LoopStrengthReduce.cpp revision 199481
1//===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into forms suitable for efficient execution
12// on the target.
13//
14// This pass performs a strength reduction on array references inside loops that
15// have as one or more of their components the loop induction variable, it
16// rewrites expressions to take advantage of scaled-index addressing modes
17// available on the target, and it performs a variety of other optimizations
18// related to loop induction variables.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "loop-reduce"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/Constants.h"
25#include "llvm/Instructions.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/Type.h"
28#include "llvm/DerivedTypes.h"
29#include "llvm/Analysis/Dominators.h"
30#include "llvm/Analysis/IVUsers.h"
31#include "llvm/Analysis/LoopInfo.h"
32#include "llvm/Analysis/LoopPass.h"
33#include "llvm/Analysis/ScalarEvolutionExpander.h"
34#include "llvm/Transforms/Utils/AddrModeMatcher.h"
35#include "llvm/Transforms/Utils/BasicBlockUtils.h"
36#include "llvm/Transforms/Utils/Local.h"
37#include "llvm/ADT/Statistic.h"
38#include "llvm/Support/CFG.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/ValueHandle.h"
42#include "llvm/Support/raw_ostream.h"
43#include "llvm/Target/TargetLowering.h"
44#include <algorithm>
45using namespace llvm;
46
47STATISTIC(NumReduced ,    "Number of IV uses strength reduced");
48STATISTIC(NumInserted,    "Number of PHIs inserted");
49STATISTIC(NumVariable,    "Number of PHIs with variable strides");
50STATISTIC(NumEliminated,  "Number of strides eliminated");
51STATISTIC(NumShadow,      "Number of Shadow IVs optimized");
52STATISTIC(NumImmSunk,     "Number of common expr immediates sunk into uses");
53STATISTIC(NumLoopCond,    "Number of loop terminating conds optimized");
54STATISTIC(NumCountZero,   "Number of count iv optimized to count toward zero");
55
56static cl::opt<bool> EnableFullLSRMode("enable-full-lsr",
57                                       cl::init(false),
58                                       cl::Hidden);
59
60namespace {
61
62  struct BasedUser;
63
64  /// IVInfo - This structure keeps track of one IV expression inserted during
65  /// StrengthReduceStridedIVUsers. It contains the stride, the common base, as
66  /// well as the PHI node and increment value created for rewrite.
67  struct IVExpr {
68    const SCEV *Stride;
69    const SCEV *Base;
70    PHINode    *PHI;
71
72    IVExpr(const SCEV *const stride, const SCEV *const base, PHINode *phi)
73      : Stride(stride), Base(base), PHI(phi) {}
74  };
75
76  /// IVsOfOneStride - This structure keeps track of all IV expression inserted
77  /// during StrengthReduceStridedIVUsers for a particular stride of the IV.
78  struct IVsOfOneStride {
79    std::vector<IVExpr> IVs;
80
81    void addIV(const SCEV *const Stride, const SCEV *const Base, PHINode *PHI) {
82      IVs.push_back(IVExpr(Stride, Base, PHI));
83    }
84  };
85
86  class LoopStrengthReduce : public LoopPass {
87    IVUsers *IU;
88    LoopInfo *LI;
89    DominatorTree *DT;
90    ScalarEvolution *SE;
91    bool Changed;
92
93    /// IVsByStride - Keep track of all IVs that have been inserted for a
94    /// particular stride.
95    std::map<const SCEV *, IVsOfOneStride> IVsByStride;
96
97    /// StrideNoReuse - Keep track of all the strides whose ivs cannot be
98    /// reused (nor should they be rewritten to reuse other strides).
99    SmallSet<const SCEV *, 4> StrideNoReuse;
100
101    /// DeadInsts - Keep track of instructions we may have made dead, so that
102    /// we can remove them after we are done working.
103    SmallVector<WeakVH, 16> DeadInsts;
104
105    /// TLI - Keep a pointer of a TargetLowering to consult for determining
106    /// transformation profitability.
107    const TargetLowering *TLI;
108
109  public:
110    static char ID; // Pass ID, replacement for typeid
111    explicit LoopStrengthReduce(const TargetLowering *tli = NULL) :
112      LoopPass(&ID), TLI(tli) {
113    }
114
115    bool runOnLoop(Loop *L, LPPassManager &LPM);
116
117    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
118      // We split critical edges, so we change the CFG.  However, we do update
119      // many analyses if they are around.
120      AU.addPreservedID(LoopSimplifyID);
121      AU.addPreserved<LoopInfo>();
122      AU.addPreserved<DominanceFrontier>();
123      AU.addPreserved<DominatorTree>();
124
125      AU.addRequiredID(LoopSimplifyID);
126      AU.addRequired<LoopInfo>();
127      AU.addRequired<DominatorTree>();
128      AU.addRequired<ScalarEvolution>();
129      AU.addPreserved<ScalarEvolution>();
130      AU.addRequired<IVUsers>();
131      AU.addPreserved<IVUsers>();
132    }
133
134  private:
135    void OptimizeIndvars(Loop *L);
136
137    /// OptimizeLoopTermCond - Change loop terminating condition to use the
138    /// postinc iv when possible.
139    void OptimizeLoopTermCond(Loop *L);
140
141    /// OptimizeShadowIV - If IV is used in a int-to-float cast
142    /// inside the loop then try to eliminate the cast opeation.
143    void OptimizeShadowIV(Loop *L);
144
145    /// OptimizeMax - Rewrite the loop's terminating condition
146    /// if it uses a max computation.
147    ICmpInst *OptimizeMax(Loop *L, ICmpInst *Cond,
148                          IVStrideUse* &CondUse);
149
150    /// OptimizeLoopCountIV - If, after all sharing of IVs, the IV used for
151    /// deciding when to exit the loop is used only for that purpose, try to
152    /// rearrange things so it counts down to a test against zero.
153    bool OptimizeLoopCountIV(Loop *L);
154    bool OptimizeLoopCountIVOfStride(const SCEV* &Stride,
155                                     IVStrideUse* &CondUse, Loop *L);
156
157    /// StrengthReduceIVUsersOfStride - Strength reduce all of the users of a
158    /// single stride of IV.  All of the users may have different starting
159    /// values, and this may not be the only stride.
160    void StrengthReduceIVUsersOfStride(const SCEV *const &Stride,
161                                      IVUsersOfOneStride &Uses,
162                                      Loop *L);
163    void StrengthReduceIVUsers(Loop *L);
164
165    ICmpInst *ChangeCompareStride(Loop *L, ICmpInst *Cond,
166                                  IVStrideUse* &CondUse,
167                                  const SCEV* &CondStride,
168                                  bool PostPass = false);
169
170    bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse,
171                           const SCEV* &CondStride);
172    bool RequiresTypeConversion(const Type *Ty, const Type *NewTy);
173    const SCEV *CheckForIVReuse(bool, bool, bool, const SCEV *const&,
174                             IVExpr&, const Type*,
175                             const std::vector<BasedUser>& UsersToProcess);
176    bool ValidScale(bool, int64_t,
177                    const std::vector<BasedUser>& UsersToProcess);
178    bool ValidOffset(bool, int64_t, int64_t,
179                     const std::vector<BasedUser>& UsersToProcess);
180    const SCEV *CollectIVUsers(const SCEV *const &Stride,
181                              IVUsersOfOneStride &Uses,
182                              Loop *L,
183                              bool &AllUsesAreAddresses,
184                              bool &AllUsesAreOutsideLoop,
185                              std::vector<BasedUser> &UsersToProcess);
186    bool StrideMightBeShared(const SCEV *Stride, Loop *L, bool CheckPreInc);
187    bool ShouldUseFullStrengthReductionMode(
188                                const std::vector<BasedUser> &UsersToProcess,
189                                const Loop *L,
190                                bool AllUsesAreAddresses,
191                                const SCEV *Stride);
192    void PrepareToStrengthReduceFully(
193                             std::vector<BasedUser> &UsersToProcess,
194                             const SCEV *Stride,
195                             const SCEV *CommonExprs,
196                             const Loop *L,
197                             SCEVExpander &PreheaderRewriter);
198    void PrepareToStrengthReduceFromSmallerStride(
199                                         std::vector<BasedUser> &UsersToProcess,
200                                         Value *CommonBaseV,
201                                         const IVExpr &ReuseIV,
202                                         Instruction *PreInsertPt);
203    void PrepareToStrengthReduceWithNewPhi(
204                                  std::vector<BasedUser> &UsersToProcess,
205                                  const SCEV *Stride,
206                                  const SCEV *CommonExprs,
207                                  Value *CommonBaseV,
208                                  Instruction *IVIncInsertPt,
209                                  const Loop *L,
210                                  SCEVExpander &PreheaderRewriter);
211
212    void DeleteTriviallyDeadInstructions();
213  };
214}
215
216char LoopStrengthReduce::ID = 0;
217static RegisterPass<LoopStrengthReduce>
218X("loop-reduce", "Loop Strength Reduction");
219
220Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
221  return new LoopStrengthReduce(TLI);
222}
223
224/// DeleteTriviallyDeadInstructions - If any of the instructions is the
225/// specified set are trivially dead, delete them and see if this makes any of
226/// their operands subsequently dead.
227void LoopStrengthReduce::DeleteTriviallyDeadInstructions() {
228  if (DeadInsts.empty()) return;
229
230  while (!DeadInsts.empty()) {
231    Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.back());
232    DeadInsts.pop_back();
233
234    if (I == 0 || !isInstructionTriviallyDead(I))
235      continue;
236
237    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) {
238      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
239        *OI = 0;
240        if (U->use_empty())
241          DeadInsts.push_back(U);
242      }
243    }
244
245    I->eraseFromParent();
246    Changed = true;
247  }
248}
249
250/// containsAddRecFromDifferentLoop - Determine whether expression S involves a
251/// subexpression that is an AddRec from a loop other than L.  An outer loop
252/// of L is OK, but not an inner loop nor a disjoint loop.
253static bool containsAddRecFromDifferentLoop(const SCEV *S, Loop *L) {
254  // This is very common, put it first.
255  if (isa<SCEVConstant>(S))
256    return false;
257  if (const SCEVCommutativeExpr *AE = dyn_cast<SCEVCommutativeExpr>(S)) {
258    for (unsigned int i=0; i< AE->getNumOperands(); i++)
259      if (containsAddRecFromDifferentLoop(AE->getOperand(i), L))
260        return true;
261    return false;
262  }
263  if (const SCEVAddRecExpr *AE = dyn_cast<SCEVAddRecExpr>(S)) {
264    if (const Loop *newLoop = AE->getLoop()) {
265      if (newLoop == L)
266        return false;
267      // if newLoop is an outer loop of L, this is OK.
268      if (!LoopInfo::isNotAlreadyContainedIn(L, newLoop))
269        return false;
270    }
271    return true;
272  }
273  if (const SCEVUDivExpr *DE = dyn_cast<SCEVUDivExpr>(S))
274    return containsAddRecFromDifferentLoop(DE->getLHS(), L) ||
275           containsAddRecFromDifferentLoop(DE->getRHS(), L);
276#if 0
277  // SCEVSDivExpr has been backed out temporarily, but will be back; we'll
278  // need this when it is.
279  if (const SCEVSDivExpr *DE = dyn_cast<SCEVSDivExpr>(S))
280    return containsAddRecFromDifferentLoop(DE->getLHS(), L) ||
281           containsAddRecFromDifferentLoop(DE->getRHS(), L);
282#endif
283  if (const SCEVCastExpr *CE = dyn_cast<SCEVCastExpr>(S))
284    return containsAddRecFromDifferentLoop(CE->getOperand(), L);
285  return false;
286}
287
288/// isAddressUse - Returns true if the specified instruction is using the
289/// specified value as an address.
290static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
291  bool isAddress = isa<LoadInst>(Inst);
292  if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
293    if (SI->getOperand(1) == OperandVal)
294      isAddress = true;
295  } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
296    // Addressing modes can also be folded into prefetches and a variety
297    // of intrinsics.
298    switch (II->getIntrinsicID()) {
299      default: break;
300      case Intrinsic::prefetch:
301      case Intrinsic::x86_sse2_loadu_dq:
302      case Intrinsic::x86_sse2_loadu_pd:
303      case Intrinsic::x86_sse_loadu_ps:
304      case Intrinsic::x86_sse_storeu_ps:
305      case Intrinsic::x86_sse2_storeu_pd:
306      case Intrinsic::x86_sse2_storeu_dq:
307      case Intrinsic::x86_sse2_storel_dq:
308        if (II->getOperand(1) == OperandVal)
309          isAddress = true;
310        break;
311    }
312  }
313  return isAddress;
314}
315
316/// getAccessType - Return the type of the memory being accessed.
317static const Type *getAccessType(const Instruction *Inst) {
318  const Type *AccessTy = Inst->getType();
319  if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
320    AccessTy = SI->getOperand(0)->getType();
321  else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
322    // Addressing modes can also be folded into prefetches and a variety
323    // of intrinsics.
324    switch (II->getIntrinsicID()) {
325    default: break;
326    case Intrinsic::x86_sse_storeu_ps:
327    case Intrinsic::x86_sse2_storeu_pd:
328    case Intrinsic::x86_sse2_storeu_dq:
329    case Intrinsic::x86_sse2_storel_dq:
330      AccessTy = II->getOperand(1)->getType();
331      break;
332    }
333  }
334  return AccessTy;
335}
336
337namespace {
338  /// BasedUser - For a particular base value, keep information about how we've
339  /// partitioned the expression so far.
340  struct BasedUser {
341    /// SE - The current ScalarEvolution object.
342    ScalarEvolution *SE;
343
344    /// Base - The Base value for the PHI node that needs to be inserted for
345    /// this use.  As the use is processed, information gets moved from this
346    /// field to the Imm field (below).  BasedUser values are sorted by this
347    /// field.
348    const SCEV *Base;
349
350    /// Inst - The instruction using the induction variable.
351    Instruction *Inst;
352
353    /// OperandValToReplace - The operand value of Inst to replace with the
354    /// EmittedBase.
355    Value *OperandValToReplace;
356
357    /// Imm - The immediate value that should be added to the base immediately
358    /// before Inst, because it will be folded into the imm field of the
359    /// instruction.  This is also sometimes used for loop-variant values that
360    /// must be added inside the loop.
361    const SCEV *Imm;
362
363    /// Phi - The induction variable that performs the striding that
364    /// should be used for this user.
365    PHINode *Phi;
366
367    // isUseOfPostIncrementedValue - True if this should use the
368    // post-incremented version of this IV, not the preincremented version.
369    // This can only be set in special cases, such as the terminating setcc
370    // instruction for a loop and uses outside the loop that are dominated by
371    // the loop.
372    bool isUseOfPostIncrementedValue;
373
374    BasedUser(IVStrideUse &IVSU, ScalarEvolution *se)
375      : SE(se), Base(IVSU.getOffset()), Inst(IVSU.getUser()),
376        OperandValToReplace(IVSU.getOperandValToReplace()),
377        Imm(SE->getIntegerSCEV(0, Base->getType())),
378        isUseOfPostIncrementedValue(IVSU.isUseOfPostIncrementedValue()) {}
379
380    // Once we rewrite the code to insert the new IVs we want, update the
381    // operands of Inst to use the new expression 'NewBase', with 'Imm' added
382    // to it.
383    void RewriteInstructionToUseNewBase(const SCEV *const &NewBase,
384                                        Instruction *InsertPt,
385                                       SCEVExpander &Rewriter, Loop *L, Pass *P,
386                                        LoopInfo &LI,
387                                        SmallVectorImpl<WeakVH> &DeadInsts);
388
389    Value *InsertCodeForBaseAtPosition(const SCEV *const &NewBase,
390                                       const Type *Ty,
391                                       SCEVExpander &Rewriter,
392                                       Instruction *IP, Loop *L,
393                                       LoopInfo &LI);
394    void dump() const;
395  };
396}
397
398void BasedUser::dump() const {
399  errs() << " Base=" << *Base;
400  errs() << " Imm=" << *Imm;
401  errs() << "   Inst: " << *Inst;
402}
403
404Value *BasedUser::InsertCodeForBaseAtPosition(const SCEV *const &NewBase,
405                                              const Type *Ty,
406                                              SCEVExpander &Rewriter,
407                                              Instruction *IP, Loop *L,
408                                              LoopInfo &LI) {
409  // Figure out where we *really* want to insert this code.  In particular, if
410  // the user is inside of a loop that is nested inside of L, we really don't
411  // want to insert this expression before the user, we'd rather pull it out as
412  // many loops as possible.
413  Instruction *BaseInsertPt = IP;
414
415  // Figure out the most-nested loop that IP is in.
416  Loop *InsertLoop = LI.getLoopFor(IP->getParent());
417
418  // If InsertLoop is not L, and InsertLoop is nested inside of L, figure out
419  // the preheader of the outer-most loop where NewBase is not loop invariant.
420  if (L->contains(IP->getParent()))
421    while (InsertLoop && NewBase->isLoopInvariant(InsertLoop)) {
422      BaseInsertPt = InsertLoop->getLoopPreheader()->getTerminator();
423      InsertLoop = InsertLoop->getParentLoop();
424    }
425
426  Value *Base = Rewriter.expandCodeFor(NewBase, 0, BaseInsertPt);
427
428  const SCEV *NewValSCEV = SE->getUnknown(Base);
429
430  // Always emit the immediate into the same block as the user.
431  NewValSCEV = SE->getAddExpr(NewValSCEV, Imm);
432
433  return Rewriter.expandCodeFor(NewValSCEV, Ty, IP);
434}
435
436
437// Once we rewrite the code to insert the new IVs we want, update the
438// operands of Inst to use the new expression 'NewBase', with 'Imm' added
439// to it. NewBasePt is the last instruction which contributes to the
440// value of NewBase in the case that it's a diffferent instruction from
441// the PHI that NewBase is computed from, or null otherwise.
442//
443void BasedUser::RewriteInstructionToUseNewBase(const SCEV *const &NewBase,
444                                               Instruction *NewBasePt,
445                                      SCEVExpander &Rewriter, Loop *L, Pass *P,
446                                      LoopInfo &LI,
447                                      SmallVectorImpl<WeakVH> &DeadInsts) {
448  if (!isa<PHINode>(Inst)) {
449    // By default, insert code at the user instruction.
450    BasicBlock::iterator InsertPt = Inst;
451
452    // However, if the Operand is itself an instruction, the (potentially
453    // complex) inserted code may be shared by many users.  Because of this, we
454    // want to emit code for the computation of the operand right before its old
455    // computation.  This is usually safe, because we obviously used to use the
456    // computation when it was computed in its current block.  However, in some
457    // cases (e.g. use of a post-incremented induction variable) the NewBase
458    // value will be pinned to live somewhere after the original computation.
459    // In this case, we have to back off.
460    //
461    // If this is a use outside the loop (which means after, since it is based
462    // on a loop indvar) we use the post-incremented value, so that we don't
463    // artificially make the preinc value live out the bottom of the loop.
464    if (!isUseOfPostIncrementedValue && L->contains(Inst->getParent())) {
465      if (NewBasePt && isa<PHINode>(OperandValToReplace)) {
466        InsertPt = NewBasePt;
467        ++InsertPt;
468      } else if (Instruction *OpInst
469                 = dyn_cast<Instruction>(OperandValToReplace)) {
470        InsertPt = OpInst;
471        while (isa<PHINode>(InsertPt)) ++InsertPt;
472      }
473    }
474    Value *NewVal = InsertCodeForBaseAtPosition(NewBase,
475                                                OperandValToReplace->getType(),
476                                                Rewriter, InsertPt, L, LI);
477    // Replace the use of the operand Value with the new Phi we just created.
478    Inst->replaceUsesOfWith(OperandValToReplace, NewVal);
479
480    DEBUG(errs() << "      Replacing with ");
481    DEBUG(WriteAsOperand(errs(), NewVal, /*PrintType=*/false));
482    DEBUG(errs() << ", which has value " << *NewBase << " plus IMM "
483                 << *Imm << "\n");
484    return;
485  }
486
487  // PHI nodes are more complex.  We have to insert one copy of the NewBase+Imm
488  // expression into each operand block that uses it.  Note that PHI nodes can
489  // have multiple entries for the same predecessor.  We use a map to make sure
490  // that a PHI node only has a single Value* for each predecessor (which also
491  // prevents us from inserting duplicate code in some blocks).
492  DenseMap<BasicBlock*, Value*> InsertedCode;
493  PHINode *PN = cast<PHINode>(Inst);
494  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
495    if (PN->getIncomingValue(i) == OperandValToReplace) {
496      // If the original expression is outside the loop, put the replacement
497      // code in the same place as the original expression,
498      // which need not be an immediate predecessor of this PHI.  This way we
499      // need only one copy of it even if it is referenced multiple times in
500      // the PHI.  We don't do this when the original expression is inside the
501      // loop because multiple copies sometimes do useful sinking of code in
502      // that case(?).
503      Instruction *OldLoc = dyn_cast<Instruction>(OperandValToReplace);
504      BasicBlock *PHIPred = PN->getIncomingBlock(i);
505      if (L->contains(OldLoc->getParent())) {
506        // If this is a critical edge, split the edge so that we do not insert
507        // the code on all predecessor/successor paths.  We do this unless this
508        // is the canonical backedge for this loop, as this can make some
509        // inserted code be in an illegal position.
510        if (e != 1 && PHIPred->getTerminator()->getNumSuccessors() > 1 &&
511            !isa<IndirectBrInst>(PHIPred->getTerminator()) &&
512            (PN->getParent() != L->getHeader() || !L->contains(PHIPred))) {
513
514          // First step, split the critical edge.
515          BasicBlock *NewBB = SplitCriticalEdge(PHIPred, PN->getParent(),
516                                                P, false);
517
518          // Next step: move the basic block.  In particular, if the PHI node
519          // is outside of the loop, and PredTI is in the loop, we want to
520          // move the block to be immediately before the PHI block, not
521          // immediately after PredTI.
522          if (L->contains(PHIPred) && !L->contains(PN->getParent()))
523            NewBB->moveBefore(PN->getParent());
524
525          // Splitting the edge can reduce the number of PHI entries we have.
526          e = PN->getNumIncomingValues();
527          PHIPred = NewBB;
528          i = PN->getBasicBlockIndex(PHIPred);
529        }
530      }
531      Value *&Code = InsertedCode[PHIPred];
532      if (!Code) {
533        // Insert the code into the end of the predecessor block.
534        Instruction *InsertPt = (L->contains(OldLoc->getParent())) ?
535                                PHIPred->getTerminator() :
536                                OldLoc->getParent()->getTerminator();
537        Code = InsertCodeForBaseAtPosition(NewBase, PN->getType(),
538                                           Rewriter, InsertPt, L, LI);
539
540        DEBUG(errs() << "      Changing PHI use to ");
541        DEBUG(WriteAsOperand(errs(), Code, /*PrintType=*/false));
542        DEBUG(errs() << ", which has value " << *NewBase << " plus IMM "
543                     << *Imm << "\n");
544      }
545
546      // Replace the use of the operand Value with the new Phi we just created.
547      PN->setIncomingValue(i, Code);
548      Rewriter.clear();
549    }
550  }
551
552  // PHI node might have become a constant value after SplitCriticalEdge.
553  DeadInsts.push_back(Inst);
554}
555
556
557/// fitsInAddressMode - Return true if V can be subsumed within an addressing
558/// mode, and does not need to be put in a register first.
559static bool fitsInAddressMode(const SCEV *const &V, const Type *AccessTy,
560                             const TargetLowering *TLI, bool HasBaseReg) {
561  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) {
562    int64_t VC = SC->getValue()->getSExtValue();
563    if (TLI) {
564      TargetLowering::AddrMode AM;
565      AM.BaseOffs = VC;
566      AM.HasBaseReg = HasBaseReg;
567      return TLI->isLegalAddressingMode(AM, AccessTy);
568    } else {
569      // Defaults to PPC. PPC allows a sign-extended 16-bit immediate field.
570      return (VC > -(1 << 16) && VC < (1 << 16)-1);
571    }
572  }
573
574  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V))
575    if (GlobalValue *GV = dyn_cast<GlobalValue>(SU->getValue())) {
576      if (TLI) {
577        TargetLowering::AddrMode AM;
578        AM.BaseGV = GV;
579        AM.HasBaseReg = HasBaseReg;
580        return TLI->isLegalAddressingMode(AM, AccessTy);
581      } else {
582        // Default: assume global addresses are not legal.
583      }
584    }
585
586  return false;
587}
588
589/// MoveLoopVariantsToImmediateField - Move any subexpressions from Val that are
590/// loop varying to the Imm operand.
591static void MoveLoopVariantsToImmediateField(const SCEV *&Val, const SCEV *&Imm,
592                                             Loop *L, ScalarEvolution *SE) {
593  if (Val->isLoopInvariant(L)) return;  // Nothing to do.
594
595  if (const SCEVAddExpr *SAE = dyn_cast<SCEVAddExpr>(Val)) {
596    SmallVector<const SCEV *, 4> NewOps;
597    NewOps.reserve(SAE->getNumOperands());
598
599    for (unsigned i = 0; i != SAE->getNumOperands(); ++i)
600      if (!SAE->getOperand(i)->isLoopInvariant(L)) {
601        // If this is a loop-variant expression, it must stay in the immediate
602        // field of the expression.
603        Imm = SE->getAddExpr(Imm, SAE->getOperand(i));
604      } else {
605        NewOps.push_back(SAE->getOperand(i));
606      }
607
608    if (NewOps.empty())
609      Val = SE->getIntegerSCEV(0, Val->getType());
610    else
611      Val = SE->getAddExpr(NewOps);
612  } else if (const SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Val)) {
613    // Try to pull immediates out of the start value of nested addrec's.
614    const SCEV *Start = SARE->getStart();
615    MoveLoopVariantsToImmediateField(Start, Imm, L, SE);
616
617    SmallVector<const SCEV *, 4> Ops(SARE->op_begin(), SARE->op_end());
618    Ops[0] = Start;
619    Val = SE->getAddRecExpr(Ops, SARE->getLoop());
620  } else {
621    // Otherwise, all of Val is variant, move the whole thing over.
622    Imm = SE->getAddExpr(Imm, Val);
623    Val = SE->getIntegerSCEV(0, Val->getType());
624  }
625}
626
627
628/// MoveImmediateValues - Look at Val, and pull out any additions of constants
629/// that can fit into the immediate field of instructions in the target.
630/// Accumulate these immediate values into the Imm value.
631static void MoveImmediateValues(const TargetLowering *TLI,
632                                const Type *AccessTy,
633                                const SCEV *&Val, const SCEV *&Imm,
634                                bool isAddress, Loop *L,
635                                ScalarEvolution *SE) {
636  if (const SCEVAddExpr *SAE = dyn_cast<SCEVAddExpr>(Val)) {
637    SmallVector<const SCEV *, 4> NewOps;
638    NewOps.reserve(SAE->getNumOperands());
639
640    for (unsigned i = 0; i != SAE->getNumOperands(); ++i) {
641      const SCEV *NewOp = SAE->getOperand(i);
642      MoveImmediateValues(TLI, AccessTy, NewOp, Imm, isAddress, L, SE);
643
644      if (!NewOp->isLoopInvariant(L)) {
645        // If this is a loop-variant expression, it must stay in the immediate
646        // field of the expression.
647        Imm = SE->getAddExpr(Imm, NewOp);
648      } else {
649        NewOps.push_back(NewOp);
650      }
651    }
652
653    if (NewOps.empty())
654      Val = SE->getIntegerSCEV(0, Val->getType());
655    else
656      Val = SE->getAddExpr(NewOps);
657    return;
658  } else if (const SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Val)) {
659    // Try to pull immediates out of the start value of nested addrec's.
660    const SCEV *Start = SARE->getStart();
661    MoveImmediateValues(TLI, AccessTy, Start, Imm, isAddress, L, SE);
662
663    if (Start != SARE->getStart()) {
664      SmallVector<const SCEV *, 4> Ops(SARE->op_begin(), SARE->op_end());
665      Ops[0] = Start;
666      Val = SE->getAddRecExpr(Ops, SARE->getLoop());
667    }
668    return;
669  } else if (const SCEVMulExpr *SME = dyn_cast<SCEVMulExpr>(Val)) {
670    // Transform "8 * (4 + v)" -> "32 + 8*V" if "32" fits in the immed field.
671    if (isAddress &&
672        fitsInAddressMode(SME->getOperand(0), AccessTy, TLI, false) &&
673        SME->getNumOperands() == 2 && SME->isLoopInvariant(L)) {
674
675      const SCEV *SubImm = SE->getIntegerSCEV(0, Val->getType());
676      const SCEV *NewOp = SME->getOperand(1);
677      MoveImmediateValues(TLI, AccessTy, NewOp, SubImm, isAddress, L, SE);
678
679      // If we extracted something out of the subexpressions, see if we can
680      // simplify this!
681      if (NewOp != SME->getOperand(1)) {
682        // Scale SubImm up by "8".  If the result is a target constant, we are
683        // good.
684        SubImm = SE->getMulExpr(SubImm, SME->getOperand(0));
685        if (fitsInAddressMode(SubImm, AccessTy, TLI, false)) {
686          // Accumulate the immediate.
687          Imm = SE->getAddExpr(Imm, SubImm);
688
689          // Update what is left of 'Val'.
690          Val = SE->getMulExpr(SME->getOperand(0), NewOp);
691          return;
692        }
693      }
694    }
695  }
696
697  // Loop-variant expressions must stay in the immediate field of the
698  // expression.
699  if ((isAddress && fitsInAddressMode(Val, AccessTy, TLI, false)) ||
700      !Val->isLoopInvariant(L)) {
701    Imm = SE->getAddExpr(Imm, Val);
702    Val = SE->getIntegerSCEV(0, Val->getType());
703    return;
704  }
705
706  // Otherwise, no immediates to move.
707}
708
709static void MoveImmediateValues(const TargetLowering *TLI,
710                                Instruction *User,
711                                const SCEV *&Val, const SCEV *&Imm,
712                                bool isAddress, Loop *L,
713                                ScalarEvolution *SE) {
714  const Type *AccessTy = getAccessType(User);
715  MoveImmediateValues(TLI, AccessTy, Val, Imm, isAddress, L, SE);
716}
717
718/// SeparateSubExprs - Decompose Expr into all of the subexpressions that are
719/// added together.  This is used to reassociate common addition subexprs
720/// together for maximal sharing when rewriting bases.
721static void SeparateSubExprs(SmallVector<const SCEV *, 16> &SubExprs,
722                             const SCEV *Expr,
723                             ScalarEvolution *SE) {
724  if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(Expr)) {
725    for (unsigned j = 0, e = AE->getNumOperands(); j != e; ++j)
726      SeparateSubExprs(SubExprs, AE->getOperand(j), SE);
727  } else if (const SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Expr)) {
728    const SCEV *Zero = SE->getIntegerSCEV(0, Expr->getType());
729    if (SARE->getOperand(0) == Zero) {
730      SubExprs.push_back(Expr);
731    } else {
732      // Compute the addrec with zero as its base.
733      SmallVector<const SCEV *, 4> Ops(SARE->op_begin(), SARE->op_end());
734      Ops[0] = Zero;   // Start with zero base.
735      SubExprs.push_back(SE->getAddRecExpr(Ops, SARE->getLoop()));
736
737
738      SeparateSubExprs(SubExprs, SARE->getOperand(0), SE);
739    }
740  } else if (!Expr->isZero()) {
741    // Do not add zero.
742    SubExprs.push_back(Expr);
743  }
744}
745
746// This is logically local to the following function, but C++ says we have
747// to make it file scope.
748struct SubExprUseData { unsigned Count; bool notAllUsesAreFree; };
749
750/// RemoveCommonExpressionsFromUseBases - Look through all of the Bases of all
751/// the Uses, removing any common subexpressions, except that if all such
752/// subexpressions can be folded into an addressing mode for all uses inside
753/// the loop (this case is referred to as "free" in comments herein) we do
754/// not remove anything.  This looks for things like (a+b+c) and
755/// (a+c+d) and computes the common (a+c) subexpression.  The common expression
756/// is *removed* from the Bases and returned.
757static const SCEV *
758RemoveCommonExpressionsFromUseBases(std::vector<BasedUser> &Uses,
759                                    ScalarEvolution *SE, Loop *L,
760                                    const TargetLowering *TLI) {
761  unsigned NumUses = Uses.size();
762
763  // Only one use?  This is a very common case, so we handle it specially and
764  // cheaply.
765  const SCEV *Zero = SE->getIntegerSCEV(0, Uses[0].Base->getType());
766  const SCEV *Result = Zero;
767  const SCEV *FreeResult = Zero;
768  if (NumUses == 1) {
769    // If the use is inside the loop, use its base, regardless of what it is:
770    // it is clearly shared across all the IV's.  If the use is outside the loop
771    // (which means after it) we don't want to factor anything *into* the loop,
772    // so just use 0 as the base.
773    if (L->contains(Uses[0].Inst->getParent()))
774      std::swap(Result, Uses[0].Base);
775    return Result;
776  }
777
778  // To find common subexpressions, count how many of Uses use each expression.
779  // If any subexpressions are used Uses.size() times, they are common.
780  // Also track whether all uses of each expression can be moved into an
781  // an addressing mode "for free"; such expressions are left within the loop.
782  // struct SubExprUseData { unsigned Count; bool notAllUsesAreFree; };
783  std::map<const SCEV *, SubExprUseData> SubExpressionUseData;
784
785  // UniqueSubExprs - Keep track of all of the subexpressions we see in the
786  // order we see them.
787  SmallVector<const SCEV *, 16> UniqueSubExprs;
788
789  SmallVector<const SCEV *, 16> SubExprs;
790  unsigned NumUsesInsideLoop = 0;
791  for (unsigned i = 0; i != NumUses; ++i) {
792    // If the user is outside the loop, just ignore it for base computation.
793    // Since the user is outside the loop, it must be *after* the loop (if it
794    // were before, it could not be based on the loop IV).  We don't want users
795    // after the loop to affect base computation of values *inside* the loop,
796    // because we can always add their offsets to the result IV after the loop
797    // is done, ensuring we get good code inside the loop.
798    if (!L->contains(Uses[i].Inst->getParent()))
799      continue;
800    NumUsesInsideLoop++;
801
802    // If the base is zero (which is common), return zero now, there are no
803    // CSEs we can find.
804    if (Uses[i].Base == Zero) return Zero;
805
806    // If this use is as an address we may be able to put CSEs in the addressing
807    // mode rather than hoisting them.
808    bool isAddrUse = isAddressUse(Uses[i].Inst, Uses[i].OperandValToReplace);
809    // We may need the AccessTy below, but only when isAddrUse, so compute it
810    // only in that case.
811    const Type *AccessTy = 0;
812    if (isAddrUse)
813      AccessTy = getAccessType(Uses[i].Inst);
814
815    // Split the expression into subexprs.
816    SeparateSubExprs(SubExprs, Uses[i].Base, SE);
817    // Add one to SubExpressionUseData.Count for each subexpr present, and
818    // if the subexpr is not a valid immediate within an addressing mode use,
819    // set SubExpressionUseData.notAllUsesAreFree.  We definitely want to
820    // hoist these out of the loop (if they are common to all uses).
821    for (unsigned j = 0, e = SubExprs.size(); j != e; ++j) {
822      if (++SubExpressionUseData[SubExprs[j]].Count == 1)
823        UniqueSubExprs.push_back(SubExprs[j]);
824      if (!isAddrUse || !fitsInAddressMode(SubExprs[j], AccessTy, TLI, false))
825        SubExpressionUseData[SubExprs[j]].notAllUsesAreFree = true;
826    }
827    SubExprs.clear();
828  }
829
830  // Now that we know how many times each is used, build Result.  Iterate over
831  // UniqueSubexprs so that we have a stable ordering.
832  for (unsigned i = 0, e = UniqueSubExprs.size(); i != e; ++i) {
833    std::map<const SCEV *, SubExprUseData>::iterator I =
834       SubExpressionUseData.find(UniqueSubExprs[i]);
835    assert(I != SubExpressionUseData.end() && "Entry not found?");
836    if (I->second.Count == NumUsesInsideLoop) { // Found CSE!
837      if (I->second.notAllUsesAreFree)
838        Result = SE->getAddExpr(Result, I->first);
839      else
840        FreeResult = SE->getAddExpr(FreeResult, I->first);
841    } else
842      // Remove non-cse's from SubExpressionUseData.
843      SubExpressionUseData.erase(I);
844  }
845
846  if (FreeResult != Zero) {
847    // We have some subexpressions that can be subsumed into addressing
848    // modes in every use inside the loop.  However, it's possible that
849    // there are so many of them that the combined FreeResult cannot
850    // be subsumed, or that the target cannot handle both a FreeResult
851    // and a Result in the same instruction (for example because it would
852    // require too many registers).  Check this.
853    for (unsigned i=0; i<NumUses; ++i) {
854      if (!L->contains(Uses[i].Inst->getParent()))
855        continue;
856      // We know this is an addressing mode use; if there are any uses that
857      // are not, FreeResult would be Zero.
858      const Type *AccessTy = getAccessType(Uses[i].Inst);
859      if (!fitsInAddressMode(FreeResult, AccessTy, TLI, Result!=Zero)) {
860        // FIXME:  could split up FreeResult into pieces here, some hoisted
861        // and some not.  There is no obvious advantage to this.
862        Result = SE->getAddExpr(Result, FreeResult);
863        FreeResult = Zero;
864        break;
865      }
866    }
867  }
868
869  // If we found no CSE's, return now.
870  if (Result == Zero) return Result;
871
872  // If we still have a FreeResult, remove its subexpressions from
873  // SubExpressionUseData.  This means they will remain in the use Bases.
874  if (FreeResult != Zero) {
875    SeparateSubExprs(SubExprs, FreeResult, SE);
876    for (unsigned j = 0, e = SubExprs.size(); j != e; ++j) {
877      std::map<const SCEV *, SubExprUseData>::iterator I =
878         SubExpressionUseData.find(SubExprs[j]);
879      SubExpressionUseData.erase(I);
880    }
881    SubExprs.clear();
882  }
883
884  // Otherwise, remove all of the CSE's we found from each of the base values.
885  for (unsigned i = 0; i != NumUses; ++i) {
886    // Uses outside the loop don't necessarily include the common base, but
887    // the final IV value coming into those uses does.  Instead of trying to
888    // remove the pieces of the common base, which might not be there,
889    // subtract off the base to compensate for this.
890    if (!L->contains(Uses[i].Inst->getParent())) {
891      Uses[i].Base = SE->getMinusSCEV(Uses[i].Base, Result);
892      continue;
893    }
894
895    // Split the expression into subexprs.
896    SeparateSubExprs(SubExprs, Uses[i].Base, SE);
897
898    // Remove any common subexpressions.
899    for (unsigned j = 0, e = SubExprs.size(); j != e; ++j)
900      if (SubExpressionUseData.count(SubExprs[j])) {
901        SubExprs.erase(SubExprs.begin()+j);
902        --j; --e;
903      }
904
905    // Finally, add the non-shared expressions together.
906    if (SubExprs.empty())
907      Uses[i].Base = Zero;
908    else
909      Uses[i].Base = SE->getAddExpr(SubExprs);
910    SubExprs.clear();
911  }
912
913  return Result;
914}
915
916/// ValidScale - Check whether the given Scale is valid for all loads and
917/// stores in UsersToProcess.
918///
919bool LoopStrengthReduce::ValidScale(bool HasBaseReg, int64_t Scale,
920                               const std::vector<BasedUser>& UsersToProcess) {
921  if (!TLI)
922    return true;
923
924  for (unsigned i = 0, e = UsersToProcess.size(); i!=e; ++i) {
925    // If this is a load or other access, pass the type of the access in.
926    const Type *AccessTy =
927        Type::getVoidTy(UsersToProcess[i].Inst->getContext());
928    if (isAddressUse(UsersToProcess[i].Inst,
929                     UsersToProcess[i].OperandValToReplace))
930      AccessTy = getAccessType(UsersToProcess[i].Inst);
931    else if (isa<PHINode>(UsersToProcess[i].Inst))
932      continue;
933
934    TargetLowering::AddrMode AM;
935    if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(UsersToProcess[i].Imm))
936      AM.BaseOffs = SC->getValue()->getSExtValue();
937    AM.HasBaseReg = HasBaseReg || !UsersToProcess[i].Base->isZero();
938    AM.Scale = Scale;
939
940    // If load[imm+r*scale] is illegal, bail out.
941    if (!TLI->isLegalAddressingMode(AM, AccessTy))
942      return false;
943  }
944  return true;
945}
946
947/// ValidOffset - Check whether the given Offset is valid for all loads and
948/// stores in UsersToProcess.
949///
950bool LoopStrengthReduce::ValidOffset(bool HasBaseReg,
951                               int64_t Offset,
952                               int64_t Scale,
953                               const std::vector<BasedUser>& UsersToProcess) {
954  if (!TLI)
955    return true;
956
957  for (unsigned i=0, e = UsersToProcess.size(); i!=e; ++i) {
958    // If this is a load or other access, pass the type of the access in.
959    const Type *AccessTy =
960        Type::getVoidTy(UsersToProcess[i].Inst->getContext());
961    if (isAddressUse(UsersToProcess[i].Inst,
962                     UsersToProcess[i].OperandValToReplace))
963      AccessTy = getAccessType(UsersToProcess[i].Inst);
964    else if (isa<PHINode>(UsersToProcess[i].Inst))
965      continue;
966
967    TargetLowering::AddrMode AM;
968    if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(UsersToProcess[i].Imm))
969      AM.BaseOffs = SC->getValue()->getSExtValue();
970    AM.BaseOffs = (uint64_t)AM.BaseOffs + (uint64_t)Offset;
971    AM.HasBaseReg = HasBaseReg || !UsersToProcess[i].Base->isZero();
972    AM.Scale = Scale;
973
974    // If load[imm+r*scale] is illegal, bail out.
975    if (!TLI->isLegalAddressingMode(AM, AccessTy))
976      return false;
977  }
978  return true;
979}
980
981/// RequiresTypeConversion - Returns true if converting Ty1 to Ty2 is not
982/// a nop.
983bool LoopStrengthReduce::RequiresTypeConversion(const Type *Ty1,
984                                                const Type *Ty2) {
985  if (Ty1 == Ty2)
986    return false;
987  Ty1 = SE->getEffectiveSCEVType(Ty1);
988  Ty2 = SE->getEffectiveSCEVType(Ty2);
989  if (Ty1 == Ty2)
990    return false;
991  if (Ty1->canLosslesslyBitCastTo(Ty2))
992    return false;
993  if (TLI && TLI->isTruncateFree(Ty1, Ty2))
994    return false;
995  return true;
996}
997
998/// CheckForIVReuse - Returns the multiple if the stride is the multiple
999/// of a previous stride and it is a legal value for the target addressing
1000/// mode scale component and optional base reg. This allows the users of
1001/// this stride to be rewritten as prev iv * factor. It returns 0 if no
1002/// reuse is possible.  Factors can be negative on same targets, e.g. ARM.
1003///
1004/// If all uses are outside the loop, we don't require that all multiplies
1005/// be folded into the addressing mode, nor even that the factor be constant;
1006/// a multiply (executed once) outside the loop is better than another IV
1007/// within.  Well, usually.
1008const SCEV *LoopStrengthReduce::CheckForIVReuse(bool HasBaseReg,
1009                                bool AllUsesAreAddresses,
1010                                bool AllUsesAreOutsideLoop,
1011                                const SCEV *const &Stride,
1012                                IVExpr &IV, const Type *Ty,
1013                                const std::vector<BasedUser>& UsersToProcess) {
1014  if (StrideNoReuse.count(Stride))
1015    return SE->getIntegerSCEV(0, Stride->getType());
1016
1017  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Stride)) {
1018    int64_t SInt = SC->getValue()->getSExtValue();
1019    for (unsigned NewStride = 0, e = IU->StrideOrder.size();
1020         NewStride != e; ++NewStride) {
1021      std::map<const SCEV *, IVsOfOneStride>::iterator SI =
1022                IVsByStride.find(IU->StrideOrder[NewStride]);
1023      if (SI == IVsByStride.end() || !isa<SCEVConstant>(SI->first) ||
1024          StrideNoReuse.count(SI->first))
1025        continue;
1026      // The other stride has no uses, don't reuse it.
1027      std::map<const SCEV *, IVUsersOfOneStride *>::iterator UI =
1028        IU->IVUsesByStride.find(IU->StrideOrder[NewStride]);
1029      if (UI->second->Users.empty())
1030        continue;
1031      int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue();
1032      if (SI->first != Stride &&
1033          (unsigned(abs64(SInt)) < SSInt || (SInt % SSInt) != 0))
1034        continue;
1035      int64_t Scale = SInt / SSInt;
1036      // Check that this stride is valid for all the types used for loads and
1037      // stores; if it can be used for some and not others, we might as well use
1038      // the original stride everywhere, since we have to create the IV for it
1039      // anyway. If the scale is 1, then we don't need to worry about folding
1040      // multiplications.
1041      if (Scale == 1 ||
1042          (AllUsesAreAddresses &&
1043           ValidScale(HasBaseReg, Scale, UsersToProcess))) {
1044        // Prefer to reuse an IV with a base of zero.
1045        for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
1046               IE = SI->second.IVs.end(); II != IE; ++II)
1047          // Only reuse previous IV if it would not require a type conversion
1048          // and if the base difference can be folded.
1049          if (II->Base->isZero() &&
1050              !RequiresTypeConversion(II->Base->getType(), Ty)) {
1051            IV = *II;
1052            return SE->getIntegerSCEV(Scale, Stride->getType());
1053          }
1054        // Otherwise, settle for an IV with a foldable base.
1055        if (AllUsesAreAddresses)
1056          for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
1057                 IE = SI->second.IVs.end(); II != IE; ++II)
1058            // Only reuse previous IV if it would not require a type conversion
1059            // and if the base difference can be folded.
1060            if (SE->getEffectiveSCEVType(II->Base->getType()) ==
1061                SE->getEffectiveSCEVType(Ty) &&
1062                isa<SCEVConstant>(II->Base)) {
1063              int64_t Base =
1064                cast<SCEVConstant>(II->Base)->getValue()->getSExtValue();
1065              if (Base > INT32_MIN && Base <= INT32_MAX &&
1066                  ValidOffset(HasBaseReg, -Base * Scale,
1067                              Scale, UsersToProcess)) {
1068                IV = *II;
1069                return SE->getIntegerSCEV(Scale, Stride->getType());
1070              }
1071            }
1072      }
1073    }
1074  } else if (AllUsesAreOutsideLoop) {
1075    // Accept nonconstant strides here; it is really really right to substitute
1076    // an existing IV if we can.
1077    for (unsigned NewStride = 0, e = IU->StrideOrder.size();
1078         NewStride != e; ++NewStride) {
1079      std::map<const SCEV *, IVsOfOneStride>::iterator SI =
1080                IVsByStride.find(IU->StrideOrder[NewStride]);
1081      if (SI == IVsByStride.end() || !isa<SCEVConstant>(SI->first))
1082        continue;
1083      int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue();
1084      if (SI->first != Stride && SSInt != 1)
1085        continue;
1086      for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
1087             IE = SI->second.IVs.end(); II != IE; ++II)
1088        // Accept nonzero base here.
1089        // Only reuse previous IV if it would not require a type conversion.
1090        if (!RequiresTypeConversion(II->Base->getType(), Ty)) {
1091          IV = *II;
1092          return Stride;
1093        }
1094    }
1095    // Special case, old IV is -1*x and this one is x.  Can treat this one as
1096    // -1*old.
1097    for (unsigned NewStride = 0, e = IU->StrideOrder.size();
1098         NewStride != e; ++NewStride) {
1099      std::map<const SCEV *, IVsOfOneStride>::iterator SI =
1100                IVsByStride.find(IU->StrideOrder[NewStride]);
1101      if (SI == IVsByStride.end())
1102        continue;
1103      if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(SI->first))
1104        if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(ME->getOperand(0)))
1105          if (Stride == ME->getOperand(1) &&
1106              SC->getValue()->getSExtValue() == -1LL)
1107            for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
1108                   IE = SI->second.IVs.end(); II != IE; ++II)
1109              // Accept nonzero base here.
1110              // Only reuse previous IV if it would not require type conversion.
1111              if (!RequiresTypeConversion(II->Base->getType(), Ty)) {
1112                IV = *II;
1113                return SE->getIntegerSCEV(-1LL, Stride->getType());
1114              }
1115    }
1116  }
1117  return SE->getIntegerSCEV(0, Stride->getType());
1118}
1119
1120/// PartitionByIsUseOfPostIncrementedValue - Simple boolean predicate that
1121/// returns true if Val's isUseOfPostIncrementedValue is true.
1122static bool PartitionByIsUseOfPostIncrementedValue(const BasedUser &Val) {
1123  return Val.isUseOfPostIncrementedValue;
1124}
1125
1126/// isNonConstantNegative - Return true if the specified scev is negated, but
1127/// not a constant.
1128static bool isNonConstantNegative(const SCEV *const &Expr) {
1129  const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Expr);
1130  if (!Mul) return false;
1131
1132  // If there is a constant factor, it will be first.
1133  const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
1134  if (!SC) return false;
1135
1136  // Return true if the value is negative, this matches things like (-42 * V).
1137  return SC->getValue()->getValue().isNegative();
1138}
1139
1140/// CollectIVUsers - Transform our list of users and offsets to a bit more
1141/// complex table. In this new vector, each 'BasedUser' contains 'Base', the
1142/// base of the strided accesses, as well as the old information from Uses. We
1143/// progressively move information from the Base field to the Imm field, until
1144/// we eventually have the full access expression to rewrite the use.
1145const SCEV *LoopStrengthReduce::CollectIVUsers(const SCEV *const &Stride,
1146                                              IVUsersOfOneStride &Uses,
1147                                              Loop *L,
1148                                              bool &AllUsesAreAddresses,
1149                                              bool &AllUsesAreOutsideLoop,
1150                                       std::vector<BasedUser> &UsersToProcess) {
1151  // FIXME: Generalize to non-affine IV's.
1152  if (!Stride->isLoopInvariant(L))
1153    return SE->getIntegerSCEV(0, Stride->getType());
1154
1155  UsersToProcess.reserve(Uses.Users.size());
1156  for (ilist<IVStrideUse>::iterator I = Uses.Users.begin(),
1157       E = Uses.Users.end(); I != E; ++I) {
1158    UsersToProcess.push_back(BasedUser(*I, SE));
1159
1160    // Move any loop variant operands from the offset field to the immediate
1161    // field of the use, so that we don't try to use something before it is
1162    // computed.
1163    MoveLoopVariantsToImmediateField(UsersToProcess.back().Base,
1164                                     UsersToProcess.back().Imm, L, SE);
1165    assert(UsersToProcess.back().Base->isLoopInvariant(L) &&
1166           "Base value is not loop invariant!");
1167  }
1168
1169  // We now have a whole bunch of uses of like-strided induction variables, but
1170  // they might all have different bases.  We want to emit one PHI node for this
1171  // stride which we fold as many common expressions (between the IVs) into as
1172  // possible.  Start by identifying the common expressions in the base values
1173  // for the strides (e.g. if we have "A+C+B" and "A+B+D" as our bases, find
1174  // "A+B"), emit it to the preheader, then remove the expression from the
1175  // UsersToProcess base values.
1176  const SCEV *CommonExprs =
1177    RemoveCommonExpressionsFromUseBases(UsersToProcess, SE, L, TLI);
1178
1179  // Next, figure out what we can represent in the immediate fields of
1180  // instructions.  If we can represent anything there, move it to the imm
1181  // fields of the BasedUsers.  We do this so that it increases the commonality
1182  // of the remaining uses.
1183  unsigned NumPHI = 0;
1184  bool HasAddress = false;
1185  for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) {
1186    // If the user is not in the current loop, this means it is using the exit
1187    // value of the IV.  Do not put anything in the base, make sure it's all in
1188    // the immediate field to allow as much factoring as possible.
1189    if (!L->contains(UsersToProcess[i].Inst->getParent())) {
1190      UsersToProcess[i].Imm = SE->getAddExpr(UsersToProcess[i].Imm,
1191                                             UsersToProcess[i].Base);
1192      UsersToProcess[i].Base =
1193        SE->getIntegerSCEV(0, UsersToProcess[i].Base->getType());
1194    } else {
1195      // Not all uses are outside the loop.
1196      AllUsesAreOutsideLoop = false;
1197
1198      // Addressing modes can be folded into loads and stores.  Be careful that
1199      // the store is through the expression, not of the expression though.
1200      bool isPHI = false;
1201      bool isAddress = isAddressUse(UsersToProcess[i].Inst,
1202                                    UsersToProcess[i].OperandValToReplace);
1203      if (isa<PHINode>(UsersToProcess[i].Inst)) {
1204        isPHI = true;
1205        ++NumPHI;
1206      }
1207
1208      if (isAddress)
1209        HasAddress = true;
1210
1211      // If this use isn't an address, then not all uses are addresses.
1212      if (!isAddress && !isPHI)
1213        AllUsesAreAddresses = false;
1214
1215      MoveImmediateValues(TLI, UsersToProcess[i].Inst, UsersToProcess[i].Base,
1216                          UsersToProcess[i].Imm, isAddress, L, SE);
1217    }
1218  }
1219
1220  // If one of the use is a PHI node and all other uses are addresses, still
1221  // allow iv reuse. Essentially we are trading one constant multiplication
1222  // for one fewer iv.
1223  if (NumPHI > 1)
1224    AllUsesAreAddresses = false;
1225
1226  // There are no in-loop address uses.
1227  if (AllUsesAreAddresses && (!HasAddress && !AllUsesAreOutsideLoop))
1228    AllUsesAreAddresses = false;
1229
1230  return CommonExprs;
1231}
1232
1233/// ShouldUseFullStrengthReductionMode - Test whether full strength-reduction
1234/// is valid and profitable for the given set of users of a stride. In
1235/// full strength-reduction mode, all addresses at the current stride are
1236/// strength-reduced all the way down to pointer arithmetic.
1237///
1238bool LoopStrengthReduce::ShouldUseFullStrengthReductionMode(
1239                                   const std::vector<BasedUser> &UsersToProcess,
1240                                   const Loop *L,
1241                                   bool AllUsesAreAddresses,
1242                                   const SCEV *Stride) {
1243  if (!EnableFullLSRMode)
1244    return false;
1245
1246  // The heuristics below aim to avoid increasing register pressure, but
1247  // fully strength-reducing all the addresses increases the number of
1248  // add instructions, so don't do this when optimizing for size.
1249  // TODO: If the loop is large, the savings due to simpler addresses
1250  // may oughtweight the costs of the extra increment instructions.
1251  if (L->getHeader()->getParent()->hasFnAttr(Attribute::OptimizeForSize))
1252    return false;
1253
1254  // TODO: For now, don't do full strength reduction if there could
1255  // potentially be greater-stride multiples of the current stride
1256  // which could reuse the current stride IV.
1257  if (IU->StrideOrder.back() != Stride)
1258    return false;
1259
1260  // Iterate through the uses to find conditions that automatically rule out
1261  // full-lsr mode.
1262  for (unsigned i = 0, e = UsersToProcess.size(); i != e; ) {
1263    const SCEV *Base = UsersToProcess[i].Base;
1264    const SCEV *Imm = UsersToProcess[i].Imm;
1265    // If any users have a loop-variant component, they can't be fully
1266    // strength-reduced.
1267    if (Imm && !Imm->isLoopInvariant(L))
1268      return false;
1269    // If there are to users with the same base and the difference between
1270    // the two Imm values can't be folded into the address, full
1271    // strength reduction would increase register pressure.
1272    do {
1273      const SCEV *CurImm = UsersToProcess[i].Imm;
1274      if ((CurImm || Imm) && CurImm != Imm) {
1275        if (!CurImm) CurImm = SE->getIntegerSCEV(0, Stride->getType());
1276        if (!Imm)       Imm = SE->getIntegerSCEV(0, Stride->getType());
1277        const Instruction *Inst = UsersToProcess[i].Inst;
1278        const Type *AccessTy = getAccessType(Inst);
1279        const SCEV *Diff = SE->getMinusSCEV(UsersToProcess[i].Imm, Imm);
1280        if (!Diff->isZero() &&
1281            (!AllUsesAreAddresses ||
1282             !fitsInAddressMode(Diff, AccessTy, TLI, /*HasBaseReg=*/true)))
1283          return false;
1284      }
1285    } while (++i != e && Base == UsersToProcess[i].Base);
1286  }
1287
1288  // If there's exactly one user in this stride, fully strength-reducing it
1289  // won't increase register pressure. If it's starting from a non-zero base,
1290  // it'll be simpler this way.
1291  if (UsersToProcess.size() == 1 && !UsersToProcess[0].Base->isZero())
1292    return true;
1293
1294  // Otherwise, if there are any users in this stride that don't require
1295  // a register for their base, full strength-reduction will increase
1296  // register pressure.
1297  for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i)
1298    if (UsersToProcess[i].Base->isZero())
1299      return false;
1300
1301  // Otherwise, go for it.
1302  return true;
1303}
1304
1305/// InsertAffinePhi Create and insert a PHI node for an induction variable
1306/// with the specified start and step values in the specified loop.
1307///
1308/// If NegateStride is true, the stride should be negated by using a
1309/// subtract instead of an add.
1310///
1311/// Return the created phi node.
1312///
1313static PHINode *InsertAffinePhi(const SCEV *Start, const SCEV *Step,
1314                                Instruction *IVIncInsertPt,
1315                                const Loop *L,
1316                                SCEVExpander &Rewriter) {
1317  assert(Start->isLoopInvariant(L) && "New PHI start is not loop invariant!");
1318  assert(Step->isLoopInvariant(L) && "New PHI stride is not loop invariant!");
1319
1320  BasicBlock *Header = L->getHeader();
1321  BasicBlock *Preheader = L->getLoopPreheader();
1322  BasicBlock *LatchBlock = L->getLoopLatch();
1323  const Type *Ty = Start->getType();
1324  Ty = Rewriter.SE.getEffectiveSCEVType(Ty);
1325
1326  PHINode *PN = PHINode::Create(Ty, "lsr.iv", Header->begin());
1327  PN->addIncoming(Rewriter.expandCodeFor(Start, Ty, Preheader->getTerminator()),
1328                  Preheader);
1329
1330  // If the stride is negative, insert a sub instead of an add for the
1331  // increment.
1332  bool isNegative = isNonConstantNegative(Step);
1333  const SCEV *IncAmount = Step;
1334  if (isNegative)
1335    IncAmount = Rewriter.SE.getNegativeSCEV(Step);
1336
1337  // Insert an add instruction right before the terminator corresponding
1338  // to the back-edge or just before the only use. The location is determined
1339  // by the caller and passed in as IVIncInsertPt.
1340  Value *StepV = Rewriter.expandCodeFor(IncAmount, Ty,
1341                                        Preheader->getTerminator());
1342  Instruction *IncV;
1343  if (isNegative) {
1344    IncV = BinaryOperator::CreateSub(PN, StepV, "lsr.iv.next",
1345                                     IVIncInsertPt);
1346  } else {
1347    IncV = BinaryOperator::CreateAdd(PN, StepV, "lsr.iv.next",
1348                                     IVIncInsertPt);
1349  }
1350  if (!isa<ConstantInt>(StepV)) ++NumVariable;
1351
1352  PN->addIncoming(IncV, LatchBlock);
1353
1354  ++NumInserted;
1355  return PN;
1356}
1357
1358static void SortUsersToProcess(std::vector<BasedUser> &UsersToProcess) {
1359  // We want to emit code for users inside the loop first.  To do this, we
1360  // rearrange BasedUser so that the entries at the end have
1361  // isUseOfPostIncrementedValue = false, because we pop off the end of the
1362  // vector (so we handle them first).
1363  std::partition(UsersToProcess.begin(), UsersToProcess.end(),
1364                 PartitionByIsUseOfPostIncrementedValue);
1365
1366  // Sort this by base, so that things with the same base are handled
1367  // together.  By partitioning first and stable-sorting later, we are
1368  // guaranteed that within each base we will pop off users from within the
1369  // loop before users outside of the loop with a particular base.
1370  //
1371  // We would like to use stable_sort here, but we can't.  The problem is that
1372  // const SCEV *'s don't have a deterministic ordering w.r.t to each other, so
1373  // we don't have anything to do a '<' comparison on.  Because we think the
1374  // number of uses is small, do a horrible bubble sort which just relies on
1375  // ==.
1376  for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) {
1377    // Get a base value.
1378    const SCEV *Base = UsersToProcess[i].Base;
1379
1380    // Compact everything with this base to be consecutive with this one.
1381    for (unsigned j = i+1; j != e; ++j) {
1382      if (UsersToProcess[j].Base == Base) {
1383        std::swap(UsersToProcess[i+1], UsersToProcess[j]);
1384        ++i;
1385      }
1386    }
1387  }
1388}
1389
1390/// PrepareToStrengthReduceFully - Prepare to fully strength-reduce
1391/// UsersToProcess, meaning lowering addresses all the way down to direct
1392/// pointer arithmetic.
1393///
1394void
1395LoopStrengthReduce::PrepareToStrengthReduceFully(
1396                                        std::vector<BasedUser> &UsersToProcess,
1397                                        const SCEV *Stride,
1398                                        const SCEV *CommonExprs,
1399                                        const Loop *L,
1400                                        SCEVExpander &PreheaderRewriter) {
1401  DEBUG(errs() << "  Fully reducing all users\n");
1402
1403  // Rewrite the UsersToProcess records, creating a separate PHI for each
1404  // unique Base value.
1405  Instruction *IVIncInsertPt = L->getLoopLatch()->getTerminator();
1406  for (unsigned i = 0, e = UsersToProcess.size(); i != e; ) {
1407    // TODO: The uses are grouped by base, but not sorted. We arbitrarily
1408    // pick the first Imm value here to start with, and adjust it for the
1409    // other uses.
1410    const SCEV *Imm = UsersToProcess[i].Imm;
1411    const SCEV *Base = UsersToProcess[i].Base;
1412    const SCEV *Start = SE->getAddExpr(CommonExprs, Base, Imm);
1413    PHINode *Phi = InsertAffinePhi(Start, Stride, IVIncInsertPt, L,
1414                                   PreheaderRewriter);
1415    // Loop over all the users with the same base.
1416    do {
1417      UsersToProcess[i].Base = SE->getIntegerSCEV(0, Stride->getType());
1418      UsersToProcess[i].Imm = SE->getMinusSCEV(UsersToProcess[i].Imm, Imm);
1419      UsersToProcess[i].Phi = Phi;
1420      assert(UsersToProcess[i].Imm->isLoopInvariant(L) &&
1421             "ShouldUseFullStrengthReductionMode should reject this!");
1422    } while (++i != e && Base == UsersToProcess[i].Base);
1423  }
1424}
1425
1426/// FindIVIncInsertPt - Return the location to insert the increment instruction.
1427/// If the only use if a use of postinc value, (must be the loop termination
1428/// condition), then insert it just before the use.
1429static Instruction *FindIVIncInsertPt(std::vector<BasedUser> &UsersToProcess,
1430                                      const Loop *L) {
1431  if (UsersToProcess.size() == 1 &&
1432      UsersToProcess[0].isUseOfPostIncrementedValue &&
1433      L->contains(UsersToProcess[0].Inst->getParent()))
1434    return UsersToProcess[0].Inst;
1435  return L->getLoopLatch()->getTerminator();
1436}
1437
1438/// PrepareToStrengthReduceWithNewPhi - Insert a new induction variable for the
1439/// given users to share.
1440///
1441void
1442LoopStrengthReduce::PrepareToStrengthReduceWithNewPhi(
1443                                         std::vector<BasedUser> &UsersToProcess,
1444                                         const SCEV *Stride,
1445                                         const SCEV *CommonExprs,
1446                                         Value *CommonBaseV,
1447                                         Instruction *IVIncInsertPt,
1448                                         const Loop *L,
1449                                         SCEVExpander &PreheaderRewriter) {
1450  DEBUG(errs() << "  Inserting new PHI:\n");
1451
1452  PHINode *Phi = InsertAffinePhi(SE->getUnknown(CommonBaseV),
1453                                 Stride, IVIncInsertPt, L,
1454                                 PreheaderRewriter);
1455
1456  // Remember this in case a later stride is multiple of this.
1457  IVsByStride[Stride].addIV(Stride, CommonExprs, Phi);
1458
1459  // All the users will share this new IV.
1460  for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i)
1461    UsersToProcess[i].Phi = Phi;
1462
1463  DEBUG(errs() << "    IV=");
1464  DEBUG(WriteAsOperand(errs(), Phi, /*PrintType=*/false));
1465  DEBUG(errs() << "\n");
1466}
1467
1468/// PrepareToStrengthReduceFromSmallerStride - Prepare for the given users to
1469/// reuse an induction variable with a stride that is a factor of the current
1470/// induction variable.
1471///
1472void
1473LoopStrengthReduce::PrepareToStrengthReduceFromSmallerStride(
1474                                         std::vector<BasedUser> &UsersToProcess,
1475                                         Value *CommonBaseV,
1476                                         const IVExpr &ReuseIV,
1477                                         Instruction *PreInsertPt) {
1478  DEBUG(errs() << "  Rewriting in terms of existing IV of STRIDE "
1479               << *ReuseIV.Stride << " and BASE " << *ReuseIV.Base << "\n");
1480
1481  // All the users will share the reused IV.
1482  for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i)
1483    UsersToProcess[i].Phi = ReuseIV.PHI;
1484
1485  Constant *C = dyn_cast<Constant>(CommonBaseV);
1486  if (C &&
1487      (!C->isNullValue() &&
1488       !fitsInAddressMode(SE->getUnknown(CommonBaseV), CommonBaseV->getType(),
1489                         TLI, false)))
1490    // We want the common base emitted into the preheader! This is just
1491    // using cast as a copy so BitCast (no-op cast) is appropriate
1492    CommonBaseV = new BitCastInst(CommonBaseV, CommonBaseV->getType(),
1493                                  "commonbase", PreInsertPt);
1494}
1495
1496static bool IsImmFoldedIntoAddrMode(GlobalValue *GV, int64_t Offset,
1497                                    const Type *AccessTy,
1498                                   std::vector<BasedUser> &UsersToProcess,
1499                                   const TargetLowering *TLI) {
1500  SmallVector<Instruction*, 16> AddrModeInsts;
1501  for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) {
1502    if (UsersToProcess[i].isUseOfPostIncrementedValue)
1503      continue;
1504    ExtAddrMode AddrMode =
1505      AddressingModeMatcher::Match(UsersToProcess[i].OperandValToReplace,
1506                                   AccessTy, UsersToProcess[i].Inst,
1507                                   AddrModeInsts, *TLI);
1508    if (GV && GV != AddrMode.BaseGV)
1509      return false;
1510    if (Offset && !AddrMode.BaseOffs)
1511      // FIXME: How to accurate check it's immediate offset is folded.
1512      return false;
1513    AddrModeInsts.clear();
1514  }
1515  return true;
1516}
1517
1518/// StrengthReduceIVUsersOfStride - Strength reduce all of the users of a single
1519/// stride of IV.  All of the users may have different starting values, and this
1520/// may not be the only stride.
1521void
1522LoopStrengthReduce::StrengthReduceIVUsersOfStride(const SCEV *const &Stride,
1523                                                  IVUsersOfOneStride &Uses,
1524                                                  Loop *L) {
1525  // If all the users are moved to another stride, then there is nothing to do.
1526  if (Uses.Users.empty())
1527    return;
1528
1529  // Keep track if every use in UsersToProcess is an address. If they all are,
1530  // we may be able to rewrite the entire collection of them in terms of a
1531  // smaller-stride IV.
1532  bool AllUsesAreAddresses = true;
1533
1534  // Keep track if every use of a single stride is outside the loop.  If so,
1535  // we want to be more aggressive about reusing a smaller-stride IV; a
1536  // multiply outside the loop is better than another IV inside.  Well, usually.
1537  bool AllUsesAreOutsideLoop = true;
1538
1539  // Transform our list of users and offsets to a bit more complex table.  In
1540  // this new vector, each 'BasedUser' contains 'Base' the base of the
1541  // strided accessas well as the old information from Uses.  We progressively
1542  // move information from the Base field to the Imm field, until we eventually
1543  // have the full access expression to rewrite the use.
1544  std::vector<BasedUser> UsersToProcess;
1545  const SCEV *CommonExprs = CollectIVUsers(Stride, Uses, L, AllUsesAreAddresses,
1546                                           AllUsesAreOutsideLoop,
1547                                           UsersToProcess);
1548
1549  // Sort the UsersToProcess array so that users with common bases are
1550  // next to each other.
1551  SortUsersToProcess(UsersToProcess);
1552
1553  // If we managed to find some expressions in common, we'll need to carry
1554  // their value in a register and add it in for each use. This will take up
1555  // a register operand, which potentially restricts what stride values are
1556  // valid.
1557  bool HaveCommonExprs = !CommonExprs->isZero();
1558  const Type *ReplacedTy = CommonExprs->getType();
1559
1560  // If all uses are addresses, consider sinking the immediate part of the
1561  // common expression back into uses if they can fit in the immediate fields.
1562  if (TLI && HaveCommonExprs && AllUsesAreAddresses) {
1563    const SCEV *NewCommon = CommonExprs;
1564    const SCEV *Imm = SE->getIntegerSCEV(0, ReplacedTy);
1565    MoveImmediateValues(TLI, Type::getVoidTy(
1566                        L->getLoopPreheader()->getContext()),
1567                        NewCommon, Imm, true, L, SE);
1568    if (!Imm->isZero()) {
1569      bool DoSink = true;
1570
1571      // If the immediate part of the common expression is a GV, check if it's
1572      // possible to fold it into the target addressing mode.
1573      GlobalValue *GV = 0;
1574      if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(Imm))
1575        GV = dyn_cast<GlobalValue>(SU->getValue());
1576      int64_t Offset = 0;
1577      if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Imm))
1578        Offset = SC->getValue()->getSExtValue();
1579      if (GV || Offset)
1580        // Pass VoidTy as the AccessTy to be conservative, because
1581        // there could be multiple access types among all the uses.
1582        DoSink = IsImmFoldedIntoAddrMode(GV, Offset,
1583                          Type::getVoidTy(L->getLoopPreheader()->getContext()),
1584                                         UsersToProcess, TLI);
1585
1586      if (DoSink) {
1587        DEBUG(errs() << "  Sinking " << *Imm << " back down into uses\n");
1588        for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i)
1589          UsersToProcess[i].Imm = SE->getAddExpr(UsersToProcess[i].Imm, Imm);
1590        CommonExprs = NewCommon;
1591        HaveCommonExprs = !CommonExprs->isZero();
1592        ++NumImmSunk;
1593      }
1594    }
1595  }
1596
1597  // Now that we know what we need to do, insert the PHI node itself.
1598  //
1599  DEBUG(errs() << "LSR: Examining IVs of TYPE " << *ReplacedTy << " of STRIDE "
1600               << *Stride << ":\n"
1601               << "  Common base: " << *CommonExprs << "\n");
1602
1603  SCEVExpander Rewriter(*SE);
1604  SCEVExpander PreheaderRewriter(*SE);
1605
1606  BasicBlock  *Preheader = L->getLoopPreheader();
1607  Instruction *PreInsertPt = Preheader->getTerminator();
1608  BasicBlock *LatchBlock = L->getLoopLatch();
1609  Instruction *IVIncInsertPt = LatchBlock->getTerminator();
1610
1611  Value *CommonBaseV = Constant::getNullValue(ReplacedTy);
1612
1613  const SCEV *RewriteFactor = SE->getIntegerSCEV(0, ReplacedTy);
1614  IVExpr   ReuseIV(SE->getIntegerSCEV(0,
1615                                    Type::getInt32Ty(Preheader->getContext())),
1616                   SE->getIntegerSCEV(0,
1617                                    Type::getInt32Ty(Preheader->getContext())),
1618                   0);
1619
1620  // Choose a strength-reduction strategy and prepare for it by creating
1621  // the necessary PHIs and adjusting the bookkeeping.
1622  if (ShouldUseFullStrengthReductionMode(UsersToProcess, L,
1623                                         AllUsesAreAddresses, Stride)) {
1624    PrepareToStrengthReduceFully(UsersToProcess, Stride, CommonExprs, L,
1625                                 PreheaderRewriter);
1626  } else {
1627    // Emit the initial base value into the loop preheader.
1628    CommonBaseV = PreheaderRewriter.expandCodeFor(CommonExprs, ReplacedTy,
1629                                                  PreInsertPt);
1630
1631    // If all uses are addresses, check if it is possible to reuse an IV.  The
1632    // new IV must have a stride that is a multiple of the old stride; the
1633    // multiple must be a number that can be encoded in the scale field of the
1634    // target addressing mode; and we must have a valid instruction after this
1635    // substitution, including the immediate field, if any.
1636    RewriteFactor = CheckForIVReuse(HaveCommonExprs, AllUsesAreAddresses,
1637                                    AllUsesAreOutsideLoop,
1638                                    Stride, ReuseIV, ReplacedTy,
1639                                    UsersToProcess);
1640    if (!RewriteFactor->isZero())
1641      PrepareToStrengthReduceFromSmallerStride(UsersToProcess, CommonBaseV,
1642                                               ReuseIV, PreInsertPt);
1643    else {
1644      IVIncInsertPt = FindIVIncInsertPt(UsersToProcess, L);
1645      PrepareToStrengthReduceWithNewPhi(UsersToProcess, Stride, CommonExprs,
1646                                        CommonBaseV, IVIncInsertPt,
1647                                        L, PreheaderRewriter);
1648    }
1649  }
1650
1651  // Process all the users now, replacing their strided uses with
1652  // strength-reduced forms.  This outer loop handles all bases, the inner
1653  // loop handles all users of a particular base.
1654  while (!UsersToProcess.empty()) {
1655    const SCEV *Base = UsersToProcess.back().Base;
1656    Instruction *Inst = UsersToProcess.back().Inst;
1657
1658    // Emit the code for Base into the preheader.
1659    Value *BaseV = 0;
1660    if (!Base->isZero()) {
1661      BaseV = PreheaderRewriter.expandCodeFor(Base, 0, PreInsertPt);
1662
1663      DEBUG(errs() << "  INSERTING code for BASE = " << *Base << ":");
1664      if (BaseV->hasName())
1665        DEBUG(errs() << " Result value name = %" << BaseV->getName());
1666      DEBUG(errs() << "\n");
1667
1668      // If BaseV is a non-zero constant, make sure that it gets inserted into
1669      // the preheader, instead of being forward substituted into the uses.  We
1670      // do this by forcing a BitCast (noop cast) to be inserted into the
1671      // preheader in this case.
1672      if (!fitsInAddressMode(Base, getAccessType(Inst), TLI, false) &&
1673          isa<Constant>(BaseV)) {
1674        // We want this constant emitted into the preheader! This is just
1675        // using cast as a copy so BitCast (no-op cast) is appropriate
1676        BaseV = new BitCastInst(BaseV, BaseV->getType(), "preheaderinsert",
1677                                PreInsertPt);
1678      }
1679    }
1680
1681    // Emit the code to add the immediate offset to the Phi value, just before
1682    // the instructions that we identified as using this stride and base.
1683    do {
1684      // FIXME: Use emitted users to emit other users.
1685      BasedUser &User = UsersToProcess.back();
1686
1687      DEBUG(errs() << "    Examining ");
1688      if (User.isUseOfPostIncrementedValue)
1689        DEBUG(errs() << "postinc");
1690      else
1691        DEBUG(errs() << "preinc");
1692      DEBUG(errs() << " use ");
1693      DEBUG(WriteAsOperand(errs(), UsersToProcess.back().OperandValToReplace,
1694                           /*PrintType=*/false));
1695      DEBUG(errs() << " in Inst: " << *User.Inst);
1696
1697      // If this instruction wants to use the post-incremented value, move it
1698      // after the post-inc and use its value instead of the PHI.
1699      Value *RewriteOp = User.Phi;
1700      if (User.isUseOfPostIncrementedValue) {
1701        RewriteOp = User.Phi->getIncomingValueForBlock(LatchBlock);
1702        // If this user is in the loop, make sure it is the last thing in the
1703        // loop to ensure it is dominated by the increment. In case it's the
1704        // only use of the iv, the increment instruction is already before the
1705        // use.
1706        if (L->contains(User.Inst->getParent()) && User.Inst != IVIncInsertPt)
1707          User.Inst->moveBefore(IVIncInsertPt);
1708      }
1709
1710      const SCEV *RewriteExpr = SE->getUnknown(RewriteOp);
1711
1712      if (SE->getEffectiveSCEVType(RewriteOp->getType()) !=
1713          SE->getEffectiveSCEVType(ReplacedTy)) {
1714        assert(SE->getTypeSizeInBits(RewriteOp->getType()) >
1715               SE->getTypeSizeInBits(ReplacedTy) &&
1716               "Unexpected widening cast!");
1717        RewriteExpr = SE->getTruncateExpr(RewriteExpr, ReplacedTy);
1718      }
1719
1720      // If we had to insert new instructions for RewriteOp, we have to
1721      // consider that they may not have been able to end up immediately
1722      // next to RewriteOp, because non-PHI instructions may never precede
1723      // PHI instructions in a block. In this case, remember where the last
1724      // instruction was inserted so that if we're replacing a different
1725      // PHI node, we can use the later point to expand the final
1726      // RewriteExpr.
1727      Instruction *NewBasePt = dyn_cast<Instruction>(RewriteOp);
1728      if (RewriteOp == User.Phi) NewBasePt = 0;
1729
1730      // Clear the SCEVExpander's expression map so that we are guaranteed
1731      // to have the code emitted where we expect it.
1732      Rewriter.clear();
1733
1734      // If we are reusing the iv, then it must be multiplied by a constant
1735      // factor to take advantage of the addressing mode scale component.
1736      if (!RewriteFactor->isZero()) {
1737        // If we're reusing an IV with a nonzero base (currently this happens
1738        // only when all reuses are outside the loop) subtract that base here.
1739        // The base has been used to initialize the PHI node but we don't want
1740        // it here.
1741        if (!ReuseIV.Base->isZero()) {
1742          const SCEV *typedBase = ReuseIV.Base;
1743          if (SE->getEffectiveSCEVType(RewriteExpr->getType()) !=
1744              SE->getEffectiveSCEVType(ReuseIV.Base->getType())) {
1745            // It's possible the original IV is a larger type than the new IV,
1746            // in which case we have to truncate the Base.  We checked in
1747            // RequiresTypeConversion that this is valid.
1748            assert(SE->getTypeSizeInBits(RewriteExpr->getType()) <
1749                   SE->getTypeSizeInBits(ReuseIV.Base->getType()) &&
1750                   "Unexpected lengthening conversion!");
1751            typedBase = SE->getTruncateExpr(ReuseIV.Base,
1752                                            RewriteExpr->getType());
1753          }
1754          RewriteExpr = SE->getMinusSCEV(RewriteExpr, typedBase);
1755        }
1756
1757        // Multiply old variable, with base removed, by new scale factor.
1758        RewriteExpr = SE->getMulExpr(RewriteFactor,
1759                                     RewriteExpr);
1760
1761        // The common base is emitted in the loop preheader. But since we
1762        // are reusing an IV, it has not been used to initialize the PHI node.
1763        // Add it to the expression used to rewrite the uses.
1764        // When this use is outside the loop, we earlier subtracted the
1765        // common base, and are adding it back here.  Use the same expression
1766        // as before, rather than CommonBaseV, so DAGCombiner will zap it.
1767        if (!CommonExprs->isZero()) {
1768          if (L->contains(User.Inst->getParent()))
1769            RewriteExpr = SE->getAddExpr(RewriteExpr,
1770                                       SE->getUnknown(CommonBaseV));
1771          else
1772            RewriteExpr = SE->getAddExpr(RewriteExpr, CommonExprs);
1773        }
1774      }
1775
1776      // Now that we know what we need to do, insert code before User for the
1777      // immediate and any loop-variant expressions.
1778      if (BaseV)
1779        // Add BaseV to the PHI value if needed.
1780        RewriteExpr = SE->getAddExpr(RewriteExpr, SE->getUnknown(BaseV));
1781
1782      User.RewriteInstructionToUseNewBase(RewriteExpr, NewBasePt,
1783                                          Rewriter, L, this, *LI,
1784                                          DeadInsts);
1785
1786      // Mark old value we replaced as possibly dead, so that it is eliminated
1787      // if we just replaced the last use of that value.
1788      DeadInsts.push_back(User.OperandValToReplace);
1789
1790      UsersToProcess.pop_back();
1791      ++NumReduced;
1792
1793      // If there are any more users to process with the same base, process them
1794      // now.  We sorted by base above, so we just have to check the last elt.
1795    } while (!UsersToProcess.empty() && UsersToProcess.back().Base == Base);
1796    // TODO: Next, find out which base index is the most common, pull it out.
1797  }
1798
1799  // IMPORTANT TODO: Figure out how to partition the IV's with this stride, but
1800  // different starting values, into different PHIs.
1801}
1802
1803void LoopStrengthReduce::StrengthReduceIVUsers(Loop *L) {
1804  // Note: this processes each stride/type pair individually.  All users
1805  // passed into StrengthReduceIVUsersOfStride have the same type AND stride.
1806  // Also, note that we iterate over IVUsesByStride indirectly by using
1807  // StrideOrder. This extra layer of indirection makes the ordering of
1808  // strides deterministic - not dependent on map order.
1809  for (unsigned Stride = 0, e = IU->StrideOrder.size(); Stride != e; ++Stride) {
1810    std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI =
1811      IU->IVUsesByStride.find(IU->StrideOrder[Stride]);
1812    assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!");
1813    // FIXME: Generalize to non-affine IV's.
1814    if (!SI->first->isLoopInvariant(L))
1815      continue;
1816    StrengthReduceIVUsersOfStride(SI->first, *SI->second, L);
1817  }
1818}
1819
1820/// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
1821/// set the IV user and stride information and return true, otherwise return
1822/// false.
1823bool LoopStrengthReduce::FindIVUserForCond(ICmpInst *Cond,
1824                                           IVStrideUse *&CondUse,
1825                                           const SCEV* &CondStride) {
1826  for (unsigned Stride = 0, e = IU->StrideOrder.size();
1827       Stride != e && !CondUse; ++Stride) {
1828    std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI =
1829      IU->IVUsesByStride.find(IU->StrideOrder[Stride]);
1830    assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!");
1831
1832    for (ilist<IVStrideUse>::iterator UI = SI->second->Users.begin(),
1833         E = SI->second->Users.end(); UI != E; ++UI)
1834      if (UI->getUser() == Cond) {
1835        // NOTE: we could handle setcc instructions with multiple uses here, but
1836        // InstCombine does it as well for simple uses, it's not clear that it
1837        // occurs enough in real life to handle.
1838        CondUse = UI;
1839        CondStride = SI->first;
1840        return true;
1841      }
1842  }
1843  return false;
1844}
1845
1846namespace {
1847  // Constant strides come first which in turns are sorted by their absolute
1848  // values. If absolute values are the same, then positive strides comes first.
1849  // e.g.
1850  // 4, -1, X, 1, 2 ==> 1, -1, 2, 4, X
1851  struct StrideCompare {
1852    const ScalarEvolution *SE;
1853    explicit StrideCompare(const ScalarEvolution *se) : SE(se) {}
1854
1855    bool operator()(const SCEV *const &LHS, const SCEV *const &RHS) {
1856      const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS);
1857      const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS);
1858      if (LHSC && RHSC) {
1859        int64_t  LV = LHSC->getValue()->getSExtValue();
1860        int64_t  RV = RHSC->getValue()->getSExtValue();
1861        uint64_t ALV = (LV < 0) ? -LV : LV;
1862        uint64_t ARV = (RV < 0) ? -RV : RV;
1863        if (ALV == ARV) {
1864          if (LV != RV)
1865            return LV > RV;
1866        } else {
1867          return ALV < ARV;
1868        }
1869
1870        // If it's the same value but different type, sort by bit width so
1871        // that we emit larger induction variables before smaller
1872        // ones, letting the smaller be re-written in terms of larger ones.
1873        return SE->getTypeSizeInBits(RHS->getType()) <
1874               SE->getTypeSizeInBits(LHS->getType());
1875      }
1876      return LHSC && !RHSC;
1877    }
1878  };
1879}
1880
1881/// ChangeCompareStride - If a loop termination compare instruction is the
1882/// only use of its stride, and the compaison is against a constant value,
1883/// try eliminate the stride by moving the compare instruction to another
1884/// stride and change its constant operand accordingly. e.g.
1885///
1886/// loop:
1887/// ...
1888/// v1 = v1 + 3
1889/// v2 = v2 + 1
1890/// if (v2 < 10) goto loop
1891/// =>
1892/// loop:
1893/// ...
1894/// v1 = v1 + 3
1895/// if (v1 < 30) goto loop
1896ICmpInst *LoopStrengthReduce::ChangeCompareStride(Loop *L, ICmpInst *Cond,
1897                                                  IVStrideUse* &CondUse,
1898                                                  const SCEV* &CondStride,
1899                                                  bool PostPass) {
1900  // If there's only one stride in the loop, there's nothing to do here.
1901  if (IU->StrideOrder.size() < 2)
1902    return Cond;
1903  // If there are other users of the condition's stride, don't bother
1904  // trying to change the condition because the stride will still
1905  // remain.
1906  std::map<const SCEV *, IVUsersOfOneStride *>::iterator I =
1907    IU->IVUsesByStride.find(CondStride);
1908  if (I == IU->IVUsesByStride.end())
1909    return Cond;
1910  if (I->second->Users.size() > 1) {
1911    for (ilist<IVStrideUse>::iterator II = I->second->Users.begin(),
1912           EE = I->second->Users.end(); II != EE; ++II) {
1913      if (II->getUser() == Cond)
1914        continue;
1915      if (!isInstructionTriviallyDead(II->getUser()))
1916        return Cond;
1917    }
1918  }
1919  // Only handle constant strides for now.
1920  const SCEVConstant *SC = dyn_cast<SCEVConstant>(CondStride);
1921  if (!SC) return Cond;
1922
1923  ICmpInst::Predicate Predicate = Cond->getPredicate();
1924  int64_t CmpSSInt = SC->getValue()->getSExtValue();
1925  unsigned BitWidth = SE->getTypeSizeInBits(CondStride->getType());
1926  uint64_t SignBit = 1ULL << (BitWidth-1);
1927  const Type *CmpTy = Cond->getOperand(0)->getType();
1928  const Type *NewCmpTy = NULL;
1929  unsigned TyBits = SE->getTypeSizeInBits(CmpTy);
1930  unsigned NewTyBits = 0;
1931  const SCEV *NewStride = NULL;
1932  Value *NewCmpLHS = NULL;
1933  Value *NewCmpRHS = NULL;
1934  int64_t Scale = 1;
1935  const SCEV *NewOffset = SE->getIntegerSCEV(0, CmpTy);
1936
1937  if (ConstantInt *C = dyn_cast<ConstantInt>(Cond->getOperand(1))) {
1938    int64_t CmpVal = C->getValue().getSExtValue();
1939
1940    // Check the relevant induction variable for conformance to
1941    // the pattern.
1942    const SCEV *IV = SE->getSCEV(Cond->getOperand(0));
1943    const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
1944    if (!AR || !AR->isAffine())
1945      return Cond;
1946
1947    const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
1948    // Check stride constant and the comparision constant signs to detect
1949    // overflow.
1950    if (StartC) {
1951      if ((StartC->getValue()->getSExtValue() < CmpVal && CmpSSInt < 0) ||
1952          (StartC->getValue()->getSExtValue() > CmpVal && CmpSSInt > 0))
1953        return Cond;
1954    } else {
1955      // More restrictive check for the other cases.
1956      if ((CmpVal & SignBit) != (CmpSSInt & SignBit))
1957        return Cond;
1958    }
1959
1960    // Look for a suitable stride / iv as replacement.
1961    for (unsigned i = 0, e = IU->StrideOrder.size(); i != e; ++i) {
1962      std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI =
1963        IU->IVUsesByStride.find(IU->StrideOrder[i]);
1964      if (!isa<SCEVConstant>(SI->first) || SI->second->Users.empty())
1965        continue;
1966      int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue();
1967      if (SSInt == CmpSSInt ||
1968          abs64(SSInt) < abs64(CmpSSInt) ||
1969          (SSInt % CmpSSInt) != 0)
1970        continue;
1971
1972      Scale = SSInt / CmpSSInt;
1973      int64_t NewCmpVal = CmpVal * Scale;
1974
1975      // If old icmp value fits in icmp immediate field, but the new one doesn't
1976      // try something else.
1977      if (TLI &&
1978          TLI->isLegalICmpImmediate(CmpVal) &&
1979          !TLI->isLegalICmpImmediate(NewCmpVal))
1980        continue;
1981
1982      APInt Mul = APInt(BitWidth*2, CmpVal, true);
1983      Mul = Mul * APInt(BitWidth*2, Scale, true);
1984      // Check for overflow.
1985      if (!Mul.isSignedIntN(BitWidth))
1986        continue;
1987      // Check for overflow in the stride's type too.
1988      if (!Mul.isSignedIntN(SE->getTypeSizeInBits(SI->first->getType())))
1989        continue;
1990
1991      // Watch out for overflow.
1992      if (ICmpInst::isSigned(Predicate) &&
1993          (CmpVal & SignBit) != (NewCmpVal & SignBit))
1994        continue;
1995
1996      // Pick the best iv to use trying to avoid a cast.
1997      NewCmpLHS = NULL;
1998      for (ilist<IVStrideUse>::iterator UI = SI->second->Users.begin(),
1999             E = SI->second->Users.end(); UI != E; ++UI) {
2000        Value *Op = UI->getOperandValToReplace();
2001
2002        // If the IVStrideUse implies a cast, check for an actual cast which
2003        // can be used to find the original IV expression.
2004        if (SE->getEffectiveSCEVType(Op->getType()) !=
2005            SE->getEffectiveSCEVType(SI->first->getType())) {
2006          CastInst *CI = dyn_cast<CastInst>(Op);
2007          // If it's not a simple cast, it's complicated.
2008          if (!CI)
2009            continue;
2010          // If it's a cast from a type other than the stride type,
2011          // it's complicated.
2012          if (CI->getOperand(0)->getType() != SI->first->getType())
2013            continue;
2014          // Ok, we found the IV expression in the stride's type.
2015          Op = CI->getOperand(0);
2016        }
2017
2018        NewCmpLHS = Op;
2019        if (NewCmpLHS->getType() == CmpTy)
2020          break;
2021      }
2022      if (!NewCmpLHS)
2023        continue;
2024
2025      NewCmpTy = NewCmpLHS->getType();
2026      NewTyBits = SE->getTypeSizeInBits(NewCmpTy);
2027      const Type *NewCmpIntTy = IntegerType::get(Cond->getContext(), NewTyBits);
2028      if (RequiresTypeConversion(NewCmpTy, CmpTy)) {
2029        // Check if it is possible to rewrite it using
2030        // an iv / stride of a smaller integer type.
2031        unsigned Bits = NewTyBits;
2032        if (ICmpInst::isSigned(Predicate))
2033          --Bits;
2034        uint64_t Mask = (1ULL << Bits) - 1;
2035        if (((uint64_t)NewCmpVal & Mask) != (uint64_t)NewCmpVal)
2036          continue;
2037      }
2038
2039      // Don't rewrite if use offset is non-constant and the new type is
2040      // of a different type.
2041      // FIXME: too conservative?
2042      if (NewTyBits != TyBits && !isa<SCEVConstant>(CondUse->getOffset()))
2043        continue;
2044
2045      if (!PostPass) {
2046        bool AllUsesAreAddresses = true;
2047        bool AllUsesAreOutsideLoop = true;
2048        std::vector<BasedUser> UsersToProcess;
2049        const SCEV *CommonExprs = CollectIVUsers(SI->first, *SI->second, L,
2050                                                 AllUsesAreAddresses,
2051                                                 AllUsesAreOutsideLoop,
2052                                                 UsersToProcess);
2053        // Avoid rewriting the compare instruction with an iv of new stride
2054        // if it's likely the new stride uses will be rewritten using the
2055        // stride of the compare instruction.
2056        if (AllUsesAreAddresses &&
2057            ValidScale(!CommonExprs->isZero(), Scale, UsersToProcess))
2058          continue;
2059      }
2060
2061      // Avoid rewriting the compare instruction with an iv which has
2062      // implicit extension or truncation built into it.
2063      // TODO: This is over-conservative.
2064      if (SE->getTypeSizeInBits(CondUse->getOffset()->getType()) != TyBits)
2065        continue;
2066
2067      // If scale is negative, use swapped predicate unless it's testing
2068      // for equality.
2069      if (Scale < 0 && !Cond->isEquality())
2070        Predicate = ICmpInst::getSwappedPredicate(Predicate);
2071
2072      NewStride = IU->StrideOrder[i];
2073      if (!isa<PointerType>(NewCmpTy))
2074        NewCmpRHS = ConstantInt::get(NewCmpTy, NewCmpVal);
2075      else {
2076        Constant *CI = ConstantInt::get(NewCmpIntTy, NewCmpVal);
2077        NewCmpRHS = ConstantExpr::getIntToPtr(CI, NewCmpTy);
2078      }
2079      NewOffset = TyBits == NewTyBits
2080        ? SE->getMulExpr(CondUse->getOffset(),
2081                         SE->getConstant(CmpTy, Scale))
2082        : SE->getConstant(NewCmpIntTy,
2083          cast<SCEVConstant>(CondUse->getOffset())->getValue()
2084            ->getSExtValue()*Scale);
2085      break;
2086    }
2087  }
2088
2089  // Forgo this transformation if it the increment happens to be
2090  // unfortunately positioned after the condition, and the condition
2091  // has multiple uses which prevent it from being moved immediately
2092  // before the branch. See
2093  // test/Transforms/LoopStrengthReduce/change-compare-stride-trickiness-*.ll
2094  // for an example of this situation.
2095  if (!Cond->hasOneUse()) {
2096    for (BasicBlock::iterator I = Cond, E = Cond->getParent()->end();
2097         I != E; ++I)
2098      if (I == NewCmpLHS)
2099        return Cond;
2100  }
2101
2102  if (NewCmpRHS) {
2103    // Create a new compare instruction using new stride / iv.
2104    ICmpInst *OldCond = Cond;
2105    // Insert new compare instruction.
2106    Cond = new ICmpInst(OldCond, Predicate, NewCmpLHS, NewCmpRHS,
2107                        L->getHeader()->getName() + ".termcond");
2108
2109    DEBUG(errs() << "    Change compare stride in Inst " << *OldCond);
2110    DEBUG(errs() << " to " << *Cond << '\n');
2111
2112    // Remove the old compare instruction. The old indvar is probably dead too.
2113    DeadInsts.push_back(CondUse->getOperandValToReplace());
2114    OldCond->replaceAllUsesWith(Cond);
2115    OldCond->eraseFromParent();
2116
2117    IU->IVUsesByStride[NewStride]->addUser(NewOffset, Cond, NewCmpLHS);
2118    CondUse = &IU->IVUsesByStride[NewStride]->Users.back();
2119    CondStride = NewStride;
2120    ++NumEliminated;
2121    Changed = true;
2122  }
2123
2124  return Cond;
2125}
2126
2127/// OptimizeMax - Rewrite the loop's terminating condition if it uses
2128/// a max computation.
2129///
2130/// This is a narrow solution to a specific, but acute, problem. For loops
2131/// like this:
2132///
2133///   i = 0;
2134///   do {
2135///     p[i] = 0.0;
2136///   } while (++i < n);
2137///
2138/// the trip count isn't just 'n', because 'n' might not be positive. And
2139/// unfortunately this can come up even for loops where the user didn't use
2140/// a C do-while loop. For example, seemingly well-behaved top-test loops
2141/// will commonly be lowered like this:
2142//
2143///   if (n > 0) {
2144///     i = 0;
2145///     do {
2146///       p[i] = 0.0;
2147///     } while (++i < n);
2148///   }
2149///
2150/// and then it's possible for subsequent optimization to obscure the if
2151/// test in such a way that indvars can't find it.
2152///
2153/// When indvars can't find the if test in loops like this, it creates a
2154/// max expression, which allows it to give the loop a canonical
2155/// induction variable:
2156///
2157///   i = 0;
2158///   max = n < 1 ? 1 : n;
2159///   do {
2160///     p[i] = 0.0;
2161///   } while (++i != max);
2162///
2163/// Canonical induction variables are necessary because the loop passes
2164/// are designed around them. The most obvious example of this is the
2165/// LoopInfo analysis, which doesn't remember trip count values. It
2166/// expects to be able to rediscover the trip count each time it is
2167/// needed, and it does this using a simple analyis that only succeeds if
2168/// the loop has a canonical induction variable.
2169///
2170/// However, when it comes time to generate code, the maximum operation
2171/// can be quite costly, especially if it's inside of an outer loop.
2172///
2173/// This function solves this problem by detecting this type of loop and
2174/// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2175/// the instructions for the maximum computation.
2176///
2177ICmpInst *LoopStrengthReduce::OptimizeMax(Loop *L, ICmpInst *Cond,
2178                                          IVStrideUse* &CondUse) {
2179  // Check that the loop matches the pattern we're looking for.
2180  if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
2181      Cond->getPredicate() != CmpInst::ICMP_NE)
2182    return Cond;
2183
2184  SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
2185  if (!Sel || !Sel->hasOneUse()) return Cond;
2186
2187  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
2188  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2189    return Cond;
2190  const SCEV *One = SE->getIntegerSCEV(1, BackedgeTakenCount->getType());
2191
2192  // Add one to the backedge-taken count to get the trip count.
2193  const SCEV *IterationCount = SE->getAddExpr(BackedgeTakenCount, One);
2194
2195  // Check for a max calculation that matches the pattern.
2196  if (!isa<SCEVSMaxExpr>(IterationCount) && !isa<SCEVUMaxExpr>(IterationCount))
2197    return Cond;
2198  const SCEVNAryExpr *Max = cast<SCEVNAryExpr>(IterationCount);
2199  if (Max != SE->getSCEV(Sel)) return Cond;
2200
2201  // To handle a max with more than two operands, this optimization would
2202  // require additional checking and setup.
2203  if (Max->getNumOperands() != 2)
2204    return Cond;
2205
2206  const SCEV *MaxLHS = Max->getOperand(0);
2207  const SCEV *MaxRHS = Max->getOperand(1);
2208  if (!MaxLHS || MaxLHS != One) return Cond;
2209
2210  // Check the relevant induction variable for conformance to
2211  // the pattern.
2212  const SCEV *IV = SE->getSCEV(Cond->getOperand(0));
2213  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2214  if (!AR || !AR->isAffine() ||
2215      AR->getStart() != One ||
2216      AR->getStepRecurrence(*SE) != One)
2217    return Cond;
2218
2219  assert(AR->getLoop() == L &&
2220         "Loop condition operand is an addrec in a different loop!");
2221
2222  // Check the right operand of the select, and remember it, as it will
2223  // be used in the new comparison instruction.
2224  Value *NewRHS = 0;
2225  if (SE->getSCEV(Sel->getOperand(1)) == MaxRHS)
2226    NewRHS = Sel->getOperand(1);
2227  else if (SE->getSCEV(Sel->getOperand(2)) == MaxRHS)
2228    NewRHS = Sel->getOperand(2);
2229  if (!NewRHS) return Cond;
2230
2231  // Determine the new comparison opcode. It may be signed or unsigned,
2232  // and the original comparison may be either equality or inequality.
2233  CmpInst::Predicate Pred =
2234    isa<SCEVSMaxExpr>(Max) ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
2235  if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2236    Pred = CmpInst::getInversePredicate(Pred);
2237
2238  // Ok, everything looks ok to change the condition into an SLT or SGE and
2239  // delete the max calculation.
2240  ICmpInst *NewCond =
2241    new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2242
2243  // Delete the max calculation instructions.
2244  Cond->replaceAllUsesWith(NewCond);
2245  CondUse->setUser(NewCond);
2246  Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2247  Cond->eraseFromParent();
2248  Sel->eraseFromParent();
2249  if (Cmp->use_empty())
2250    Cmp->eraseFromParent();
2251  return NewCond;
2252}
2253
2254/// OptimizeShadowIV - If IV is used in a int-to-float cast
2255/// inside the loop then try to eliminate the cast opeation.
2256void LoopStrengthReduce::OptimizeShadowIV(Loop *L) {
2257
2258  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
2259  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2260    return;
2261
2262  for (unsigned Stride = 0, e = IU->StrideOrder.size(); Stride != e;
2263       ++Stride) {
2264    std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI =
2265      IU->IVUsesByStride.find(IU->StrideOrder[Stride]);
2266    assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!");
2267    if (!isa<SCEVConstant>(SI->first))
2268      continue;
2269
2270    for (ilist<IVStrideUse>::iterator UI = SI->second->Users.begin(),
2271           E = SI->second->Users.end(); UI != E; /* empty */) {
2272      ilist<IVStrideUse>::iterator CandidateUI = UI;
2273      ++UI;
2274      Instruction *ShadowUse = CandidateUI->getUser();
2275      const Type *DestTy = NULL;
2276
2277      /* If shadow use is a int->float cast then insert a second IV
2278         to eliminate this cast.
2279
2280           for (unsigned i = 0; i < n; ++i)
2281             foo((double)i);
2282
2283         is transformed into
2284
2285           double d = 0.0;
2286           for (unsigned i = 0; i < n; ++i, ++d)
2287             foo(d);
2288      */
2289      if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser()))
2290        DestTy = UCast->getDestTy();
2291      else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser()))
2292        DestTy = SCast->getDestTy();
2293      if (!DestTy) continue;
2294
2295      if (TLI) {
2296        // If target does not support DestTy natively then do not apply
2297        // this transformation.
2298        EVT DVT = TLI->getValueType(DestTy);
2299        if (!TLI->isTypeLegal(DVT)) continue;
2300      }
2301
2302      PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
2303      if (!PH) continue;
2304      if (PH->getNumIncomingValues() != 2) continue;
2305
2306      const Type *SrcTy = PH->getType();
2307      int Mantissa = DestTy->getFPMantissaWidth();
2308      if (Mantissa == -1) continue;
2309      if ((int)SE->getTypeSizeInBits(SrcTy) > Mantissa)
2310        continue;
2311
2312      unsigned Entry, Latch;
2313      if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
2314        Entry = 0;
2315        Latch = 1;
2316      } else {
2317        Entry = 1;
2318        Latch = 0;
2319      }
2320
2321      ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
2322      if (!Init) continue;
2323      Constant *NewInit = ConstantFP::get(DestTy, Init->getZExtValue());
2324
2325      BinaryOperator *Incr =
2326        dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
2327      if (!Incr) continue;
2328      if (Incr->getOpcode() != Instruction::Add
2329          && Incr->getOpcode() != Instruction::Sub)
2330        continue;
2331
2332      /* Initialize new IV, double d = 0.0 in above example. */
2333      ConstantInt *C = NULL;
2334      if (Incr->getOperand(0) == PH)
2335        C = dyn_cast<ConstantInt>(Incr->getOperand(1));
2336      else if (Incr->getOperand(1) == PH)
2337        C = dyn_cast<ConstantInt>(Incr->getOperand(0));
2338      else
2339        continue;
2340
2341      if (!C) continue;
2342
2343      // Ignore negative constants, as the code below doesn't handle them
2344      // correctly. TODO: Remove this restriction.
2345      if (!C->getValue().isStrictlyPositive()) continue;
2346
2347      /* Add new PHINode. */
2348      PHINode *NewPH = PHINode::Create(DestTy, "IV.S.", PH);
2349
2350      /* create new increment. '++d' in above example. */
2351      Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
2352      BinaryOperator *NewIncr =
2353        BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
2354                                 Instruction::FAdd : Instruction::FSub,
2355                               NewPH, CFP, "IV.S.next.", Incr);
2356
2357      NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
2358      NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
2359
2360      /* Remove cast operation */
2361      ShadowUse->replaceAllUsesWith(NewPH);
2362      ShadowUse->eraseFromParent();
2363      NumShadow++;
2364      break;
2365    }
2366  }
2367}
2368
2369/// OptimizeIndvars - Now that IVUsesByStride is set up with all of the indvar
2370/// uses in the loop, look to see if we can eliminate some, in favor of using
2371/// common indvars for the different uses.
2372void LoopStrengthReduce::OptimizeIndvars(Loop *L) {
2373  // TODO: implement optzns here.
2374
2375  OptimizeShadowIV(L);
2376}
2377
2378bool LoopStrengthReduce::StrideMightBeShared(const SCEV* Stride, Loop *L,
2379                                             bool CheckPreInc) {
2380  int64_t SInt = cast<SCEVConstant>(Stride)->getValue()->getSExtValue();
2381  for (unsigned i = 0, e = IU->StrideOrder.size(); i != e; ++i) {
2382    std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI =
2383      IU->IVUsesByStride.find(IU->StrideOrder[i]);
2384    const SCEV *Share = SI->first;
2385    if (!isa<SCEVConstant>(SI->first) || Share == Stride)
2386      continue;
2387    int64_t SSInt = cast<SCEVConstant>(Share)->getValue()->getSExtValue();
2388    if (SSInt == SInt)
2389      return true; // This can definitely be reused.
2390    if (unsigned(abs64(SSInt)) < SInt || (SSInt % SInt) != 0)
2391      continue;
2392    int64_t Scale = SSInt / SInt;
2393    bool AllUsesAreAddresses = true;
2394    bool AllUsesAreOutsideLoop = true;
2395    std::vector<BasedUser> UsersToProcess;
2396    const SCEV *CommonExprs = CollectIVUsers(SI->first, *SI->second, L,
2397                                             AllUsesAreAddresses,
2398                                             AllUsesAreOutsideLoop,
2399                                             UsersToProcess);
2400    if (AllUsesAreAddresses &&
2401        ValidScale(!CommonExprs->isZero(), Scale, UsersToProcess)) {
2402      if (!CheckPreInc)
2403        return true;
2404      // Any pre-inc iv use?
2405      IVUsersOfOneStride &StrideUses = *IU->IVUsesByStride[Share];
2406      for (ilist<IVStrideUse>::iterator I = StrideUses.Users.begin(),
2407             E = StrideUses.Users.end(); I != E; ++I) {
2408        if (!I->isUseOfPostIncrementedValue())
2409          return true;
2410      }
2411    }
2412  }
2413  return false;
2414}
2415
2416/// isUsedByExitBranch - Return true if icmp is used by a loop terminating
2417/// conditional branch or it's and / or with other conditions before being used
2418/// as the condition.
2419static bool isUsedByExitBranch(ICmpInst *Cond, Loop *L) {
2420  BasicBlock *CondBB = Cond->getParent();
2421  if (!L->isLoopExiting(CondBB))
2422    return false;
2423  BranchInst *TermBr = dyn_cast<BranchInst>(CondBB->getTerminator());
2424  if (!TermBr || !TermBr->isConditional())
2425    return false;
2426
2427  Value *User = *Cond->use_begin();
2428  Instruction *UserInst = dyn_cast<Instruction>(User);
2429  while (UserInst &&
2430         (UserInst->getOpcode() == Instruction::And ||
2431          UserInst->getOpcode() == Instruction::Or)) {
2432    if (!UserInst->hasOneUse() || UserInst->getParent() != CondBB)
2433      return false;
2434    User = *User->use_begin();
2435    UserInst = dyn_cast<Instruction>(User);
2436  }
2437  return User == TermBr;
2438}
2439
2440static bool ShouldCountToZero(ICmpInst *Cond, IVStrideUse* &CondUse,
2441                              ScalarEvolution *SE, Loop *L,
2442                              const TargetLowering *TLI = 0) {
2443  if (!L->contains(Cond->getParent()))
2444    return false;
2445
2446  if (!isa<SCEVConstant>(CondUse->getOffset()))
2447    return false;
2448
2449  // Handle only tests for equality for the moment.
2450  if (!Cond->isEquality() || !Cond->hasOneUse())
2451    return false;
2452  if (!isUsedByExitBranch(Cond, L))
2453    return false;
2454
2455  Value *CondOp0 = Cond->getOperand(0);
2456  const SCEV *IV = SE->getSCEV(CondOp0);
2457  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2458  if (!AR || !AR->isAffine())
2459    return false;
2460
2461  const SCEVConstant *SC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
2462  if (!SC || SC->getValue()->getSExtValue() < 0)
2463    // If it's already counting down, don't do anything.
2464    return false;
2465
2466  // If the RHS of the comparison is not an loop invariant, the rewrite
2467  // cannot be done. Also bail out if it's already comparing against a zero.
2468  // If we are checking this before cmp stride optimization, check if it's
2469  // comparing against a already legal immediate.
2470  Value *RHS = Cond->getOperand(1);
2471  ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS);
2472  if (!L->isLoopInvariant(RHS) ||
2473      (RHSC && RHSC->isZero()) ||
2474      (RHSC && TLI && TLI->isLegalICmpImmediate(RHSC->getSExtValue())))
2475    return false;
2476
2477  // Make sure the IV is only used for counting.  Value may be preinc or
2478  // postinc; 2 uses in either case.
2479  if (!CondOp0->hasNUses(2))
2480    return false;
2481
2482  return true;
2483}
2484
2485/// OptimizeLoopTermCond - Change loop terminating condition to use the
2486/// postinc iv when possible.
2487void LoopStrengthReduce::OptimizeLoopTermCond(Loop *L) {
2488  BasicBlock *LatchBlock = L->getLoopLatch();
2489  bool LatchExit = L->isLoopExiting(LatchBlock);
2490  SmallVector<BasicBlock*, 8> ExitingBlocks;
2491  L->getExitingBlocks(ExitingBlocks);
2492
2493  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
2494    BasicBlock *ExitingBlock = ExitingBlocks[i];
2495
2496    // Finally, get the terminating condition for the loop if possible.  If we
2497    // can, we want to change it to use a post-incremented version of its
2498    // induction variable, to allow coalescing the live ranges for the IV into
2499    // one register value.
2500
2501    BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2502    if (!TermBr)
2503      continue;
2504    // FIXME: Overly conservative, termination condition could be an 'or' etc..
2505    if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2506      continue;
2507
2508    // Search IVUsesByStride to find Cond's IVUse if there is one.
2509    IVStrideUse *CondUse = 0;
2510    const SCEV *CondStride = 0;
2511    ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2512    if (!FindIVUserForCond(Cond, CondUse, CondStride))
2513      continue;
2514
2515    // If the latch block is exiting and it's not a single block loop, it's
2516    // not safe to use postinc iv in other exiting blocks. FIXME: overly
2517    // conservative? How about icmp stride optimization?
2518    bool UsePostInc =  !(e > 1 && LatchExit && ExitingBlock != LatchBlock);
2519    if (UsePostInc && ExitingBlock != LatchBlock) {
2520      if (!Cond->hasOneUse())
2521        // See below, we don't want the condition to be cloned.
2522        UsePostInc = false;
2523      else {
2524        // If exiting block is the latch block, we know it's safe and profitable
2525        // to transform the icmp to use post-inc iv. Otherwise do so only if it
2526        // would not reuse another iv and its iv would be reused by other uses.
2527        // We are optimizing for the case where the icmp is the only use of the
2528        // iv.
2529        IVUsersOfOneStride &StrideUses = *IU->IVUsesByStride[CondStride];
2530        for (ilist<IVStrideUse>::iterator I = StrideUses.Users.begin(),
2531               E = StrideUses.Users.end(); I != E; ++I) {
2532          if (I->getUser() == Cond)
2533            continue;
2534          if (!I->isUseOfPostIncrementedValue()) {
2535            UsePostInc = false;
2536            break;
2537          }
2538        }
2539      }
2540
2541      // If iv for the stride might be shared and any of the users use pre-inc
2542      // iv might be used, then it's not safe to use post-inc iv.
2543      if (UsePostInc &&
2544          isa<SCEVConstant>(CondStride) &&
2545          StrideMightBeShared(CondStride, L, true))
2546        UsePostInc = false;
2547    }
2548
2549    // If the trip count is computed in terms of a max (due to ScalarEvolution
2550    // being unable to find a sufficient guard, for example), change the loop
2551    // comparison to use SLT or ULT instead of NE.
2552    Cond = OptimizeMax(L, Cond, CondUse);
2553
2554    // If possible, change stride and operands of the compare instruction to
2555    // eliminate one stride. However, avoid rewriting the compare instruction
2556    // with an iv of new stride if it's likely the new stride uses will be
2557    // rewritten using the stride of the compare instruction.
2558    if (ExitingBlock == LatchBlock && isa<SCEVConstant>(CondStride)) {
2559      // If the condition stride is a constant and it's the only use, we might
2560      // want to optimize it first by turning it to count toward zero.
2561      if (!StrideMightBeShared(CondStride, L, false) &&
2562          !ShouldCountToZero(Cond, CondUse, SE, L, TLI))
2563        Cond = ChangeCompareStride(L, Cond, CondUse, CondStride);
2564    }
2565
2566    if (!UsePostInc)
2567      continue;
2568
2569    DEBUG(errs() << "  Change loop exiting icmp to use postinc iv: "
2570          << *Cond << '\n');
2571
2572    // It's possible for the setcc instruction to be anywhere in the loop, and
2573    // possible for it to have multiple users.  If it is not immediately before
2574    // the exiting block branch, move it.
2575    if (&*++BasicBlock::iterator(Cond) != (Instruction*)TermBr) {
2576      if (Cond->hasOneUse()) {   // Condition has a single use, just move it.
2577        Cond->moveBefore(TermBr);
2578      } else {
2579        // Otherwise, clone the terminating condition and insert into the
2580        // loopend.
2581        Cond = cast<ICmpInst>(Cond->clone());
2582        Cond->setName(L->getHeader()->getName() + ".termcond");
2583        ExitingBlock->getInstList().insert(TermBr, Cond);
2584
2585        // Clone the IVUse, as the old use still exists!
2586        IU->IVUsesByStride[CondStride]->addUser(CondUse->getOffset(), Cond,
2587                                             CondUse->getOperandValToReplace());
2588        CondUse = &IU->IVUsesByStride[CondStride]->Users.back();
2589      }
2590    }
2591
2592    // If we get to here, we know that we can transform the setcc instruction to
2593    // use the post-incremented version of the IV, allowing us to coalesce the
2594    // live ranges for the IV correctly.
2595    CondUse->setOffset(SE->getMinusSCEV(CondUse->getOffset(), CondStride));
2596    CondUse->setIsUseOfPostIncrementedValue(true);
2597    Changed = true;
2598
2599    ++NumLoopCond;
2600  }
2601}
2602
2603bool LoopStrengthReduce::OptimizeLoopCountIVOfStride(const SCEV* &Stride,
2604                                                     IVStrideUse* &CondUse,
2605                                                     Loop *L) {
2606  // If the only use is an icmp of a loop exiting conditional branch, then
2607  // attempt the optimization.
2608  BasedUser User = BasedUser(*CondUse, SE);
2609  assert(isa<ICmpInst>(User.Inst) && "Expecting an ICMPInst!");
2610  ICmpInst *Cond = cast<ICmpInst>(User.Inst);
2611
2612  // Less strict check now that compare stride optimization is done.
2613  if (!ShouldCountToZero(Cond, CondUse, SE, L))
2614    return false;
2615
2616  Value *CondOp0 = Cond->getOperand(0);
2617  PHINode *PHIExpr = dyn_cast<PHINode>(CondOp0);
2618  Instruction *Incr;
2619  if (!PHIExpr) {
2620    // Value tested is postinc. Find the phi node.
2621    Incr = dyn_cast<BinaryOperator>(CondOp0);
2622    // FIXME: Just use User.OperandValToReplace here?
2623    if (!Incr || Incr->getOpcode() != Instruction::Add)
2624      return false;
2625
2626    PHIExpr = dyn_cast<PHINode>(Incr->getOperand(0));
2627    if (!PHIExpr)
2628      return false;
2629    // 1 use for preinc value, the increment.
2630    if (!PHIExpr->hasOneUse())
2631      return false;
2632  } else {
2633    assert(isa<PHINode>(CondOp0) &&
2634           "Unexpected loop exiting counting instruction sequence!");
2635    PHIExpr = cast<PHINode>(CondOp0);
2636    // Value tested is preinc.  Find the increment.
2637    // A CmpInst is not a BinaryOperator; we depend on this.
2638    Instruction::use_iterator UI = PHIExpr->use_begin();
2639    Incr = dyn_cast<BinaryOperator>(UI);
2640    if (!Incr)
2641      Incr = dyn_cast<BinaryOperator>(++UI);
2642    // One use for postinc value, the phi.  Unnecessarily conservative?
2643    if (!Incr || !Incr->hasOneUse() || Incr->getOpcode() != Instruction::Add)
2644      return false;
2645  }
2646
2647  // Replace the increment with a decrement.
2648  DEBUG(errs() << "LSR: Examining use ");
2649  DEBUG(WriteAsOperand(errs(), CondOp0, /*PrintType=*/false));
2650  DEBUG(errs() << " in Inst: " << *Cond << '\n');
2651  BinaryOperator *Decr =  BinaryOperator::Create(Instruction::Sub,
2652                         Incr->getOperand(0), Incr->getOperand(1), "tmp", Incr);
2653  Incr->replaceAllUsesWith(Decr);
2654  Incr->eraseFromParent();
2655
2656  // Substitute endval-startval for the original startval, and 0 for the
2657  // original endval.  Since we're only testing for equality this is OK even
2658  // if the computation wraps around.
2659  BasicBlock  *Preheader = L->getLoopPreheader();
2660  Instruction *PreInsertPt = Preheader->getTerminator();
2661  unsigned InBlock = L->contains(PHIExpr->getIncomingBlock(0)) ? 1 : 0;
2662  Value *StartVal = PHIExpr->getIncomingValue(InBlock);
2663  Value *EndVal = Cond->getOperand(1);
2664  DEBUG(errs() << "    Optimize loop counting iv to count down ["
2665        << *EndVal << " .. " << *StartVal << "]\n");
2666
2667  // FIXME: check for case where both are constant.
2668  Constant* Zero = ConstantInt::get(Cond->getOperand(1)->getType(), 0);
2669  BinaryOperator *NewStartVal = BinaryOperator::Create(Instruction::Sub,
2670                                          EndVal, StartVal, "tmp", PreInsertPt);
2671  PHIExpr->setIncomingValue(InBlock, NewStartVal);
2672  Cond->setOperand(1, Zero);
2673  DEBUG(errs() << "    New icmp: " << *Cond << "\n");
2674
2675  int64_t SInt = cast<SCEVConstant>(Stride)->getValue()->getSExtValue();
2676  const SCEV *NewStride = 0;
2677  bool Found = false;
2678  for (unsigned i = 0, e = IU->StrideOrder.size(); i != e; ++i) {
2679    const SCEV *OldStride = IU->StrideOrder[i];
2680    if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OldStride))
2681      if (SC->getValue()->getSExtValue() == -SInt) {
2682        Found = true;
2683        NewStride = OldStride;
2684        break;
2685      }
2686  }
2687
2688  if (!Found)
2689    NewStride = SE->getIntegerSCEV(-SInt, Stride->getType());
2690  IU->AddUser(NewStride, CondUse->getOffset(), Cond, Cond->getOperand(0));
2691  IU->IVUsesByStride[Stride]->removeUser(CondUse);
2692
2693  CondUse = &IU->IVUsesByStride[NewStride]->Users.back();
2694  Stride = NewStride;
2695
2696  ++NumCountZero;
2697
2698  return true;
2699}
2700
2701/// OptimizeLoopCountIV - If, after all sharing of IVs, the IV used for deciding
2702/// when to exit the loop is used only for that purpose, try to rearrange things
2703/// so it counts down to a test against zero.
2704bool LoopStrengthReduce::OptimizeLoopCountIV(Loop *L) {
2705  bool ThisChanged = false;
2706  for (unsigned i = 0, e = IU->StrideOrder.size(); i != e; ++i) {
2707    const SCEV *Stride = IU->StrideOrder[i];
2708    std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI =
2709      IU->IVUsesByStride.find(Stride);
2710    assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!");
2711    // FIXME: Generalize to non-affine IV's.
2712    if (!SI->first->isLoopInvariant(L))
2713      continue;
2714    // If stride is a constant and it has an icmpinst use, check if we can
2715    // optimize the loop to count down.
2716    if (isa<SCEVConstant>(Stride) && SI->second->Users.size() == 1) {
2717      Instruction *User = SI->second->Users.begin()->getUser();
2718      if (!isa<ICmpInst>(User))
2719        continue;
2720      const SCEV *CondStride = Stride;
2721      IVStrideUse *Use = &*SI->second->Users.begin();
2722      if (!OptimizeLoopCountIVOfStride(CondStride, Use, L))
2723        continue;
2724      ThisChanged = true;
2725
2726      // Now check if it's possible to reuse this iv for other stride uses.
2727      for (unsigned j = 0, ee = IU->StrideOrder.size(); j != ee; ++j) {
2728        const SCEV *SStride = IU->StrideOrder[j];
2729        if (SStride == CondStride)
2730          continue;
2731        std::map<const SCEV *, IVUsersOfOneStride *>::iterator SII =
2732          IU->IVUsesByStride.find(SStride);
2733        assert(SII != IU->IVUsesByStride.end() && "Stride doesn't exist!");
2734        // FIXME: Generalize to non-affine IV's.
2735        if (!SII->first->isLoopInvariant(L))
2736          continue;
2737        // FIXME: Rewrite other stride using CondStride.
2738      }
2739    }
2740  }
2741
2742  Changed |= ThisChanged;
2743  return ThisChanged;
2744}
2745
2746bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager &LPM) {
2747  IU = &getAnalysis<IVUsers>();
2748  LI = &getAnalysis<LoopInfo>();
2749  DT = &getAnalysis<DominatorTree>();
2750  SE = &getAnalysis<ScalarEvolution>();
2751  Changed = false;
2752
2753  // If LoopSimplify form is not available, stay out of trouble.
2754  if (!L->getLoopPreheader() || !L->getLoopLatch())
2755    return false;
2756
2757  if (!IU->IVUsesByStride.empty()) {
2758    DEBUG(errs() << "\nLSR on \"" << L->getHeader()->getParent()->getName()
2759          << "\" ";
2760          L->dump());
2761
2762    // Sort the StrideOrder so we process larger strides first.
2763    std::stable_sort(IU->StrideOrder.begin(), IU->StrideOrder.end(),
2764                     StrideCompare(SE));
2765
2766    // Optimize induction variables.  Some indvar uses can be transformed to use
2767    // strides that will be needed for other purposes.  A common example of this
2768    // is the exit test for the loop, which can often be rewritten to use the
2769    // computation of some other indvar to decide when to terminate the loop.
2770    OptimizeIndvars(L);
2771
2772    // Change loop terminating condition to use the postinc iv when possible
2773    // and optimize loop terminating compare. FIXME: Move this after
2774    // StrengthReduceIVUsersOfStride?
2775    OptimizeLoopTermCond(L);
2776
2777    // FIXME: We can shrink overlarge IV's here.  e.g. if the code has
2778    // computation in i64 values and the target doesn't support i64, demote
2779    // the computation to 32-bit if safe.
2780
2781    // FIXME: Attempt to reuse values across multiple IV's.  In particular, we
2782    // could have something like "for(i) { foo(i*8); bar(i*16) }", which should
2783    // be codegened as "for (j = 0;; j+=8) { foo(j); bar(j+j); }" on X86/PPC.
2784    // Need to be careful that IV's are all the same type.  Only works for
2785    // intptr_t indvars.
2786
2787    // IVsByStride keeps IVs for one particular loop.
2788    assert(IVsByStride.empty() && "Stale entries in IVsByStride?");
2789
2790    StrengthReduceIVUsers(L);
2791
2792    // After all sharing is done, see if we can adjust the loop to test against
2793    // zero instead of counting up to a maximum.  This is usually faster.
2794    OptimizeLoopCountIV(L);
2795  }
2796
2797  // We're done analyzing this loop; release all the state we built up for it.
2798  IVsByStride.clear();
2799  StrideNoReuse.clear();
2800
2801  // Clean up after ourselves
2802  if (!DeadInsts.empty())
2803    DeleteTriviallyDeadInstructions();
2804
2805  // At this point, it is worth checking to see if any recurrence PHIs are also
2806  // dead, so that we can remove them as well.
2807  DeleteDeadPHIs(L->getHeader());
2808
2809  return Changed;
2810}
2811