LoopStrengthReduce.cpp revision 206083
1//===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into forms suitable for efficient execution
12// on the target.
13//
14// This pass performs a strength reduction on array references inside loops that
15// have as one or more of their components the loop induction variable, it
16// rewrites expressions to take advantage of scaled-index addressing modes
17// available on the target, and it performs a variety of other optimizations
18// related to loop induction variables.
19//
20// Terminology note: this code has a lot of handling for "post-increment" or
21// "post-inc" users. This is not talking about post-increment addressing modes;
22// it is instead talking about code like this:
23//
24//   %i = phi [ 0, %entry ], [ %i.next, %latch ]
25//   ...
26//   %i.next = add %i, 1
27//   %c = icmp eq %i.next, %n
28//
29// The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
30// it's useful to think about these as the same register, with some uses using
31// the value of the register before the add and some using // it after. In this
32// example, the icmp is a post-increment user, since it uses %i.next, which is
33// the value of the induction variable after the increment. The other common
34// case of post-increment users is users outside the loop.
35//
36// TODO: More sophistication in the way Formulae are generated and filtered.
37//
38// TODO: Handle multiple loops at a time.
39//
40// TODO: Should TargetLowering::AddrMode::BaseGV be changed to a ConstantExpr
41//       instead of a GlobalValue?
42//
43// TODO: When truncation is free, truncate ICmp users' operands to make it a
44//       smaller encoding (on x86 at least).
45//
46// TODO: When a negated register is used by an add (such as in a list of
47//       multiple base registers, or as the increment expression in an addrec),
48//       we may not actually need both reg and (-1 * reg) in registers; the
49//       negation can be implemented by using a sub instead of an add. The
50//       lack of support for taking this into consideration when making
51//       register pressure decisions is partly worked around by the "Special"
52//       use kind.
53//
54//===----------------------------------------------------------------------===//
55
56#define DEBUG_TYPE "loop-reduce"
57#include "llvm/Transforms/Scalar.h"
58#include "llvm/Constants.h"
59#include "llvm/Instructions.h"
60#include "llvm/IntrinsicInst.h"
61#include "llvm/DerivedTypes.h"
62#include "llvm/Analysis/IVUsers.h"
63#include "llvm/Analysis/Dominators.h"
64#include "llvm/Analysis/LoopPass.h"
65#include "llvm/Analysis/ScalarEvolutionExpander.h"
66#include "llvm/Transforms/Utils/BasicBlockUtils.h"
67#include "llvm/Transforms/Utils/Local.h"
68#include "llvm/ADT/SmallBitVector.h"
69#include "llvm/ADT/SetVector.h"
70#include "llvm/ADT/DenseSet.h"
71#include "llvm/Support/Debug.h"
72#include "llvm/Support/ValueHandle.h"
73#include "llvm/Support/raw_ostream.h"
74#include "llvm/Target/TargetLowering.h"
75#include <algorithm>
76using namespace llvm;
77
78namespace {
79
80/// RegSortData - This class holds data which is used to order reuse candidates.
81class RegSortData {
82public:
83  /// UsedByIndices - This represents the set of LSRUse indices which reference
84  /// a particular register.
85  SmallBitVector UsedByIndices;
86
87  RegSortData() {}
88
89  void print(raw_ostream &OS) const;
90  void dump() const;
91};
92
93}
94
95void RegSortData::print(raw_ostream &OS) const {
96  OS << "[NumUses=" << UsedByIndices.count() << ']';
97}
98
99void RegSortData::dump() const {
100  print(errs()); errs() << '\n';
101}
102
103namespace {
104
105/// RegUseTracker - Map register candidates to information about how they are
106/// used.
107class RegUseTracker {
108  typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
109
110  RegUsesTy RegUses;
111  SmallVector<const SCEV *, 16> RegSequence;
112
113public:
114  void CountRegister(const SCEV *Reg, size_t LUIdx);
115
116  bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
117
118  const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
119
120  void clear();
121
122  typedef SmallVectorImpl<const SCEV *>::iterator iterator;
123  typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
124  iterator begin() { return RegSequence.begin(); }
125  iterator end()   { return RegSequence.end(); }
126  const_iterator begin() const { return RegSequence.begin(); }
127  const_iterator end() const   { return RegSequence.end(); }
128};
129
130}
131
132void
133RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) {
134  std::pair<RegUsesTy::iterator, bool> Pair =
135    RegUses.insert(std::make_pair(Reg, RegSortData()));
136  RegSortData &RSD = Pair.first->second;
137  if (Pair.second)
138    RegSequence.push_back(Reg);
139  RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
140  RSD.UsedByIndices.set(LUIdx);
141}
142
143bool
144RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
145  if (!RegUses.count(Reg)) return false;
146  const SmallBitVector &UsedByIndices =
147    RegUses.find(Reg)->second.UsedByIndices;
148  int i = UsedByIndices.find_first();
149  if (i == -1) return false;
150  if ((size_t)i != LUIdx) return true;
151  return UsedByIndices.find_next(i) != -1;
152}
153
154const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
155  RegUsesTy::const_iterator I = RegUses.find(Reg);
156  assert(I != RegUses.end() && "Unknown register!");
157  return I->second.UsedByIndices;
158}
159
160void RegUseTracker::clear() {
161  RegUses.clear();
162  RegSequence.clear();
163}
164
165namespace {
166
167/// Formula - This class holds information that describes a formula for
168/// computing satisfying a use. It may include broken-out immediates and scaled
169/// registers.
170struct Formula {
171  /// AM - This is used to represent complex addressing, as well as other kinds
172  /// of interesting uses.
173  TargetLowering::AddrMode AM;
174
175  /// BaseRegs - The list of "base" registers for this use. When this is
176  /// non-empty, AM.HasBaseReg should be set to true.
177  SmallVector<const SCEV *, 2> BaseRegs;
178
179  /// ScaledReg - The 'scaled' register for this use. This should be non-null
180  /// when AM.Scale is not zero.
181  const SCEV *ScaledReg;
182
183  Formula() : ScaledReg(0) {}
184
185  void InitialMatch(const SCEV *S, Loop *L,
186                    ScalarEvolution &SE, DominatorTree &DT);
187
188  unsigned getNumRegs() const;
189  const Type *getType() const;
190
191  bool referencesReg(const SCEV *S) const;
192  bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
193                                  const RegUseTracker &RegUses) const;
194
195  void print(raw_ostream &OS) const;
196  void dump() const;
197};
198
199}
200
201/// DoInitialMatch - Recursion helper for InitialMatch.
202static void DoInitialMatch(const SCEV *S, Loop *L,
203                           SmallVectorImpl<const SCEV *> &Good,
204                           SmallVectorImpl<const SCEV *> &Bad,
205                           ScalarEvolution &SE, DominatorTree &DT) {
206  // Collect expressions which properly dominate the loop header.
207  if (S->properlyDominates(L->getHeader(), &DT)) {
208    Good.push_back(S);
209    return;
210  }
211
212  // Look at add operands.
213  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
214    for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
215         I != E; ++I)
216      DoInitialMatch(*I, L, Good, Bad, SE, DT);
217    return;
218  }
219
220  // Look at addrec operands.
221  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
222    if (!AR->getStart()->isZero()) {
223      DoInitialMatch(AR->getStart(), L, Good, Bad, SE, DT);
224      DoInitialMatch(SE.getAddRecExpr(SE.getIntegerSCEV(0, AR->getType()),
225                                      AR->getStepRecurrence(SE),
226                                      AR->getLoop()),
227                     L, Good, Bad, SE, DT);
228      return;
229    }
230
231  // Handle a multiplication by -1 (negation) if it didn't fold.
232  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
233    if (Mul->getOperand(0)->isAllOnesValue()) {
234      SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
235      const SCEV *NewMul = SE.getMulExpr(Ops);
236
237      SmallVector<const SCEV *, 4> MyGood;
238      SmallVector<const SCEV *, 4> MyBad;
239      DoInitialMatch(NewMul, L, MyGood, MyBad, SE, DT);
240      const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
241        SE.getEffectiveSCEVType(NewMul->getType())));
242      for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(),
243           E = MyGood.end(); I != E; ++I)
244        Good.push_back(SE.getMulExpr(NegOne, *I));
245      for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(),
246           E = MyBad.end(); I != E; ++I)
247        Bad.push_back(SE.getMulExpr(NegOne, *I));
248      return;
249    }
250
251  // Ok, we can't do anything interesting. Just stuff the whole thing into a
252  // register and hope for the best.
253  Bad.push_back(S);
254}
255
256/// InitialMatch - Incorporate loop-variant parts of S into this Formula,
257/// attempting to keep all loop-invariant and loop-computable values in a
258/// single base register.
259void Formula::InitialMatch(const SCEV *S, Loop *L,
260                           ScalarEvolution &SE, DominatorTree &DT) {
261  SmallVector<const SCEV *, 4> Good;
262  SmallVector<const SCEV *, 4> Bad;
263  DoInitialMatch(S, L, Good, Bad, SE, DT);
264  if (!Good.empty()) {
265    BaseRegs.push_back(SE.getAddExpr(Good));
266    AM.HasBaseReg = true;
267  }
268  if (!Bad.empty()) {
269    BaseRegs.push_back(SE.getAddExpr(Bad));
270    AM.HasBaseReg = true;
271  }
272}
273
274/// getNumRegs - Return the total number of register operands used by this
275/// formula. This does not include register uses implied by non-constant
276/// addrec strides.
277unsigned Formula::getNumRegs() const {
278  return !!ScaledReg + BaseRegs.size();
279}
280
281/// getType - Return the type of this formula, if it has one, or null
282/// otherwise. This type is meaningless except for the bit size.
283const Type *Formula::getType() const {
284  return !BaseRegs.empty() ? BaseRegs.front()->getType() :
285         ScaledReg ? ScaledReg->getType() :
286         AM.BaseGV ? AM.BaseGV->getType() :
287         0;
288}
289
290/// referencesReg - Test if this formula references the given register.
291bool Formula::referencesReg(const SCEV *S) const {
292  return S == ScaledReg ||
293         std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end();
294}
295
296/// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers
297/// which are used by uses other than the use with the given index.
298bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
299                                         const RegUseTracker &RegUses) const {
300  if (ScaledReg)
301    if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
302      return true;
303  for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
304       E = BaseRegs.end(); I != E; ++I)
305    if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx))
306      return true;
307  return false;
308}
309
310void Formula::print(raw_ostream &OS) const {
311  bool First = true;
312  if (AM.BaseGV) {
313    if (!First) OS << " + "; else First = false;
314    WriteAsOperand(OS, AM.BaseGV, /*PrintType=*/false);
315  }
316  if (AM.BaseOffs != 0) {
317    if (!First) OS << " + "; else First = false;
318    OS << AM.BaseOffs;
319  }
320  for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
321       E = BaseRegs.end(); I != E; ++I) {
322    if (!First) OS << " + "; else First = false;
323    OS << "reg(" << **I << ')';
324  }
325  if (AM.Scale != 0) {
326    if (!First) OS << " + "; else First = false;
327    OS << AM.Scale << "*reg(";
328    if (ScaledReg)
329      OS << *ScaledReg;
330    else
331      OS << "<unknown>";
332    OS << ')';
333  }
334}
335
336void Formula::dump() const {
337  print(errs()); errs() << '\n';
338}
339
340/// isAddRecSExtable - Return true if the given addrec can be sign-extended
341/// without changing its value.
342static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
343  const Type *WideTy =
344    IntegerType::get(SE.getContext(),
345                     SE.getTypeSizeInBits(AR->getType()) + 1);
346  return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
347}
348
349/// isAddSExtable - Return true if the given add can be sign-extended
350/// without changing its value.
351static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
352  const Type *WideTy =
353    IntegerType::get(SE.getContext(),
354                     SE.getTypeSizeInBits(A->getType()) + 1);
355  return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
356}
357
358/// isMulSExtable - Return true if the given add can be sign-extended
359/// without changing its value.
360static bool isMulSExtable(const SCEVMulExpr *A, ScalarEvolution &SE) {
361  const Type *WideTy =
362    IntegerType::get(SE.getContext(),
363                     SE.getTypeSizeInBits(A->getType()) + 1);
364  return isa<SCEVMulExpr>(SE.getSignExtendExpr(A, WideTy));
365}
366
367/// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined
368/// and if the remainder is known to be zero,  or null otherwise. If
369/// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified
370/// to Y, ignoring that the multiplication may overflow, which is useful when
371/// the result will be used in a context where the most significant bits are
372/// ignored.
373static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
374                                ScalarEvolution &SE,
375                                bool IgnoreSignificantBits = false) {
376  // Handle the trivial case, which works for any SCEV type.
377  if (LHS == RHS)
378    return SE.getIntegerSCEV(1, LHS->getType());
379
380  // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do some
381  // folding.
382  if (RHS->isAllOnesValue())
383    return SE.getMulExpr(LHS, RHS);
384
385  // Check for a division of a constant by a constant.
386  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
387    const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
388    if (!RC)
389      return 0;
390    if (C->getValue()->getValue().srem(RC->getValue()->getValue()) != 0)
391      return 0;
392    return SE.getConstant(C->getValue()->getValue()
393               .sdiv(RC->getValue()->getValue()));
394  }
395
396  // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
397  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
398    if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) {
399      const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
400                                       IgnoreSignificantBits);
401      if (!Start) return 0;
402      const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
403                                      IgnoreSignificantBits);
404      if (!Step) return 0;
405      return SE.getAddRecExpr(Start, Step, AR->getLoop());
406    }
407  }
408
409  // Distribute the sdiv over add operands, if the add doesn't overflow.
410  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
411    if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
412      SmallVector<const SCEV *, 8> Ops;
413      for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
414           I != E; ++I) {
415        const SCEV *Op = getExactSDiv(*I, RHS, SE,
416                                      IgnoreSignificantBits);
417        if (!Op) return 0;
418        Ops.push_back(Op);
419      }
420      return SE.getAddExpr(Ops);
421    }
422  }
423
424  // Check for a multiply operand that we can pull RHS out of.
425  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS))
426    if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
427      SmallVector<const SCEV *, 4> Ops;
428      bool Found = false;
429      for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end();
430           I != E; ++I) {
431        if (!Found)
432          if (const SCEV *Q = getExactSDiv(*I, RHS, SE,
433                                           IgnoreSignificantBits)) {
434            Ops.push_back(Q);
435            Found = true;
436            continue;
437          }
438        Ops.push_back(*I);
439      }
440      return Found ? SE.getMulExpr(Ops) : 0;
441    }
442
443  // Otherwise we don't know.
444  return 0;
445}
446
447/// ExtractImmediate - If S involves the addition of a constant integer value,
448/// return that integer value, and mutate S to point to a new SCEV with that
449/// value excluded.
450static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
451  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
452    if (C->getValue()->getValue().getMinSignedBits() <= 64) {
453      S = SE.getIntegerSCEV(0, C->getType());
454      return C->getValue()->getSExtValue();
455    }
456  } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
457    SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
458    int64_t Result = ExtractImmediate(NewOps.front(), SE);
459    S = SE.getAddExpr(NewOps);
460    return Result;
461  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
462    SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
463    int64_t Result = ExtractImmediate(NewOps.front(), SE);
464    S = SE.getAddRecExpr(NewOps, AR->getLoop());
465    return Result;
466  }
467  return 0;
468}
469
470/// ExtractSymbol - If S involves the addition of a GlobalValue address,
471/// return that symbol, and mutate S to point to a new SCEV with that
472/// value excluded.
473static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
474  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
475    if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
476      S = SE.getIntegerSCEV(0, GV->getType());
477      return GV;
478    }
479  } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
480    SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
481    GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
482    S = SE.getAddExpr(NewOps);
483    return Result;
484  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
485    SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
486    GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
487    S = SE.getAddRecExpr(NewOps, AR->getLoop());
488    return Result;
489  }
490  return 0;
491}
492
493/// isAddressUse - Returns true if the specified instruction is using the
494/// specified value as an address.
495static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
496  bool isAddress = isa<LoadInst>(Inst);
497  if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
498    if (SI->getOperand(1) == OperandVal)
499      isAddress = true;
500  } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
501    // Addressing modes can also be folded into prefetches and a variety
502    // of intrinsics.
503    switch (II->getIntrinsicID()) {
504      default: break;
505      case Intrinsic::prefetch:
506      case Intrinsic::x86_sse2_loadu_dq:
507      case Intrinsic::x86_sse2_loadu_pd:
508      case Intrinsic::x86_sse_loadu_ps:
509      case Intrinsic::x86_sse_storeu_ps:
510      case Intrinsic::x86_sse2_storeu_pd:
511      case Intrinsic::x86_sse2_storeu_dq:
512      case Intrinsic::x86_sse2_storel_dq:
513        if (II->getOperand(1) == OperandVal)
514          isAddress = true;
515        break;
516    }
517  }
518  return isAddress;
519}
520
521/// getAccessType - Return the type of the memory being accessed.
522static const Type *getAccessType(const Instruction *Inst) {
523  const Type *AccessTy = Inst->getType();
524  if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
525    AccessTy = SI->getOperand(0)->getType();
526  else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
527    // Addressing modes can also be folded into prefetches and a variety
528    // of intrinsics.
529    switch (II->getIntrinsicID()) {
530    default: break;
531    case Intrinsic::x86_sse_storeu_ps:
532    case Intrinsic::x86_sse2_storeu_pd:
533    case Intrinsic::x86_sse2_storeu_dq:
534    case Intrinsic::x86_sse2_storel_dq:
535      AccessTy = II->getOperand(1)->getType();
536      break;
537    }
538  }
539
540  // All pointers have the same requirements, so canonicalize them to an
541  // arbitrary pointer type to minimize variation.
542  if (const PointerType *PTy = dyn_cast<PointerType>(AccessTy))
543    AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
544                                PTy->getAddressSpace());
545
546  return AccessTy;
547}
548
549/// DeleteTriviallyDeadInstructions - If any of the instructions is the
550/// specified set are trivially dead, delete them and see if this makes any of
551/// their operands subsequently dead.
552static bool
553DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
554  bool Changed = false;
555
556  while (!DeadInsts.empty()) {
557    Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val());
558
559    if (I == 0 || !isInstructionTriviallyDead(I))
560      continue;
561
562    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
563      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
564        *OI = 0;
565        if (U->use_empty())
566          DeadInsts.push_back(U);
567      }
568
569    I->eraseFromParent();
570    Changed = true;
571  }
572
573  return Changed;
574}
575
576namespace {
577
578/// Cost - This class is used to measure and compare candidate formulae.
579class Cost {
580  /// TODO: Some of these could be merged. Also, a lexical ordering
581  /// isn't always optimal.
582  unsigned NumRegs;
583  unsigned AddRecCost;
584  unsigned NumIVMuls;
585  unsigned NumBaseAdds;
586  unsigned ImmCost;
587  unsigned SetupCost;
588
589public:
590  Cost()
591    : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
592      SetupCost(0) {}
593
594  unsigned getNumRegs() const { return NumRegs; }
595
596  bool operator<(const Cost &Other) const;
597
598  void Loose();
599
600  void RateFormula(const Formula &F,
601                   SmallPtrSet<const SCEV *, 16> &Regs,
602                   const DenseSet<const SCEV *> &VisitedRegs,
603                   const Loop *L,
604                   const SmallVectorImpl<int64_t> &Offsets,
605                   ScalarEvolution &SE, DominatorTree &DT);
606
607  void print(raw_ostream &OS) const;
608  void dump() const;
609
610private:
611  void RateRegister(const SCEV *Reg,
612                    SmallPtrSet<const SCEV *, 16> &Regs,
613                    const Loop *L,
614                    ScalarEvolution &SE, DominatorTree &DT);
615  void RatePrimaryRegister(const SCEV *Reg,
616                           SmallPtrSet<const SCEV *, 16> &Regs,
617                           const Loop *L,
618                           ScalarEvolution &SE, DominatorTree &DT);
619};
620
621}
622
623/// RateRegister - Tally up interesting quantities from the given register.
624void Cost::RateRegister(const SCEV *Reg,
625                        SmallPtrSet<const SCEV *, 16> &Regs,
626                        const Loop *L,
627                        ScalarEvolution &SE, DominatorTree &DT) {
628  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
629    if (AR->getLoop() == L)
630      AddRecCost += 1; /// TODO: This should be a function of the stride.
631
632    // If this is an addrec for a loop that's already been visited by LSR,
633    // don't second-guess its addrec phi nodes. LSR isn't currently smart
634    // enough to reason about more than one loop at a time. Consider these
635    // registers free and leave them alone.
636    else if (L->contains(AR->getLoop()) ||
637             (!AR->getLoop()->contains(L) &&
638              DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))) {
639      for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
640           PHINode *PN = dyn_cast<PHINode>(I); ++I)
641        if (SE.isSCEVable(PN->getType()) &&
642            (SE.getEffectiveSCEVType(PN->getType()) ==
643             SE.getEffectiveSCEVType(AR->getType())) &&
644            SE.getSCEV(PN) == AR)
645          return;
646
647      // If this isn't one of the addrecs that the loop already has, it
648      // would require a costly new phi and add. TODO: This isn't
649      // precisely modeled right now.
650      ++NumBaseAdds;
651      if (!Regs.count(AR->getStart()))
652        RateRegister(AR->getStart(), Regs, L, SE, DT);
653    }
654
655    // Add the step value register, if it needs one.
656    // TODO: The non-affine case isn't precisely modeled here.
657    if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1)))
658      if (!Regs.count(AR->getStart()))
659        RateRegister(AR->getOperand(1), Regs, L, SE, DT);
660  }
661  ++NumRegs;
662
663  // Rough heuristic; favor registers which don't require extra setup
664  // instructions in the preheader.
665  if (!isa<SCEVUnknown>(Reg) &&
666      !isa<SCEVConstant>(Reg) &&
667      !(isa<SCEVAddRecExpr>(Reg) &&
668        (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
669         isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
670    ++SetupCost;
671}
672
673/// RatePrimaryRegister - Record this register in the set. If we haven't seen it
674/// before, rate it.
675void Cost::RatePrimaryRegister(const SCEV *Reg,
676                               SmallPtrSet<const SCEV *, 16> &Regs,
677                               const Loop *L,
678                               ScalarEvolution &SE, DominatorTree &DT) {
679  if (Regs.insert(Reg))
680    RateRegister(Reg, Regs, L, SE, DT);
681}
682
683void Cost::RateFormula(const Formula &F,
684                       SmallPtrSet<const SCEV *, 16> &Regs,
685                       const DenseSet<const SCEV *> &VisitedRegs,
686                       const Loop *L,
687                       const SmallVectorImpl<int64_t> &Offsets,
688                       ScalarEvolution &SE, DominatorTree &DT) {
689  // Tally up the registers.
690  if (const SCEV *ScaledReg = F.ScaledReg) {
691    if (VisitedRegs.count(ScaledReg)) {
692      Loose();
693      return;
694    }
695    RatePrimaryRegister(ScaledReg, Regs, L, SE, DT);
696  }
697  for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
698       E = F.BaseRegs.end(); I != E; ++I) {
699    const SCEV *BaseReg = *I;
700    if (VisitedRegs.count(BaseReg)) {
701      Loose();
702      return;
703    }
704    RatePrimaryRegister(BaseReg, Regs, L, SE, DT);
705
706    NumIVMuls += isa<SCEVMulExpr>(BaseReg) &&
707                 BaseReg->hasComputableLoopEvolution(L);
708  }
709
710  if (F.BaseRegs.size() > 1)
711    NumBaseAdds += F.BaseRegs.size() - 1;
712
713  // Tally up the non-zero immediates.
714  for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
715       E = Offsets.end(); I != E; ++I) {
716    int64_t Offset = (uint64_t)*I + F.AM.BaseOffs;
717    if (F.AM.BaseGV)
718      ImmCost += 64; // Handle symbolic values conservatively.
719                     // TODO: This should probably be the pointer size.
720    else if (Offset != 0)
721      ImmCost += APInt(64, Offset, true).getMinSignedBits();
722  }
723}
724
725/// Loose - Set this cost to a loosing value.
726void Cost::Loose() {
727  NumRegs = ~0u;
728  AddRecCost = ~0u;
729  NumIVMuls = ~0u;
730  NumBaseAdds = ~0u;
731  ImmCost = ~0u;
732  SetupCost = ~0u;
733}
734
735/// operator< - Choose the lower cost.
736bool Cost::operator<(const Cost &Other) const {
737  if (NumRegs != Other.NumRegs)
738    return NumRegs < Other.NumRegs;
739  if (AddRecCost != Other.AddRecCost)
740    return AddRecCost < Other.AddRecCost;
741  if (NumIVMuls != Other.NumIVMuls)
742    return NumIVMuls < Other.NumIVMuls;
743  if (NumBaseAdds != Other.NumBaseAdds)
744    return NumBaseAdds < Other.NumBaseAdds;
745  if (ImmCost != Other.ImmCost)
746    return ImmCost < Other.ImmCost;
747  if (SetupCost != Other.SetupCost)
748    return SetupCost < Other.SetupCost;
749  return false;
750}
751
752void Cost::print(raw_ostream &OS) const {
753  OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
754  if (AddRecCost != 0)
755    OS << ", with addrec cost " << AddRecCost;
756  if (NumIVMuls != 0)
757    OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
758  if (NumBaseAdds != 0)
759    OS << ", plus " << NumBaseAdds << " base add"
760       << (NumBaseAdds == 1 ? "" : "s");
761  if (ImmCost != 0)
762    OS << ", plus " << ImmCost << " imm cost";
763  if (SetupCost != 0)
764    OS << ", plus " << SetupCost << " setup cost";
765}
766
767void Cost::dump() const {
768  print(errs()); errs() << '\n';
769}
770
771namespace {
772
773/// LSRFixup - An operand value in an instruction which is to be replaced
774/// with some equivalent, possibly strength-reduced, replacement.
775struct LSRFixup {
776  /// UserInst - The instruction which will be updated.
777  Instruction *UserInst;
778
779  /// OperandValToReplace - The operand of the instruction which will
780  /// be replaced. The operand may be used more than once; every instance
781  /// will be replaced.
782  Value *OperandValToReplace;
783
784  /// PostIncLoop - If this user is to use the post-incremented value of an
785  /// induction variable, this variable is non-null and holds the loop
786  /// associated with the induction variable.
787  const Loop *PostIncLoop;
788
789  /// LUIdx - The index of the LSRUse describing the expression which
790  /// this fixup needs, minus an offset (below).
791  size_t LUIdx;
792
793  /// Offset - A constant offset to be added to the LSRUse expression.
794  /// This allows multiple fixups to share the same LSRUse with different
795  /// offsets, for example in an unrolled loop.
796  int64_t Offset;
797
798  LSRFixup();
799
800  void print(raw_ostream &OS) const;
801  void dump() const;
802};
803
804}
805
806LSRFixup::LSRFixup()
807  : UserInst(0), OperandValToReplace(0), PostIncLoop(0),
808    LUIdx(~size_t(0)), Offset(0) {}
809
810void LSRFixup::print(raw_ostream &OS) const {
811  OS << "UserInst=";
812  // Store is common and interesting enough to be worth special-casing.
813  if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
814    OS << "store ";
815    WriteAsOperand(OS, Store->getOperand(0), /*PrintType=*/false);
816  } else if (UserInst->getType()->isVoidTy())
817    OS << UserInst->getOpcodeName();
818  else
819    WriteAsOperand(OS, UserInst, /*PrintType=*/false);
820
821  OS << ", OperandValToReplace=";
822  WriteAsOperand(OS, OperandValToReplace, /*PrintType=*/false);
823
824  if (PostIncLoop) {
825    OS << ", PostIncLoop=";
826    WriteAsOperand(OS, PostIncLoop->getHeader(), /*PrintType=*/false);
827  }
828
829  if (LUIdx != ~size_t(0))
830    OS << ", LUIdx=" << LUIdx;
831
832  if (Offset != 0)
833    OS << ", Offset=" << Offset;
834}
835
836void LSRFixup::dump() const {
837  print(errs()); errs() << '\n';
838}
839
840namespace {
841
842/// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding
843/// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*.
844struct UniquifierDenseMapInfo {
845  static SmallVector<const SCEV *, 2> getEmptyKey() {
846    SmallVector<const SCEV *, 2> V;
847    V.push_back(reinterpret_cast<const SCEV *>(-1));
848    return V;
849  }
850
851  static SmallVector<const SCEV *, 2> getTombstoneKey() {
852    SmallVector<const SCEV *, 2> V;
853    V.push_back(reinterpret_cast<const SCEV *>(-2));
854    return V;
855  }
856
857  static unsigned getHashValue(const SmallVector<const SCEV *, 2> &V) {
858    unsigned Result = 0;
859    for (SmallVectorImpl<const SCEV *>::const_iterator I = V.begin(),
860         E = V.end(); I != E; ++I)
861      Result ^= DenseMapInfo<const SCEV *>::getHashValue(*I);
862    return Result;
863  }
864
865  static bool isEqual(const SmallVector<const SCEV *, 2> &LHS,
866                      const SmallVector<const SCEV *, 2> &RHS) {
867    return LHS == RHS;
868  }
869};
870
871/// LSRUse - This class holds the state that LSR keeps for each use in
872/// IVUsers, as well as uses invented by LSR itself. It includes information
873/// about what kinds of things can be folded into the user, information about
874/// the user itself, and information about how the use may be satisfied.
875/// TODO: Represent multiple users of the same expression in common?
876class LSRUse {
877  DenseSet<SmallVector<const SCEV *, 2>, UniquifierDenseMapInfo> Uniquifier;
878
879public:
880  /// KindType - An enum for a kind of use, indicating what types of
881  /// scaled and immediate operands it might support.
882  enum KindType {
883    Basic,   ///< A normal use, with no folding.
884    Special, ///< A special case of basic, allowing -1 scales.
885    Address, ///< An address use; folding according to TargetLowering
886    ICmpZero ///< An equality icmp with both operands folded into one.
887    // TODO: Add a generic icmp too?
888  };
889
890  KindType Kind;
891  const Type *AccessTy;
892
893  SmallVector<int64_t, 8> Offsets;
894  int64_t MinOffset;
895  int64_t MaxOffset;
896
897  /// AllFixupsOutsideLoop - This records whether all of the fixups using this
898  /// LSRUse are outside of the loop, in which case some special-case heuristics
899  /// may be used.
900  bool AllFixupsOutsideLoop;
901
902  /// Formulae - A list of ways to build a value that can satisfy this user.
903  /// After the list is populated, one of these is selected heuristically and
904  /// used to formulate a replacement for OperandValToReplace in UserInst.
905  SmallVector<Formula, 12> Formulae;
906
907  /// Regs - The set of register candidates used by all formulae in this LSRUse.
908  SmallPtrSet<const SCEV *, 4> Regs;
909
910  LSRUse(KindType K, const Type *T) : Kind(K), AccessTy(T),
911                                      MinOffset(INT64_MAX),
912                                      MaxOffset(INT64_MIN),
913                                      AllFixupsOutsideLoop(true) {}
914
915  bool InsertFormula(const Formula &F);
916
917  void check() const;
918
919  void print(raw_ostream &OS) const;
920  void dump() const;
921};
922
923/// InsertFormula - If the given formula has not yet been inserted, add it to
924/// the list, and return true. Return false otherwise.
925bool LSRUse::InsertFormula(const Formula &F) {
926  SmallVector<const SCEV *, 2> Key = F.BaseRegs;
927  if (F.ScaledReg) Key.push_back(F.ScaledReg);
928  // Unstable sort by host order ok, because this is only used for uniquifying.
929  std::sort(Key.begin(), Key.end());
930
931  if (!Uniquifier.insert(Key).second)
932    return false;
933
934  // Using a register to hold the value of 0 is not profitable.
935  assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
936         "Zero allocated in a scaled register!");
937#ifndef NDEBUG
938  for (SmallVectorImpl<const SCEV *>::const_iterator I =
939       F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I)
940    assert(!(*I)->isZero() && "Zero allocated in a base register!");
941#endif
942
943  // Add the formula to the list.
944  Formulae.push_back(F);
945
946  // Record registers now being used by this use.
947  if (F.ScaledReg) Regs.insert(F.ScaledReg);
948  Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
949
950  return true;
951}
952
953void LSRUse::print(raw_ostream &OS) const {
954  OS << "LSR Use: Kind=";
955  switch (Kind) {
956  case Basic:    OS << "Basic"; break;
957  case Special:  OS << "Special"; break;
958  case ICmpZero: OS << "ICmpZero"; break;
959  case Address:
960    OS << "Address of ";
961    if (AccessTy->isPointerTy())
962      OS << "pointer"; // the full pointer type could be really verbose
963    else
964      OS << *AccessTy;
965  }
966
967  OS << ", Offsets={";
968  for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
969       E = Offsets.end(); I != E; ++I) {
970    OS << *I;
971    if (next(I) != E)
972      OS << ',';
973  }
974  OS << '}';
975
976  if (AllFixupsOutsideLoop)
977    OS << ", all-fixups-outside-loop";
978}
979
980void LSRUse::dump() const {
981  print(errs()); errs() << '\n';
982}
983
984/// isLegalUse - Test whether the use described by AM is "legal", meaning it can
985/// be completely folded into the user instruction at isel time. This includes
986/// address-mode folding and special icmp tricks.
987static bool isLegalUse(const TargetLowering::AddrMode &AM,
988                       LSRUse::KindType Kind, const Type *AccessTy,
989                       const TargetLowering *TLI) {
990  switch (Kind) {
991  case LSRUse::Address:
992    // If we have low-level target information, ask the target if it can
993    // completely fold this address.
994    if (TLI) return TLI->isLegalAddressingMode(AM, AccessTy);
995
996    // Otherwise, just guess that reg+reg addressing is legal.
997    return !AM.BaseGV && AM.BaseOffs == 0 && AM.Scale <= 1;
998
999  case LSRUse::ICmpZero:
1000    // There's not even a target hook for querying whether it would be legal to
1001    // fold a GV into an ICmp.
1002    if (AM.BaseGV)
1003      return false;
1004
1005    // ICmp only has two operands; don't allow more than two non-trivial parts.
1006    if (AM.Scale != 0 && AM.HasBaseReg && AM.BaseOffs != 0)
1007      return false;
1008
1009    // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1010    // putting the scaled register in the other operand of the icmp.
1011    if (AM.Scale != 0 && AM.Scale != -1)
1012      return false;
1013
1014    // If we have low-level target information, ask the target if it can fold an
1015    // integer immediate on an icmp.
1016    if (AM.BaseOffs != 0) {
1017      if (TLI) return TLI->isLegalICmpImmediate(-AM.BaseOffs);
1018      return false;
1019    }
1020
1021    return true;
1022
1023  case LSRUse::Basic:
1024    // Only handle single-register values.
1025    return !AM.BaseGV && AM.Scale == 0 && AM.BaseOffs == 0;
1026
1027  case LSRUse::Special:
1028    // Only handle -1 scales, or no scale.
1029    return AM.Scale == 0 || AM.Scale == -1;
1030  }
1031
1032  return false;
1033}
1034
1035static bool isLegalUse(TargetLowering::AddrMode AM,
1036                       int64_t MinOffset, int64_t MaxOffset,
1037                       LSRUse::KindType Kind, const Type *AccessTy,
1038                       const TargetLowering *TLI) {
1039  // Check for overflow.
1040  if (((int64_t)((uint64_t)AM.BaseOffs + MinOffset) > AM.BaseOffs) !=
1041      (MinOffset > 0))
1042    return false;
1043  AM.BaseOffs = (uint64_t)AM.BaseOffs + MinOffset;
1044  if (isLegalUse(AM, Kind, AccessTy, TLI)) {
1045    AM.BaseOffs = (uint64_t)AM.BaseOffs - MinOffset;
1046    // Check for overflow.
1047    if (((int64_t)((uint64_t)AM.BaseOffs + MaxOffset) > AM.BaseOffs) !=
1048        (MaxOffset > 0))
1049      return false;
1050    AM.BaseOffs = (uint64_t)AM.BaseOffs + MaxOffset;
1051    return isLegalUse(AM, Kind, AccessTy, TLI);
1052  }
1053  return false;
1054}
1055
1056static bool isAlwaysFoldable(int64_t BaseOffs,
1057                             GlobalValue *BaseGV,
1058                             bool HasBaseReg,
1059                             LSRUse::KindType Kind, const Type *AccessTy,
1060                             const TargetLowering *TLI) {
1061  // Fast-path: zero is always foldable.
1062  if (BaseOffs == 0 && !BaseGV) return true;
1063
1064  // Conservatively, create an address with an immediate and a
1065  // base and a scale.
1066  TargetLowering::AddrMode AM;
1067  AM.BaseOffs = BaseOffs;
1068  AM.BaseGV = BaseGV;
1069  AM.HasBaseReg = HasBaseReg;
1070  AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1071
1072  return isLegalUse(AM, Kind, AccessTy, TLI);
1073}
1074
1075static bool isAlwaysFoldable(const SCEV *S,
1076                             int64_t MinOffset, int64_t MaxOffset,
1077                             bool HasBaseReg,
1078                             LSRUse::KindType Kind, const Type *AccessTy,
1079                             const TargetLowering *TLI,
1080                             ScalarEvolution &SE) {
1081  // Fast-path: zero is always foldable.
1082  if (S->isZero()) return true;
1083
1084  // Conservatively, create an address with an immediate and a
1085  // base and a scale.
1086  int64_t BaseOffs = ExtractImmediate(S, SE);
1087  GlobalValue *BaseGV = ExtractSymbol(S, SE);
1088
1089  // If there's anything else involved, it's not foldable.
1090  if (!S->isZero()) return false;
1091
1092  // Fast-path: zero is always foldable.
1093  if (BaseOffs == 0 && !BaseGV) return true;
1094
1095  // Conservatively, create an address with an immediate and a
1096  // base and a scale.
1097  TargetLowering::AddrMode AM;
1098  AM.BaseOffs = BaseOffs;
1099  AM.BaseGV = BaseGV;
1100  AM.HasBaseReg = HasBaseReg;
1101  AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1102
1103  return isLegalUse(AM, MinOffset, MaxOffset, Kind, AccessTy, TLI);
1104}
1105
1106/// FormulaSorter - This class implements an ordering for formulae which sorts
1107/// the by their standalone cost.
1108class FormulaSorter {
1109  /// These two sets are kept empty, so that we compute standalone costs.
1110  DenseSet<const SCEV *> VisitedRegs;
1111  SmallPtrSet<const SCEV *, 16> Regs;
1112  Loop *L;
1113  LSRUse *LU;
1114  ScalarEvolution &SE;
1115  DominatorTree &DT;
1116
1117public:
1118  FormulaSorter(Loop *l, LSRUse &lu, ScalarEvolution &se, DominatorTree &dt)
1119    : L(l), LU(&lu), SE(se), DT(dt) {}
1120
1121  bool operator()(const Formula &A, const Formula &B) {
1122    Cost CostA;
1123    CostA.RateFormula(A, Regs, VisitedRegs, L, LU->Offsets, SE, DT);
1124    Regs.clear();
1125    Cost CostB;
1126    CostB.RateFormula(B, Regs, VisitedRegs, L, LU->Offsets, SE, DT);
1127    Regs.clear();
1128    return CostA < CostB;
1129  }
1130};
1131
1132/// LSRInstance - This class holds state for the main loop strength reduction
1133/// logic.
1134class LSRInstance {
1135  IVUsers &IU;
1136  ScalarEvolution &SE;
1137  DominatorTree &DT;
1138  const TargetLowering *const TLI;
1139  Loop *const L;
1140  bool Changed;
1141
1142  /// IVIncInsertPos - This is the insert position that the current loop's
1143  /// induction variable increment should be placed. In simple loops, this is
1144  /// the latch block's terminator. But in more complicated cases, this is a
1145  /// position which will dominate all the in-loop post-increment users.
1146  Instruction *IVIncInsertPos;
1147
1148  /// Factors - Interesting factors between use strides.
1149  SmallSetVector<int64_t, 8> Factors;
1150
1151  /// Types - Interesting use types, to facilitate truncation reuse.
1152  SmallSetVector<const Type *, 4> Types;
1153
1154  /// Fixups - The list of operands which are to be replaced.
1155  SmallVector<LSRFixup, 16> Fixups;
1156
1157  /// Uses - The list of interesting uses.
1158  SmallVector<LSRUse, 16> Uses;
1159
1160  /// RegUses - Track which uses use which register candidates.
1161  RegUseTracker RegUses;
1162
1163  void OptimizeShadowIV();
1164  bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1165  ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1166  bool OptimizeLoopTermCond();
1167
1168  void CollectInterestingTypesAndFactors();
1169  void CollectFixupsAndInitialFormulae();
1170
1171  LSRFixup &getNewFixup() {
1172    Fixups.push_back(LSRFixup());
1173    return Fixups.back();
1174  }
1175
1176  // Support for sharing of LSRUses between LSRFixups.
1177  typedef DenseMap<const SCEV *, size_t> UseMapTy;
1178  UseMapTy UseMap;
1179
1180  bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
1181                          LSRUse::KindType Kind, const Type *AccessTy);
1182
1183  std::pair<size_t, int64_t> getUse(const SCEV *&Expr,
1184                                    LSRUse::KindType Kind,
1185                                    const Type *AccessTy);
1186
1187public:
1188  void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1189  void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1190  void CountRegisters(const Formula &F, size_t LUIdx);
1191  bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1192
1193  void CollectLoopInvariantFixupsAndFormulae();
1194
1195  void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1196                              unsigned Depth = 0);
1197  void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1198  void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1199  void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1200  void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1201  void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1202  void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
1203  void GenerateCrossUseConstantOffsets();
1204  void GenerateAllReuseFormulae();
1205
1206  void FilterOutUndesirableDedicatedRegisters();
1207  void NarrowSearchSpaceUsingHeuristics();
1208
1209  void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
1210                    Cost &SolutionCost,
1211                    SmallVectorImpl<const Formula *> &Workspace,
1212                    const Cost &CurCost,
1213                    const SmallPtrSet<const SCEV *, 16> &CurRegs,
1214                    DenseSet<const SCEV *> &VisitedRegs) const;
1215  void Solve(SmallVectorImpl<const Formula *> &Solution) const;
1216
1217  Value *Expand(const LSRFixup &LF,
1218                const Formula &F,
1219                BasicBlock::iterator IP,
1220                SCEVExpander &Rewriter,
1221                SmallVectorImpl<WeakVH> &DeadInsts) const;
1222  void RewriteForPHI(PHINode *PN, const LSRFixup &LF,
1223                     const Formula &F,
1224                     SCEVExpander &Rewriter,
1225                     SmallVectorImpl<WeakVH> &DeadInsts,
1226                     Pass *P) const;
1227  void Rewrite(const LSRFixup &LF,
1228               const Formula &F,
1229               SCEVExpander &Rewriter,
1230               SmallVectorImpl<WeakVH> &DeadInsts,
1231               Pass *P) const;
1232  void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
1233                         Pass *P);
1234
1235  LSRInstance(const TargetLowering *tli, Loop *l, Pass *P);
1236
1237  bool getChanged() const { return Changed; }
1238
1239  void print_factors_and_types(raw_ostream &OS) const;
1240  void print_fixups(raw_ostream &OS) const;
1241  void print_uses(raw_ostream &OS) const;
1242  void print(raw_ostream &OS) const;
1243  void dump() const;
1244};
1245
1246}
1247
1248/// OptimizeShadowIV - If IV is used in a int-to-float cast
1249/// inside the loop then try to eliminate the cast operation.
1250void LSRInstance::OptimizeShadowIV() {
1251  const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1252  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1253    return;
1254
1255  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
1256       UI != E; /* empty */) {
1257    IVUsers::const_iterator CandidateUI = UI;
1258    ++UI;
1259    Instruction *ShadowUse = CandidateUI->getUser();
1260    const Type *DestTy = NULL;
1261
1262    /* If shadow use is a int->float cast then insert a second IV
1263       to eliminate this cast.
1264
1265         for (unsigned i = 0; i < n; ++i)
1266           foo((double)i);
1267
1268       is transformed into
1269
1270         double d = 0.0;
1271         for (unsigned i = 0; i < n; ++i, ++d)
1272           foo(d);
1273    */
1274    if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser()))
1275      DestTy = UCast->getDestTy();
1276    else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser()))
1277      DestTy = SCast->getDestTy();
1278    if (!DestTy) continue;
1279
1280    if (TLI) {
1281      // If target does not support DestTy natively then do not apply
1282      // this transformation.
1283      EVT DVT = TLI->getValueType(DestTy);
1284      if (!TLI->isTypeLegal(DVT)) continue;
1285    }
1286
1287    PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
1288    if (!PH) continue;
1289    if (PH->getNumIncomingValues() != 2) continue;
1290
1291    const Type *SrcTy = PH->getType();
1292    int Mantissa = DestTy->getFPMantissaWidth();
1293    if (Mantissa == -1) continue;
1294    if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
1295      continue;
1296
1297    unsigned Entry, Latch;
1298    if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
1299      Entry = 0;
1300      Latch = 1;
1301    } else {
1302      Entry = 1;
1303      Latch = 0;
1304    }
1305
1306    ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
1307    if (!Init) continue;
1308    Constant *NewInit = ConstantFP::get(DestTy, Init->getZExtValue());
1309
1310    BinaryOperator *Incr =
1311      dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
1312    if (!Incr) continue;
1313    if (Incr->getOpcode() != Instruction::Add
1314        && Incr->getOpcode() != Instruction::Sub)
1315      continue;
1316
1317    /* Initialize new IV, double d = 0.0 in above example. */
1318    ConstantInt *C = NULL;
1319    if (Incr->getOperand(0) == PH)
1320      C = dyn_cast<ConstantInt>(Incr->getOperand(1));
1321    else if (Incr->getOperand(1) == PH)
1322      C = dyn_cast<ConstantInt>(Incr->getOperand(0));
1323    else
1324      continue;
1325
1326    if (!C) continue;
1327
1328    // Ignore negative constants, as the code below doesn't handle them
1329    // correctly. TODO: Remove this restriction.
1330    if (!C->getValue().isStrictlyPositive()) continue;
1331
1332    /* Add new PHINode. */
1333    PHINode *NewPH = PHINode::Create(DestTy, "IV.S.", PH);
1334
1335    /* create new increment. '++d' in above example. */
1336    Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
1337    BinaryOperator *NewIncr =
1338      BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
1339                               Instruction::FAdd : Instruction::FSub,
1340                             NewPH, CFP, "IV.S.next.", Incr);
1341
1342    NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
1343    NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
1344
1345    /* Remove cast operation */
1346    ShadowUse->replaceAllUsesWith(NewPH);
1347    ShadowUse->eraseFromParent();
1348    break;
1349  }
1350}
1351
1352/// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
1353/// set the IV user and stride information and return true, otherwise return
1354/// false.
1355bool LSRInstance::FindIVUserForCond(ICmpInst *Cond,
1356                                    IVStrideUse *&CondUse) {
1357  for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1358    if (UI->getUser() == Cond) {
1359      // NOTE: we could handle setcc instructions with multiple uses here, but
1360      // InstCombine does it as well for simple uses, it's not clear that it
1361      // occurs enough in real life to handle.
1362      CondUse = UI;
1363      return true;
1364    }
1365  return false;
1366}
1367
1368/// OptimizeMax - Rewrite the loop's terminating condition if it uses
1369/// a max computation.
1370///
1371/// This is a narrow solution to a specific, but acute, problem. For loops
1372/// like this:
1373///
1374///   i = 0;
1375///   do {
1376///     p[i] = 0.0;
1377///   } while (++i < n);
1378///
1379/// the trip count isn't just 'n', because 'n' might not be positive. And
1380/// unfortunately this can come up even for loops where the user didn't use
1381/// a C do-while loop. For example, seemingly well-behaved top-test loops
1382/// will commonly be lowered like this:
1383//
1384///   if (n > 0) {
1385///     i = 0;
1386///     do {
1387///       p[i] = 0.0;
1388///     } while (++i < n);
1389///   }
1390///
1391/// and then it's possible for subsequent optimization to obscure the if
1392/// test in such a way that indvars can't find it.
1393///
1394/// When indvars can't find the if test in loops like this, it creates a
1395/// max expression, which allows it to give the loop a canonical
1396/// induction variable:
1397///
1398///   i = 0;
1399///   max = n < 1 ? 1 : n;
1400///   do {
1401///     p[i] = 0.0;
1402///   } while (++i != max);
1403///
1404/// Canonical induction variables are necessary because the loop passes
1405/// are designed around them. The most obvious example of this is the
1406/// LoopInfo analysis, which doesn't remember trip count values. It
1407/// expects to be able to rediscover the trip count each time it is
1408/// needed, and it does this using a simple analysis that only succeeds if
1409/// the loop has a canonical induction variable.
1410///
1411/// However, when it comes time to generate code, the maximum operation
1412/// can be quite costly, especially if it's inside of an outer loop.
1413///
1414/// This function solves this problem by detecting this type of loop and
1415/// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
1416/// the instructions for the maximum computation.
1417///
1418ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
1419  // Check that the loop matches the pattern we're looking for.
1420  if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
1421      Cond->getPredicate() != CmpInst::ICMP_NE)
1422    return Cond;
1423
1424  SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
1425  if (!Sel || !Sel->hasOneUse()) return Cond;
1426
1427  const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1428  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1429    return Cond;
1430  const SCEV *One = SE.getIntegerSCEV(1, BackedgeTakenCount->getType());
1431
1432  // Add one to the backedge-taken count to get the trip count.
1433  const SCEV *IterationCount = SE.getAddExpr(BackedgeTakenCount, One);
1434
1435  // Check for a max calculation that matches the pattern.
1436  if (!isa<SCEVSMaxExpr>(IterationCount) && !isa<SCEVUMaxExpr>(IterationCount))
1437    return Cond;
1438  const SCEVNAryExpr *Max = cast<SCEVNAryExpr>(IterationCount);
1439  if (Max != SE.getSCEV(Sel)) return Cond;
1440
1441  // To handle a max with more than two operands, this optimization would
1442  // require additional checking and setup.
1443  if (Max->getNumOperands() != 2)
1444    return Cond;
1445
1446  const SCEV *MaxLHS = Max->getOperand(0);
1447  const SCEV *MaxRHS = Max->getOperand(1);
1448  if (!MaxLHS || MaxLHS != One) return Cond;
1449  // Check the relevant induction variable for conformance to
1450  // the pattern.
1451  const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
1452  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
1453  if (!AR || !AR->isAffine() ||
1454      AR->getStart() != One ||
1455      AR->getStepRecurrence(SE) != One)
1456    return Cond;
1457
1458  assert(AR->getLoop() == L &&
1459         "Loop condition operand is an addrec in a different loop!");
1460
1461  // Check the right operand of the select, and remember it, as it will
1462  // be used in the new comparison instruction.
1463  Value *NewRHS = 0;
1464  if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
1465    NewRHS = Sel->getOperand(1);
1466  else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
1467    NewRHS = Sel->getOperand(2);
1468  if (!NewRHS) return Cond;
1469
1470  // Determine the new comparison opcode. It may be signed or unsigned,
1471  // and the original comparison may be either equality or inequality.
1472  CmpInst::Predicate Pred =
1473    isa<SCEVSMaxExpr>(Max) ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
1474  if (Cond->getPredicate() == CmpInst::ICMP_EQ)
1475    Pred = CmpInst::getInversePredicate(Pred);
1476
1477  // Ok, everything looks ok to change the condition into an SLT or SGE and
1478  // delete the max calculation.
1479  ICmpInst *NewCond =
1480    new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
1481
1482  // Delete the max calculation instructions.
1483  Cond->replaceAllUsesWith(NewCond);
1484  CondUse->setUser(NewCond);
1485  Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
1486  Cond->eraseFromParent();
1487  Sel->eraseFromParent();
1488  if (Cmp->use_empty())
1489    Cmp->eraseFromParent();
1490  return NewCond;
1491}
1492
1493/// OptimizeLoopTermCond - Change loop terminating condition to use the
1494/// postinc iv when possible.
1495bool
1496LSRInstance::OptimizeLoopTermCond() {
1497  SmallPtrSet<Instruction *, 4> PostIncs;
1498
1499  BasicBlock *LatchBlock = L->getLoopLatch();
1500  SmallVector<BasicBlock*, 8> ExitingBlocks;
1501  L->getExitingBlocks(ExitingBlocks);
1502
1503  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
1504    BasicBlock *ExitingBlock = ExitingBlocks[i];
1505
1506    // Get the terminating condition for the loop if possible.  If we
1507    // can, we want to change it to use a post-incremented version of its
1508    // induction variable, to allow coalescing the live ranges for the IV into
1509    // one register value.
1510
1511    BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
1512    if (!TermBr)
1513      continue;
1514    // FIXME: Overly conservative, termination condition could be an 'or' etc..
1515    if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
1516      continue;
1517
1518    // Search IVUsesByStride to find Cond's IVUse if there is one.
1519    IVStrideUse *CondUse = 0;
1520    ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
1521    if (!FindIVUserForCond(Cond, CondUse))
1522      continue;
1523
1524    // If the trip count is computed in terms of a max (due to ScalarEvolution
1525    // being unable to find a sufficient guard, for example), change the loop
1526    // comparison to use SLT or ULT instead of NE.
1527    // One consequence of doing this now is that it disrupts the count-down
1528    // optimization. That's not always a bad thing though, because in such
1529    // cases it may still be worthwhile to avoid a max.
1530    Cond = OptimizeMax(Cond, CondUse);
1531
1532    // If this exiting block dominates the latch block, it may also use
1533    // the post-inc value if it won't be shared with other uses.
1534    // Check for dominance.
1535    if (!DT.dominates(ExitingBlock, LatchBlock))
1536      continue;
1537
1538    // Conservatively avoid trying to use the post-inc value in non-latch
1539    // exits if there may be pre-inc users in intervening blocks.
1540    if (LatchBlock != ExitingBlock)
1541      for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1542        // Test if the use is reachable from the exiting block. This dominator
1543        // query is a conservative approximation of reachability.
1544        if (&*UI != CondUse &&
1545            !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
1546          // Conservatively assume there may be reuse if the quotient of their
1547          // strides could be a legal scale.
1548          const SCEV *A = CondUse->getStride();
1549          const SCEV *B = UI->getStride();
1550          if (SE.getTypeSizeInBits(A->getType()) !=
1551              SE.getTypeSizeInBits(B->getType())) {
1552            if (SE.getTypeSizeInBits(A->getType()) >
1553                SE.getTypeSizeInBits(B->getType()))
1554              B = SE.getSignExtendExpr(B, A->getType());
1555            else
1556              A = SE.getSignExtendExpr(A, B->getType());
1557          }
1558          if (const SCEVConstant *D =
1559                dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
1560            // Stride of one or negative one can have reuse with non-addresses.
1561            if (D->getValue()->isOne() ||
1562                D->getValue()->isAllOnesValue())
1563              goto decline_post_inc;
1564            // Avoid weird situations.
1565            if (D->getValue()->getValue().getMinSignedBits() >= 64 ||
1566                D->getValue()->getValue().isMinSignedValue())
1567              goto decline_post_inc;
1568            // Without TLI, assume that any stride might be valid, and so any
1569            // use might be shared.
1570            if (!TLI)
1571              goto decline_post_inc;
1572            // Check for possible scaled-address reuse.
1573            const Type *AccessTy = getAccessType(UI->getUser());
1574            TargetLowering::AddrMode AM;
1575            AM.Scale = D->getValue()->getSExtValue();
1576            if (TLI->isLegalAddressingMode(AM, AccessTy))
1577              goto decline_post_inc;
1578            AM.Scale = -AM.Scale;
1579            if (TLI->isLegalAddressingMode(AM, AccessTy))
1580              goto decline_post_inc;
1581          }
1582        }
1583
1584    DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
1585                 << *Cond << '\n');
1586
1587    // It's possible for the setcc instruction to be anywhere in the loop, and
1588    // possible for it to have multiple users.  If it is not immediately before
1589    // the exiting block branch, move it.
1590    if (&*++BasicBlock::iterator(Cond) != TermBr) {
1591      if (Cond->hasOneUse()) {
1592        Cond->moveBefore(TermBr);
1593      } else {
1594        // Clone the terminating condition and insert into the loopend.
1595        ICmpInst *OldCond = Cond;
1596        Cond = cast<ICmpInst>(Cond->clone());
1597        Cond->setName(L->getHeader()->getName() + ".termcond");
1598        ExitingBlock->getInstList().insert(TermBr, Cond);
1599
1600        // Clone the IVUse, as the old use still exists!
1601        CondUse = &IU.AddUser(CondUse->getStride(), CondUse->getOffset(),
1602                              Cond, CondUse->getOperandValToReplace());
1603        TermBr->replaceUsesOfWith(OldCond, Cond);
1604      }
1605    }
1606
1607    // If we get to here, we know that we can transform the setcc instruction to
1608    // use the post-incremented version of the IV, allowing us to coalesce the
1609    // live ranges for the IV correctly.
1610    CondUse->setOffset(SE.getMinusSCEV(CondUse->getOffset(),
1611                                       CondUse->getStride()));
1612    CondUse->setIsUseOfPostIncrementedValue(true);
1613    Changed = true;
1614
1615    PostIncs.insert(Cond);
1616  decline_post_inc:;
1617  }
1618
1619  // Determine an insertion point for the loop induction variable increment. It
1620  // must dominate all the post-inc comparisons we just set up, and it must
1621  // dominate the loop latch edge.
1622  IVIncInsertPos = L->getLoopLatch()->getTerminator();
1623  for (SmallPtrSet<Instruction *, 4>::const_iterator I = PostIncs.begin(),
1624       E = PostIncs.end(); I != E; ++I) {
1625    BasicBlock *BB =
1626      DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
1627                                    (*I)->getParent());
1628    if (BB == (*I)->getParent())
1629      IVIncInsertPos = *I;
1630    else if (BB != IVIncInsertPos->getParent())
1631      IVIncInsertPos = BB->getTerminator();
1632  }
1633
1634  return Changed;
1635}
1636
1637bool
1638LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
1639                                LSRUse::KindType Kind, const Type *AccessTy) {
1640  int64_t NewMinOffset = LU.MinOffset;
1641  int64_t NewMaxOffset = LU.MaxOffset;
1642  const Type *NewAccessTy = AccessTy;
1643
1644  // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
1645  // something conservative, however this can pessimize in the case that one of
1646  // the uses will have all its uses outside the loop, for example.
1647  if (LU.Kind != Kind)
1648    return false;
1649  // Conservatively assume HasBaseReg is true for now.
1650  if (NewOffset < LU.MinOffset) {
1651    if (!isAlwaysFoldable(LU.MaxOffset - NewOffset, 0, /*HasBaseReg=*/true,
1652                          Kind, AccessTy, TLI))
1653      return false;
1654    NewMinOffset = NewOffset;
1655  } else if (NewOffset > LU.MaxOffset) {
1656    if (!isAlwaysFoldable(NewOffset - LU.MinOffset, 0, /*HasBaseReg=*/true,
1657                          Kind, AccessTy, TLI))
1658      return false;
1659    NewMaxOffset = NewOffset;
1660  }
1661  // Check for a mismatched access type, and fall back conservatively as needed.
1662  if (Kind == LSRUse::Address && AccessTy != LU.AccessTy)
1663    NewAccessTy = Type::getVoidTy(AccessTy->getContext());
1664
1665  // Update the use.
1666  LU.MinOffset = NewMinOffset;
1667  LU.MaxOffset = NewMaxOffset;
1668  LU.AccessTy = NewAccessTy;
1669  if (NewOffset != LU.Offsets.back())
1670    LU.Offsets.push_back(NewOffset);
1671  return true;
1672}
1673
1674/// getUse - Return an LSRUse index and an offset value for a fixup which
1675/// needs the given expression, with the given kind and optional access type.
1676/// Either reuse an existing use or create a new one, as needed.
1677std::pair<size_t, int64_t>
1678LSRInstance::getUse(const SCEV *&Expr,
1679                    LSRUse::KindType Kind, const Type *AccessTy) {
1680  const SCEV *Copy = Expr;
1681  int64_t Offset = ExtractImmediate(Expr, SE);
1682
1683  // Basic uses can't accept any offset, for example.
1684  if (!isAlwaysFoldable(Offset, 0, /*HasBaseReg=*/true, Kind, AccessTy, TLI)) {
1685    Expr = Copy;
1686    Offset = 0;
1687  }
1688
1689  std::pair<UseMapTy::iterator, bool> P =
1690    UseMap.insert(std::make_pair(Expr, 0));
1691  if (!P.second) {
1692    // A use already existed with this base.
1693    size_t LUIdx = P.first->second;
1694    LSRUse &LU = Uses[LUIdx];
1695    if (reconcileNewOffset(LU, Offset, Kind, AccessTy))
1696      // Reuse this use.
1697      return std::make_pair(LUIdx, Offset);
1698  }
1699
1700  // Create a new use.
1701  size_t LUIdx = Uses.size();
1702  P.first->second = LUIdx;
1703  Uses.push_back(LSRUse(Kind, AccessTy));
1704  LSRUse &LU = Uses[LUIdx];
1705
1706  // We don't need to track redundant offsets, but we don't need to go out
1707  // of our way here to avoid them.
1708  if (LU.Offsets.empty() || Offset != LU.Offsets.back())
1709    LU.Offsets.push_back(Offset);
1710
1711  LU.MinOffset = Offset;
1712  LU.MaxOffset = Offset;
1713  return std::make_pair(LUIdx, Offset);
1714}
1715
1716void LSRInstance::CollectInterestingTypesAndFactors() {
1717  SmallSetVector<const SCEV *, 4> Strides;
1718
1719  // Collect interesting types and strides.
1720  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
1721    const SCEV *Stride = UI->getStride();
1722
1723    // Collect interesting types.
1724    Types.insert(SE.getEffectiveSCEVType(Stride->getType()));
1725
1726    // Add the stride for this loop.
1727    Strides.insert(Stride);
1728
1729    // Add strides for other mentioned loops.
1730    for (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(UI->getOffset());
1731         AR; AR = dyn_cast<SCEVAddRecExpr>(AR->getStart()))
1732      Strides.insert(AR->getStepRecurrence(SE));
1733  }
1734
1735  // Compute interesting factors from the set of interesting strides.
1736  for (SmallSetVector<const SCEV *, 4>::const_iterator
1737       I = Strides.begin(), E = Strides.end(); I != E; ++I)
1738    for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
1739         next(I); NewStrideIter != E; ++NewStrideIter) {
1740      const SCEV *OldStride = *I;
1741      const SCEV *NewStride = *NewStrideIter;
1742
1743      if (SE.getTypeSizeInBits(OldStride->getType()) !=
1744          SE.getTypeSizeInBits(NewStride->getType())) {
1745        if (SE.getTypeSizeInBits(OldStride->getType()) >
1746            SE.getTypeSizeInBits(NewStride->getType()))
1747          NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
1748        else
1749          OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
1750      }
1751      if (const SCEVConstant *Factor =
1752            dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
1753                                                        SE, true))) {
1754        if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
1755          Factors.insert(Factor->getValue()->getValue().getSExtValue());
1756      } else if (const SCEVConstant *Factor =
1757                   dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
1758                                                               NewStride,
1759                                                               SE, true))) {
1760        if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
1761          Factors.insert(Factor->getValue()->getValue().getSExtValue());
1762      }
1763    }
1764
1765  // If all uses use the same type, don't bother looking for truncation-based
1766  // reuse.
1767  if (Types.size() == 1)
1768    Types.clear();
1769
1770  DEBUG(print_factors_and_types(dbgs()));
1771}
1772
1773void LSRInstance::CollectFixupsAndInitialFormulae() {
1774  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
1775    // Record the uses.
1776    LSRFixup &LF = getNewFixup();
1777    LF.UserInst = UI->getUser();
1778    LF.OperandValToReplace = UI->getOperandValToReplace();
1779    if (UI->isUseOfPostIncrementedValue())
1780      LF.PostIncLoop = L;
1781
1782    LSRUse::KindType Kind = LSRUse::Basic;
1783    const Type *AccessTy = 0;
1784    if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) {
1785      Kind = LSRUse::Address;
1786      AccessTy = getAccessType(LF.UserInst);
1787    }
1788
1789    const SCEV *S = IU.getCanonicalExpr(*UI);
1790
1791    // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
1792    // (N - i == 0), and this allows (N - i) to be the expression that we work
1793    // with rather than just N or i, so we can consider the register
1794    // requirements for both N and i at the same time. Limiting this code to
1795    // equality icmps is not a problem because all interesting loops use
1796    // equality icmps, thanks to IndVarSimplify.
1797    if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst))
1798      if (CI->isEquality()) {
1799        // Swap the operands if needed to put the OperandValToReplace on the
1800        // left, for consistency.
1801        Value *NV = CI->getOperand(1);
1802        if (NV == LF.OperandValToReplace) {
1803          CI->setOperand(1, CI->getOperand(0));
1804          CI->setOperand(0, NV);
1805        }
1806
1807        // x == y  -->  x - y == 0
1808        const SCEV *N = SE.getSCEV(NV);
1809        if (N->isLoopInvariant(L)) {
1810          Kind = LSRUse::ICmpZero;
1811          S = SE.getMinusSCEV(N, S);
1812        }
1813
1814        // -1 and the negations of all interesting strides (except the negation
1815        // of -1) are now also interesting.
1816        for (size_t i = 0, e = Factors.size(); i != e; ++i)
1817          if (Factors[i] != -1)
1818            Factors.insert(-(uint64_t)Factors[i]);
1819        Factors.insert(-1);
1820      }
1821
1822    // Set up the initial formula for this use.
1823    std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
1824    LF.LUIdx = P.first;
1825    LF.Offset = P.second;
1826    LSRUse &LU = Uses[LF.LUIdx];
1827    LU.AllFixupsOutsideLoop &= !L->contains(LF.UserInst);
1828
1829    // If this is the first use of this LSRUse, give it a formula.
1830    if (LU.Formulae.empty()) {
1831      InsertInitialFormula(S, LU, LF.LUIdx);
1832      CountRegisters(LU.Formulae.back(), LF.LUIdx);
1833    }
1834  }
1835
1836  DEBUG(print_fixups(dbgs()));
1837}
1838
1839void
1840LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
1841  Formula F;
1842  F.InitialMatch(S, L, SE, DT);
1843  bool Inserted = InsertFormula(LU, LUIdx, F);
1844  assert(Inserted && "Initial formula already exists!"); (void)Inserted;
1845}
1846
1847void
1848LSRInstance::InsertSupplementalFormula(const SCEV *S,
1849                                       LSRUse &LU, size_t LUIdx) {
1850  Formula F;
1851  F.BaseRegs.push_back(S);
1852  F.AM.HasBaseReg = true;
1853  bool Inserted = InsertFormula(LU, LUIdx, F);
1854  assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
1855}
1856
1857/// CountRegisters - Note which registers are used by the given formula,
1858/// updating RegUses.
1859void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
1860  if (F.ScaledReg)
1861    RegUses.CountRegister(F.ScaledReg, LUIdx);
1862  for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
1863       E = F.BaseRegs.end(); I != E; ++I)
1864    RegUses.CountRegister(*I, LUIdx);
1865}
1866
1867/// InsertFormula - If the given formula has not yet been inserted, add it to
1868/// the list, and return true. Return false otherwise.
1869bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
1870  if (!LU.InsertFormula(F))
1871    return false;
1872
1873  CountRegisters(F, LUIdx);
1874  return true;
1875}
1876
1877/// CollectLoopInvariantFixupsAndFormulae - Check for other uses of
1878/// loop-invariant values which we're tracking. These other uses will pin these
1879/// values in registers, making them less profitable for elimination.
1880/// TODO: This currently misses non-constant addrec step registers.
1881/// TODO: Should this give more weight to users inside the loop?
1882void
1883LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
1884  SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
1885  SmallPtrSet<const SCEV *, 8> Inserted;
1886
1887  while (!Worklist.empty()) {
1888    const SCEV *S = Worklist.pop_back_val();
1889
1890    if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
1891      Worklist.insert(Worklist.end(), N->op_begin(), N->op_end());
1892    else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
1893      Worklist.push_back(C->getOperand());
1894    else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
1895      Worklist.push_back(D->getLHS());
1896      Worklist.push_back(D->getRHS());
1897    } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
1898      if (!Inserted.insert(U)) continue;
1899      const Value *V = U->getValue();
1900      if (const Instruction *Inst = dyn_cast<Instruction>(V))
1901        if (L->contains(Inst)) continue;
1902      for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
1903           UI != UE; ++UI) {
1904        const Instruction *UserInst = dyn_cast<Instruction>(*UI);
1905        // Ignore non-instructions.
1906        if (!UserInst)
1907          continue;
1908        // Ignore instructions in other functions (as can happen with
1909        // Constants).
1910        if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
1911          continue;
1912        // Ignore instructions not dominated by the loop.
1913        const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
1914          UserInst->getParent() :
1915          cast<PHINode>(UserInst)->getIncomingBlock(
1916            PHINode::getIncomingValueNumForOperand(UI.getOperandNo()));
1917        if (!DT.dominates(L->getHeader(), UseBB))
1918          continue;
1919        // Ignore uses which are part of other SCEV expressions, to avoid
1920        // analyzing them multiple times.
1921        if (SE.isSCEVable(UserInst->getType()) &&
1922            !isa<SCEVUnknown>(SE.getSCEV(const_cast<Instruction *>(UserInst))))
1923          continue;
1924        // Ignore icmp instructions which are already being analyzed.
1925        if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
1926          unsigned OtherIdx = !UI.getOperandNo();
1927          Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
1928          if (SE.getSCEV(OtherOp)->hasComputableLoopEvolution(L))
1929            continue;
1930        }
1931
1932        LSRFixup &LF = getNewFixup();
1933        LF.UserInst = const_cast<Instruction *>(UserInst);
1934        LF.OperandValToReplace = UI.getUse();
1935        std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, 0);
1936        LF.LUIdx = P.first;
1937        LF.Offset = P.second;
1938        LSRUse &LU = Uses[LF.LUIdx];
1939        LU.AllFixupsOutsideLoop &= L->contains(LF.UserInst);
1940        InsertSupplementalFormula(U, LU, LF.LUIdx);
1941        CountRegisters(LU.Formulae.back(), Uses.size() - 1);
1942        break;
1943      }
1944    }
1945  }
1946}
1947
1948/// CollectSubexprs - Split S into subexpressions which can be pulled out into
1949/// separate registers. If C is non-null, multiply each subexpression by C.
1950static void CollectSubexprs(const SCEV *S, const SCEVConstant *C,
1951                            SmallVectorImpl<const SCEV *> &Ops,
1952                            ScalarEvolution &SE) {
1953  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
1954    // Break out add operands.
1955    for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1956         I != E; ++I)
1957      CollectSubexprs(*I, C, Ops, SE);
1958    return;
1959  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
1960    // Split a non-zero base out of an addrec.
1961    if (!AR->getStart()->isZero()) {
1962      CollectSubexprs(SE.getAddRecExpr(SE.getIntegerSCEV(0, AR->getType()),
1963                                       AR->getStepRecurrence(SE),
1964                                       AR->getLoop()), C, Ops, SE);
1965      CollectSubexprs(AR->getStart(), C, Ops, SE);
1966      return;
1967    }
1968  } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
1969    // Break (C * (a + b + c)) into C*a + C*b + C*c.
1970    if (Mul->getNumOperands() == 2)
1971      if (const SCEVConstant *Op0 =
1972            dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
1973        CollectSubexprs(Mul->getOperand(1),
1974                        C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0,
1975                        Ops, SE);
1976        return;
1977      }
1978  }
1979
1980  // Otherwise use the value itself.
1981  Ops.push_back(C ? SE.getMulExpr(C, S) : S);
1982}
1983
1984/// GenerateReassociations - Split out subexpressions from adds and the bases of
1985/// addrecs.
1986void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
1987                                         Formula Base,
1988                                         unsigned Depth) {
1989  // Arbitrarily cap recursion to protect compile time.
1990  if (Depth >= 3) return;
1991
1992  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
1993    const SCEV *BaseReg = Base.BaseRegs[i];
1994
1995    SmallVector<const SCEV *, 8> AddOps;
1996    CollectSubexprs(BaseReg, 0, AddOps, SE);
1997    if (AddOps.size() == 1) continue;
1998
1999    for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
2000         JE = AddOps.end(); J != JE; ++J) {
2001      // Don't pull a constant into a register if the constant could be folded
2002      // into an immediate field.
2003      if (isAlwaysFoldable(*J, LU.MinOffset, LU.MaxOffset,
2004                           Base.getNumRegs() > 1,
2005                           LU.Kind, LU.AccessTy, TLI, SE))
2006        continue;
2007
2008      // Collect all operands except *J.
2009      SmallVector<const SCEV *, 8> InnerAddOps;
2010      for (SmallVectorImpl<const SCEV *>::const_iterator K = AddOps.begin(),
2011           KE = AddOps.end(); K != KE; ++K)
2012        if (K != J)
2013          InnerAddOps.push_back(*K);
2014
2015      // Don't leave just a constant behind in a register if the constant could
2016      // be folded into an immediate field.
2017      if (InnerAddOps.size() == 1 &&
2018          isAlwaysFoldable(InnerAddOps[0], LU.MinOffset, LU.MaxOffset,
2019                           Base.getNumRegs() > 1,
2020                           LU.Kind, LU.AccessTy, TLI, SE))
2021        continue;
2022
2023      Formula F = Base;
2024      F.BaseRegs[i] = SE.getAddExpr(InnerAddOps);
2025      F.BaseRegs.push_back(*J);
2026      if (InsertFormula(LU, LUIdx, F))
2027        // If that formula hadn't been seen before, recurse to find more like
2028        // it.
2029        GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth+1);
2030    }
2031  }
2032}
2033
2034/// GenerateCombinations - Generate a formula consisting of all of the
2035/// loop-dominating registers added into a single register.
2036void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
2037                                       Formula Base) {
2038  // This method is only interesting on a plurality of registers.
2039  if (Base.BaseRegs.size() <= 1) return;
2040
2041  Formula F = Base;
2042  F.BaseRegs.clear();
2043  SmallVector<const SCEV *, 4> Ops;
2044  for (SmallVectorImpl<const SCEV *>::const_iterator
2045       I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) {
2046    const SCEV *BaseReg = *I;
2047    if (BaseReg->properlyDominates(L->getHeader(), &DT) &&
2048        !BaseReg->hasComputableLoopEvolution(L))
2049      Ops.push_back(BaseReg);
2050    else
2051      F.BaseRegs.push_back(BaseReg);
2052  }
2053  if (Ops.size() > 1) {
2054    const SCEV *Sum = SE.getAddExpr(Ops);
2055    // TODO: If Sum is zero, it probably means ScalarEvolution missed an
2056    // opportunity to fold something. For now, just ignore such cases
2057    // rather than proceed with zero in a register.
2058    if (!Sum->isZero()) {
2059      F.BaseRegs.push_back(Sum);
2060      (void)InsertFormula(LU, LUIdx, F);
2061    }
2062  }
2063}
2064
2065/// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets.
2066void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
2067                                          Formula Base) {
2068  // We can't add a symbolic offset if the address already contains one.
2069  if (Base.AM.BaseGV) return;
2070
2071  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2072    const SCEV *G = Base.BaseRegs[i];
2073    GlobalValue *GV = ExtractSymbol(G, SE);
2074    if (G->isZero() || !GV)
2075      continue;
2076    Formula F = Base;
2077    F.AM.BaseGV = GV;
2078    if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
2079                    LU.Kind, LU.AccessTy, TLI))
2080      continue;
2081    F.BaseRegs[i] = G;
2082    (void)InsertFormula(LU, LUIdx, F);
2083  }
2084}
2085
2086/// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
2087void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
2088                                          Formula Base) {
2089  // TODO: For now, just add the min and max offset, because it usually isn't
2090  // worthwhile looking at everything inbetween.
2091  SmallVector<int64_t, 4> Worklist;
2092  Worklist.push_back(LU.MinOffset);
2093  if (LU.MaxOffset != LU.MinOffset)
2094    Worklist.push_back(LU.MaxOffset);
2095
2096  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2097    const SCEV *G = Base.BaseRegs[i];
2098
2099    for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(),
2100         E = Worklist.end(); I != E; ++I) {
2101      Formula F = Base;
2102      F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs - *I;
2103      if (isLegalUse(F.AM, LU.MinOffset - *I, LU.MaxOffset - *I,
2104                     LU.Kind, LU.AccessTy, TLI)) {
2105        F.BaseRegs[i] = SE.getAddExpr(G, SE.getIntegerSCEV(*I, G->getType()));
2106
2107        (void)InsertFormula(LU, LUIdx, F);
2108      }
2109    }
2110
2111    int64_t Imm = ExtractImmediate(G, SE);
2112    if (G->isZero() || Imm == 0)
2113      continue;
2114    Formula F = Base;
2115    F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Imm;
2116    if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
2117                    LU.Kind, LU.AccessTy, TLI))
2118      continue;
2119    F.BaseRegs[i] = G;
2120    (void)InsertFormula(LU, LUIdx, F);
2121  }
2122}
2123
2124/// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up
2125/// the comparison. For example, x == y -> x*c == y*c.
2126void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
2127                                         Formula Base) {
2128  if (LU.Kind != LSRUse::ICmpZero) return;
2129
2130  // Determine the integer type for the base formula.
2131  const Type *IntTy = Base.getType();
2132  if (!IntTy) return;
2133  if (SE.getTypeSizeInBits(IntTy) > 64) return;
2134
2135  // Don't do this if there is more than one offset.
2136  if (LU.MinOffset != LU.MaxOffset) return;
2137
2138  assert(!Base.AM.BaseGV && "ICmpZero use is not legal!");
2139
2140  // Check each interesting stride.
2141  for (SmallSetVector<int64_t, 8>::const_iterator
2142       I = Factors.begin(), E = Factors.end(); I != E; ++I) {
2143    int64_t Factor = *I;
2144    Formula F = Base;
2145
2146    // Check that the multiplication doesn't overflow.
2147    if (F.AM.BaseOffs == INT64_MIN && Factor == -1)
2148      continue;
2149    F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs * Factor;
2150    if (F.AM.BaseOffs / Factor != Base.AM.BaseOffs)
2151      continue;
2152
2153    // Check that multiplying with the use offset doesn't overflow.
2154    int64_t Offset = LU.MinOffset;
2155    if (Offset == INT64_MIN && Factor == -1)
2156      continue;
2157    Offset = (uint64_t)Offset * Factor;
2158    if (Offset / Factor != LU.MinOffset)
2159      continue;
2160
2161    // Check that this scale is legal.
2162    if (!isLegalUse(F.AM, Offset, Offset, LU.Kind, LU.AccessTy, TLI))
2163      continue;
2164
2165    // Compensate for the use having MinOffset built into it.
2166    F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Offset - LU.MinOffset;
2167
2168    const SCEV *FactorS = SE.getIntegerSCEV(Factor, IntTy);
2169
2170    // Check that multiplying with each base register doesn't overflow.
2171    for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
2172      F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
2173      if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
2174        goto next;
2175    }
2176
2177    // Check that multiplying with the scaled register doesn't overflow.
2178    if (F.ScaledReg) {
2179      F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
2180      if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
2181        continue;
2182    }
2183
2184    // If we make it here and it's legal, add it.
2185    (void)InsertFormula(LU, LUIdx, F);
2186  next:;
2187  }
2188}
2189
2190/// GenerateScales - Generate stride factor reuse formulae by making use of
2191/// scaled-offset address modes, for example.
2192void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx,
2193                                 Formula Base) {
2194  // Determine the integer type for the base formula.
2195  const Type *IntTy = Base.getType();
2196  if (!IntTy) return;
2197
2198  // If this Formula already has a scaled register, we can't add another one.
2199  if (Base.AM.Scale != 0) return;
2200
2201  // Check each interesting stride.
2202  for (SmallSetVector<int64_t, 8>::const_iterator
2203       I = Factors.begin(), E = Factors.end(); I != E; ++I) {
2204    int64_t Factor = *I;
2205
2206    Base.AM.Scale = Factor;
2207    Base.AM.HasBaseReg = Base.BaseRegs.size() > 1;
2208    // Check whether this scale is going to be legal.
2209    if (!isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
2210                    LU.Kind, LU.AccessTy, TLI)) {
2211      // As a special-case, handle special out-of-loop Basic users specially.
2212      // TODO: Reconsider this special case.
2213      if (LU.Kind == LSRUse::Basic &&
2214          isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
2215                     LSRUse::Special, LU.AccessTy, TLI) &&
2216          LU.AllFixupsOutsideLoop)
2217        LU.Kind = LSRUse::Special;
2218      else
2219        continue;
2220    }
2221    // For an ICmpZero, negating a solitary base register won't lead to
2222    // new solutions.
2223    if (LU.Kind == LSRUse::ICmpZero &&
2224        !Base.AM.HasBaseReg && Base.AM.BaseOffs == 0 && !Base.AM.BaseGV)
2225      continue;
2226    // For each addrec base reg, apply the scale, if possible.
2227    for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
2228      if (const SCEVAddRecExpr *AR =
2229            dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
2230        const SCEV *FactorS = SE.getIntegerSCEV(Factor, IntTy);
2231        if (FactorS->isZero())
2232          continue;
2233        // Divide out the factor, ignoring high bits, since we'll be
2234        // scaling the value back up in the end.
2235        if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
2236          // TODO: This could be optimized to avoid all the copying.
2237          Formula F = Base;
2238          F.ScaledReg = Quotient;
2239          std::swap(F.BaseRegs[i], F.BaseRegs.back());
2240          F.BaseRegs.pop_back();
2241          (void)InsertFormula(LU, LUIdx, F);
2242        }
2243      }
2244  }
2245}
2246
2247/// GenerateTruncates - Generate reuse formulae from different IV types.
2248void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx,
2249                                    Formula Base) {
2250  // This requires TargetLowering to tell us which truncates are free.
2251  if (!TLI) return;
2252
2253  // Don't bother truncating symbolic values.
2254  if (Base.AM.BaseGV) return;
2255
2256  // Determine the integer type for the base formula.
2257  const Type *DstTy = Base.getType();
2258  if (!DstTy) return;
2259  DstTy = SE.getEffectiveSCEVType(DstTy);
2260
2261  for (SmallSetVector<const Type *, 4>::const_iterator
2262       I = Types.begin(), E = Types.end(); I != E; ++I) {
2263    const Type *SrcTy = *I;
2264    if (SrcTy != DstTy && TLI->isTruncateFree(SrcTy, DstTy)) {
2265      Formula F = Base;
2266
2267      if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I);
2268      for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(),
2269           JE = F.BaseRegs.end(); J != JE; ++J)
2270        *J = SE.getAnyExtendExpr(*J, SrcTy);
2271
2272      // TODO: This assumes we've done basic processing on all uses and
2273      // have an idea what the register usage is.
2274      if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
2275        continue;
2276
2277      (void)InsertFormula(LU, LUIdx, F);
2278    }
2279  }
2280}
2281
2282namespace {
2283
2284/// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to
2285/// defer modifications so that the search phase doesn't have to worry about
2286/// the data structures moving underneath it.
2287struct WorkItem {
2288  size_t LUIdx;
2289  int64_t Imm;
2290  const SCEV *OrigReg;
2291
2292  WorkItem(size_t LI, int64_t I, const SCEV *R)
2293    : LUIdx(LI), Imm(I), OrigReg(R) {}
2294
2295  void print(raw_ostream &OS) const;
2296  void dump() const;
2297};
2298
2299}
2300
2301void WorkItem::print(raw_ostream &OS) const {
2302  OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
2303     << " , add offset " << Imm;
2304}
2305
2306void WorkItem::dump() const {
2307  print(errs()); errs() << '\n';
2308}
2309
2310/// GenerateCrossUseConstantOffsets - Look for registers which are a constant
2311/// distance apart and try to form reuse opportunities between them.
2312void LSRInstance::GenerateCrossUseConstantOffsets() {
2313  // Group the registers by their value without any added constant offset.
2314  typedef std::map<int64_t, const SCEV *> ImmMapTy;
2315  typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy;
2316  RegMapTy Map;
2317  DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
2318  SmallVector<const SCEV *, 8> Sequence;
2319  for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
2320       I != E; ++I) {
2321    const SCEV *Reg = *I;
2322    int64_t Imm = ExtractImmediate(Reg, SE);
2323    std::pair<RegMapTy::iterator, bool> Pair =
2324      Map.insert(std::make_pair(Reg, ImmMapTy()));
2325    if (Pair.second)
2326      Sequence.push_back(Reg);
2327    Pair.first->second.insert(std::make_pair(Imm, *I));
2328    UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I);
2329  }
2330
2331  // Now examine each set of registers with the same base value. Build up
2332  // a list of work to do and do the work in a separate step so that we're
2333  // not adding formulae and register counts while we're searching.
2334  SmallVector<WorkItem, 32> WorkItems;
2335  SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
2336  for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(),
2337       E = Sequence.end(); I != E; ++I) {
2338    const SCEV *Reg = *I;
2339    const ImmMapTy &Imms = Map.find(Reg)->second;
2340
2341    // It's not worthwhile looking for reuse if there's only one offset.
2342    if (Imms.size() == 1)
2343      continue;
2344
2345    DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
2346          for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
2347               J != JE; ++J)
2348            dbgs() << ' ' << J->first;
2349          dbgs() << '\n');
2350
2351    // Examine each offset.
2352    for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
2353         J != JE; ++J) {
2354      const SCEV *OrigReg = J->second;
2355
2356      int64_t JImm = J->first;
2357      const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
2358
2359      if (!isa<SCEVConstant>(OrigReg) &&
2360          UsedByIndicesMap[Reg].count() == 1) {
2361        DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
2362        continue;
2363      }
2364
2365      // Conservatively examine offsets between this orig reg a few selected
2366      // other orig regs.
2367      ImmMapTy::const_iterator OtherImms[] = {
2368        Imms.begin(), prior(Imms.end()),
2369        Imms.upper_bound((Imms.begin()->first + prior(Imms.end())->first) / 2)
2370      };
2371      for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
2372        ImmMapTy::const_iterator M = OtherImms[i];
2373        if (M == J || M == JE) continue;
2374
2375        // Compute the difference between the two.
2376        int64_t Imm = (uint64_t)JImm - M->first;
2377        for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
2378             LUIdx = UsedByIndices.find_next(LUIdx))
2379          // Make a memo of this use, offset, and register tuple.
2380          if (UniqueItems.insert(std::make_pair(LUIdx, Imm)))
2381            WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
2382      }
2383    }
2384  }
2385
2386  Map.clear();
2387  Sequence.clear();
2388  UsedByIndicesMap.clear();
2389  UniqueItems.clear();
2390
2391  // Now iterate through the worklist and add new formulae.
2392  for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(),
2393       E = WorkItems.end(); I != E; ++I) {
2394    const WorkItem &WI = *I;
2395    size_t LUIdx = WI.LUIdx;
2396    LSRUse &LU = Uses[LUIdx];
2397    int64_t Imm = WI.Imm;
2398    const SCEV *OrigReg = WI.OrigReg;
2399
2400    const Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
2401    const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
2402    unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
2403
2404    // TODO: Use a more targeted data structure.
2405    for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
2406      Formula F = LU.Formulae[L];
2407      // Use the immediate in the scaled register.
2408      if (F.ScaledReg == OrigReg) {
2409        int64_t Offs = (uint64_t)F.AM.BaseOffs +
2410                       Imm * (uint64_t)F.AM.Scale;
2411        // Don't create 50 + reg(-50).
2412        if (F.referencesReg(SE.getSCEV(
2413                   ConstantInt::get(IntTy, -(uint64_t)Offs))))
2414          continue;
2415        Formula NewF = F;
2416        NewF.AM.BaseOffs = Offs;
2417        if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
2418                        LU.Kind, LU.AccessTy, TLI))
2419          continue;
2420        NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
2421
2422        // If the new scale is a constant in a register, and adding the constant
2423        // value to the immediate would produce a value closer to zero than the
2424        // immediate itself, then the formula isn't worthwhile.
2425        if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
2426          if (C->getValue()->getValue().isNegative() !=
2427                (NewF.AM.BaseOffs < 0) &&
2428              (C->getValue()->getValue().abs() * APInt(BitWidth, F.AM.Scale))
2429                .ule(APInt(BitWidth, NewF.AM.BaseOffs).abs()))
2430            continue;
2431
2432        // OK, looks good.
2433        (void)InsertFormula(LU, LUIdx, NewF);
2434      } else {
2435        // Use the immediate in a base register.
2436        for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
2437          const SCEV *BaseReg = F.BaseRegs[N];
2438          if (BaseReg != OrigReg)
2439            continue;
2440          Formula NewF = F;
2441          NewF.AM.BaseOffs = (uint64_t)NewF.AM.BaseOffs + Imm;
2442          if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
2443                          LU.Kind, LU.AccessTy, TLI))
2444            continue;
2445          NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
2446
2447          // If the new formula has a constant in a register, and adding the
2448          // constant value to the immediate would produce a value closer to
2449          // zero than the immediate itself, then the formula isn't worthwhile.
2450          for (SmallVectorImpl<const SCEV *>::const_iterator
2451               J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end();
2452               J != JE; ++J)
2453            if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J))
2454              if (C->getValue()->getValue().isNegative() !=
2455                    (NewF.AM.BaseOffs < 0) &&
2456                  C->getValue()->getValue().abs()
2457                    .ule(APInt(BitWidth, NewF.AM.BaseOffs).abs()))
2458                goto skip_formula;
2459
2460          // Ok, looks good.
2461          (void)InsertFormula(LU, LUIdx, NewF);
2462          break;
2463        skip_formula:;
2464        }
2465      }
2466    }
2467  }
2468}
2469
2470/// GenerateAllReuseFormulae - Generate formulae for each use.
2471void
2472LSRInstance::GenerateAllReuseFormulae() {
2473  // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
2474  // queries are more precise.
2475  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2476    LSRUse &LU = Uses[LUIdx];
2477    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2478      GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
2479    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2480      GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
2481  }
2482  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2483    LSRUse &LU = Uses[LUIdx];
2484    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2485      GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
2486    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2487      GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
2488    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2489      GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
2490    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2491      GenerateScales(LU, LUIdx, LU.Formulae[i]);
2492  }
2493  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2494    LSRUse &LU = Uses[LUIdx];
2495    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2496      GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
2497  }
2498
2499  GenerateCrossUseConstantOffsets();
2500}
2501
2502/// If their are multiple formulae with the same set of registers used
2503/// by other uses, pick the best one and delete the others.
2504void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
2505#ifndef NDEBUG
2506  bool Changed = false;
2507#endif
2508
2509  // Collect the best formula for each unique set of shared registers. This
2510  // is reset for each use.
2511  typedef DenseMap<SmallVector<const SCEV *, 2>, size_t, UniquifierDenseMapInfo>
2512    BestFormulaeTy;
2513  BestFormulaeTy BestFormulae;
2514
2515  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2516    LSRUse &LU = Uses[LUIdx];
2517    FormulaSorter Sorter(L, LU, SE, DT);
2518
2519    // Clear out the set of used regs; it will be recomputed.
2520    LU.Regs.clear();
2521
2522    for (size_t FIdx = 0, NumForms = LU.Formulae.size();
2523         FIdx != NumForms; ++FIdx) {
2524      Formula &F = LU.Formulae[FIdx];
2525
2526      SmallVector<const SCEV *, 2> Key;
2527      for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(),
2528           JE = F.BaseRegs.end(); J != JE; ++J) {
2529        const SCEV *Reg = *J;
2530        if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
2531          Key.push_back(Reg);
2532      }
2533      if (F.ScaledReg &&
2534          RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
2535        Key.push_back(F.ScaledReg);
2536      // Unstable sort by host order ok, because this is only used for
2537      // uniquifying.
2538      std::sort(Key.begin(), Key.end());
2539
2540      std::pair<BestFormulaeTy::const_iterator, bool> P =
2541        BestFormulae.insert(std::make_pair(Key, FIdx));
2542      if (!P.second) {
2543        Formula &Best = LU.Formulae[P.first->second];
2544        if (Sorter.operator()(F, Best))
2545          std::swap(F, Best);
2546        DEBUG(dbgs() << "Filtering out "; F.print(dbgs());
2547              dbgs() << "\n"
2548                        "  in favor of "; Best.print(dbgs());
2549              dbgs() << '\n');
2550#ifndef NDEBUG
2551        Changed = true;
2552#endif
2553        std::swap(F, LU.Formulae.back());
2554        LU.Formulae.pop_back();
2555        --FIdx;
2556        --NumForms;
2557        continue;
2558      }
2559      if (F.ScaledReg) LU.Regs.insert(F.ScaledReg);
2560      LU.Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
2561    }
2562    BestFormulae.clear();
2563  }
2564
2565  DEBUG(if (Changed) {
2566          dbgs() << "\n"
2567                    "After filtering out undesirable candidates:\n";
2568          print_uses(dbgs());
2569        });
2570}
2571
2572/// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of
2573/// formulae to choose from, use some rough heuristics to prune down the number
2574/// of formulae. This keeps the main solver from taking an extraordinary amount
2575/// of time in some worst-case scenarios.
2576void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
2577  // This is a rough guess that seems to work fairly well.
2578  const size_t Limit = UINT16_MAX;
2579
2580  SmallPtrSet<const SCEV *, 4> Taken;
2581  for (;;) {
2582    // Estimate the worst-case number of solutions we might consider. We almost
2583    // never consider this many solutions because we prune the search space,
2584    // but the pruning isn't always sufficient.
2585    uint32_t Power = 1;
2586    for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
2587         E = Uses.end(); I != E; ++I) {
2588      size_t FSize = I->Formulae.size();
2589      if (FSize >= Limit) {
2590        Power = Limit;
2591        break;
2592      }
2593      Power *= FSize;
2594      if (Power >= Limit)
2595        break;
2596    }
2597    if (Power < Limit)
2598      break;
2599
2600    // Ok, we have too many of formulae on our hands to conveniently handle.
2601    // Use a rough heuristic to thin out the list.
2602
2603    // Pick the register which is used by the most LSRUses, which is likely
2604    // to be a good reuse register candidate.
2605    const SCEV *Best = 0;
2606    unsigned BestNum = 0;
2607    for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
2608         I != E; ++I) {
2609      const SCEV *Reg = *I;
2610      if (Taken.count(Reg))
2611        continue;
2612      if (!Best)
2613        Best = Reg;
2614      else {
2615        unsigned Count = RegUses.getUsedByIndices(Reg).count();
2616        if (Count > BestNum) {
2617          Best = Reg;
2618          BestNum = Count;
2619        }
2620      }
2621    }
2622
2623    DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
2624                 << " will yield profitable reuse.\n");
2625    Taken.insert(Best);
2626
2627    // In any use with formulae which references this register, delete formulae
2628    // which don't reference it.
2629    for (SmallVectorImpl<LSRUse>::iterator I = Uses.begin(),
2630         E = Uses.end(); I != E; ++I) {
2631      LSRUse &LU = *I;
2632      if (!LU.Regs.count(Best)) continue;
2633
2634      // Clear out the set of used regs; it will be recomputed.
2635      LU.Regs.clear();
2636
2637      for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
2638        Formula &F = LU.Formulae[i];
2639        if (!F.referencesReg(Best)) {
2640          DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
2641          std::swap(LU.Formulae.back(), F);
2642          LU.Formulae.pop_back();
2643          --e;
2644          --i;
2645          continue;
2646        }
2647
2648        if (F.ScaledReg) LU.Regs.insert(F.ScaledReg);
2649        LU.Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
2650      }
2651    }
2652
2653    DEBUG(dbgs() << "After pre-selection:\n";
2654          print_uses(dbgs()));
2655  }
2656}
2657
2658/// SolveRecurse - This is the recursive solver.
2659void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
2660                               Cost &SolutionCost,
2661                               SmallVectorImpl<const Formula *> &Workspace,
2662                               const Cost &CurCost,
2663                               const SmallPtrSet<const SCEV *, 16> &CurRegs,
2664                               DenseSet<const SCEV *> &VisitedRegs) const {
2665  // Some ideas:
2666  //  - prune more:
2667  //    - use more aggressive filtering
2668  //    - sort the formula so that the most profitable solutions are found first
2669  //    - sort the uses too
2670  //  - search faster:
2671  //    - don't compute a cost, and then compare. compare while computing a cost
2672  //      and bail early.
2673  //    - track register sets with SmallBitVector
2674
2675  const LSRUse &LU = Uses[Workspace.size()];
2676
2677  // If this use references any register that's already a part of the
2678  // in-progress solution, consider it a requirement that a formula must
2679  // reference that register in order to be considered. This prunes out
2680  // unprofitable searching.
2681  SmallSetVector<const SCEV *, 4> ReqRegs;
2682  for (SmallPtrSet<const SCEV *, 16>::const_iterator I = CurRegs.begin(),
2683       E = CurRegs.end(); I != E; ++I)
2684    if (LU.Regs.count(*I))
2685      ReqRegs.insert(*I);
2686
2687  bool AnySatisfiedReqRegs = false;
2688  SmallPtrSet<const SCEV *, 16> NewRegs;
2689  Cost NewCost;
2690retry:
2691  for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
2692       E = LU.Formulae.end(); I != E; ++I) {
2693    const Formula &F = *I;
2694
2695    // Ignore formulae which do not use any of the required registers.
2696    for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(),
2697         JE = ReqRegs.end(); J != JE; ++J) {
2698      const SCEV *Reg = *J;
2699      if ((!F.ScaledReg || F.ScaledReg != Reg) &&
2700          std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) ==
2701          F.BaseRegs.end())
2702        goto skip;
2703    }
2704    AnySatisfiedReqRegs = true;
2705
2706    // Evaluate the cost of the current formula. If it's already worse than
2707    // the current best, prune the search at that point.
2708    NewCost = CurCost;
2709    NewRegs = CurRegs;
2710    NewCost.RateFormula(F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT);
2711    if (NewCost < SolutionCost) {
2712      Workspace.push_back(&F);
2713      if (Workspace.size() != Uses.size()) {
2714        SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
2715                     NewRegs, VisitedRegs);
2716        if (F.getNumRegs() == 1 && Workspace.size() == 1)
2717          VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
2718      } else {
2719        DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
2720              dbgs() << ". Regs:";
2721              for (SmallPtrSet<const SCEV *, 16>::const_iterator
2722                   I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I)
2723                dbgs() << ' ' << **I;
2724              dbgs() << '\n');
2725
2726        SolutionCost = NewCost;
2727        Solution = Workspace;
2728      }
2729      Workspace.pop_back();
2730    }
2731  skip:;
2732  }
2733
2734  // If none of the formulae had all of the required registers, relax the
2735  // constraint so that we don't exclude all formulae.
2736  if (!AnySatisfiedReqRegs) {
2737    ReqRegs.clear();
2738    goto retry;
2739  }
2740}
2741
2742void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
2743  SmallVector<const Formula *, 8> Workspace;
2744  Cost SolutionCost;
2745  SolutionCost.Loose();
2746  Cost CurCost;
2747  SmallPtrSet<const SCEV *, 16> CurRegs;
2748  DenseSet<const SCEV *> VisitedRegs;
2749  Workspace.reserve(Uses.size());
2750
2751  SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
2752               CurRegs, VisitedRegs);
2753
2754  // Ok, we've now made all our decisions.
2755  DEBUG(dbgs() << "\n"
2756                  "The chosen solution requires "; SolutionCost.print(dbgs());
2757        dbgs() << ":\n";
2758        for (size_t i = 0, e = Uses.size(); i != e; ++i) {
2759          dbgs() << "  ";
2760          Uses[i].print(dbgs());
2761          dbgs() << "\n"
2762                    "    ";
2763          Solution[i]->print(dbgs());
2764          dbgs() << '\n';
2765        });
2766}
2767
2768/// getImmediateDominator - A handy utility for the specific DominatorTree
2769/// query that we need here.
2770///
2771static BasicBlock *getImmediateDominator(BasicBlock *BB, DominatorTree &DT) {
2772  DomTreeNode *Node = DT.getNode(BB);
2773  if (!Node) return 0;
2774  Node = Node->getIDom();
2775  if (!Node) return 0;
2776  return Node->getBlock();
2777}
2778
2779Value *LSRInstance::Expand(const LSRFixup &LF,
2780                           const Formula &F,
2781                           BasicBlock::iterator IP,
2782                           SCEVExpander &Rewriter,
2783                           SmallVectorImpl<WeakVH> &DeadInsts) const {
2784  const LSRUse &LU = Uses[LF.LUIdx];
2785
2786  // Then, collect some instructions which we will remain dominated by when
2787  // expanding the replacement. These must be dominated by any operands that
2788  // will be required in the expansion.
2789  SmallVector<Instruction *, 4> Inputs;
2790  if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
2791    Inputs.push_back(I);
2792  if (LU.Kind == LSRUse::ICmpZero)
2793    if (Instruction *I =
2794          dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
2795      Inputs.push_back(I);
2796  if (LF.PostIncLoop) {
2797    if (!L->contains(LF.UserInst))
2798      Inputs.push_back(L->getLoopLatch()->getTerminator());
2799    else
2800      Inputs.push_back(IVIncInsertPos);
2801  }
2802
2803  // Then, climb up the immediate dominator tree as far as we can go while
2804  // still being dominated by the input positions.
2805  for (;;) {
2806    bool AllDominate = true;
2807    Instruction *BetterPos = 0;
2808    BasicBlock *IDom = getImmediateDominator(IP->getParent(), DT);
2809    if (!IDom) break;
2810    Instruction *Tentative = IDom->getTerminator();
2811    for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(),
2812         E = Inputs.end(); I != E; ++I) {
2813      Instruction *Inst = *I;
2814      if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
2815        AllDominate = false;
2816        break;
2817      }
2818      if (IDom == Inst->getParent() &&
2819          (!BetterPos || DT.dominates(BetterPos, Inst)))
2820        BetterPos = next(BasicBlock::iterator(Inst));
2821    }
2822    if (!AllDominate)
2823      break;
2824    if (BetterPos)
2825      IP = BetterPos;
2826    else
2827      IP = Tentative;
2828  }
2829  while (isa<PHINode>(IP)) ++IP;
2830  while (isa<DbgInfoIntrinsic>(IP)) ++IP;
2831
2832  // Inform the Rewriter if we have a post-increment use, so that it can
2833  // perform an advantageous expansion.
2834  Rewriter.setPostInc(LF.PostIncLoop);
2835
2836  // This is the type that the user actually needs.
2837  const Type *OpTy = LF.OperandValToReplace->getType();
2838  // This will be the type that we'll initially expand to.
2839  const Type *Ty = F.getType();
2840  if (!Ty)
2841    // No type known; just expand directly to the ultimate type.
2842    Ty = OpTy;
2843  else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
2844    // Expand directly to the ultimate type if it's the right size.
2845    Ty = OpTy;
2846  // This is the type to do integer arithmetic in.
2847  const Type *IntTy = SE.getEffectiveSCEVType(Ty);
2848
2849  // Build up a list of operands to add together to form the full base.
2850  SmallVector<const SCEV *, 8> Ops;
2851
2852  // Expand the BaseRegs portion.
2853  for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
2854       E = F.BaseRegs.end(); I != E; ++I) {
2855    const SCEV *Reg = *I;
2856    assert(!Reg->isZero() && "Zero allocated in a base register!");
2857
2858    // If we're expanding for a post-inc user for the add-rec's loop, make the
2859    // post-inc adjustment.
2860    const SCEV *Start = Reg;
2861    while (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Start)) {
2862      if (AR->getLoop() == LF.PostIncLoop) {
2863        Reg = SE.getAddExpr(Reg, AR->getStepRecurrence(SE));
2864        // If the user is inside the loop, insert the code after the increment
2865        // so that it is dominated by its operand. If the original insert point
2866        // was already dominated by the increment, keep it, because there may
2867        // be loop-variant operands that need to be respected also.
2868        if (L->contains(LF.UserInst) && !DT.dominates(IVIncInsertPos, IP)) {
2869          IP = IVIncInsertPos;
2870          while (isa<DbgInfoIntrinsic>(IP)) ++IP;
2871        }
2872        break;
2873      }
2874      Start = AR->getStart();
2875    }
2876
2877    Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, 0, IP)));
2878  }
2879
2880  // Flush the operand list to suppress SCEVExpander hoisting.
2881  if (!Ops.empty()) {
2882    Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
2883    Ops.clear();
2884    Ops.push_back(SE.getUnknown(FullV));
2885  }
2886
2887  // Expand the ScaledReg portion.
2888  Value *ICmpScaledV = 0;
2889  if (F.AM.Scale != 0) {
2890    const SCEV *ScaledS = F.ScaledReg;
2891
2892    // If we're expanding for a post-inc user for the add-rec's loop, make the
2893    // post-inc adjustment.
2894    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ScaledS))
2895      if (AR->getLoop() == LF.PostIncLoop)
2896        ScaledS = SE.getAddExpr(ScaledS, AR->getStepRecurrence(SE));
2897
2898    if (LU.Kind == LSRUse::ICmpZero) {
2899      // An interesting way of "folding" with an icmp is to use a negated
2900      // scale, which we'll implement by inserting it into the other operand
2901      // of the icmp.
2902      assert(F.AM.Scale == -1 &&
2903             "The only scale supported by ICmpZero uses is -1!");
2904      ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP);
2905    } else {
2906      // Otherwise just expand the scaled register and an explicit scale,
2907      // which is expected to be matched as part of the address.
2908      ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP));
2909      ScaledS = SE.getMulExpr(ScaledS,
2910                              SE.getIntegerSCEV(F.AM.Scale,
2911                                                ScaledS->getType()));
2912      Ops.push_back(ScaledS);
2913
2914      // Flush the operand list to suppress SCEVExpander hoisting.
2915      Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
2916      Ops.clear();
2917      Ops.push_back(SE.getUnknown(FullV));
2918    }
2919  }
2920
2921  // Expand the GV portion.
2922  if (F.AM.BaseGV) {
2923    Ops.push_back(SE.getUnknown(F.AM.BaseGV));
2924
2925    // Flush the operand list to suppress SCEVExpander hoisting.
2926    Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
2927    Ops.clear();
2928    Ops.push_back(SE.getUnknown(FullV));
2929  }
2930
2931  // Expand the immediate portion.
2932  int64_t Offset = (uint64_t)F.AM.BaseOffs + LF.Offset;
2933  if (Offset != 0) {
2934    if (LU.Kind == LSRUse::ICmpZero) {
2935      // The other interesting way of "folding" with an ICmpZero is to use a
2936      // negated immediate.
2937      if (!ICmpScaledV)
2938        ICmpScaledV = ConstantInt::get(IntTy, -Offset);
2939      else {
2940        Ops.push_back(SE.getUnknown(ICmpScaledV));
2941        ICmpScaledV = ConstantInt::get(IntTy, Offset);
2942      }
2943    } else {
2944      // Just add the immediate values. These again are expected to be matched
2945      // as part of the address.
2946      Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
2947    }
2948  }
2949
2950  // Emit instructions summing all the operands.
2951  const SCEV *FullS = Ops.empty() ?
2952                      SE.getIntegerSCEV(0, IntTy) :
2953                      SE.getAddExpr(Ops);
2954  Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP);
2955
2956  // We're done expanding now, so reset the rewriter.
2957  Rewriter.setPostInc(0);
2958
2959  // An ICmpZero Formula represents an ICmp which we're handling as a
2960  // comparison against zero. Now that we've expanded an expression for that
2961  // form, update the ICmp's other operand.
2962  if (LU.Kind == LSRUse::ICmpZero) {
2963    ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
2964    DeadInsts.push_back(CI->getOperand(1));
2965    assert(!F.AM.BaseGV && "ICmp does not support folding a global value and "
2966                           "a scale at the same time!");
2967    if (F.AM.Scale == -1) {
2968      if (ICmpScaledV->getType() != OpTy) {
2969        Instruction *Cast =
2970          CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
2971                                                   OpTy, false),
2972                           ICmpScaledV, OpTy, "tmp", CI);
2973        ICmpScaledV = Cast;
2974      }
2975      CI->setOperand(1, ICmpScaledV);
2976    } else {
2977      assert(F.AM.Scale == 0 &&
2978             "ICmp does not support folding a global value and "
2979             "a scale at the same time!");
2980      Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
2981                                           -(uint64_t)Offset);
2982      if (C->getType() != OpTy)
2983        C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
2984                                                          OpTy, false),
2985                                  C, OpTy);
2986
2987      CI->setOperand(1, C);
2988    }
2989  }
2990
2991  return FullV;
2992}
2993
2994/// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use
2995/// of their operands effectively happens in their predecessor blocks, so the
2996/// expression may need to be expanded in multiple places.
2997void LSRInstance::RewriteForPHI(PHINode *PN,
2998                                const LSRFixup &LF,
2999                                const Formula &F,
3000                                SCEVExpander &Rewriter,
3001                                SmallVectorImpl<WeakVH> &DeadInsts,
3002                                Pass *P) const {
3003  DenseMap<BasicBlock *, Value *> Inserted;
3004  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
3005    if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
3006      BasicBlock *BB = PN->getIncomingBlock(i);
3007
3008      // If this is a critical edge, split the edge so that we do not insert
3009      // the code on all predecessor/successor paths.  We do this unless this
3010      // is the canonical backedge for this loop, which complicates post-inc
3011      // users.
3012      if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
3013          !isa<IndirectBrInst>(BB->getTerminator()) &&
3014          (PN->getParent() != L->getHeader() || !L->contains(BB))) {
3015        // Split the critical edge.
3016        BasicBlock *NewBB = SplitCriticalEdge(BB, PN->getParent(), P);
3017
3018        // If PN is outside of the loop and BB is in the loop, we want to
3019        // move the block to be immediately before the PHI block, not
3020        // immediately after BB.
3021        if (L->contains(BB) && !L->contains(PN))
3022          NewBB->moveBefore(PN->getParent());
3023
3024        // Splitting the edge can reduce the number of PHI entries we have.
3025        e = PN->getNumIncomingValues();
3026        BB = NewBB;
3027        i = PN->getBasicBlockIndex(BB);
3028      }
3029
3030      std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
3031        Inserted.insert(std::make_pair(BB, static_cast<Value *>(0)));
3032      if (!Pair.second)
3033        PN->setIncomingValue(i, Pair.first->second);
3034      else {
3035        Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts);
3036
3037        // If this is reuse-by-noop-cast, insert the noop cast.
3038        const Type *OpTy = LF.OperandValToReplace->getType();
3039        if (FullV->getType() != OpTy)
3040          FullV =
3041            CastInst::Create(CastInst::getCastOpcode(FullV, false,
3042                                                     OpTy, false),
3043                             FullV, LF.OperandValToReplace->getType(),
3044                             "tmp", BB->getTerminator());
3045
3046        PN->setIncomingValue(i, FullV);
3047        Pair.first->second = FullV;
3048      }
3049    }
3050}
3051
3052/// Rewrite - Emit instructions for the leading candidate expression for this
3053/// LSRUse (this is called "expanding"), and update the UserInst to reference
3054/// the newly expanded value.
3055void LSRInstance::Rewrite(const LSRFixup &LF,
3056                          const Formula &F,
3057                          SCEVExpander &Rewriter,
3058                          SmallVectorImpl<WeakVH> &DeadInsts,
3059                          Pass *P) const {
3060  // First, find an insertion point that dominates UserInst. For PHI nodes,
3061  // find the nearest block which dominates all the relevant uses.
3062  if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
3063    RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P);
3064  } else {
3065    Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts);
3066
3067    // If this is reuse-by-noop-cast, insert the noop cast.
3068    const Type *OpTy = LF.OperandValToReplace->getType();
3069    if (FullV->getType() != OpTy) {
3070      Instruction *Cast =
3071        CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
3072                         FullV, OpTy, "tmp", LF.UserInst);
3073      FullV = Cast;
3074    }
3075
3076    // Update the user. ICmpZero is handled specially here (for now) because
3077    // Expand may have updated one of the operands of the icmp already, and
3078    // its new value may happen to be equal to LF.OperandValToReplace, in
3079    // which case doing replaceUsesOfWith leads to replacing both operands
3080    // with the same value. TODO: Reorganize this.
3081    if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero)
3082      LF.UserInst->setOperand(0, FullV);
3083    else
3084      LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
3085  }
3086
3087  DeadInsts.push_back(LF.OperandValToReplace);
3088}
3089
3090void
3091LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
3092                               Pass *P) {
3093  // Keep track of instructions we may have made dead, so that
3094  // we can remove them after we are done working.
3095  SmallVector<WeakVH, 16> DeadInsts;
3096
3097  SCEVExpander Rewriter(SE);
3098  Rewriter.disableCanonicalMode();
3099  Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
3100
3101  // Expand the new value definitions and update the users.
3102  for (size_t i = 0, e = Fixups.size(); i != e; ++i) {
3103    size_t LUIdx = Fixups[i].LUIdx;
3104
3105    Rewrite(Fixups[i], *Solution[LUIdx], Rewriter, DeadInsts, P);
3106
3107    Changed = true;
3108  }
3109
3110  // Clean up after ourselves. This must be done before deleting any
3111  // instructions.
3112  Rewriter.clear();
3113
3114  Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
3115}
3116
3117LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P)
3118  : IU(P->getAnalysis<IVUsers>()),
3119    SE(P->getAnalysis<ScalarEvolution>()),
3120    DT(P->getAnalysis<DominatorTree>()),
3121    TLI(tli), L(l), Changed(false), IVIncInsertPos(0) {
3122
3123  // If LoopSimplify form is not available, stay out of trouble.
3124  if (!L->isLoopSimplifyForm()) return;
3125
3126  // If there's no interesting work to be done, bail early.
3127  if (IU.empty()) return;
3128
3129  DEBUG(dbgs() << "\nLSR on loop ";
3130        WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false);
3131        dbgs() << ":\n");
3132
3133  /// OptimizeShadowIV - If IV is used in a int-to-float cast
3134  /// inside the loop then try to eliminate the cast operation.
3135  OptimizeShadowIV();
3136
3137  // Change loop terminating condition to use the postinc iv when possible.
3138  Changed |= OptimizeLoopTermCond();
3139
3140  CollectInterestingTypesAndFactors();
3141  CollectFixupsAndInitialFormulae();
3142  CollectLoopInvariantFixupsAndFormulae();
3143
3144  DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
3145        print_uses(dbgs()));
3146
3147  // Now use the reuse data to generate a bunch of interesting ways
3148  // to formulate the values needed for the uses.
3149  GenerateAllReuseFormulae();
3150
3151  DEBUG(dbgs() << "\n"
3152                  "After generating reuse formulae:\n";
3153        print_uses(dbgs()));
3154
3155  FilterOutUndesirableDedicatedRegisters();
3156  NarrowSearchSpaceUsingHeuristics();
3157
3158  SmallVector<const Formula *, 8> Solution;
3159  Solve(Solution);
3160  assert(Solution.size() == Uses.size() && "Malformed solution!");
3161
3162  // Release memory that is no longer needed.
3163  Factors.clear();
3164  Types.clear();
3165  RegUses.clear();
3166
3167#ifndef NDEBUG
3168  // Formulae should be legal.
3169  for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
3170       E = Uses.end(); I != E; ++I) {
3171     const LSRUse &LU = *I;
3172     for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
3173          JE = LU.Formulae.end(); J != JE; ++J)
3174        assert(isLegalUse(J->AM, LU.MinOffset, LU.MaxOffset,
3175                          LU.Kind, LU.AccessTy, TLI) &&
3176               "Illegal formula generated!");
3177  };
3178#endif
3179
3180  // Now that we've decided what we want, make it so.
3181  ImplementSolution(Solution, P);
3182}
3183
3184void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
3185  if (Factors.empty() && Types.empty()) return;
3186
3187  OS << "LSR has identified the following interesting factors and types: ";
3188  bool First = true;
3189
3190  for (SmallSetVector<int64_t, 8>::const_iterator
3191       I = Factors.begin(), E = Factors.end(); I != E; ++I) {
3192    if (!First) OS << ", ";
3193    First = false;
3194    OS << '*' << *I;
3195  }
3196
3197  for (SmallSetVector<const Type *, 4>::const_iterator
3198       I = Types.begin(), E = Types.end(); I != E; ++I) {
3199    if (!First) OS << ", ";
3200    First = false;
3201    OS << '(' << **I << ')';
3202  }
3203  OS << '\n';
3204}
3205
3206void LSRInstance::print_fixups(raw_ostream &OS) const {
3207  OS << "LSR is examining the following fixup sites:\n";
3208  for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
3209       E = Fixups.end(); I != E; ++I) {
3210    const LSRFixup &LF = *I;
3211    dbgs() << "  ";
3212    LF.print(OS);
3213    OS << '\n';
3214  }
3215}
3216
3217void LSRInstance::print_uses(raw_ostream &OS) const {
3218  OS << "LSR is examining the following uses:\n";
3219  for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
3220       E = Uses.end(); I != E; ++I) {
3221    const LSRUse &LU = *I;
3222    dbgs() << "  ";
3223    LU.print(OS);
3224    OS << '\n';
3225    for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
3226         JE = LU.Formulae.end(); J != JE; ++J) {
3227      OS << "    ";
3228      J->print(OS);
3229      OS << '\n';
3230    }
3231  }
3232}
3233
3234void LSRInstance::print(raw_ostream &OS) const {
3235  print_factors_and_types(OS);
3236  print_fixups(OS);
3237  print_uses(OS);
3238}
3239
3240void LSRInstance::dump() const {
3241  print(errs()); errs() << '\n';
3242}
3243
3244namespace {
3245
3246class LoopStrengthReduce : public LoopPass {
3247  /// TLI - Keep a pointer of a TargetLowering to consult for determining
3248  /// transformation profitability.
3249  const TargetLowering *const TLI;
3250
3251public:
3252  static char ID; // Pass ID, replacement for typeid
3253  explicit LoopStrengthReduce(const TargetLowering *tli = 0);
3254
3255private:
3256  bool runOnLoop(Loop *L, LPPassManager &LPM);
3257  void getAnalysisUsage(AnalysisUsage &AU) const;
3258};
3259
3260}
3261
3262char LoopStrengthReduce::ID = 0;
3263static RegisterPass<LoopStrengthReduce>
3264X("loop-reduce", "Loop Strength Reduction");
3265
3266Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
3267  return new LoopStrengthReduce(TLI);
3268}
3269
3270LoopStrengthReduce::LoopStrengthReduce(const TargetLowering *tli)
3271  : LoopPass(&ID), TLI(tli) {}
3272
3273void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
3274  // We split critical edges, so we change the CFG.  However, we do update
3275  // many analyses if they are around.
3276  AU.addPreservedID(LoopSimplifyID);
3277  AU.addPreserved<LoopInfo>();
3278  AU.addPreserved("domfrontier");
3279
3280  AU.addRequiredID(LoopSimplifyID);
3281  AU.addRequired<DominatorTree>();
3282  AU.addPreserved<DominatorTree>();
3283  AU.addRequired<ScalarEvolution>();
3284  AU.addPreserved<ScalarEvolution>();
3285  AU.addRequired<IVUsers>();
3286  AU.addPreserved<IVUsers>();
3287}
3288
3289bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
3290  bool Changed = false;
3291
3292  // Run the main LSR transformation.
3293  Changed |= LSRInstance(TLI, L, this).getChanged();
3294
3295  // At this point, it is worth checking to see if any recurrence PHIs are also
3296  // dead, so that we can remove them as well.
3297  Changed |= DeleteDeadPHIs(L->getHeader());
3298
3299  return Changed;
3300}
3301