel->hasOneUse()) return Cond;
1583
1584  const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1585  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1586    return Cond;
1587  const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
1588
1589  // Add one to the backedge-taken count to get the trip count.
1590  const SCEV *IterationCount = SE.getAddExpr(BackedgeTakenCount, One);
1591  if (IterationCount != SE.getSCEV(Sel)) return Cond;
1592
1593  // Check for a max calculation that matches the pattern. There's no check
1594  // for ICMP_ULE here because the comparison would be with zero, which
1595  // isn't interesting.
1596  CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1597  const SCEVNAryExpr *Max = 0;
1598  if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
1599    Pred = ICmpInst::ICMP_SLE;
1600    Max = S;
1601  } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
1602    Pred = ICmpInst::ICMP_SLT;
1603    Max = S;
1604  } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
1605    Pred = ICmpInst::ICMP_ULT;
1606    Max = U;
1607  } else {
1608    // No match; bail.
1609    return Cond;
1610  }
1611
1612  // To handle a max with more than two operands, this optimization would
1613  // require additional checking and setup.
1614  if (Max->getNumOperands() != 2)
1615    return Cond;
1616
1617  const SCEV *MaxLHS = Max->getOperand(0);
1618  const SCEV *MaxRHS = Max->getOperand(1);
1619
1620  // ScalarEvolution canonicalizes constants to the left. For < and >, look
1621  // for a comparison with 1. For <= and >=, a comparison with zero.
1622  if (!MaxLHS ||
1623      (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
1624    return Cond;
1625
1626  // Check the relevant induction variable for conformance to
1627  // the pattern.
1628  const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
1629  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
1630  if (!AR || !AR->isAffine() ||
1631      AR->getStart() != One ||
1632      AR->getStepRecurrence(SE) != One)
1633    return Cond;
1634
1635  assert(AR->getLoop() == L &&
1636         "Loop condition operand is an addrec in a different loop!");
1637
1638  // Check the right operand of the select, and remember it, as it will
1639  // be used in the new comparison instruction.
1640  Value *NewRHS = 0;
1641  if (ICmpInst::isTrueWhenEqual(Pred)) {
1642    // Look for n+1, and grab n.
1643    if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
1644      if (isa<ConstantInt>(BO->getOperand(1)) &&
1645          cast<ConstantInt>(BO->getOperand(1))->isOne() &&
1646          SE.getSCEV(BO->getOperand(0)) == MaxRHS)
1647        NewRHS = BO->getOperand(0);
1648    if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
1649      if (isa<ConstantInt>(BO->getOperand(1)) &&
1650          cast<ConstantInt>(BO->getOperand(1))->isOne() &&
1651          SE.getSCEV(BO->getOperand(0)) == MaxRHS)
1652        NewRHS = BO->getOperand(0);
1653    if (!NewRHS)
1654      return Cond;
1655  } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
1656    NewRHS = Sel->getOperand(1);
1657  else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
1658    NewRHS = Sel->getOperand(2);
1659  else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
1660    NewRHS = SU->getValue();
1661  else
1662    // Max doesn't match expected pattern.
1663    return Cond;
1664
1665  // Determine the new comparison opcode. It may be signed or unsigned,
1666  // and the original comparison may be either equality or inequality.
1667  if (Cond->getPredicate() == CmpInst::ICMP_EQ)
1668    Pred = CmpInst::getInversePredicate(Pred);
1669
1670  // Ok, everything looks ok to change the condition into an SLT or SGE and
1671  // delete the max calculation.
1672  ICmpInst *NewCond =
1673    new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
1674
1675  // Delete the max calculation instructions.
1676  Cond->replaceAllUsesWith(NewCond);
1677  CondUse->setUser(NewCond);
1678  Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
1679  Cond->eraseFromParent();
1680  Sel->eraseFromParent();
1681  if (Cmp->use_empty())
1682    Cmp->eraseFromParent();
1683  return NewCond;
1684}
1685
1686/// OptimizeLoopTermCond - Change loop terminating condition to use the
1687/// postinc iv when possible.
1688void
1689LSRInstance::OptimizeLoopTermCond() {
1690  SmallPtrSet<Instruction *, 4> PostIncs;
1691
1692  BasicBlock *LatchBlock = L->getLoopLatch();
1693  SmallVector<BasicBlock*, 8> ExitingBlocks;
1694  L->getExitingBlocks(ExitingBlocks);
1695
1696  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
1697    BasicBlock *ExitingBlock = ExitingBlocks[i];
1698
1699    // Get the terminating condition for the loop if possible.  If we
1700    // can, we want to change it to use a post-incremented version of its
1701    // induction variable, to allow coalescing the live ranges for the IV into
1702    // one register value.
1703
1704    BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
1705    if (!TermBr)
1706      continue;
1707    // FIXME: Overly conservative, termination condition could be an 'or' etc..
1708    if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
1709      continue;
1710
1711    // Search IVUsesByStride to find Cond's IVUse if there is one.
1712    IVStrideUse *CondUse = 0;
1713    ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
1714    if (!FindIVUserForCond(Cond, CondUse))
1715      continue;
1716
1717    // If the trip count is computed in terms of a max (due to ScalarEvolution
1718    // being unable to find a sufficient guard, for example), change the loop
1719    // comparison to use SLT or ULT instead of NE.
1720    // One consequence of doing this now is that it disrupts the count-down
1721    // optimization. That's not always a bad thing though, because in such
1722    // cases it may still be worthwhile to avoid a max.
1723    Cond = OptimizeMax(Cond, CondUse);
1724
1725    // If this exiting block dominates the latch block, it may also use
1726    // the post-inc value if it won't be shared with other uses.
1727    // Check for dominance.
1728    if (!DT.dominates(ExitingBlock, LatchBlock))
1729      continue;
1730
1731    // Conservatively avoid trying to use the post-inc value in non-latch
1732    // exits if there may be pre-inc users in intervening blocks.
1733    if (LatchBlock != ExitingBlock)
1734      for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1735        // Test if the use is reachable from the exiting block. This dominator
1736        // query is a conservative approximation of reachability.
1737        if (&*UI != CondUse &&
1738            !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
1739          // Conservatively assume there may be reuse if the quotient of their
1740          // strides could be a legal scale.
1741          const SCEV *A = IU.getStride(*CondUse, L);
1742          const SCEV *B = IU.getStride(*UI, L);
1743          if (!A || !B) continue;
1744          if (SE.getTypeSizeInBits(A->getType()) !=
1745              SE.getTypeSizeInBits(B->getType())) {
1746            if (SE.getTypeSizeInBits(A->getType()) >
1747                SE.getTypeSizeInBits(B->getType()))
1748              B = SE.getSignExtendExpr(B, A->getType());
1749            else
1750              A = SE.getSignExtendExpr(A, B->getType());
1751          }
1752          if (const SCEVConstant *D =
1753                dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
1754            const ConstantInt *C = D->getValue();
1755            // Stride of one or negative one can have reuse with non-addresses.
1756            if (C->isOne() || C->isAllOnesValue())
1757              goto decline_post_inc;
1758            // Avoid weird situations.
1759            if (C->getValue().getMinSignedBits() >= 64 ||
1760                C->getValue().isMinSignedValue())
1761              goto decline_post_inc;
1762            // Without TLI, assume that any stride might be valid, and so any
1763            // use might be shared.
1764            if (!TLI)
1765              goto decline_post_inc;
1766            // Check for possible scaled-address reuse.
1767            const Type *AccessTy = getAccessType(UI->getUser());
1768            TargetLowering::AddrMode AM;
1769            AM.Scale = C->getSExtValue();
1770            if (TLI->isLegalAddressingMode(AM, AccessTy))
1771              goto decline_post_inc;
1772            AM.Scale = -AM.Scale;
1773            if (TLI->isLegalAddressingMode(AM, AccessTy))
1774              goto decline_post_inc;
1775          }
1776        }
1777
1778    DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
1779                 << *Cond << '\n');
1780
1781    // It's possible for the setcc instruction to be anywhere in the loop, and
1782    // possible for it to have multiple users.  If it is not immediately before
1783    // the exiting block branch, move it.
1784    if (&*++BasicBlock::iterator(Cond) != TermBr) {
1785      if (Cond->hasOneUse()) {
1786        Cond->moveBefore(TermBr);
1787      } else {
1788        // Clone the terminating condition and insert into the loopend.
1789        ICmpInst *OldCond = Cond;
1790        Cond = cast<ICmpInst>(Cond->clone());
1791        Cond->setName(L->getHeader()->getName() + ".termcond");
1792        ExitingBlock->getInstList().insert(TermBr, Cond);
1793
1794        // Clone the IVUse, as the old use still exists!
1795        CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
1796        TermBr->replaceUsesOfWith(OldCond, Cond);
1797      }
1798    }
1799
1800    // If we get to here, we know that we can transform the setcc instruction to
1801    // use the post-incremented version of the IV, allowing us to coalesce the
1802    // live ranges for the IV correctly.
1803    CondUse->transformToPostInc(L);
1804    Changed = true;
1805
1806    PostIncs.insert(Cond);
1807  decline_post_inc:;
1808  }
1809
1810  // Determine an insertion point for the loop induction variable increment. It
1811  // must dominate all the post-inc comparisons we just set up, and it must
1812  // dominate the loop latch edge.
1813  IVIncInsertPos = L->getLoopLatch()->getTerminator();
1814  for (SmallPtrSet<Instruction *, 4>::const_iterator I = PostIncs.begin(),
1815       E = PostIncs.end(); I != E; ++I) {
1816    BasicBlock *BB =
1817      DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
1818                                    (*I)->getParent());
1819    if (BB == (*I)->getParent())
1820      IVIncInsertPos = *I;
1821    else if (BB != IVIncInsertPos->getParent())
1822      IVIncInsertPos = BB->getTerminator();
1823  }
1824}
1825
1826/// reconcileNewOffset - Determine if the given use can accomodate a fixup
1827/// at the given offset and other details. If so, update the use and
1828/// return true.
1829bool
1830LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1831                                LSRUse::KindType Kind, const Type *AccessTy) {
1832  int64_t NewMinOffset = LU.MinOffset;
1833  int64_t NewMaxOffset = LU.MaxOffset;
1834  const Type *NewAccessTy = AccessTy;
1835
1836  // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
1837  // something conservative, however this can pessimize in the case that one of
1838  // the uses will have all its uses outside the loop, for example.
1839  if (LU.Kind != Kind)
1840    return false;
1841  // Conservatively assume HasBaseReg is true for now.
1842  if (NewOffset < LU.MinOffset) {
1843    if (!isAlwaysFoldable(LU.MaxOffset - NewOffset, 0, HasBaseReg,
1844                          Kind, AccessTy, TLI))
1845      return false;
1846    NewMinOffset = NewOffset;
1847  } else if (NewOffset > LU.MaxOffset) {
1848    if (!isAlwaysFoldable(NewOffset - LU.MinOffset, 0, HasBaseReg,
1849                          Kind, AccessTy, TLI))
1850      return false;
1851    NewMaxOffset = NewOffset;
1852  }
1853  // Check for a mismatched access type, and fall back conservatively as needed.
1854  // TODO: Be less conservative when the type is similar and can use the same
1855  // addressing modes.
1856  if (Kind == LSRUse::Address && AccessTy != LU.AccessTy)
1857    NewAccessTy = Type::getVoidTy(AccessTy->getContext());
1858
1859  // Update the use.
1860  LU.MinOffset = NewMinOffset;
1861  LU.MaxOffset = NewMaxOffset;
1862  LU.AccessTy = NewAccessTy;
1863  if (NewOffset != LU.Offsets.back())
1864    LU.Offsets.push_back(NewOffset);
1865  return true;
1866}
1867
1868/// getUse - Return an LSRUse index and an offset value for a fixup which
1869/// needs the given expression, with the given kind and optional access type.
1870/// Either reuse an existing use or create a new one, as needed.
1871std::pair<size_t, int64_t>
1872LSRInstance::getUse(const SCEV *&Expr,
1873                    LSRUse::KindType Kind, const Type *AccessTy) {
1874  const SCEV *Copy = Expr;
1875  int64_t Offset = ExtractImmediate(Expr, SE);
1876
1877  // Basic uses can't accept any offset, for example.
1878  if (!isAlwaysFoldable(Offset, 0, /*HasBaseReg=*/true, Kind, AccessTy, TLI)) {
1879    Expr = Copy;
1880    Offset = 0;
1881  }
1882
1883  std::pair<UseMapTy::iterator, bool> P =
1884    UseMap.insert(std::make_pair(std::make_pair(Expr, Kind), 0));
1885  if (!P.second) {
1886    // A use already existed with this base.
1887    size_t LUIdx = P.first->second;
1888    LSRUse &LU = Uses[LUIdx];
1889    if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
1890      // Reuse this use.
1891      return std::make_pair(LUIdx, Offset);
1892  }
1893
1894  // Create a new use.
1895  size_t LUIdx = Uses.size();
1896  P.first->second = LUIdx;
1897  Uses.push_back(LSRUse(Kind, AccessTy));
1898  LSRUse &LU = Uses[LUIdx];
1899
1900  // We don't need to track redundant offsets, but we don't need to go out
1901  // of our way here to avoid them.
1902  if (LU.Offsets.empty() || Offset != LU.Offsets.back())
1903    LU.Offsets.push_back(Offset);
1904
1905  LU.MinOffset = Offset;
1906  LU.MaxOffset = Offset;
1907  return std::make_pair(LUIdx, Offset);
1908}
1909
1910/// DeleteUse - Delete the given use from the Uses list.
1911void LSRInstance::DeleteUse(LSRUse &LU) {
1912  if (&LU != &Uses.back())
1913    std::swap(LU, Uses.back());
1914  Uses.pop_back();
1915}
1916
1917/// FindUseWithFormula - Look for a use distinct from OrigLU which is has
1918/// a formula that has the same registers as the given formula.
1919LSRUse *
1920LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
1921                                       const LSRUse &OrigLU) {
1922  // Search all uses for the formula. This could be more clever. Ignore
1923  // ICmpZero uses because they may contain formulae generated by
1924  // GenerateICmpZeroScales, in which case adding fixup offsets may
1925  // be invalid.
1926  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
1927    LSRUse &LU = Uses[LUIdx];
1928    if (&LU != &OrigLU &&
1929        LU.Kind != LSRUse::ICmpZero &&
1930        LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
1931        LU.HasFormulaWithSameRegs(OrigF)) {
1932      for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
1933           E = LU.Formulae.end(); I != E; ++I) {
1934        const Formula &F = *I;
1935        if (F.BaseRegs == OrigF.BaseRegs &&
1936            F.ScaledReg == OrigF.ScaledReg &&
1937            F.AM.BaseGV == OrigF.AM.BaseGV &&
1938            F.AM.Scale == OrigF.AM.Scale &&
1939            LU.Kind) {
1940          if (F.AM.BaseOffs == 0)
1941            return &LU;
1942          break;
1943        }
1944      }
1945    }
1946  }
1947
1948  return 0;
1949}
1950
1951void LSRInstance::CollectInterestingTypesAndFactors() {
1952  SmallSetVector<const SCEV *, 4> Strides;
1953
1954  // Collect interesting types and strides.
1955  SmallVector<const SCEV *, 4> Worklist;
1956  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
1957    const SCEV *Expr = IU.getExpr(*UI);
1958
1959    // Collect interesting types.
1960    Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
1961
1962    // Add strides for mentioned loops.
1963    Worklist.push_back(Expr);
1964    do {
1965      const SCEV *S = Worklist.pop_back_val();
1966      if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
1967        Strides.insert(AR->getStepRecurrence(SE));
1968        Worklist.push_back(AR->getStart());
1969      } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
1970        Worklist.append(Add->op_begin(), Add->op_end());
1971      }
1972    } while (!Worklist.empty());
1973  }
1974
1975  // Compute interesting factors from the set of interesting strides.
1976  for (SmallSetVector<const SCEV *, 4>::const_iterator
1977       I = Strides.begin(), E = Strides.end(); I != E; ++I)
1978    for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
1979         next(I); NewStrideIter != E; ++NewStrideIter) {
1980      const SCEV *OldStride = *I;
1981      const SCEV *NewStride = *NewStrideIter;
1982
1983      if (SE.getTypeSizeInBits(OldStride->getType()) !=
1984          SE.getTypeSizeInBits(NewStride->getType())) {
1985        if (SE.getTypeSizeInBits(OldStride->getType()) >
1986            SE.getTypeSizeInBits(NewStride->getType()))
1987          NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
1988        else
1989          OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
1990      }
1991      if (const SCEVConstant *Factor =
1992            dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
1993                                                        SE, true))) {
1994        if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
1995          Factors.insert(Factor->getValue()->getValue().getSExtValue());
1996      } else if (const SCEVConstant *Factor =
1997                   dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
1998                                                               NewStride,
1999                                                               SE, true))) {
2000        if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
2001          Factors.insert(Factor->getValue()->getValue().getSExtValue());
2002      }
2003    }
2004
2005  // If all uses use the same type, don't bother looking for truncation-based
2006  // reuse.
2007  if (Types.size() == 1)
2008    Types.clear();
2009
2010  DEBUG(print_factors_and_types(dbgs()));
2011}
2012
2013void LSRInstance::CollectFixupsAndInitialFormulae() {
2014  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
2015    // Record the uses.
2016    LSRFixup &LF = getNewFixup();
2017    LF.UserInst = UI->getUser();
2018    LF.OperandValToReplace = UI->getOperandValToReplace();
2019    LF.PostIncLoops = UI->getPostIncLoops();
2020
2021    LSRUse::KindType Kind = LSRUse::Basic;
2022    const Type *AccessTy = 0;
2023    if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) {
2024      Kind = LSRUse::Address;
2025      AccessTy = getAccessType(LF.UserInst);
2026    }
2027
2028    const SCEV *S = IU.getExpr(*UI);
2029
2030    // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
2031    // (N - i == 0), and this allows (N - i) to be the expression that we work
2032    // with rather than just N or i, so we can consider the register
2033    // requirements for both N and i at the same time. Limiting this code to
2034    // equality icmps is not a problem because all interesting loops use
2035    // equality icmps, thanks to IndVarSimplify.
2036    if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst))
2037      if (CI->isEquality()) {
2038        // Swap the operands if needed to put the OperandValToReplace on the
2039        // left, for consistency.
2040        Value *NV = CI->getOperand(1);
2041        if (NV == LF.OperandValToReplace) {
2042          CI->setOperand(1, CI->getOperand(0));
2043          CI->setOperand(0, NV);
2044          NV = CI->getOperand(1);
2045          Changed = true;
2046        }
2047
2048        // x == y  -->  x - y == 0
2049        const SCEV *N = SE.getSCEV(NV);
2050        if (N->isLoopInvariant(L)) {
2051          Kind = LSRUse::ICmpZero;
2052          S = SE.getMinusSCEV(N, S);
2053        }
2054
2055        // -1 and the negations of all interesting strides (except the negation
2056        // of -1) are now also interesting.
2057        for (size_t i = 0, e = Factors.size(); i != e; ++i)
2058          if (Factors[i] != -1)
2059            Factors.insert(-(uint64_t)Factors[i]);
2060        Factors.insert(-1);
2061      }
2062
2063    // Set up the initial formula for this use.
2064    std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
2065    LF.LUIdx = P.first;
2066    LF.Offset = P.second;
2067    LSRUse &LU = Uses[LF.LUIdx];
2068    LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
2069
2070    // If this is the first use of this LSRUse, give it a formula.
2071    if (LU.Formulae.empty()) {
2072      InsertInitialFormula(S, LU, LF.LUIdx);
2073      CountRegisters(LU.Formulae.back(), LF.LUIdx);
2074    }
2075  }
2076
2077  DEBUG(print_fixups(dbgs()));
2078}
2079
2080/// InsertInitialFormula - Insert a formula for the given expression into
2081/// the given use, separating out loop-variant portions from loop-invariant
2082/// and loop-computable portions.
2083void
2084LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
2085  Formula F;
2086  F.InitialMatch(S, L, SE, DT);
2087  bool Inserted = InsertFormula(LU, LUIdx, F);
2088  assert(Inserted && "Initial formula already exists!"); (void)Inserted;
2089}
2090
2091/// InsertSupplementalFormula - Insert a simple single-register formula for
2092/// the given expression into the given use.
2093void
2094LSRInstance::InsertSupplementalFormula(const SCEV *S,
2095                                       LSRUse &LU, size_t LUIdx) {
2096  Formula F;
2097  F.BaseRegs.push_back(S);
2098  F.AM.HasBaseReg = true;
2099  bool Inserted = InsertFormula(LU, LUIdx, F);
2100  assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
2101}
2102
2103/// CountRegisters - Note which registers are used by the given formula,
2104/// updating RegUses.
2105void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
2106  if (F.ScaledReg)
2107    RegUses.CountRegister(F.ScaledReg, LUIdx);
2108  for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
2109       E = F.BaseRegs.end(); I != E; ++I)
2110    RegUses.CountRegister(*I, LUIdx);
2111}
2112
2113/// InsertFormula - If the given formula has not yet been inserted, add it to
2114/// the list, and return true. Return false otherwise.
2115bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
2116  if (!LU.InsertFormula(F))
2117    return false;
2118
2119  CountRegisters(F, LUIdx);
2120  return true;
2121}
2122
2123/// CollectLoopInvariantFixupsAndFormulae - Check for other uses of
2124/// loop-invariant values which we're tracking. These other uses will pin these
2125/// values in registers, making them less profitable for elimination.
2126/// TODO: This currently misses non-constant addrec step registers.
2127/// TODO: Should this give more weight to users inside the loop?
2128void
2129LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
2130  SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
2131  SmallPtrSet<const SCEV *, 8> Inserted;
2132
2133  while (!Worklist.empty()) {
2134    const SCEV *S = Worklist.pop_back_val();
2135
2136    if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
2137      Worklist.append(N->op_begin(), N->op_end());
2138    else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
2139      Worklist.push_back(C->getOperand());
2140    else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2141      Worklist.push_back(D->getLHS());
2142      Worklist.push_back(D->getRHS());
2143    } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2144      if (!Inserted.insert(U)) continue;
2145      const Value *V = U->getValue();
2146      if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
2147        // Look for instructions defined outside the loop.
2148        if (L->contains(Inst)) continue;
2149      } else if (isa<UndefValue>(V))
2150        // Undef doesn't have a live range, so it doesn't matter.
2151        continue;
2152      for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
2153           UI != UE; ++UI) {
2154        const Instruction *UserInst = dyn_cast<Instruction>(*UI);
2155        // Ignore non-instructions.
2156        if (!UserInst)
2157          continue;
2158        // Ignore instructions in other functions (as can happen with
2159        // Constants).
2160        if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
2161          continue;
2162        // Ignore instructions not dominated by the loop.
2163        const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
2164          UserInst->getParent() :
2165          cast<PHINode>(UserInst)->getIncomingBlock(
2166            PHINode::getIncomingValueNumForOperand(UI.getOperandNo()));
2167        if (!DT.dominates(L->getHeader(), UseBB))
2168          continue;
2169        // Ignore uses which are part of other SCEV expressions, to avoid
2170        // analyzing them multiple times.
2171        if (SE.isSCEVable(UserInst->getType())) {
2172          const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
2173          // If the user is a no-op, look through to its uses.
2174          if (!isa<SCEVUnknown>(UserS))
2175            continue;
2176          if (UserS == U) {
2177            Worklist.push_back(
2178              SE.getUnknown(const_cast<Instruction *>(UserInst)));
2179            continue;
2180          }
2181        }
2182        // Ignore icmp instructions which are already being analyzed.
2183        if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
2184          unsigned OtherIdx = !UI.getOperandNo();
2185          Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
2186          if (SE.getSCEV(OtherOp)->hasComputableLoopEvolution(L))
2187            continue;
2188        }
2189
2190        LSRFixup &LF = getNewFixup();
2191        LF.UserInst = const_cast<Instruction *>(UserInst);
2192        LF.OperandValToReplace = UI.getUse();
2193        std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, 0);
2194        LF.LUIdx = P.first;
2195        LF.Offset = P.second;
2196        LSRUse &LU = Uses[LF.LUIdx];
2197        LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
2198        InsertSupplementalFormula(U, LU, LF.LUIdx);
2199        CountRegisters(LU.Formulae.back(), Uses.size() - 1);
2200        break;
2201      }
2202    }
2203  }
2204}
2205
2206/// CollectSubexprs - Split S into subexpressions which can be pulled out into
2207/// separate registers. If C is non-null, multiply each subexpression by C.
2208static void CollectSubexprs(const SCEV *S, const SCEVConstant *C,
2209                            SmallVectorImpl<const SCEV *> &Ops,
2210                            SmallVectorImpl<const SCEV *> &UninterestingOps,
2211                            const Loop *L,
2212                            ScalarEvolution &SE) {
2213  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2214    // Break out add operands.
2215    for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
2216         I != E; ++I)
2217      CollectSubexprs(*I, C, Ops, UninterestingOps, L, SE);
2218    return;
2219  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2220    // Split a non-zero base out of an addrec.
2221    if (!AR->getStart()->isZero()) {
2222      CollectSubexprs(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
2223                                       AR->getStepRecurrence(SE),
2224                                       AR->getLoop()),
2225                      C, Ops, UninterestingOps, L, SE);
2226      CollectSubexprs(AR->getStart(), C, Ops, UninterestingOps, L, SE);
2227      return;
2228    }
2229  } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2230    // Break (C * (a + b + c)) into C*a + C*b + C*c.
2231    if (Mul->getNumOperands() == 2)
2232      if (const SCEVConstant *Op0 =
2233            dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2234        CollectSubexprs(Mul->getOperand(1),
2235                        C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0,
2236                        Ops, UninterestingOps, L, SE);
2237        return;
2238      }
2239  }
2240
2241  // Otherwise use the value itself. Loop-variant "unknown" values are
2242  // uninteresting; we won't be able to do anything meaningful with them.
2243  if (!C && isa<SCEVUnknown>(S) && !S->isLoopInvariant(L))
2244    UninterestingOps.push_back(S);
2245  else
2246    Ops.push_back(C ? SE.getMulExpr(C, S) : S);
2247}
2248
2249/// GenerateReassociations - Split out subexpressions from adds and the bases of
2250/// addrecs.
2251void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
2252                                         Formula Base,
2253                                         unsigned Depth) {
2254  // Arbitrarily cap recursion to protect compile time.
2255  if (Depth >= 3) return;
2256
2257  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2258    const SCEV *BaseReg = Base.BaseRegs[i];
2259
2260    SmallVector<const SCEV *, 8> AddOps, UninterestingAddOps;
2261    CollectSubexprs(BaseReg, 0, AddOps, UninterestingAddOps, L, SE);
2262
2263    // Add any uninteresting values as one register, as we won't be able to
2264    // form any interesting reassociation opportunities with them. They'll
2265    // just have to be added inside the loop no matter what we do.
2266    if (!UninterestingAddOps.empty())
2267      AddOps.push_back(SE.getAddExpr(UninterestingAddOps));
2268
2269    if (AddOps.size() == 1) continue;
2270
2271    for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
2272         JE = AddOps.end(); J != JE; ++J) {
2273      // Don't pull a constant into a register if the constant could be folded
2274      // into an immediate field.
2275      if (isAlwaysFoldable(*J, LU.MinOffset, LU.MaxOffset,
2276                           Base.getNumRegs() > 1,
2277                           LU.Kind, LU.AccessTy, TLI, SE))
2278        continue;
2279
2280      // Collect all operands except *J.
2281      SmallVector<const SCEV *, 8> InnerAddOps
2282        (         ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
2283      InnerAddOps.append
2284        (next(J), ((const SmallVector<const SCEV *, 8> &)AddOps).end());
2285
2286      // Don't leave just a constant behind in a register if the constant could
2287      // be folded into an immediate field.
2288      if (InnerAddOps.size() == 1 &&
2289          isAlwaysFoldable(InnerAddOps[0], LU.MinOffset, LU.MaxOffset,
2290                           Base.getNumRegs() > 1,
2291                           LU.Kind, LU.AccessTy, TLI, SE))
2292        continue;
2293
2294      const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
2295      if (InnerSum->isZero())
2296        continue;
2297      Formula F = Base;
2298      F.BaseRegs[i] = InnerSum;
2299      F.BaseRegs.push_back(*J);
2300      if (InsertFormula(LU, LUIdx, F))
2301        // If that formula hadn't been seen before, recurse to find more like
2302        // it.
2303        GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth+1);
2304    }
2305  }
2306}
2307
2308/// GenerateCombinations - Generate a formula consisting of all of the
2309/// loop-dominating registers added into a single register.
2310void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
2311                                       Formula Base) {
2312  // This method is only interesting on a plurality of registers.
2313  if (Base.BaseRegs.size() <= 1) return;
2314
2315  Formula F = Base;
2316  F.BaseRegs.clear();
2317  SmallVector<const SCEV *, 4> Ops;
2318  for (SmallVectorImpl<const SCEV *>::const_iterator
2319       I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) {
2320    const SCEV *BaseReg = *I;
2321    if (BaseReg->properlyDominates(L->getHeader(), &DT) &&
2322        !BaseReg->hasComputableLoopEvolution(L))
2323      Ops.push_back(BaseReg);
2324    else
2325      F.BaseRegs.push_back(BaseReg);
2326  }
2327  if (Ops.size() > 1) {
2328    const SCEV *Sum = SE.getAddExpr(Ops);
2329    // TODO: If Sum is zero, it probably means ScalarEvolution missed an
2330    // opportunity to fold something. For now, just ignore such cases
2331    // rather than proceed with zero in a register.
2332    if (!Sum->isZero()) {
2333      F.BaseRegs.push_back(Sum);
2334      (void)InsertFormula(LU, LUIdx, F);
2335    }
2336  }
2337}
2338
2339/// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets.
2340void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
2341                                          Formula Base) {
2342  // We can't add a symbolic offset if the address already contains one.
2343  if (Base.AM.BaseGV) return;
2344
2345  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2346    const SCEV *G = Base.BaseRegs[i];
2347    GlobalValue *GV = ExtractSymbol(G, SE);
2348    if (G->isZero() || !GV)
2349      continue;
2350    Formula F = Base;
2351    F.AM.BaseGV = GV;
2352    if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
2353                    LU.Kind, LU.AccessTy, TLI))
2354      continue;
2355    F.BaseRegs[i] = G;
2356    (void)InsertFormula(LU, LUIdx, F);
2357  }
2358}
2359
2360/// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
2361void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
2362                                          Formula Base) {
2363  // TODO: For now, just add the min and max offset, because it usually isn't
2364  // worthwhile looking at everything inbetween.
2365  SmallVector<int64_t, 2> Worklist;
2366  Worklist.push_back(LU.MinOffset);
2367  if (LU.MaxOffset != LU.MinOffset)
2368    Worklist.push_back(LU.MaxOffset);
2369
2370  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2371    const SCEV *G = Base.BaseRegs[i];
2372
2373    for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(),
2374         E = Worklist.end(); I != E; ++I) {
2375      Formula F = Base;
2376      F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs - *I;
2377      if (isLegalUse(F.AM, LU.MinOffset - *I, LU.MaxOffset - *I,
2378                     LU.Kind, LU.AccessTy, TLI)) {
2379        // Add the offset to the base register.
2380        const SCEV *NewG = SE.getAddExpr(G, SE.getConstant(G->getType(), *I));
2381        // If it cancelled out, drop the base register, otherwise update it.
2382        if (NewG->isZero()) {
2383          std::swap(F.BaseRegs[i], F.BaseRegs.back());
2384          F.BaseRegs.pop_back();
2385        } else
2386          F.BaseRegs[i] = NewG;
2387
2388        (void)InsertFormula(LU, LUIdx, F);
2389      }
2390    }
2391
2392    int64_t Imm = ExtractImmediate(G, SE);
2393    if (G->isZero() || Imm == 0)
2394      continue;
2395    Formula F = Base;
2396    F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Imm;
2397    if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
2398                    LU.Kind, LU.AccessTy, TLI))
2399      continue;
2400    F.BaseRegs[i] = G;
2401    (void)InsertFormula(LU, LUIdx, F);
2402  }
2403}
2404
2405/// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up
2406/// the comparison. For example, x == y -> x*c == y*c.
2407void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
2408                                         Formula Base) {
2409  if (LU.Kind != LSRUse::ICmpZero) return;
2410
2411  // Determine the integer type for the base formula.
2412  const Type *IntTy = Base.getType();
2413  if (!IntTy) return;
2414  if (SE.getTypeSizeInBits(IntTy) > 64) return;
2415
2416  // Don't do this if there is more than one offset.
2417  if (LU.MinOffset != LU.MaxOffset) return;
2418
2419  assert(!Base.AM.BaseGV && "ICmpZero use is not legal!");
2420
2421  // Check each interesting stride.
2422  for (SmallSetVector<int64_t, 8>::const_iterator
2423       I = Factors.begin(), E = Factors.end(); I != E; ++I) {
2424    int64_t Factor = *I;
2425
2426    // Check that the multiplication doesn't overflow.
2427    if (Base.AM.BaseOffs == INT64_MIN && Factor == -1)
2428      continue;
2429    int64_t NewBaseOffs = (uint64_t)Base.AM.BaseOffs * Factor;
2430    if (NewBaseOffs / Factor != Base.AM.BaseOffs)
2431      continue;
2432
2433    // Check that multiplying with the use offset doesn't overflow.
2434    int64_t Offset = LU.MinOffset;
2435    if (Offset == INT64_MIN && Factor == -1)
2436      continue;
2437    Offset = (uint64_t)Offset * Factor;
2438    if (Offset / Factor != LU.MinOffset)
2439      continue;
2440
2441    Formula F = Base;
2442    F.AM.BaseOffs = NewBaseOffs;
2443
2444    // Check that this scale is legal.
2445    if (!isLegalUse(F.AM, Offset, Offset, LU.Kind, LU.AccessTy, TLI))
2446      continue;
2447
2448    // Compensate for the use having MinOffset built into it.
2449    F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Offset - LU.MinOffset;
2450
2451    const SCEV *FactorS = SE.getConstant(IntTy, Factor);
2452
2453    // Check that multiplying with each base register doesn't overflow.
2454    for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
2455      F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
2456      if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
2457        goto next;
2458    }
2459
2460    // Check that multiplying with the scaled register doesn't overflow.
2461    if (F.ScaledReg) {
2462      F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
2463      if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
2464        continue;
2465    }
2466
2467    // If we make it here and it's legal, add it.
2468    (void)InsertFormula(LU, LUIdx, F);
2469  next:;
2470  }
2471}
2472
2473/// GenerateScales - Generate stride factor reuse formulae by making use of
2474/// scaled-offset address modes, for example.
2475void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
2476  // Determine the integer type for the base formula.
2477  const Type *IntTy = Base.getType();
2478  if (!IntTy) return;
2479
2480  // If this Formula already has a scaled register, we can't add another one.
2481  if (Base.AM.Scale != 0) return;
2482
2483  // Check each interesting stride.
2484  for (SmallSetVector<int64_t, 8>::const_iterator
2485       I = Factors.begin(), E = Factors.end(); I != E; ++I) {
2486    int64_t Factor = *I;
2487
2488    Base.AM.Scale = Factor;
2489    Base.AM.HasBaseReg = Base.BaseRegs.size() > 1;
2490    // Check whether this scale is going to be legal.
2491    if (!isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
2492                    LU.Kind, LU.AccessTy, TLI)) {
2493      // As a special-case, handle special out-of-loop Basic users specially.
2494      // TODO: Reconsider this special case.
2495      if (LU.Kind == LSRUse::Basic &&
2496          isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
2497                     LSRUse::Special, LU.AccessTy, TLI) &&
2498          LU.AllFixupsOutsideLoop)
2499        LU.Kind = LSRUse::Special;
2500      else
2501        continue;
2502    }
2503    // For an ICmpZero, negating a solitary base register won't lead to
2504    // new solutions.
2505    if (LU.Kind == LSRUse::ICmpZero &&
2506        !Base.AM.HasBaseReg && Base.AM.BaseOffs == 0 && !Base.AM.BaseGV)
2507      continue;
2508    // For each addrec base reg, apply the scale, if possible.
2509    for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
2510      if (const SCEVAddRecExpr *AR =
2511            dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
2512        const SCEV *FactorS = SE.getConstant(IntTy, Factor);
2513        if (FactorS->isZero())
2514          continue;
2515        // Divide out the factor, ignoring high bits, since we'll be
2516        // scaling the value back up in the end.
2517        if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
2518          // TODO: This could be optimized to avoid all the copying.
2519          Formula F = Base;
2520          F.ScaledReg = Quotient;
2521          F.DeleteBaseReg(F.BaseRegs[i]);
2522          (void)InsertFormula(LU, LUIdx, F);
2523        }
2524      }
2525  }
2526}
2527
2528/// GenerateTruncates - Generate reuse formulae from different IV types.
2529void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
2530  // This requires TargetLowering to tell us which truncates are free.
2531  if (!TLI) return;
2532
2533  // Don't bother truncating symbolic values.
2534  if (Base.AM.BaseGV) return;
2535
2536  // Determine the integer type for the base formula.
2537  const Type *DstTy = Base.getType();
2538  if (!DstTy) return;
2539  DstTy = SE.getEffectiveSCEVType(DstTy);
2540
2541  for (SmallSetVector<const Type *, 4>::const_iterator
2542       I = Types.begin(), E = Types.end(); I != E; ++I) {
2543    const Type *SrcTy = *I;
2544    if (SrcTy != DstTy && TLI->isTruncateFree(SrcTy, DstTy)) {
2545      Formula F = Base;
2546
2547      if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I);
2548      for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(),
2549           JE = F.BaseRegs.end(); J != JE; ++J)
2550        *J = SE.getAnyExtendExpr(*J, SrcTy);
2551
2552      // TODO: This assumes we've done basic processing on all uses and
2553      // have an idea what the register usage is.
2554      if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
2555        continue;
2556
2557      (void)InsertFormula(LU, LUIdx, F);
2558    }
2559  }
2560}
2561
2562namespace {
2563
2564/// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to
2565/// defer modifications so that the search phase doesn't have to worry about
2566/// the data structures moving underneath it.
2567struct WorkItem {
2568  size_t LUIdx;
2569  int64_t Imm;
2570  const SCEV *OrigReg;
2571
2572  WorkItem(size_t LI, int64_t I, const SCEV *R)
2573    : LUIdx(LI), Imm(I), OrigReg(R) {}
2574
2575  void print(raw_ostream &OS) const;
2576  void dump() const;
2577};
2578
2579}
2580
2581void WorkItem::print(raw_ostream &OS) const {
2582  OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
2583     << " , add offset " << Imm;
2584}
2585
2586void WorkItem::dump() const {
2587  print(errs()); errs() << '\n';
2588}
2589
2590/// GenerateCrossUseConstantOffsets - Look for registers which are a constant
2591/// distance apart and try to form reuse opportunities between them.
2592void LSRInstance::GenerateCrossUseConstantOffsets() {
2593  // Group the registers by their value without any added constant offset.
2594  typedef std::map<int64_t, const SCEV *> ImmMapTy;
2595  typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy;
2596  RegMapTy Map;
2597  DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
2598  SmallVector<const SCEV *, 8> Sequence;
2599  for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
2600       I != E; ++I) {
2601    const SCEV *Reg = *I;
2602    int64_t Imm = ExtractImmediate(Reg, SE);
2603    std::pair<RegMapTy::iterator, bool> Pair =
2604      Map.insert(std::make_pair(Reg, ImmMapTy()));
2605    if (Pair.second)
2606      Sequence.push_back(Reg);
2607    Pair.first->second.insert(std::make_pair(Imm, *I));
2608    UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I);
2609  }
2610
2611  // Now examine each set of registers with the same base value. Build up
2612  // a list of work to do and do the work in a separate step so that we're
2613  // not adding formulae and register counts while we're searching.
2614  SmallVector<WorkItem, 32> WorkItems;
2615  SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
2616  for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(),
2617       E = Sequence.end(); I != E; ++I) {
2618    const SCEV *Reg = *I;
2619    const ImmMapTy &Imms = Map.find(Reg)->second;
2620
2621    // It's not worthwhile looking for reuse if there's only one offset.
2622    if (Imms.size() == 1)
2623      continue;
2624
2625    DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
2626          for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
2627               J != JE; ++J)
2628            dbgs() << ' ' << J->first;
2629          dbgs() << '\n');
2630
2631    // Examine each offset.
2632    for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
2633         J != JE; ++J) {
2634      const SCEV *OrigReg = J->second;
2635
2636      int64_t JImm = J->first;
2637      const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
2638
2639      if (!isa<SCEVConstant>(OrigReg) &&
2640          UsedByIndicesMap[Reg].count() == 1) {
2641        DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
2642        continue;
2643      }
2644
2645      // Conservatively examine offsets between this orig reg a few selected
2646      // other orig regs.
2647      ImmMapTy::const_iterator OtherImms[] = {
2648        Imms.begin(), prior(Imms.end()),
2649        Imms.upper_bound((Imms.begin()->first + prior(Imms.end())->first) / 2)
2650      };
2651      for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
2652        ImmMapTy::const_iterator M = OtherImms[i];
2653        if (M == J || M == JE) continue;
2654
2655        // Compute the difference between the two.
2656        int64_t Imm = (uint64_t)JImm - M->first;
2657        for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
2658             LUIdx = UsedByIndices.find_next(LUIdx))
2659          // Make a memo of this use, offset, and register tuple.
2660          if (UniqueItems.insert(std::make_pair(LUIdx, Imm)))
2661            WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
2662      }
2663    }
2664  }
2665
2666  Map.clear();
2667  Sequence.clear();
2668  UsedByIndicesMap.clear();
2669  UniqueItems.clear();
2670
2671  // Now iterate through the worklist and add new formulae.
2672  for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(),
2673       E = WorkItems.end(); I != E; ++I) {
2674    const WorkItem &WI = *I;
2675    size_t LUIdx = WI.LUIdx;
2676    LSRUse &LU = Uses[LUIdx];
2677    int64_t Imm = WI.Imm;
2678    const SCEV *OrigReg = WI.OrigReg;
2679
2680    const Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
2681    const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
2682    unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
2683
2684    // TODO: Use a more targeted data structure.
2685    for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
2686      const Formula &F = LU.Formulae[L];
2687      // Use the immediate in the scaled register.
2688      if (F.ScaledReg == OrigReg) {
2689        int64_t Offs = (uint64_t)F.AM.BaseOffs +
2690                       Imm * (uint64_t)F.AM.Scale;
2691        // Don't create 50 + reg(-50).
2692        if (F.referencesReg(SE.getSCEV(
2693                   ConstantInt::get(IntTy, -(uint64_t)Offs))))
2694          continue;
2695        Formula NewF = F;
2696        NewF.AM.BaseOffs = Offs;
2697        if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
2698                        LU.Kind, LU.AccessTy, TLI))
2699          continue;
2700        NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
2701
2702        // If the new scale is a constant in a register, and adding the constant
2703        // value to the immediate would produce a value closer to zero than the
2704        // immediate itself, then the formula isn't worthwhile.
2705        if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
2706          if (C->getValue()->getValue().isNegative() !=
2707                (NewF.AM.BaseOffs < 0) &&
2708              (C->getValue()->getValue().abs() * APInt(BitWidth, F.AM.Scale))
2709                .ule(abs64(NewF.AM.BaseOffs)))
2710            continue;
2711
2712        // OK, looks good.
2713        (void)InsertFormula(LU, LUIdx, NewF);
2714      } else {
2715        // Use the immediate in a base register.
2716        for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
2717          const SCEV *BaseReg = F.BaseRegs[N];
2718          if (BaseReg != OrigReg)
2719            continue;
2720          Formula NewF = F;
2721          NewF.AM.BaseOffs = (uint64_t)NewF.AM.BaseOffs + Imm;
2722          if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
2723                          LU.Kind, LU.AccessTy, TLI))
2724            continue;
2725          NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
2726
2727          // If the new formula has a constant in a register, and adding the
2728          // constant value to the immediate would produce a value closer to
2729          // zero than the immediate itself, then the formula isn't worthwhile.
2730          for (SmallVectorImpl<const SCEV *>::const_iterator
2731               J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end();
2732               J != JE; ++J)
2733            if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J))
2734              if ((C->getValue()->getValue() + NewF.AM.BaseOffs).abs().slt(
2735                   abs64(NewF.AM.BaseOffs)) &&
2736                  (C->getValue()->getValue() +
2737                   NewF.AM.BaseOffs).countTrailingZeros() >=
2738                   CountTrailingZeros_64(NewF.AM.BaseOffs))
2739                goto skip_formula;
2740
2741          // Ok, looks good.
2742          (void)InsertFormula(LU, LUIdx, NewF);
2743          break;
2744        skip_formula:;
2745        }
2746      }
2747    }
2748  }
2749}
2750
2751/// GenerateAllReuseFormulae - Generate formulae for each use.
2752void
2753LSRInstance::GenerateAllReuseFormulae() {
2754  // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
2755  // queries are more precise.
2756  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2757    LSRUse &LU = Uses[LUIdx];
2758    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2759      GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
2760    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2761      GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
2762  }
2763  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2764    LSRUse &LU = Uses[LUIdx];
2765    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2766      GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
2767    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2768      GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
2769    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2770      GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
2771    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2772      GenerateScales(LU, LUIdx, LU.Formulae[i]);
2773  }
2774  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2775    LSRUse &LU = Uses[LUIdx];
2776    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2777      GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
2778  }
2779
2780  GenerateCrossUseConstantOffsets();
2781}
2782
2783/// If their are multiple formulae with the same set of registers used
2784/// by other uses, pick the best one and delete the others.
2785void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
2786#ifndef NDEBUG
2787  bool ChangedFormulae = false;
2788#endif
2789
2790  // Collect the best formula for each unique set of shared registers. This
2791  // is reset for each use.
2792  typedef DenseMap<SmallVector<const SCEV *, 2>, size_t, UniquifierDenseMapInfo>
2793    BestFormulaeTy;
2794  BestFormulaeTy BestFormulae;
2795
2796  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2797    LSRUse &LU = Uses[LUIdx];
2798    FormulaSorter Sorter(L, LU, SE, DT);
2799    DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
2800
2801    bool Any = false;
2802    for (size_t FIdx = 0, NumForms = LU.Formulae.size();
2803         FIdx != NumForms; ++FIdx) {
2804      Formula &F = LU.Formulae[FIdx];
2805
2806      SmallVector<const SCEV *, 2> Key;
2807      for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(),
2808           JE = F.BaseRegs.end(); J != JE; ++J) {
2809        const SCEV *Reg = *J;
2810        if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
2811          Key.push_back(Reg);
2812      }
2813      if (F.ScaledReg &&
2814          RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
2815        Key.push_back(F.ScaledReg);
2816      // Unstable sort by host order ok, because this is only used for
2817      // uniquifying.
2818      std::sort(Key.begin(), Key.end());
2819
2820      std::pair<BestFormulaeTy::const_iterator, bool> P =
2821        BestFormulae.insert(std::make_pair(Key, FIdx));
2822      if (!P.second) {
2823        Formula &Best = LU.Formulae[P.first->second];
2824        if (Sorter.operator()(F, Best))
2825          std::swap(F, Best);
2826        DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
2827              dbgs() << "\n"
2828                        "    in favor of formula "; Best.print(dbgs());
2829              dbgs() << '\n');
2830#ifndef NDEBUG
2831        ChangedFormulae = true;
2832#endif
2833        LU.DeleteFormula(F);
2834        --FIdx;
2835        --NumForms;
2836        Any = true;
2837        continue;
2838      }
2839    }
2840
2841    // Now that we've filtered out some formulae, recompute the Regs set.
2842    if (Any)
2843      LU.RecomputeRegs(LUIdx, RegUses);
2844
2845    // Reset this to prepare for the next use.
2846    BestFormulae.clear();
2847  }
2848
2849  DEBUG(if (ChangedFormulae) {
2850          dbgs() << "\n"
2851                    "After filtering out undesirable candidates:\n";
2852          print_uses(dbgs());
2853        });
2854}
2855
2856// This is a rough guess that seems to work fairly well.
2857static const size_t ComplexityLimit = UINT16_MAX;
2858
2859/// EstimateSearchSpaceComplexity - Estimate the worst-case number of
2860/// solutions the solver might have to consider. It almost never considers
2861/// this many solutions because it prune the search space, but the pruning
2862/// isn't always sufficient.
2863size_t LSRInstance::EstimateSearchSpaceComplexity() const {
2864  uint32_t Power = 1;
2865  for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
2866       E = Uses.end(); I != E; ++I) {
2867    size_t FSize = I->Formulae.size();
2868    if (FSize >= ComplexityLimit) {
2869      Power = ComplexityLimit;
2870      break;
2871    }
2872    Power *= FSize;
2873    if (Power >= ComplexityLimit)
2874      break;
2875  }
2876  return Power;
2877}
2878
2879/// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of
2880/// formulae to choose from, use some rough heuristics to prune down the number
2881/// of formulae. This keeps the main solver from taking an extraordinary amount
2882/// of time in some worst-case scenarios.
2883void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
2884  if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
2885    DEBUG(dbgs() << "The search space is too complex.\n");
2886
2887    DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
2888                    "which use a superset of registers used by other "
2889                    "formulae.\n");
2890
2891    for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2892      LSRUse &LU = Uses[LUIdx];
2893      bool Any = false;
2894      for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
2895        Formula &F = LU.Formulae[i];
2896        // Look for a formula with a constant or GV in a register. If the use
2897        // also has a formula with that same value in an immediate field,
2898        // delete the one that uses a register.
2899        for (SmallVectorImpl<const SCEV *>::const_iterator
2900             I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
2901          if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
2902            Formula NewF = F;
2903            NewF.AM.BaseOffs += C->getValue()->getSExtValue();
2904            NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
2905                                (I - F.BaseRegs.begin()));
2906            if (LU.HasFormulaWithSameRegs(NewF)) {
2907              DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
2908              LU.DeleteFormula(F);
2909              --i;
2910              --e;
2911              Any = true;
2912              break;
2913            }
2914          } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
2915            if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
2916              if (!F.AM.BaseGV) {
2917                Formula NewF = F;
2918                NewF.AM.BaseGV = GV;
2919                NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
2920                                    (I - F.BaseRegs.begin()));
2921                if (LU.HasFormulaWithSameRegs(NewF)) {
2922                  DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
2923                        dbgs() << '\n');
2924                  LU.DeleteFormula(F);
2925                  --i;
2926                  --e;
2927                  Any = true;
2928                  break;
2929                }
2930              }
2931          }
2932        }
2933      }
2934      if (Any)
2935        LU.RecomputeRegs(LUIdx, RegUses);
2936    }
2937
2938    DEBUG(dbgs() << "After pre-selection:\n";
2939          print_uses(dbgs()));
2940  }
2941
2942  if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
2943    DEBUG(dbgs() << "The search space is too complex.\n");
2944
2945    DEBUG(dbgs() << "Narrowing the search space by assuming that uses "
2946                    "separated by a constant offset will use the same "
2947                    "registers.\n");
2948
2949    // This is especially useful for unrolled loops.
2950
2951    for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2952      LSRUse &LU = Uses[LUIdx];
2953      for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
2954           E = LU.Formulae.end(); I != E; ++I) {
2955        const Formula &F = *I;
2956        if (F.AM.BaseOffs != 0 && F.AM.Scale == 0) {
2957          if (LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU)) {
2958            if (reconcileNewOffset(*LUThatHas, F.AM.BaseOffs,
2959                                   /*HasBaseReg=*/false,
2960                                   LU.Kind, LU.AccessTy)) {
2961              DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs());
2962                    dbgs() << '\n');
2963
2964              LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
2965
2966              // Delete formulae from the new use which are no longer legal.
2967              bool Any = false;
2968              for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
2969                Formula &F = LUThatHas->Formulae[i];
2970                if (!isLegalUse(F.AM,
2971                                LUThatHas->MinOffset, LUThatHas->MaxOffset,
2972                                LUThatHas->Kind, LUThatHas->AccessTy, TLI)) {
2973                  DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
2974                        dbgs() << '\n');
2975                  LUThatHas->DeleteFormula(F);
2976                  --i;
2977                  --e;
2978                  Any = true;
2979                }
2980              }
2981              if (Any)
2982                LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
2983
2984              // Update the relocs to reference the new use.
2985              for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(),
2986                   E = Fixups.end(); I != E; ++I) {
2987                LSRFixup &Fixup = *I;
2988                if (Fixup.LUIdx == LUIdx) {
2989                  Fixup.LUIdx = LUThatHas - &Uses.front();
2990                  Fixup.Offset += F.AM.BaseOffs;
2991                  DEBUG(errs() << "New fixup has offset "
2992                               << Fixup.Offset << '\n');
2993                }
2994                if (Fixup.LUIdx == NumUses-1)
2995                  Fixup.LUIdx = LUIdx;
2996              }
2997
2998              // Delete the old use.
2999              DeleteUse(LU);
3000              --LUIdx;
3001              --NumUses;
3002              break;
3003            }
3004          }
3005        }
3006      }
3007    }
3008
3009    DEBUG(dbgs() << "After pre-selection:\n";
3010          print_uses(dbgs()));
3011  }
3012
3013  // With all other options exhausted, loop until the system is simple
3014  // enough to handle.
3015  SmallPtrSet<const SCEV *, 4> Taken;
3016  while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
3017    // Ok, we have too many of formulae on our hands to conveniently handle.
3018    // Use a rough heuristic to thin out the list.
3019    DEBUG(dbgs() << "The search space is too complex.\n");
3020
3021    // Pick the register which is used by the most LSRUses, which is likely
3022    // to be a good reuse register candidate.
3023    const SCEV *Best = 0;
3024    unsigned BestNum = 0;
3025    for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
3026         I != E; ++I) {
3027      const SCEV *Reg = *I;
3028      if (Taken.count(Reg))
3029        continue;
3030      if (!Best)
3031        Best = Reg;
3032      else {
3033        unsigned Count = RegUses.getUsedByIndices(Reg).count();
3034        if (Count > BestNum) {
3035          Best = Reg;
3036          BestNum = Count;
3037        }
3038      }
3039    }
3040
3041    DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
3042                 << " will yield profitable reuse.\n");
3043    Taken.insert(Best);
3044
3045    // In any use with formulae which references this register, delete formulae
3046    // which don't reference it.
3047    for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3048      LSRUse &LU = Uses[LUIdx];
3049      if (!LU.Regs.count(Best)) continue;
3050
3051      bool Any = false;
3052      for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
3053        Formula &F = LU.Formulae[i];
3054        if (!F.referencesReg(Best)) {
3055          DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
3056          LU.DeleteFormula(F);
3057          --e;
3058          --i;
3059          Any = true;
3060          assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
3061          continue;
3062        }
3063      }
3064
3065      if (Any)
3066        LU.RecomputeRegs(LUIdx, RegUses);
3067    }
3068
3069    DEBUG(dbgs() << "After pre-selection:\n";
3070          print_uses(dbgs()));
3071  }
3072}
3073
3074/// SolveRecurse - This is the recursive solver.
3075void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
3076                               Cost &SolutionCost,
3077                               SmallVectorImpl<const Formula *> &Workspace,
3078                               const Cost &CurCost,
3079                               const SmallPtrSet<const SCEV *, 16> &CurRegs,
3080                               DenseSet<const SCEV *> &VisitedRegs) const {
3081  // Some ideas:
3082  //  - prune more:
3083  //    - use more aggressive filtering
3084  //    - sort the formula so that the most profitable solutions are found first
3085  //    - sort the uses too
3086  //  - search faster:
3087  //    - don't compute a cost, and then compare. compare while computing a cost
3088  //      and bail early.
3089  //    - track register sets with SmallBitVector
3090
3091  const LSRUse &LU = Uses[Workspace.size()];
3092
3093  // If this use references any register that's already a part of the
3094  // in-progress solution, consider it a requirement that a formula must
3095  // reference that register in order to be considered. This prunes out
3096  // unprofitable searching.
3097  SmallSetVector<const SCEV *, 4> ReqRegs;
3098  for (SmallPtrSet<const SCEV *, 16>::const_iterator I = CurRegs.begin(),
3099       E = CurRegs.end(); I != E; ++I)
3100    if (LU.Regs.count(*I))
3101      ReqRegs.insert(*I);
3102
3103  bool AnySatisfiedReqRegs = false;
3104  SmallPtrSet<const SCEV *, 16> NewRegs;
3105  Cost NewCost;
3106retry:
3107  for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
3108       E = LU.Formulae.end(); I != E; ++I) {
3109    const Formula &F = *I;
3110
3111    // Ignore formulae which do not use any of the required registers.
3112    for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(),
3113         JE = ReqRegs.end(); J != JE; ++J) {
3114      const SCEV *Reg = *J;
3115      if ((!F.ScaledReg || F.ScaledReg != Reg) &&
3116          std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) ==
3117          F.BaseRegs.end())
3118        goto skip;
3119    }
3120    AnySatisfiedReqRegs = true;
3121
3122    // Evaluate the cost of the current formula. If it's already worse than
3123    // the current best, prune the search at that point.
3124    NewCost = CurCost;
3125    NewRegs = CurRegs;
3126    NewCost.RateFormula(F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT);
3127    if (NewCost < SolutionCost) {
3128      Workspace.push_back(&F);
3129      if (Workspace.size() != Uses.size()) {
3130        SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
3131                     NewRegs, VisitedRegs);
3132        if (F.getNumRegs() == 1 && Workspace.size() == 1)
3133          VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
3134      } else {
3135        DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
3136              dbgs() << ". Regs:";
3137              for (SmallPtrSet<const SCEV *, 16>::const_iterator
3138                   I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I)
3139                dbgs() << ' ' << **I;
3140              dbgs() << '\n');
3141
3142        SolutionCost = NewCost;
3143        Solution = Workspace;
3144      }
3145      Workspace.pop_back();
3146    }
3147  skip:;
3148  }
3149
3150  // If none of the formulae had all of the required registers, relax the
3151  // constraint so that we don't exclude all formulae.
3152  if (!AnySatisfiedReqRegs) {
3153    assert(!ReqRegs.empty() && "Solver failed even without required registers");
3154    ReqRegs.clear();
3155    goto retry;
3156  }
3157}
3158
3159/// Solve - Choose one formula from each use. Return the results in the given
3160/// Solution vector.
3161void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
3162  SmallVector<const Formula *, 8> Workspace;
3163  Cost SolutionCost;
3164  SolutionCost.Loose();
3165  Cost CurCost;
3166  SmallPtrSet<const SCEV *, 16> CurRegs;
3167  DenseSet<const SCEV *> VisitedRegs;
3168  Workspace.reserve(Uses.size());
3169
3170  // SolveRecurse does all the work.
3171  SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
3172               CurRegs, VisitedRegs);
3173
3174  // Ok, we've now made all our decisions.
3175  DEBUG(dbgs() << "\n"
3176                  "The chosen solution requires "; SolutionCost.print(dbgs());
3177        dbgs() << ":\n";
3178        for (size_t i = 0, e = Uses.size(); i != e; ++i) {
3179          dbgs() << "  ";
3180          Uses[i].print(dbgs());
3181          dbgs() << "\n"
3182                    "    ";
3183          Solution[i]->print(dbgs());
3184          dbgs() << '\n';
3185        });
3186
3187  assert(Solution.size() == Uses.size() && "Malformed solution!");
3188}
3189
3190/// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up
3191/// the dominator tree far as we can go while still being dominated by the
3192/// input positions. This helps canonicalize the insert position, which
3193/// encourages sharing.
3194BasicBlock::iterator
3195LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
3196                                 const SmallVectorImpl<Instruction *> &Inputs)
3197                                                                         const {
3198  for (;;) {
3199    const Loop *IPLoop = LI.getLoopFor(IP->getParent());
3200    unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
3201
3202    BasicBlock *IDom;
3203    for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
3204      if (!Rung) return IP;
3205      Rung = Rung->getIDom();
3206      if (!Rung) return IP;
3207      IDom = Rung->getBlock();
3208
3209      // Don't climb into a loop though.
3210      const Loop *IDomLoop = LI.getLoopFor(IDom);
3211      unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
3212      if (IDomDepth <= IPLoopDepth &&
3213          (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
3214        break;
3215    }
3216
3217    bool AllDominate = true;
3218    Instruction *BetterPos = 0;
3219    Instruction *Tentative = IDom->getTerminator();
3220    for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(),
3221         E = Inputs.end(); I != E; ++I) {
3222      Instruction *Inst = *I;
3223      if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
3224        AllDominate = false;
3225        break;
3226      }
3227      // Attempt to find an insert position in the middle of the block,
3228      // instead of at the end, so that it can be used for other expansions.
3229      if (IDom == Inst->getParent() &&
3230          (!BetterPos || DT.dominates(BetterPos, Inst)))
3231        BetterPos = llvm::next(BasicBlock::iterator(Inst));
3232    }
3233    if (!AllDominate)
3234      break;
3235    if (BetterPos)
3236      IP = BetterPos;
3237    else
3238      IP = Tentative;
3239  }
3240
3241  return IP;
3242}
3243
3244/// AdjustInsertPositionForExpand - Determine an input position which will be
3245/// dominated by the operands and which will dominate the result.
3246BasicBlock::iterator
3247LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator IP,
3248                                           const LSRFixup &LF,
3249                                           const LSRUse &LU) const {
3250  // Collect some instructions which must be dominated by the
3251  // expanding replacement. These must be dominated by any operands that
3252  // will be required in the expansion.
3253  SmallVector<Instruction *, 4> Inputs;
3254  if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
3255    Inputs.push_back(I);
3256  if (LU.Kind == LSRUse::ICmpZero)
3257    if (Instruction *I =
3258          dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
3259      Inputs.push_back(I);
3260  if (LF.PostIncLoops.count(L)) {
3261    if (LF.isUseFullyOutsideLoop(L))
3262      Inputs.push_back(L->getLoopLatch()->getTerminator());
3263    else
3264      Inputs.push_back(IVIncInsertPos);
3265  }
3266  // The expansion must also be dominated by the increment positions of any
3267  // loops it for which it is using post-inc mode.
3268  for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(),
3269       E = LF.PostIncLoops.end(); I != E; ++I) {
3270    const Loop *PIL = *I;
3271    if (PIL == L) continue;
3272
3273    // Be dominated by the loop exit.
3274    SmallVector<BasicBlock *, 4> ExitingBlocks;
3275    PIL->getExitingBlocks(ExitingBlocks);
3276    if (!ExitingBlocks.empty()) {
3277      BasicBlock *BB = ExitingBlocks[0];
3278      for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
3279        BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
3280      Inputs.push_back(BB->getTerminator());
3281    }
3282  }
3283
3284  // Then, climb up the immediate dominator tree as far as we can go while
3285  // still being dominated by the input positions.
3286  IP = HoistInsertPosition(IP, Inputs);
3287
3288  // Don't insert instructions before PHI nodes.
3289  while (isa<PHINode>(IP)) ++IP;
3290
3291  // Ignore debug intrinsics.
3292  while (isa<DbgInfoIntrinsic>(IP)) ++IP;
3293
3294  return IP;
3295}
3296
3297/// Expand - Emit instructions for the leading candidate expression for this
3298/// LSRUse (this is called "expanding").
3299Value *LSRInstance::Expand(const LSRFixup &LF,
3300                           const Formula &F,
3301                           BasicBlock::iterator IP,
3302                           SCEVExpander &Rewriter,
3303                           SmallVectorImpl<WeakVH> &DeadInsts) const {
3304  const LSRUse &LU = Uses[LF.LUIdx];
3305
3306  // Determine an input position which will be dominated by the operands and
3307  // which will dominate the result.
3308  IP = AdjustInsertPositionForExpand(IP, LF, LU);
3309
3310  // Inform the Rewriter if we have a post-increment use, so that it can
3311  // perform an advantageous expansion.
3312  Rewriter.setPostInc(LF.PostIncLoops);
3313
3314  // This is the type that the user actually needs.
3315  const Type *OpTy = LF.OperandValToReplace->getType();
3316  // This will be the type that we'll initially expand to.
3317  const Type *Ty = F.getType();
3318  if (!Ty)
3319    // No type known; just expand directly to the ultimate type.
3320    Ty = OpTy;
3321  else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
3322    // Expand directly to the ultimate type if it's the right size.
3323    Ty = OpTy;
3324  // This is the type to do integer arithmetic in.
3325  const Type *IntTy = SE.getEffectiveSCEVType(Ty);
3326
3327  // Build up a list of operands to add together to form the full base.
3328  SmallVector<const SCEV *, 8> Ops;
3329
3330  // Expand the BaseRegs portion.
3331  for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
3332       E = F.BaseRegs.end(); I != E; ++I) {
3333    const SCEV *Reg = *I;
3334    assert(!Reg->isZero() && "Zero allocated in a base register!");
3335
3336    // If we're expanding for a post-inc user, make the post-inc adjustment.
3337    PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
3338    Reg = TransformForPostIncUse(Denormalize, Reg,
3339                                 LF.UserInst, LF.OperandValToReplace,
3340                                 Loops, SE, DT);
3341
3342    Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, 0, IP)));
3343  }
3344
3345  // Flush the operand list to suppress SCEVExpander hoisting.
3346  if (!Ops.empty()) {
3347    Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
3348    Ops.clear();
3349    Ops.push_back(SE.getUnknown(FullV));
3350  }
3351
3352  // Expand the ScaledReg portion.
3353  Value *ICmpScaledV = 0;
3354  if (F.AM.Scale != 0) {
3355    const SCEV *ScaledS = F.ScaledReg;
3356
3357    // If we're expanding for a post-inc user, make the post-inc adjustment.
3358    PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
3359    ScaledS = TransformForPostIncUse(Denormalize, ScaledS,
3360                                     LF.UserInst, LF.OperandValToReplace,
3361                                     Loops, SE, DT);
3362
3363    if (LU.Kind == LSRUse::ICmpZero) {
3364      // An interesting way of "folding" with an icmp is to use a negated
3365      // scale, which we'll implement by inserting it into the other operand
3366      // of the icmp.
3367      assert(F.AM.Scale == -1 &&
3368             "The only scale supported by ICmpZero uses is -1!");
3369      ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP);
3370    } else {
3371      // Otherwise just expand the scaled register and an explicit scale,
3372      // which is expected to be matched as part of the address.
3373      ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP));
3374      ScaledS = SE.getMulExpr(ScaledS,
3375                              SE.getConstant(ScaledS->getType(), F.AM.Scale));
3376      Ops.push_back(ScaledS);
3377
3378      // Flush the operand list to suppress SCEVExpander hoisting.
3379      Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
3380      Ops.clear();
3381      Ops.push_back(SE.getUnknown(FullV));
3382    }
3383  }
3384
3385  // Expand the GV portion.
3386  if (F.AM.BaseGV) {
3387    Ops.push_back(SE.getUnknown(F.AM.BaseGV));
3388
3389    // Flush the operand list to suppress SCEVExpander hoisting.
3390    Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
3391    Ops.clear();
3392    Ops.push_back(SE.getUnknown(FullV));
3393  }
3394
3395  // Expand the immediate portion.
3396  int64_t Offset = (uint64_t)F.AM.BaseOffs + LF.Offset;
3397  if (Offset != 0) {
3398    if (LU.Kind == LSRUse::ICmpZero) {
3399      // The other interesting way of "folding" with an ICmpZero is to use a
3400      // negated immediate.
3401      if (!ICmpScaledV)
3402        ICmpScaledV = ConstantInt::get(IntTy, -Offset);
3403      else {
3404        Ops.push_back(SE.getUnknown(ICmpScaledV));
3405        ICmpScaledV = ConstantInt::get(IntTy, Offset);
3406      }
3407    } else {
3408      // Just add the immediate values. These again are expected to be matched
3409      // as part of the address.
3410      Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
3411    }
3412  }
3413
3414  // Emit instructions summing all the operands.
3415  const SCEV *FullS = Ops.empty() ?
3416                      SE.getConstant(IntTy, 0) :
3417                      SE.getAddExpr(Ops);
3418  Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP);
3419
3420  // We're done expanding now, so reset the rewriter.
3421  Rewriter.clearPostInc();
3422
3423  // An ICmpZero Formula represents an ICmp which we're handling as a
3424  // comparison against zero. Now that we've expanded an expression for that
3425  // form, update the ICmp's other operand.
3426  if (LU.Kind == LSRUse::ICmpZero) {
3427    ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
3428    DeadInsts.push_back(CI->getOperand(1));
3429    assert(!F.AM.BaseGV && "ICmp does not support folding a global value and "
3430                           "a scale at the same time!");
3431    if (F.AM.Scale == -1) {
3432      if (ICmpScaledV->getType() != OpTy) {
3433        Instruction *Cast =
3434          CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
3435                                                   OpTy, false),
3436                           ICmpScaledV, OpTy, "tmp", CI);
3437        ICmpScaledV = Cast;
3438      }
3439      CI->setOperand(1, ICmpScaledV);
3440    } else {
3441      assert(F.AM.Scale == 0 &&
3442             "ICmp does not support folding a global value and "
3443             "a scale at the same time!");
3444      Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
3445                                           -(uint64_t)Offset);
3446      if (C->getType() != OpTy)
3447        C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
3448                                                          OpTy, false),
3449                                  C, OpTy);
3450
3451      CI->setOperand(1, C);
3452    }
3453  }
3454
3455  return FullV;
3456}
3457
3458/// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use
3459/// of their operands effectively happens in their predecessor blocks, so the
3460/// expression may need to be expanded in multiple places.
3461void LSRInstance::RewriteForPHI(PHINode *PN,
3462                                const LSRFixup &LF,
3463                                const Formula &F,
3464                                SCEVExpander &Rewriter,
3465                                SmallVectorImpl<WeakVH> &DeadInsts,
3466                                Pass *P) const {
3467  DenseMap<BasicBlock *, Value *> Inserted;
3468  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
3469    if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
3470      BasicBlock *BB = PN->getIncomingBlock(i);
3471
3472      // If this is a critical edge, split the edge so that we do not insert
3473      // the code on all predecessor/successor paths.  We do this unless this
3474      // is the canonical backedge for this loop, which complicates post-inc
3475      // users.
3476      if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
3477          !isa<IndirectBrInst>(BB->getTerminator()) &&
3478          (PN->getParent() != L->getHeader() || !L->contains(BB))) {
3479        // Split the critical edge.
3480        BasicBlock *NewBB = SplitCriticalEdge(BB, PN->getParent(), P);
3481
3482        // If PN is outside of the loop and BB is in the loop, we want to
3483        // move the block to be immediately before the PHI block, not
3484        // immediately after BB.
3485        if (L->contains(BB) && !L->contains(PN))
3486          NewBB->moveBefore(PN->getParent());
3487
3488        // Splitting the edge can reduce the number of PHI entries we have.
3489        e = PN->getNumIncomingValues();
3490        BB = NewBB;
3491        i = PN->getBasicBlockIndex(BB);
3492      }
3493
3494      std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
3495        Inserted.insert(std::make_pair(BB, static_cast<Value *>(0)));
3496      if (!Pair.second)
3497        PN->setIncomingValue(i, Pair.first->second);
3498      else {
3499        Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts);
3500
3501        // If this is reuse-by-noop-cast, insert the noop cast.
3502        const Type *OpTy = LF.OperandValToReplace->getType();
3503        if (FullV->getType() != OpTy)
3504          FullV =
3505            CastInst::Create(CastInst::getCastOpcode(FullV, false,
3506                                                     OpTy, false),
3507                             FullV, LF.OperandValToReplace->getType(),
3508                             "tmp", BB->getTerminator());
3509
3510        PN->setIncomingValue(i, FullV);
3511        Pair.first->second = FullV;
3512      }
3513    }
3514}
3515
3516/// Rewrite - Emit instructions for the leading candidate expression for this
3517/// LSRUse (this is called "expanding"), and update the UserInst to reference
3518/// the newly expanded value.
3519void LSRInstance::Rewrite(const LSRFixup &LF,
3520                          const Formula &F,
3521                          SCEVExpander &Rewriter,
3522                          SmallVectorImpl<WeakVH> &DeadInsts,
3523                          Pass *P) const {
3524  // First, find an insertion point that dominates UserInst. For PHI nodes,
3525  // find the nearest block which dominates all the relevant uses.
3526  if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
3527    RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P);
3528  } else {
3529    Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts);
3530
3531    // If this is reuse-by-noop-cast, insert the noop cast.
3532    const Type *OpTy = LF.OperandValToReplace->getType();
3533    if (FullV->getType() != OpTy) {
3534      Instruction *Cast =
3535        CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
3536                         FullV, OpTy, "tmp", LF.UserInst);
3537      FullV = Cast;
3538    }
3539
3540    // Update the user. ICmpZero is handled specially here (for now) because
3541    // Expand may have updated one of the operands of the icmp already, and
3542    // its new value may happen to be equal to LF.OperandValToReplace, in
3543    // which case doing replaceUsesOfWith leads to replacing both operands
3544    // with the same value. TODO: Reorganize this.
3545    if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero)
3546      LF.UserInst->setOperand(0, FullV);
3547    else
3548      LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
3549  }
3550
3551  DeadInsts.push_back(LF.OperandValToReplace);
3552}
3553
3554/// ImplementSolution - Rewrite all the fixup locations with new values,
3555/// following the chosen solution.
3556void
3557LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
3558                               Pass *P) {
3559  // Keep track of instructions we may have made dead, so that
3560  // we can remove them after we are done working.
3561  SmallVector<WeakVH, 16> DeadInsts;
3562
3563  SCEVExpander Rewriter(SE);
3564  Rewriter.disableCanonicalMode();
3565  Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
3566
3567  // Expand the new value definitions and update the users.
3568  for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
3569       E = Fixups.end(); I != E; ++I) {
3570    const LSRFixup &Fixup = *I;
3571
3572    Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P);
3573
3574    Changed = true;
3575  }
3576
3577  // Clean up after ourselves. This must be done before deleting any
3578  // instructions.
3579  Rewriter.clear();
3580
3581  Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
3582}
3583
3584LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P)
3585  : IU(P->getAnalysis<IVUsers>()),
3586    SE(P->getAnalysis<ScalarEvolution>()),
3587    DT(P->getAnalysis<DominatorTree>()),
3588    LI(P->getAnalysis<LoopInfo>()),
3589    TLI(tli), L(l), Changed(false), IVIncInsertPos(0) {
3590
3591  // If LoopSimplify form is not available, stay out of trouble.
3592  if (!L->isLoopSimplifyForm()) return;
3593
3594  // If there's no interesting work to be done, bail early.
3595  if (IU.empty()) return;
3596
3597  DEBUG(dbgs() << "\nLSR on loop ";
3598        WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false);
3599        dbgs() << ":\n");
3600
3601  // First, perform some low-level loop optimizations.
3602  OptimizeShadowIV();
3603  OptimizeLoopTermCond();
3604
3605  // Start collecting data and preparing for the solver.
3606  CollectInterestingTypesAndFactors();
3607  CollectFixupsAndInitialFormulae();
3608  CollectLoopInvariantFixupsAndFormulae();
3609
3610  DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
3611        print_uses(dbgs()));
3612
3613  // Now use the reuse data to generate a bunch of interesting ways
3614  // to formulate the values needed for the uses.
3615  GenerateAllReuseFormulae();
3616
3617  DEBUG(dbgs() << "\n"
3618                  "After generating reuse formulae:\n";
3619        print_uses(dbgs()));
3620
3621  FilterOutUndesirableDedicatedRegisters();
3622  NarrowSearchSpaceUsingHeuristics();
3623
3624  SmallVector<const Formula *, 8> Solution;
3625  Solve(Solution);
3626
3627  // Release memory that is no longer needed.
3628  Factors.clear();
3629  Types.clear();
3630  RegUses.clear();
3631
3632#ifndef NDEBUG
3633  // Formulae should be legal.
3634  for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
3635       E = Uses.end(); I != E; ++I) {
3636     const LSRUse &LU = *I;
3637     for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
3638          JE = LU.Formulae.end(); J != JE; ++J)
3639        assert(isLegalUse(J->AM, LU.MinOffset, LU.MaxOffset,
3640                          LU.Kind, LU.AccessTy, TLI) &&
3641               "Illegal formula generated!");
3642  };
3643#endif
3644
3645  // Now that we've decided what we want, make it so.
3646  ImplementSolution(Solution, P);
3647}
3648
3649void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
3650  if (Factors.empty() && Types.empty()) return;
3651
3652  OS << "LSR has identified the following interesting factors and types: ";
3653  bool First = true;
3654
3655  for (SmallSetVector<int64_t, 8>::const_iterator
3656       I = Factors.begin(), E = Factors.end(); I != E; ++I) {
3657    if (!First) OS << ", ";
3658    First = false;
3659    OS << '*' << *I;
3660  }
3661
3662  for (SmallSetVector<const Type *, 4>::const_iterator
3663       I = Types.begin(), E = Types.end(); I != E; ++I) {
3664    if (!First) OS << ", ";
3665    First = false;
3666    OS << '(' << **I << ')';
3667  }
3668  OS << '\n';
3669}
3670
3671void LSRInstance::print_fixups(raw_ostream &OS) const {
3672  OS << "LSR is examining the following fixup sites:\n";
3673  for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
3674       E = Fixups.end(); I != E; ++I) {
3675    dbgs() << "  ";
3676    I->print(OS);
3677    OS << '\n';
3678  }
3679}
3680
3681void LSRInstance::print_uses(raw_ostream &OS) const {
3682  OS << "LSR is examining the following uses:\n";
3683  for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
3684       E = Uses.end(); I != E; ++I) {
3685    const LSRUse &LU = *I;
3686    dbgs() << "  ";
3687    LU.print(OS);
3688    OS << '\n';
3689    for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
3690         JE = LU.Formulae.end(); J != JE; ++J) {
3691      OS << "    ";
3692      J->print(OS);
3693      OS << '\n';
3694    }
3695  }
3696}
3697
3698void LSRInstance::print(raw_ostream &OS) const {
3699  print_factors_and_types(OS);
3700  print_fixups(OS);
3701  print_uses(OS);
3702}
3703
3704void LSRInstance::dump() const {
3705  print(errs()); errs() << '\n';
3706}
3707
3708namespace {
3709
3710class LoopStrengthReduce : public LoopPass {
3711  /// TLI - Keep a pointer of a TargetLowering to consult for determining
3712  /// transformation profitability.
3713  const TargetLowering *const TLI;
3714
3715public:
3716  static char ID; // Pass ID, replacement for typeid
3717  explicit LoopStrengthReduce(const TargetLowering *tli = 0);
3718
3719private:
3720  bool runOnLoop(Loop *L, LPPassManager &LPM);
3721  void getAnalysisUsage(AnalysisUsage &AU) const;
3722};
3723
3724}
3725
3726char LoopStrengthReduce::ID = 0;
3727static RegisterPass<LoopStrengthReduce>
3728X("loop-reduce", "Loop Strength Reduction");
3729
3730Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
3731  return new LoopStrengthReduce(TLI);
3732}
3733
3734LoopStrengthReduce::LoopStrengthReduce(const TargetLowering *tli)
3735  : LoopPass(&ID), TLI(tli) {}
3736
3737void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
3738  // We split critical edges, so we change the CFG.  However, we do update
3739  // many analyses if they are around.
3740  AU.addPreservedID(LoopSimplifyID);
3741  AU.addPreserved("domfrontier");
3742
3743  AU.addRequired<LoopInfo>();
3744  AU.addPreserved<LoopInfo>();
3745  AU.addRequiredID(LoopSimplifyID);
3746  AU.addRequired<DominatorTree>();
3747  AU.addPreserved<DominatorTree>();
3748  AU.addRequired<ScalarEvolution>();
3749  AU.addPreserved<ScalarEvolution>();
3750  AU.addRequired<IVUsers>();
3751  AU.addPreserved<IVUsers>();
3752}
3753
3754bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
3755  bool Changed = false;
3756
3757  // Run the main LSR transformation.
3758  Changed |= LSRInstance(TLI, L, this).getChanged();
3759
3760  // At this point, it is worth checking to see if any recurrence PHIs are also
3761  // dead, so that we can remove them as well.
3762  Changed |= DeleteDeadPHIs(L->getHeader());
3763
3764  return Changed;
3765}
3766