LoopStrengthReduce.cpp revision 194710
1//===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into forms suitable for efficient execution
12// on the target.
13//
14// This pass performs a strength reduction on array references inside loops that
15// have as one or more of their components the loop induction variable, it
16// rewrites expressions to take advantage of scaled-index addressing modes
17// available on the target, and it performs a variety of other optimizations
18// related to loop induction variables.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "loop-reduce"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/Constants.h"
25#include "llvm/Instructions.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/Type.h"
28#include "llvm/DerivedTypes.h"
29#include "llvm/Analysis/Dominators.h"
30#include "llvm/Analysis/IVUsers.h"
31#include "llvm/Analysis/LoopInfo.h"
32#include "llvm/Analysis/LoopPass.h"
33#include "llvm/Analysis/ScalarEvolutionExpander.h"
34#include "llvm/Transforms/Utils/AddrModeMatcher.h"
35#include "llvm/Transforms/Utils/BasicBlockUtils.h"
36#include "llvm/Transforms/Utils/Local.h"
37#include "llvm/ADT/Statistic.h"
38#include "llvm/Support/CFG.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/Compiler.h"
41#include "llvm/Support/CommandLine.h"
42#include "llvm/Support/ValueHandle.h"
43#include "llvm/Target/TargetLowering.h"
44#include <algorithm>
45using namespace llvm;
46
47STATISTIC(NumReduced ,    "Number of IV uses strength reduced");
48STATISTIC(NumInserted,    "Number of PHIs inserted");
49STATISTIC(NumVariable,    "Number of PHIs with variable strides");
50STATISTIC(NumEliminated,  "Number of strides eliminated");
51STATISTIC(NumShadow,      "Number of Shadow IVs optimized");
52STATISTIC(NumImmSunk,     "Number of common expr immediates sunk into uses");
53STATISTIC(NumLoopCond,    "Number of loop terminating conds optimized");
54
55static cl::opt<bool> EnableFullLSRMode("enable-full-lsr",
56                                       cl::init(false),
57                                       cl::Hidden);
58
59namespace {
60
61  struct BasedUser;
62
63  /// IVInfo - This structure keeps track of one IV expression inserted during
64  /// StrengthReduceStridedIVUsers. It contains the stride, the common base, as
65  /// well as the PHI node and increment value created for rewrite.
66  struct VISIBILITY_HIDDEN IVExpr {
67    const SCEV*  Stride;
68    const SCEV*  Base;
69    PHINode    *PHI;
70
71    IVExpr(const SCEV* const stride, const SCEV* const base, PHINode *phi)
72      : Stride(stride), Base(base), PHI(phi) {}
73  };
74
75  /// IVsOfOneStride - This structure keeps track of all IV expression inserted
76  /// during StrengthReduceStridedIVUsers for a particular stride of the IV.
77  struct VISIBILITY_HIDDEN IVsOfOneStride {
78    std::vector<IVExpr> IVs;
79
80    void addIV(const SCEV* const Stride, const SCEV* const Base, PHINode *PHI) {
81      IVs.push_back(IVExpr(Stride, Base, PHI));
82    }
83  };
84
85  class VISIBILITY_HIDDEN LoopStrengthReduce : public LoopPass {
86    IVUsers *IU;
87    LoopInfo *LI;
88    DominatorTree *DT;
89    ScalarEvolution *SE;
90    bool Changed;
91
92    /// IVsByStride - Keep track of all IVs that have been inserted for a
93    /// particular stride.
94    std::map<const SCEV*, IVsOfOneStride> IVsByStride;
95
96    /// StrideNoReuse - Keep track of all the strides whose ivs cannot be
97    /// reused (nor should they be rewritten to reuse other strides).
98    SmallSet<const SCEV*, 4> StrideNoReuse;
99
100    /// DeadInsts - Keep track of instructions we may have made dead, so that
101    /// we can remove them after we are done working.
102    SmallVector<WeakVH, 16> DeadInsts;
103
104    /// TLI - Keep a pointer of a TargetLowering to consult for determining
105    /// transformation profitability.
106    const TargetLowering *TLI;
107
108  public:
109    static char ID; // Pass ID, replacement for typeid
110    explicit LoopStrengthReduce(const TargetLowering *tli = NULL) :
111      LoopPass(&ID), TLI(tli) {
112    }
113
114    bool runOnLoop(Loop *L, LPPassManager &LPM);
115
116    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
117      // We split critical edges, so we change the CFG.  However, we do update
118      // many analyses if they are around.
119      AU.addPreservedID(LoopSimplifyID);
120      AU.addPreserved<LoopInfo>();
121      AU.addPreserved<DominanceFrontier>();
122      AU.addPreserved<DominatorTree>();
123
124      AU.addRequiredID(LoopSimplifyID);
125      AU.addRequired<LoopInfo>();
126      AU.addRequired<DominatorTree>();
127      AU.addRequired<ScalarEvolution>();
128      AU.addPreserved<ScalarEvolution>();
129      AU.addRequired<IVUsers>();
130      AU.addPreserved<IVUsers>();
131    }
132
133  private:
134    ICmpInst *ChangeCompareStride(Loop *L, ICmpInst *Cond,
135                                  IVStrideUse* &CondUse,
136                                  const SCEV* const *  &CondStride);
137
138    void OptimizeIndvars(Loop *L);
139    void OptimizeLoopCountIV(Loop *L);
140    void OptimizeLoopTermCond(Loop *L);
141
142    /// OptimizeShadowIV - If IV is used in a int-to-float cast
143    /// inside the loop then try to eliminate the cast opeation.
144    void OptimizeShadowIV(Loop *L);
145
146    /// OptimizeMax - Rewrite the loop's terminating condition
147    /// if it uses a max computation.
148    ICmpInst *OptimizeMax(Loop *L, ICmpInst *Cond,
149                          IVStrideUse* &CondUse);
150
151    bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse,
152                           const SCEV* const * &CondStride);
153    bool RequiresTypeConversion(const Type *Ty, const Type *NewTy);
154    const SCEV* CheckForIVReuse(bool, bool, bool, const SCEV* const&,
155                             IVExpr&, const Type*,
156                             const std::vector<BasedUser>& UsersToProcess);
157    bool ValidScale(bool, int64_t,
158                    const std::vector<BasedUser>& UsersToProcess);
159    bool ValidOffset(bool, int64_t, int64_t,
160                     const std::vector<BasedUser>& UsersToProcess);
161    const SCEV* CollectIVUsers(const SCEV* const &Stride,
162                              IVUsersOfOneStride &Uses,
163                              Loop *L,
164                              bool &AllUsesAreAddresses,
165                              bool &AllUsesAreOutsideLoop,
166                              std::vector<BasedUser> &UsersToProcess);
167    bool ShouldUseFullStrengthReductionMode(
168                                const std::vector<BasedUser> &UsersToProcess,
169                                const Loop *L,
170                                bool AllUsesAreAddresses,
171                                const SCEV* Stride);
172    void PrepareToStrengthReduceFully(
173                             std::vector<BasedUser> &UsersToProcess,
174                             const SCEV* Stride,
175                             const SCEV* CommonExprs,
176                             const Loop *L,
177                             SCEVExpander &PreheaderRewriter);
178    void PrepareToStrengthReduceFromSmallerStride(
179                                         std::vector<BasedUser> &UsersToProcess,
180                                         Value *CommonBaseV,
181                                         const IVExpr &ReuseIV,
182                                         Instruction *PreInsertPt);
183    void PrepareToStrengthReduceWithNewPhi(
184                                  std::vector<BasedUser> &UsersToProcess,
185                                  const SCEV* Stride,
186                                  const SCEV* CommonExprs,
187                                  Value *CommonBaseV,
188                                  Instruction *IVIncInsertPt,
189                                  const Loop *L,
190                                  SCEVExpander &PreheaderRewriter);
191    void StrengthReduceStridedIVUsers(const SCEV* const &Stride,
192                                      IVUsersOfOneStride &Uses,
193                                      Loop *L);
194    void DeleteTriviallyDeadInstructions();
195  };
196}
197
198char LoopStrengthReduce::ID = 0;
199static RegisterPass<LoopStrengthReduce>
200X("loop-reduce", "Loop Strength Reduction");
201
202Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
203  return new LoopStrengthReduce(TLI);
204}
205
206/// DeleteTriviallyDeadInstructions - If any of the instructions is the
207/// specified set are trivially dead, delete them and see if this makes any of
208/// their operands subsequently dead.
209void LoopStrengthReduce::DeleteTriviallyDeadInstructions() {
210  if (DeadInsts.empty()) return;
211
212  while (!DeadInsts.empty()) {
213    Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.back());
214    DeadInsts.pop_back();
215
216    if (I == 0 || !isInstructionTriviallyDead(I))
217      continue;
218
219    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) {
220      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
221        *OI = 0;
222        if (U->use_empty())
223          DeadInsts.push_back(U);
224      }
225    }
226
227    I->eraseFromParent();
228    Changed = true;
229  }
230}
231
232/// containsAddRecFromDifferentLoop - Determine whether expression S involves a
233/// subexpression that is an AddRec from a loop other than L.  An outer loop
234/// of L is OK, but not an inner loop nor a disjoint loop.
235static bool containsAddRecFromDifferentLoop(const SCEV* S, Loop *L) {
236  // This is very common, put it first.
237  if (isa<SCEVConstant>(S))
238    return false;
239  if (const SCEVCommutativeExpr *AE = dyn_cast<SCEVCommutativeExpr>(S)) {
240    for (unsigned int i=0; i< AE->getNumOperands(); i++)
241      if (containsAddRecFromDifferentLoop(AE->getOperand(i), L))
242        return true;
243    return false;
244  }
245  if (const SCEVAddRecExpr *AE = dyn_cast<SCEVAddRecExpr>(S)) {
246    if (const Loop *newLoop = AE->getLoop()) {
247      if (newLoop == L)
248        return false;
249      // if newLoop is an outer loop of L, this is OK.
250      if (!LoopInfoBase<BasicBlock>::isNotAlreadyContainedIn(L, newLoop))
251        return false;
252    }
253    return true;
254  }
255  if (const SCEVUDivExpr *DE = dyn_cast<SCEVUDivExpr>(S))
256    return containsAddRecFromDifferentLoop(DE->getLHS(), L) ||
257           containsAddRecFromDifferentLoop(DE->getRHS(), L);
258#if 0
259  // SCEVSDivExpr has been backed out temporarily, but will be back; we'll
260  // need this when it is.
261  if (const SCEVSDivExpr *DE = dyn_cast<SCEVSDivExpr>(S))
262    return containsAddRecFromDifferentLoop(DE->getLHS(), L) ||
263           containsAddRecFromDifferentLoop(DE->getRHS(), L);
264#endif
265  if (const SCEVCastExpr *CE = dyn_cast<SCEVCastExpr>(S))
266    return containsAddRecFromDifferentLoop(CE->getOperand(), L);
267  return false;
268}
269
270/// isAddressUse - Returns true if the specified instruction is using the
271/// specified value as an address.
272static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
273  bool isAddress = isa<LoadInst>(Inst);
274  if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
275    if (SI->getOperand(1) == OperandVal)
276      isAddress = true;
277  } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
278    // Addressing modes can also be folded into prefetches and a variety
279    // of intrinsics.
280    switch (II->getIntrinsicID()) {
281      default: break;
282      case Intrinsic::prefetch:
283      case Intrinsic::x86_sse2_loadu_dq:
284      case Intrinsic::x86_sse2_loadu_pd:
285      case Intrinsic::x86_sse_loadu_ps:
286      case Intrinsic::x86_sse_storeu_ps:
287      case Intrinsic::x86_sse2_storeu_pd:
288      case Intrinsic::x86_sse2_storeu_dq:
289      case Intrinsic::x86_sse2_storel_dq:
290        if (II->getOperand(1) == OperandVal)
291          isAddress = true;
292        break;
293    }
294  }
295  return isAddress;
296}
297
298/// getAccessType - Return the type of the memory being accessed.
299static const Type *getAccessType(const Instruction *Inst) {
300  const Type *AccessTy = Inst->getType();
301  if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
302    AccessTy = SI->getOperand(0)->getType();
303  else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
304    // Addressing modes can also be folded into prefetches and a variety
305    // of intrinsics.
306    switch (II->getIntrinsicID()) {
307    default: break;
308    case Intrinsic::x86_sse_storeu_ps:
309    case Intrinsic::x86_sse2_storeu_pd:
310    case Intrinsic::x86_sse2_storeu_dq:
311    case Intrinsic::x86_sse2_storel_dq:
312      AccessTy = II->getOperand(1)->getType();
313      break;
314    }
315  }
316  return AccessTy;
317}
318
319namespace {
320  /// BasedUser - For a particular base value, keep information about how we've
321  /// partitioned the expression so far.
322  struct BasedUser {
323    /// SE - The current ScalarEvolution object.
324    ScalarEvolution *SE;
325
326    /// Base - The Base value for the PHI node that needs to be inserted for
327    /// this use.  As the use is processed, information gets moved from this
328    /// field to the Imm field (below).  BasedUser values are sorted by this
329    /// field.
330    const SCEV* Base;
331
332    /// Inst - The instruction using the induction variable.
333    Instruction *Inst;
334
335    /// OperandValToReplace - The operand value of Inst to replace with the
336    /// EmittedBase.
337    Value *OperandValToReplace;
338
339    /// Imm - The immediate value that should be added to the base immediately
340    /// before Inst, because it will be folded into the imm field of the
341    /// instruction.  This is also sometimes used for loop-variant values that
342    /// must be added inside the loop.
343    const SCEV* Imm;
344
345    /// Phi - The induction variable that performs the striding that
346    /// should be used for this user.
347    PHINode *Phi;
348
349    // isUseOfPostIncrementedValue - True if this should use the
350    // post-incremented version of this IV, not the preincremented version.
351    // This can only be set in special cases, such as the terminating setcc
352    // instruction for a loop and uses outside the loop that are dominated by
353    // the loop.
354    bool isUseOfPostIncrementedValue;
355
356    BasedUser(IVStrideUse &IVSU, ScalarEvolution *se)
357      : SE(se), Base(IVSU.getOffset()), Inst(IVSU.getUser()),
358        OperandValToReplace(IVSU.getOperandValToReplace()),
359        Imm(SE->getIntegerSCEV(0, Base->getType())),
360        isUseOfPostIncrementedValue(IVSU.isUseOfPostIncrementedValue()) {}
361
362    // Once we rewrite the code to insert the new IVs we want, update the
363    // operands of Inst to use the new expression 'NewBase', with 'Imm' added
364    // to it.
365    void RewriteInstructionToUseNewBase(const SCEV* const &NewBase,
366                                        Instruction *InsertPt,
367                                       SCEVExpander &Rewriter, Loop *L, Pass *P,
368                                        LoopInfo &LI,
369                                        SmallVectorImpl<WeakVH> &DeadInsts);
370
371    Value *InsertCodeForBaseAtPosition(const SCEV* const &NewBase,
372                                       const Type *Ty,
373                                       SCEVExpander &Rewriter,
374                                       Instruction *IP, Loop *L,
375                                       LoopInfo &LI);
376    void dump() const;
377  };
378}
379
380void BasedUser::dump() const {
381  cerr << " Base=" << *Base;
382  cerr << " Imm=" << *Imm;
383  cerr << "   Inst: " << *Inst;
384}
385
386Value *BasedUser::InsertCodeForBaseAtPosition(const SCEV* const &NewBase,
387                                              const Type *Ty,
388                                              SCEVExpander &Rewriter,
389                                              Instruction *IP, Loop *L,
390                                              LoopInfo &LI) {
391  // Figure out where we *really* want to insert this code.  In particular, if
392  // the user is inside of a loop that is nested inside of L, we really don't
393  // want to insert this expression before the user, we'd rather pull it out as
394  // many loops as possible.
395  Instruction *BaseInsertPt = IP;
396
397  // Figure out the most-nested loop that IP is in.
398  Loop *InsertLoop = LI.getLoopFor(IP->getParent());
399
400  // If InsertLoop is not L, and InsertLoop is nested inside of L, figure out
401  // the preheader of the outer-most loop where NewBase is not loop invariant.
402  if (L->contains(IP->getParent()))
403    while (InsertLoop && NewBase->isLoopInvariant(InsertLoop)) {
404      BaseInsertPt = InsertLoop->getLoopPreheader()->getTerminator();
405      InsertLoop = InsertLoop->getParentLoop();
406    }
407
408  Value *Base = Rewriter.expandCodeFor(NewBase, 0, BaseInsertPt);
409
410  const SCEV* NewValSCEV = SE->getUnknown(Base);
411
412  // If there is no immediate value, skip the next part.
413  if (!Imm->isZero()) {
414    // If we are inserting the base and imm values in the same block, make sure
415    // to adjust the IP position if insertion reused a result.
416    if (IP == BaseInsertPt)
417      IP = Rewriter.getInsertionPoint();
418
419    // Always emit the immediate (if non-zero) into the same block as the user.
420    NewValSCEV = SE->getAddExpr(NewValSCEV, Imm);
421  }
422
423  return Rewriter.expandCodeFor(NewValSCEV, Ty, IP);
424}
425
426
427// Once we rewrite the code to insert the new IVs we want, update the
428// operands of Inst to use the new expression 'NewBase', with 'Imm' added
429// to it. NewBasePt is the last instruction which contributes to the
430// value of NewBase in the case that it's a diffferent instruction from
431// the PHI that NewBase is computed from, or null otherwise.
432//
433void BasedUser::RewriteInstructionToUseNewBase(const SCEV* const &NewBase,
434                                               Instruction *NewBasePt,
435                                      SCEVExpander &Rewriter, Loop *L, Pass *P,
436                                      LoopInfo &LI,
437                                      SmallVectorImpl<WeakVH> &DeadInsts) {
438  if (!isa<PHINode>(Inst)) {
439    // By default, insert code at the user instruction.
440    BasicBlock::iterator InsertPt = Inst;
441
442    // However, if the Operand is itself an instruction, the (potentially
443    // complex) inserted code may be shared by many users.  Because of this, we
444    // want to emit code for the computation of the operand right before its old
445    // computation.  This is usually safe, because we obviously used to use the
446    // computation when it was computed in its current block.  However, in some
447    // cases (e.g. use of a post-incremented induction variable) the NewBase
448    // value will be pinned to live somewhere after the original computation.
449    // In this case, we have to back off.
450    //
451    // If this is a use outside the loop (which means after, since it is based
452    // on a loop indvar) we use the post-incremented value, so that we don't
453    // artificially make the preinc value live out the bottom of the loop.
454    if (!isUseOfPostIncrementedValue && L->contains(Inst->getParent())) {
455      if (NewBasePt && isa<PHINode>(OperandValToReplace)) {
456        InsertPt = NewBasePt;
457        ++InsertPt;
458      } else if (Instruction *OpInst
459                 = dyn_cast<Instruction>(OperandValToReplace)) {
460        InsertPt = OpInst;
461        while (isa<PHINode>(InsertPt)) ++InsertPt;
462      }
463    }
464    Value *NewVal = InsertCodeForBaseAtPosition(NewBase,
465                                                OperandValToReplace->getType(),
466                                                Rewriter, InsertPt, L, LI);
467    // Replace the use of the operand Value with the new Phi we just created.
468    Inst->replaceUsesOfWith(OperandValToReplace, NewVal);
469
470    DOUT << "      Replacing with ";
471    DEBUG(WriteAsOperand(*DOUT, NewVal, /*PrintType=*/false));
472    DOUT << ", which has value " << *NewBase << " plus IMM " << *Imm << "\n";
473    return;
474  }
475
476  // PHI nodes are more complex.  We have to insert one copy of the NewBase+Imm
477  // expression into each operand block that uses it.  Note that PHI nodes can
478  // have multiple entries for the same predecessor.  We use a map to make sure
479  // that a PHI node only has a single Value* for each predecessor (which also
480  // prevents us from inserting duplicate code in some blocks).
481  DenseMap<BasicBlock*, Value*> InsertedCode;
482  PHINode *PN = cast<PHINode>(Inst);
483  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
484    if (PN->getIncomingValue(i) == OperandValToReplace) {
485      // If the original expression is outside the loop, put the replacement
486      // code in the same place as the original expression,
487      // which need not be an immediate predecessor of this PHI.  This way we
488      // need only one copy of it even if it is referenced multiple times in
489      // the PHI.  We don't do this when the original expression is inside the
490      // loop because multiple copies sometimes do useful sinking of code in
491      // that case(?).
492      Instruction *OldLoc = dyn_cast<Instruction>(OperandValToReplace);
493      if (L->contains(OldLoc->getParent())) {
494        // If this is a critical edge, split the edge so that we do not insert
495        // the code on all predecessor/successor paths.  We do this unless this
496        // is the canonical backedge for this loop, as this can make some
497        // inserted code be in an illegal position.
498        BasicBlock *PHIPred = PN->getIncomingBlock(i);
499        if (e != 1 && PHIPred->getTerminator()->getNumSuccessors() > 1 &&
500            (PN->getParent() != L->getHeader() || !L->contains(PHIPred))) {
501
502          // First step, split the critical edge.
503          SplitCriticalEdge(PHIPred, PN->getParent(), P, false);
504
505          // Next step: move the basic block.  In particular, if the PHI node
506          // is outside of the loop, and PredTI is in the loop, we want to
507          // move the block to be immediately before the PHI block, not
508          // immediately after PredTI.
509          if (L->contains(PHIPred) && !L->contains(PN->getParent())) {
510            BasicBlock *NewBB = PN->getIncomingBlock(i);
511            NewBB->moveBefore(PN->getParent());
512          }
513
514          // Splitting the edge can reduce the number of PHI entries we have.
515          e = PN->getNumIncomingValues();
516        }
517      }
518      Value *&Code = InsertedCode[PN->getIncomingBlock(i)];
519      if (!Code) {
520        // Insert the code into the end of the predecessor block.
521        Instruction *InsertPt = (L->contains(OldLoc->getParent())) ?
522                                PN->getIncomingBlock(i)->getTerminator() :
523                                OldLoc->getParent()->getTerminator();
524        Code = InsertCodeForBaseAtPosition(NewBase, PN->getType(),
525                                           Rewriter, InsertPt, L, LI);
526
527        DOUT << "      Changing PHI use to ";
528        DEBUG(WriteAsOperand(*DOUT, Code, /*PrintType=*/false));
529        DOUT << ", which has value " << *NewBase << " plus IMM " << *Imm << "\n";
530      }
531
532      // Replace the use of the operand Value with the new Phi we just created.
533      PN->setIncomingValue(i, Code);
534      Rewriter.clear();
535    }
536  }
537
538  // PHI node might have become a constant value after SplitCriticalEdge.
539  DeadInsts.push_back(Inst);
540}
541
542
543/// fitsInAddressMode - Return true if V can be subsumed within an addressing
544/// mode, and does not need to be put in a register first.
545static bool fitsInAddressMode(const SCEV* const &V, const Type *AccessTy,
546                             const TargetLowering *TLI, bool HasBaseReg) {
547  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) {
548    int64_t VC = SC->getValue()->getSExtValue();
549    if (TLI) {
550      TargetLowering::AddrMode AM;
551      AM.BaseOffs = VC;
552      AM.HasBaseReg = HasBaseReg;
553      return TLI->isLegalAddressingMode(AM, AccessTy);
554    } else {
555      // Defaults to PPC. PPC allows a sign-extended 16-bit immediate field.
556      return (VC > -(1 << 16) && VC < (1 << 16)-1);
557    }
558  }
559
560  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V))
561    if (GlobalValue *GV = dyn_cast<GlobalValue>(SU->getValue())) {
562      if (TLI) {
563        TargetLowering::AddrMode AM;
564        AM.BaseGV = GV;
565        AM.HasBaseReg = HasBaseReg;
566        return TLI->isLegalAddressingMode(AM, AccessTy);
567      } else {
568        // Default: assume global addresses are not legal.
569      }
570    }
571
572  return false;
573}
574
575/// MoveLoopVariantsToImmediateField - Move any subexpressions from Val that are
576/// loop varying to the Imm operand.
577static void MoveLoopVariantsToImmediateField(const SCEV* &Val, const SCEV* &Imm,
578                                             Loop *L, ScalarEvolution *SE) {
579  if (Val->isLoopInvariant(L)) return;  // Nothing to do.
580
581  if (const SCEVAddExpr *SAE = dyn_cast<SCEVAddExpr>(Val)) {
582    SmallVector<const SCEV*, 4> NewOps;
583    NewOps.reserve(SAE->getNumOperands());
584
585    for (unsigned i = 0; i != SAE->getNumOperands(); ++i)
586      if (!SAE->getOperand(i)->isLoopInvariant(L)) {
587        // If this is a loop-variant expression, it must stay in the immediate
588        // field of the expression.
589        Imm = SE->getAddExpr(Imm, SAE->getOperand(i));
590      } else {
591        NewOps.push_back(SAE->getOperand(i));
592      }
593
594    if (NewOps.empty())
595      Val = SE->getIntegerSCEV(0, Val->getType());
596    else
597      Val = SE->getAddExpr(NewOps);
598  } else if (const SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Val)) {
599    // Try to pull immediates out of the start value of nested addrec's.
600    const SCEV* Start = SARE->getStart();
601    MoveLoopVariantsToImmediateField(Start, Imm, L, SE);
602
603    SmallVector<const SCEV*, 4> Ops(SARE->op_begin(), SARE->op_end());
604    Ops[0] = Start;
605    Val = SE->getAddRecExpr(Ops, SARE->getLoop());
606  } else {
607    // Otherwise, all of Val is variant, move the whole thing over.
608    Imm = SE->getAddExpr(Imm, Val);
609    Val = SE->getIntegerSCEV(0, Val->getType());
610  }
611}
612
613
614/// MoveImmediateValues - Look at Val, and pull out any additions of constants
615/// that can fit into the immediate field of instructions in the target.
616/// Accumulate these immediate values into the Imm value.
617static void MoveImmediateValues(const TargetLowering *TLI,
618                                const Type *AccessTy,
619                                const SCEV* &Val, const SCEV* &Imm,
620                                bool isAddress, Loop *L,
621                                ScalarEvolution *SE) {
622  if (const SCEVAddExpr *SAE = dyn_cast<SCEVAddExpr>(Val)) {
623    SmallVector<const SCEV*, 4> NewOps;
624    NewOps.reserve(SAE->getNumOperands());
625
626    for (unsigned i = 0; i != SAE->getNumOperands(); ++i) {
627      const SCEV* NewOp = SAE->getOperand(i);
628      MoveImmediateValues(TLI, AccessTy, NewOp, Imm, isAddress, L, SE);
629
630      if (!NewOp->isLoopInvariant(L)) {
631        // If this is a loop-variant expression, it must stay in the immediate
632        // field of the expression.
633        Imm = SE->getAddExpr(Imm, NewOp);
634      } else {
635        NewOps.push_back(NewOp);
636      }
637    }
638
639    if (NewOps.empty())
640      Val = SE->getIntegerSCEV(0, Val->getType());
641    else
642      Val = SE->getAddExpr(NewOps);
643    return;
644  } else if (const SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Val)) {
645    // Try to pull immediates out of the start value of nested addrec's.
646    const SCEV* Start = SARE->getStart();
647    MoveImmediateValues(TLI, AccessTy, Start, Imm, isAddress, L, SE);
648
649    if (Start != SARE->getStart()) {
650      SmallVector<const SCEV*, 4> Ops(SARE->op_begin(), SARE->op_end());
651      Ops[0] = Start;
652      Val = SE->getAddRecExpr(Ops, SARE->getLoop());
653    }
654    return;
655  } else if (const SCEVMulExpr *SME = dyn_cast<SCEVMulExpr>(Val)) {
656    // Transform "8 * (4 + v)" -> "32 + 8*V" if "32" fits in the immed field.
657    if (isAddress &&
658        fitsInAddressMode(SME->getOperand(0), AccessTy, TLI, false) &&
659        SME->getNumOperands() == 2 && SME->isLoopInvariant(L)) {
660
661      const SCEV* SubImm = SE->getIntegerSCEV(0, Val->getType());
662      const SCEV* NewOp = SME->getOperand(1);
663      MoveImmediateValues(TLI, AccessTy, NewOp, SubImm, isAddress, L, SE);
664
665      // If we extracted something out of the subexpressions, see if we can
666      // simplify this!
667      if (NewOp != SME->getOperand(1)) {
668        // Scale SubImm up by "8".  If the result is a target constant, we are
669        // good.
670        SubImm = SE->getMulExpr(SubImm, SME->getOperand(0));
671        if (fitsInAddressMode(SubImm, AccessTy, TLI, false)) {
672          // Accumulate the immediate.
673          Imm = SE->getAddExpr(Imm, SubImm);
674
675          // Update what is left of 'Val'.
676          Val = SE->getMulExpr(SME->getOperand(0), NewOp);
677          return;
678        }
679      }
680    }
681  }
682
683  // Loop-variant expressions must stay in the immediate field of the
684  // expression.
685  if ((isAddress && fitsInAddressMode(Val, AccessTy, TLI, false)) ||
686      !Val->isLoopInvariant(L)) {
687    Imm = SE->getAddExpr(Imm, Val);
688    Val = SE->getIntegerSCEV(0, Val->getType());
689    return;
690  }
691
692  // Otherwise, no immediates to move.
693}
694
695static void MoveImmediateValues(const TargetLowering *TLI,
696                                Instruction *User,
697                                const SCEV* &Val, const SCEV* &Imm,
698                                bool isAddress, Loop *L,
699                                ScalarEvolution *SE) {
700  const Type *AccessTy = getAccessType(User);
701  MoveImmediateValues(TLI, AccessTy, Val, Imm, isAddress, L, SE);
702}
703
704/// SeparateSubExprs - Decompose Expr into all of the subexpressions that are
705/// added together.  This is used to reassociate common addition subexprs
706/// together for maximal sharing when rewriting bases.
707static void SeparateSubExprs(SmallVector<const SCEV*, 16> &SubExprs,
708                             const SCEV* Expr,
709                             ScalarEvolution *SE) {
710  if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(Expr)) {
711    for (unsigned j = 0, e = AE->getNumOperands(); j != e; ++j)
712      SeparateSubExprs(SubExprs, AE->getOperand(j), SE);
713  } else if (const SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Expr)) {
714    const SCEV* Zero = SE->getIntegerSCEV(0, Expr->getType());
715    if (SARE->getOperand(0) == Zero) {
716      SubExprs.push_back(Expr);
717    } else {
718      // Compute the addrec with zero as its base.
719      SmallVector<const SCEV*, 4> Ops(SARE->op_begin(), SARE->op_end());
720      Ops[0] = Zero;   // Start with zero base.
721      SubExprs.push_back(SE->getAddRecExpr(Ops, SARE->getLoop()));
722
723
724      SeparateSubExprs(SubExprs, SARE->getOperand(0), SE);
725    }
726  } else if (!Expr->isZero()) {
727    // Do not add zero.
728    SubExprs.push_back(Expr);
729  }
730}
731
732// This is logically local to the following function, but C++ says we have
733// to make it file scope.
734struct SubExprUseData { unsigned Count; bool notAllUsesAreFree; };
735
736/// RemoveCommonExpressionsFromUseBases - Look through all of the Bases of all
737/// the Uses, removing any common subexpressions, except that if all such
738/// subexpressions can be folded into an addressing mode for all uses inside
739/// the loop (this case is referred to as "free" in comments herein) we do
740/// not remove anything.  This looks for things like (a+b+c) and
741/// (a+c+d) and computes the common (a+c) subexpression.  The common expression
742/// is *removed* from the Bases and returned.
743static const SCEV*
744RemoveCommonExpressionsFromUseBases(std::vector<BasedUser> &Uses,
745                                    ScalarEvolution *SE, Loop *L,
746                                    const TargetLowering *TLI) {
747  unsigned NumUses = Uses.size();
748
749  // Only one use?  This is a very common case, so we handle it specially and
750  // cheaply.
751  const SCEV* Zero = SE->getIntegerSCEV(0, Uses[0].Base->getType());
752  const SCEV* Result = Zero;
753  const SCEV* FreeResult = Zero;
754  if (NumUses == 1) {
755    // If the use is inside the loop, use its base, regardless of what it is:
756    // it is clearly shared across all the IV's.  If the use is outside the loop
757    // (which means after it) we don't want to factor anything *into* the loop,
758    // so just use 0 as the base.
759    if (L->contains(Uses[0].Inst->getParent()))
760      std::swap(Result, Uses[0].Base);
761    return Result;
762  }
763
764  // To find common subexpressions, count how many of Uses use each expression.
765  // If any subexpressions are used Uses.size() times, they are common.
766  // Also track whether all uses of each expression can be moved into an
767  // an addressing mode "for free"; such expressions are left within the loop.
768  // struct SubExprUseData { unsigned Count; bool notAllUsesAreFree; };
769  std::map<const SCEV*, SubExprUseData> SubExpressionUseData;
770
771  // UniqueSubExprs - Keep track of all of the subexpressions we see in the
772  // order we see them.
773  SmallVector<const SCEV*, 16> UniqueSubExprs;
774
775  SmallVector<const SCEV*, 16> SubExprs;
776  unsigned NumUsesInsideLoop = 0;
777  for (unsigned i = 0; i != NumUses; ++i) {
778    // If the user is outside the loop, just ignore it for base computation.
779    // Since the user is outside the loop, it must be *after* the loop (if it
780    // were before, it could not be based on the loop IV).  We don't want users
781    // after the loop to affect base computation of values *inside* the loop,
782    // because we can always add their offsets to the result IV after the loop
783    // is done, ensuring we get good code inside the loop.
784    if (!L->contains(Uses[i].Inst->getParent()))
785      continue;
786    NumUsesInsideLoop++;
787
788    // If the base is zero (which is common), return zero now, there are no
789    // CSEs we can find.
790    if (Uses[i].Base == Zero) return Zero;
791
792    // If this use is as an address we may be able to put CSEs in the addressing
793    // mode rather than hoisting them.
794    bool isAddrUse = isAddressUse(Uses[i].Inst, Uses[i].OperandValToReplace);
795    // We may need the AccessTy below, but only when isAddrUse, so compute it
796    // only in that case.
797    const Type *AccessTy = 0;
798    if (isAddrUse)
799      AccessTy = getAccessType(Uses[i].Inst);
800
801    // Split the expression into subexprs.
802    SeparateSubExprs(SubExprs, Uses[i].Base, SE);
803    // Add one to SubExpressionUseData.Count for each subexpr present, and
804    // if the subexpr is not a valid immediate within an addressing mode use,
805    // set SubExpressionUseData.notAllUsesAreFree.  We definitely want to
806    // hoist these out of the loop (if they are common to all uses).
807    for (unsigned j = 0, e = SubExprs.size(); j != e; ++j) {
808      if (++SubExpressionUseData[SubExprs[j]].Count == 1)
809        UniqueSubExprs.push_back(SubExprs[j]);
810      if (!isAddrUse || !fitsInAddressMode(SubExprs[j], AccessTy, TLI, false))
811        SubExpressionUseData[SubExprs[j]].notAllUsesAreFree = true;
812    }
813    SubExprs.clear();
814  }
815
816  // Now that we know how many times each is used, build Result.  Iterate over
817  // UniqueSubexprs so that we have a stable ordering.
818  for (unsigned i = 0, e = UniqueSubExprs.size(); i != e; ++i) {
819    std::map<const SCEV*, SubExprUseData>::iterator I =
820       SubExpressionUseData.find(UniqueSubExprs[i]);
821    assert(I != SubExpressionUseData.end() && "Entry not found?");
822    if (I->second.Count == NumUsesInsideLoop) { // Found CSE!
823      if (I->second.notAllUsesAreFree)
824        Result = SE->getAddExpr(Result, I->first);
825      else
826        FreeResult = SE->getAddExpr(FreeResult, I->first);
827    } else
828      // Remove non-cse's from SubExpressionUseData.
829      SubExpressionUseData.erase(I);
830  }
831
832  if (FreeResult != Zero) {
833    // We have some subexpressions that can be subsumed into addressing
834    // modes in every use inside the loop.  However, it's possible that
835    // there are so many of them that the combined FreeResult cannot
836    // be subsumed, or that the target cannot handle both a FreeResult
837    // and a Result in the same instruction (for example because it would
838    // require too many registers).  Check this.
839    for (unsigned i=0; i<NumUses; ++i) {
840      if (!L->contains(Uses[i].Inst->getParent()))
841        continue;
842      // We know this is an addressing mode use; if there are any uses that
843      // are not, FreeResult would be Zero.
844      const Type *AccessTy = getAccessType(Uses[i].Inst);
845      if (!fitsInAddressMode(FreeResult, AccessTy, TLI, Result!=Zero)) {
846        // FIXME:  could split up FreeResult into pieces here, some hoisted
847        // and some not.  There is no obvious advantage to this.
848        Result = SE->getAddExpr(Result, FreeResult);
849        FreeResult = Zero;
850        break;
851      }
852    }
853  }
854
855  // If we found no CSE's, return now.
856  if (Result == Zero) return Result;
857
858  // If we still have a FreeResult, remove its subexpressions from
859  // SubExpressionUseData.  This means they will remain in the use Bases.
860  if (FreeResult != Zero) {
861    SeparateSubExprs(SubExprs, FreeResult, SE);
862    for (unsigned j = 0, e = SubExprs.size(); j != e; ++j) {
863      std::map<const SCEV*, SubExprUseData>::iterator I =
864         SubExpressionUseData.find(SubExprs[j]);
865      SubExpressionUseData.erase(I);
866    }
867    SubExprs.clear();
868  }
869
870  // Otherwise, remove all of the CSE's we found from each of the base values.
871  for (unsigned i = 0; i != NumUses; ++i) {
872    // Uses outside the loop don't necessarily include the common base, but
873    // the final IV value coming into those uses does.  Instead of trying to
874    // remove the pieces of the common base, which might not be there,
875    // subtract off the base to compensate for this.
876    if (!L->contains(Uses[i].Inst->getParent())) {
877      Uses[i].Base = SE->getMinusSCEV(Uses[i].Base, Result);
878      continue;
879    }
880
881    // Split the expression into subexprs.
882    SeparateSubExprs(SubExprs, Uses[i].Base, SE);
883
884    // Remove any common subexpressions.
885    for (unsigned j = 0, e = SubExprs.size(); j != e; ++j)
886      if (SubExpressionUseData.count(SubExprs[j])) {
887        SubExprs.erase(SubExprs.begin()+j);
888        --j; --e;
889      }
890
891    // Finally, add the non-shared expressions together.
892    if (SubExprs.empty())
893      Uses[i].Base = Zero;
894    else
895      Uses[i].Base = SE->getAddExpr(SubExprs);
896    SubExprs.clear();
897  }
898
899  return Result;
900}
901
902/// ValidScale - Check whether the given Scale is valid for all loads and
903/// stores in UsersToProcess.
904///
905bool LoopStrengthReduce::ValidScale(bool HasBaseReg, int64_t Scale,
906                               const std::vector<BasedUser>& UsersToProcess) {
907  if (!TLI)
908    return true;
909
910  for (unsigned i = 0, e = UsersToProcess.size(); i!=e; ++i) {
911    // If this is a load or other access, pass the type of the access in.
912    const Type *AccessTy = Type::VoidTy;
913    if (isAddressUse(UsersToProcess[i].Inst,
914                     UsersToProcess[i].OperandValToReplace))
915      AccessTy = getAccessType(UsersToProcess[i].Inst);
916    else if (isa<PHINode>(UsersToProcess[i].Inst))
917      continue;
918
919    TargetLowering::AddrMode AM;
920    if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(UsersToProcess[i].Imm))
921      AM.BaseOffs = SC->getValue()->getSExtValue();
922    AM.HasBaseReg = HasBaseReg || !UsersToProcess[i].Base->isZero();
923    AM.Scale = Scale;
924
925    // If load[imm+r*scale] is illegal, bail out.
926    if (!TLI->isLegalAddressingMode(AM, AccessTy))
927      return false;
928  }
929  return true;
930}
931
932/// ValidOffset - Check whether the given Offset is valid for all loads and
933/// stores in UsersToProcess.
934///
935bool LoopStrengthReduce::ValidOffset(bool HasBaseReg,
936                               int64_t Offset,
937                               int64_t Scale,
938                               const std::vector<BasedUser>& UsersToProcess) {
939  if (!TLI)
940    return true;
941
942  for (unsigned i=0, e = UsersToProcess.size(); i!=e; ++i) {
943    // If this is a load or other access, pass the type of the access in.
944    const Type *AccessTy = Type::VoidTy;
945    if (isAddressUse(UsersToProcess[i].Inst,
946                     UsersToProcess[i].OperandValToReplace))
947      AccessTy = getAccessType(UsersToProcess[i].Inst);
948    else if (isa<PHINode>(UsersToProcess[i].Inst))
949      continue;
950
951    TargetLowering::AddrMode AM;
952    if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(UsersToProcess[i].Imm))
953      AM.BaseOffs = SC->getValue()->getSExtValue();
954    AM.BaseOffs = (uint64_t)AM.BaseOffs + (uint64_t)Offset;
955    AM.HasBaseReg = HasBaseReg || !UsersToProcess[i].Base->isZero();
956    AM.Scale = Scale;
957
958    // If load[imm+r*scale] is illegal, bail out.
959    if (!TLI->isLegalAddressingMode(AM, AccessTy))
960      return false;
961  }
962  return true;
963}
964
965/// RequiresTypeConversion - Returns true if converting Ty1 to Ty2 is not
966/// a nop.
967bool LoopStrengthReduce::RequiresTypeConversion(const Type *Ty1,
968                                                const Type *Ty2) {
969  if (Ty1 == Ty2)
970    return false;
971  Ty1 = SE->getEffectiveSCEVType(Ty1);
972  Ty2 = SE->getEffectiveSCEVType(Ty2);
973  if (Ty1 == Ty2)
974    return false;
975  if (Ty1->canLosslesslyBitCastTo(Ty2))
976    return false;
977  if (TLI && TLI->isTruncateFree(Ty1, Ty2))
978    return false;
979  return true;
980}
981
982/// CheckForIVReuse - Returns the multiple if the stride is the multiple
983/// of a previous stride and it is a legal value for the target addressing
984/// mode scale component and optional base reg. This allows the users of
985/// this stride to be rewritten as prev iv * factor. It returns 0 if no
986/// reuse is possible.  Factors can be negative on same targets, e.g. ARM.
987///
988/// If all uses are outside the loop, we don't require that all multiplies
989/// be folded into the addressing mode, nor even that the factor be constant;
990/// a multiply (executed once) outside the loop is better than another IV
991/// within.  Well, usually.
992const SCEV* LoopStrengthReduce::CheckForIVReuse(bool HasBaseReg,
993                                bool AllUsesAreAddresses,
994                                bool AllUsesAreOutsideLoop,
995                                const SCEV* const &Stride,
996                                IVExpr &IV, const Type *Ty,
997                                const std::vector<BasedUser>& UsersToProcess) {
998  if (StrideNoReuse.count(Stride))
999    return SE->getIntegerSCEV(0, Stride->getType());
1000
1001  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Stride)) {
1002    int64_t SInt = SC->getValue()->getSExtValue();
1003    for (unsigned NewStride = 0, e = IU->StrideOrder.size();
1004         NewStride != e; ++NewStride) {
1005      std::map<const SCEV*, IVsOfOneStride>::iterator SI =
1006                IVsByStride.find(IU->StrideOrder[NewStride]);
1007      if (SI == IVsByStride.end() || !isa<SCEVConstant>(SI->first) ||
1008          StrideNoReuse.count(SI->first))
1009        continue;
1010      int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue();
1011      if (SI->first != Stride &&
1012          (unsigned(abs64(SInt)) < SSInt || (SInt % SSInt) != 0))
1013        continue;
1014      int64_t Scale = SInt / SSInt;
1015      // Check that this stride is valid for all the types used for loads and
1016      // stores; if it can be used for some and not others, we might as well use
1017      // the original stride everywhere, since we have to create the IV for it
1018      // anyway. If the scale is 1, then we don't need to worry about folding
1019      // multiplications.
1020      if (Scale == 1 ||
1021          (AllUsesAreAddresses &&
1022           ValidScale(HasBaseReg, Scale, UsersToProcess))) {
1023        // Prefer to reuse an IV with a base of zero.
1024        for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
1025               IE = SI->second.IVs.end(); II != IE; ++II)
1026          // Only reuse previous IV if it would not require a type conversion
1027          // and if the base difference can be folded.
1028          if (II->Base->isZero() &&
1029              !RequiresTypeConversion(II->Base->getType(), Ty)) {
1030            IV = *II;
1031            return SE->getIntegerSCEV(Scale, Stride->getType());
1032          }
1033        // Otherwise, settle for an IV with a foldable base.
1034        if (AllUsesAreAddresses)
1035          for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
1036                 IE = SI->second.IVs.end(); II != IE; ++II)
1037            // Only reuse previous IV if it would not require a type conversion
1038            // and if the base difference can be folded.
1039            if (SE->getEffectiveSCEVType(II->Base->getType()) ==
1040                SE->getEffectiveSCEVType(Ty) &&
1041                isa<SCEVConstant>(II->Base)) {
1042              int64_t Base =
1043                cast<SCEVConstant>(II->Base)->getValue()->getSExtValue();
1044              if (Base > INT32_MIN && Base <= INT32_MAX &&
1045                  ValidOffset(HasBaseReg, -Base * Scale,
1046                              Scale, UsersToProcess)) {
1047                IV = *II;
1048                return SE->getIntegerSCEV(Scale, Stride->getType());
1049              }
1050            }
1051      }
1052    }
1053  } else if (AllUsesAreOutsideLoop) {
1054    // Accept nonconstant strides here; it is really really right to substitute
1055    // an existing IV if we can.
1056    for (unsigned NewStride = 0, e = IU->StrideOrder.size();
1057         NewStride != e; ++NewStride) {
1058      std::map<const SCEV*, IVsOfOneStride>::iterator SI =
1059                IVsByStride.find(IU->StrideOrder[NewStride]);
1060      if (SI == IVsByStride.end() || !isa<SCEVConstant>(SI->first))
1061        continue;
1062      int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue();
1063      if (SI->first != Stride && SSInt != 1)
1064        continue;
1065      for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
1066             IE = SI->second.IVs.end(); II != IE; ++II)
1067        // Accept nonzero base here.
1068        // Only reuse previous IV if it would not require a type conversion.
1069        if (!RequiresTypeConversion(II->Base->getType(), Ty)) {
1070          IV = *II;
1071          return Stride;
1072        }
1073    }
1074    // Special case, old IV is -1*x and this one is x.  Can treat this one as
1075    // -1*old.
1076    for (unsigned NewStride = 0, e = IU->StrideOrder.size();
1077         NewStride != e; ++NewStride) {
1078      std::map<const SCEV*, IVsOfOneStride>::iterator SI =
1079                IVsByStride.find(IU->StrideOrder[NewStride]);
1080      if (SI == IVsByStride.end())
1081        continue;
1082      if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(SI->first))
1083        if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(ME->getOperand(0)))
1084          if (Stride == ME->getOperand(1) &&
1085              SC->getValue()->getSExtValue() == -1LL)
1086            for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
1087                   IE = SI->second.IVs.end(); II != IE; ++II)
1088              // Accept nonzero base here.
1089              // Only reuse previous IV if it would not require type conversion.
1090              if (!RequiresTypeConversion(II->Base->getType(), Ty)) {
1091                IV = *II;
1092                return SE->getIntegerSCEV(-1LL, Stride->getType());
1093              }
1094    }
1095  }
1096  return SE->getIntegerSCEV(0, Stride->getType());
1097}
1098
1099/// PartitionByIsUseOfPostIncrementedValue - Simple boolean predicate that
1100/// returns true if Val's isUseOfPostIncrementedValue is true.
1101static bool PartitionByIsUseOfPostIncrementedValue(const BasedUser &Val) {
1102  return Val.isUseOfPostIncrementedValue;
1103}
1104
1105/// isNonConstantNegative - Return true if the specified scev is negated, but
1106/// not a constant.
1107static bool isNonConstantNegative(const SCEV* const &Expr) {
1108  const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Expr);
1109  if (!Mul) return false;
1110
1111  // If there is a constant factor, it will be first.
1112  const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
1113  if (!SC) return false;
1114
1115  // Return true if the value is negative, this matches things like (-42 * V).
1116  return SC->getValue()->getValue().isNegative();
1117}
1118
1119/// CollectIVUsers - Transform our list of users and offsets to a bit more
1120/// complex table. In this new vector, each 'BasedUser' contains 'Base', the base
1121/// of the strided accesses, as well as the old information from Uses. We
1122/// progressively move information from the Base field to the Imm field, until
1123/// we eventually have the full access expression to rewrite the use.
1124const SCEV* LoopStrengthReduce::CollectIVUsers(const SCEV* const &Stride,
1125                                              IVUsersOfOneStride &Uses,
1126                                              Loop *L,
1127                                              bool &AllUsesAreAddresses,
1128                                              bool &AllUsesAreOutsideLoop,
1129                                       std::vector<BasedUser> &UsersToProcess) {
1130  // FIXME: Generalize to non-affine IV's.
1131  if (!Stride->isLoopInvariant(L))
1132    return SE->getIntegerSCEV(0, Stride->getType());
1133
1134  UsersToProcess.reserve(Uses.Users.size());
1135  for (ilist<IVStrideUse>::iterator I = Uses.Users.begin(),
1136       E = Uses.Users.end(); I != E; ++I) {
1137    UsersToProcess.push_back(BasedUser(*I, SE));
1138
1139    // Move any loop variant operands from the offset field to the immediate
1140    // field of the use, so that we don't try to use something before it is
1141    // computed.
1142    MoveLoopVariantsToImmediateField(UsersToProcess.back().Base,
1143                                     UsersToProcess.back().Imm, L, SE);
1144    assert(UsersToProcess.back().Base->isLoopInvariant(L) &&
1145           "Base value is not loop invariant!");
1146  }
1147
1148  // We now have a whole bunch of uses of like-strided induction variables, but
1149  // they might all have different bases.  We want to emit one PHI node for this
1150  // stride which we fold as many common expressions (between the IVs) into as
1151  // possible.  Start by identifying the common expressions in the base values
1152  // for the strides (e.g. if we have "A+C+B" and "A+B+D" as our bases, find
1153  // "A+B"), emit it to the preheader, then remove the expression from the
1154  // UsersToProcess base values.
1155  const SCEV* CommonExprs =
1156    RemoveCommonExpressionsFromUseBases(UsersToProcess, SE, L, TLI);
1157
1158  // Next, figure out what we can represent in the immediate fields of
1159  // instructions.  If we can represent anything there, move it to the imm
1160  // fields of the BasedUsers.  We do this so that it increases the commonality
1161  // of the remaining uses.
1162  unsigned NumPHI = 0;
1163  bool HasAddress = false;
1164  for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) {
1165    // If the user is not in the current loop, this means it is using the exit
1166    // value of the IV.  Do not put anything in the base, make sure it's all in
1167    // the immediate field to allow as much factoring as possible.
1168    if (!L->contains(UsersToProcess[i].Inst->getParent())) {
1169      UsersToProcess[i].Imm = SE->getAddExpr(UsersToProcess[i].Imm,
1170                                             UsersToProcess[i].Base);
1171      UsersToProcess[i].Base =
1172        SE->getIntegerSCEV(0, UsersToProcess[i].Base->getType());
1173    } else {
1174      // Not all uses are outside the loop.
1175      AllUsesAreOutsideLoop = false;
1176
1177      // Addressing modes can be folded into loads and stores.  Be careful that
1178      // the store is through the expression, not of the expression though.
1179      bool isPHI = false;
1180      bool isAddress = isAddressUse(UsersToProcess[i].Inst,
1181                                    UsersToProcess[i].OperandValToReplace);
1182      if (isa<PHINode>(UsersToProcess[i].Inst)) {
1183        isPHI = true;
1184        ++NumPHI;
1185      }
1186
1187      if (isAddress)
1188        HasAddress = true;
1189
1190      // If this use isn't an address, then not all uses are addresses.
1191      if (!isAddress && !isPHI)
1192        AllUsesAreAddresses = false;
1193
1194      MoveImmediateValues(TLI, UsersToProcess[i].Inst, UsersToProcess[i].Base,
1195                          UsersToProcess[i].Imm, isAddress, L, SE);
1196    }
1197  }
1198
1199  // If one of the use is a PHI node and all other uses are addresses, still
1200  // allow iv reuse. Essentially we are trading one constant multiplication
1201  // for one fewer iv.
1202  if (NumPHI > 1)
1203    AllUsesAreAddresses = false;
1204
1205  // There are no in-loop address uses.
1206  if (AllUsesAreAddresses && (!HasAddress && !AllUsesAreOutsideLoop))
1207    AllUsesAreAddresses = false;
1208
1209  return CommonExprs;
1210}
1211
1212/// ShouldUseFullStrengthReductionMode - Test whether full strength-reduction
1213/// is valid and profitable for the given set of users of a stride. In
1214/// full strength-reduction mode, all addresses at the current stride are
1215/// strength-reduced all the way down to pointer arithmetic.
1216///
1217bool LoopStrengthReduce::ShouldUseFullStrengthReductionMode(
1218                                   const std::vector<BasedUser> &UsersToProcess,
1219                                   const Loop *L,
1220                                   bool AllUsesAreAddresses,
1221                                   const SCEV* Stride) {
1222  if (!EnableFullLSRMode)
1223    return false;
1224
1225  // The heuristics below aim to avoid increasing register pressure, but
1226  // fully strength-reducing all the addresses increases the number of
1227  // add instructions, so don't do this when optimizing for size.
1228  // TODO: If the loop is large, the savings due to simpler addresses
1229  // may oughtweight the costs of the extra increment instructions.
1230  if (L->getHeader()->getParent()->hasFnAttr(Attribute::OptimizeForSize))
1231    return false;
1232
1233  // TODO: For now, don't do full strength reduction if there could
1234  // potentially be greater-stride multiples of the current stride
1235  // which could reuse the current stride IV.
1236  if (IU->StrideOrder.back() != Stride)
1237    return false;
1238
1239  // Iterate through the uses to find conditions that automatically rule out
1240  // full-lsr mode.
1241  for (unsigned i = 0, e = UsersToProcess.size(); i != e; ) {
1242    const SCEV *Base = UsersToProcess[i].Base;
1243    const SCEV *Imm = UsersToProcess[i].Imm;
1244    // If any users have a loop-variant component, they can't be fully
1245    // strength-reduced.
1246    if (Imm && !Imm->isLoopInvariant(L))
1247      return false;
1248    // If there are to users with the same base and the difference between
1249    // the two Imm values can't be folded into the address, full
1250    // strength reduction would increase register pressure.
1251    do {
1252      const SCEV *CurImm = UsersToProcess[i].Imm;
1253      if ((CurImm || Imm) && CurImm != Imm) {
1254        if (!CurImm) CurImm = SE->getIntegerSCEV(0, Stride->getType());
1255        if (!Imm)       Imm = SE->getIntegerSCEV(0, Stride->getType());
1256        const Instruction *Inst = UsersToProcess[i].Inst;
1257        const Type *AccessTy = getAccessType(Inst);
1258        const SCEV* Diff = SE->getMinusSCEV(UsersToProcess[i].Imm, Imm);
1259        if (!Diff->isZero() &&
1260            (!AllUsesAreAddresses ||
1261             !fitsInAddressMode(Diff, AccessTy, TLI, /*HasBaseReg=*/true)))
1262          return false;
1263      }
1264    } while (++i != e && Base == UsersToProcess[i].Base);
1265  }
1266
1267  // If there's exactly one user in this stride, fully strength-reducing it
1268  // won't increase register pressure. If it's starting from a non-zero base,
1269  // it'll be simpler this way.
1270  if (UsersToProcess.size() == 1 && !UsersToProcess[0].Base->isZero())
1271    return true;
1272
1273  // Otherwise, if there are any users in this stride that don't require
1274  // a register for their base, full strength-reduction will increase
1275  // register pressure.
1276  for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i)
1277    if (UsersToProcess[i].Base->isZero())
1278      return false;
1279
1280  // Otherwise, go for it.
1281  return true;
1282}
1283
1284/// InsertAffinePhi Create and insert a PHI node for an induction variable
1285/// with the specified start and step values in the specified loop.
1286///
1287/// If NegateStride is true, the stride should be negated by using a
1288/// subtract instead of an add.
1289///
1290/// Return the created phi node.
1291///
1292static PHINode *InsertAffinePhi(const SCEV* Start, const SCEV* Step,
1293                                Instruction *IVIncInsertPt,
1294                                const Loop *L,
1295                                SCEVExpander &Rewriter) {
1296  assert(Start->isLoopInvariant(L) && "New PHI start is not loop invariant!");
1297  assert(Step->isLoopInvariant(L) && "New PHI stride is not loop invariant!");
1298
1299  BasicBlock *Header = L->getHeader();
1300  BasicBlock *Preheader = L->getLoopPreheader();
1301  BasicBlock *LatchBlock = L->getLoopLatch();
1302  const Type *Ty = Start->getType();
1303  Ty = Rewriter.SE.getEffectiveSCEVType(Ty);
1304
1305  PHINode *PN = PHINode::Create(Ty, "lsr.iv", Header->begin());
1306  PN->addIncoming(Rewriter.expandCodeFor(Start, Ty, Preheader->getTerminator()),
1307                  Preheader);
1308
1309  // If the stride is negative, insert a sub instead of an add for the
1310  // increment.
1311  bool isNegative = isNonConstantNegative(Step);
1312  const SCEV* IncAmount = Step;
1313  if (isNegative)
1314    IncAmount = Rewriter.SE.getNegativeSCEV(Step);
1315
1316  // Insert an add instruction right before the terminator corresponding
1317  // to the back-edge or just before the only use. The location is determined
1318  // by the caller and passed in as IVIncInsertPt.
1319  Value *StepV = Rewriter.expandCodeFor(IncAmount, Ty,
1320                                        Preheader->getTerminator());
1321  Instruction *IncV;
1322  if (isNegative) {
1323    IncV = BinaryOperator::CreateSub(PN, StepV, "lsr.iv.next",
1324                                     IVIncInsertPt);
1325  } else {
1326    IncV = BinaryOperator::CreateAdd(PN, StepV, "lsr.iv.next",
1327                                     IVIncInsertPt);
1328  }
1329  if (!isa<ConstantInt>(StepV)) ++NumVariable;
1330
1331  PN->addIncoming(IncV, LatchBlock);
1332
1333  ++NumInserted;
1334  return PN;
1335}
1336
1337static void SortUsersToProcess(std::vector<BasedUser> &UsersToProcess) {
1338  // We want to emit code for users inside the loop first.  To do this, we
1339  // rearrange BasedUser so that the entries at the end have
1340  // isUseOfPostIncrementedValue = false, because we pop off the end of the
1341  // vector (so we handle them first).
1342  std::partition(UsersToProcess.begin(), UsersToProcess.end(),
1343                 PartitionByIsUseOfPostIncrementedValue);
1344
1345  // Sort this by base, so that things with the same base are handled
1346  // together.  By partitioning first and stable-sorting later, we are
1347  // guaranteed that within each base we will pop off users from within the
1348  // loop before users outside of the loop with a particular base.
1349  //
1350  // We would like to use stable_sort here, but we can't.  The problem is that
1351  // const SCEV*'s don't have a deterministic ordering w.r.t to each other, so
1352  // we don't have anything to do a '<' comparison on.  Because we think the
1353  // number of uses is small, do a horrible bubble sort which just relies on
1354  // ==.
1355  for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) {
1356    // Get a base value.
1357    const SCEV* Base = UsersToProcess[i].Base;
1358
1359    // Compact everything with this base to be consecutive with this one.
1360    for (unsigned j = i+1; j != e; ++j) {
1361      if (UsersToProcess[j].Base == Base) {
1362        std::swap(UsersToProcess[i+1], UsersToProcess[j]);
1363        ++i;
1364      }
1365    }
1366  }
1367}
1368
1369/// PrepareToStrengthReduceFully - Prepare to fully strength-reduce
1370/// UsersToProcess, meaning lowering addresses all the way down to direct
1371/// pointer arithmetic.
1372///
1373void
1374LoopStrengthReduce::PrepareToStrengthReduceFully(
1375                                        std::vector<BasedUser> &UsersToProcess,
1376                                        const SCEV* Stride,
1377                                        const SCEV* CommonExprs,
1378                                        const Loop *L,
1379                                        SCEVExpander &PreheaderRewriter) {
1380  DOUT << "  Fully reducing all users\n";
1381
1382  // Rewrite the UsersToProcess records, creating a separate PHI for each
1383  // unique Base value.
1384  Instruction *IVIncInsertPt = L->getLoopLatch()->getTerminator();
1385  for (unsigned i = 0, e = UsersToProcess.size(); i != e; ) {
1386    // TODO: The uses are grouped by base, but not sorted. We arbitrarily
1387    // pick the first Imm value here to start with, and adjust it for the
1388    // other uses.
1389    const SCEV* Imm = UsersToProcess[i].Imm;
1390    const SCEV* Base = UsersToProcess[i].Base;
1391    const SCEV* Start = SE->getAddExpr(CommonExprs, Base, Imm);
1392    PHINode *Phi = InsertAffinePhi(Start, Stride, IVIncInsertPt, L,
1393                                   PreheaderRewriter);
1394    // Loop over all the users with the same base.
1395    do {
1396      UsersToProcess[i].Base = SE->getIntegerSCEV(0, Stride->getType());
1397      UsersToProcess[i].Imm = SE->getMinusSCEV(UsersToProcess[i].Imm, Imm);
1398      UsersToProcess[i].Phi = Phi;
1399      assert(UsersToProcess[i].Imm->isLoopInvariant(L) &&
1400             "ShouldUseFullStrengthReductionMode should reject this!");
1401    } while (++i != e && Base == UsersToProcess[i].Base);
1402  }
1403}
1404
1405/// FindIVIncInsertPt - Return the location to insert the increment instruction.
1406/// If the only use if a use of postinc value, (must be the loop termination
1407/// condition), then insert it just before the use.
1408static Instruction *FindIVIncInsertPt(std::vector<BasedUser> &UsersToProcess,
1409                                      const Loop *L) {
1410  if (UsersToProcess.size() == 1 &&
1411      UsersToProcess[0].isUseOfPostIncrementedValue &&
1412      L->contains(UsersToProcess[0].Inst->getParent()))
1413    return UsersToProcess[0].Inst;
1414  return L->getLoopLatch()->getTerminator();
1415}
1416
1417/// PrepareToStrengthReduceWithNewPhi - Insert a new induction variable for the
1418/// given users to share.
1419///
1420void
1421LoopStrengthReduce::PrepareToStrengthReduceWithNewPhi(
1422                                         std::vector<BasedUser> &UsersToProcess,
1423                                         const SCEV* Stride,
1424                                         const SCEV* CommonExprs,
1425                                         Value *CommonBaseV,
1426                                         Instruction *IVIncInsertPt,
1427                                         const Loop *L,
1428                                         SCEVExpander &PreheaderRewriter) {
1429  DOUT << "  Inserting new PHI:\n";
1430
1431  PHINode *Phi = InsertAffinePhi(SE->getUnknown(CommonBaseV),
1432                                 Stride, IVIncInsertPt, L,
1433                                 PreheaderRewriter);
1434
1435  // Remember this in case a later stride is multiple of this.
1436  IVsByStride[Stride].addIV(Stride, CommonExprs, Phi);
1437
1438  // All the users will share this new IV.
1439  for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i)
1440    UsersToProcess[i].Phi = Phi;
1441
1442  DOUT << "    IV=";
1443  DEBUG(WriteAsOperand(*DOUT, Phi, /*PrintType=*/false));
1444  DOUT << "\n";
1445}
1446
1447/// PrepareToStrengthReduceFromSmallerStride - Prepare for the given users to
1448/// reuse an induction variable with a stride that is a factor of the current
1449/// induction variable.
1450///
1451void
1452LoopStrengthReduce::PrepareToStrengthReduceFromSmallerStride(
1453                                         std::vector<BasedUser> &UsersToProcess,
1454                                         Value *CommonBaseV,
1455                                         const IVExpr &ReuseIV,
1456                                         Instruction *PreInsertPt) {
1457  DOUT << "  Rewriting in terms of existing IV of STRIDE " << *ReuseIV.Stride
1458       << " and BASE " << *ReuseIV.Base << "\n";
1459
1460  // All the users will share the reused IV.
1461  for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i)
1462    UsersToProcess[i].Phi = ReuseIV.PHI;
1463
1464  Constant *C = dyn_cast<Constant>(CommonBaseV);
1465  if (C &&
1466      (!C->isNullValue() &&
1467       !fitsInAddressMode(SE->getUnknown(CommonBaseV), CommonBaseV->getType(),
1468                         TLI, false)))
1469    // We want the common base emitted into the preheader! This is just
1470    // using cast as a copy so BitCast (no-op cast) is appropriate
1471    CommonBaseV = new BitCastInst(CommonBaseV, CommonBaseV->getType(),
1472                                  "commonbase", PreInsertPt);
1473}
1474
1475static bool IsImmFoldedIntoAddrMode(GlobalValue *GV, int64_t Offset,
1476                                    const Type *AccessTy,
1477                                   std::vector<BasedUser> &UsersToProcess,
1478                                   const TargetLowering *TLI) {
1479  SmallVector<Instruction*, 16> AddrModeInsts;
1480  for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) {
1481    if (UsersToProcess[i].isUseOfPostIncrementedValue)
1482      continue;
1483    ExtAddrMode AddrMode =
1484      AddressingModeMatcher::Match(UsersToProcess[i].OperandValToReplace,
1485                                   AccessTy, UsersToProcess[i].Inst,
1486                                   AddrModeInsts, *TLI);
1487    if (GV && GV != AddrMode.BaseGV)
1488      return false;
1489    if (Offset && !AddrMode.BaseOffs)
1490      // FIXME: How to accurate check it's immediate offset is folded.
1491      return false;
1492    AddrModeInsts.clear();
1493  }
1494  return true;
1495}
1496
1497/// StrengthReduceStridedIVUsers - Strength reduce all of the users of a single
1498/// stride of IV.  All of the users may have different starting values, and this
1499/// may not be the only stride.
1500void LoopStrengthReduce::StrengthReduceStridedIVUsers(const SCEV* const &Stride,
1501                                                      IVUsersOfOneStride &Uses,
1502                                                      Loop *L) {
1503  // If all the users are moved to another stride, then there is nothing to do.
1504  if (Uses.Users.empty())
1505    return;
1506
1507  // Keep track if every use in UsersToProcess is an address. If they all are,
1508  // we may be able to rewrite the entire collection of them in terms of a
1509  // smaller-stride IV.
1510  bool AllUsesAreAddresses = true;
1511
1512  // Keep track if every use of a single stride is outside the loop.  If so,
1513  // we want to be more aggressive about reusing a smaller-stride IV; a
1514  // multiply outside the loop is better than another IV inside.  Well, usually.
1515  bool AllUsesAreOutsideLoop = true;
1516
1517  // Transform our list of users and offsets to a bit more complex table.  In
1518  // this new vector, each 'BasedUser' contains 'Base' the base of the
1519  // strided accessas well as the old information from Uses.  We progressively
1520  // move information from the Base field to the Imm field, until we eventually
1521  // have the full access expression to rewrite the use.
1522  std::vector<BasedUser> UsersToProcess;
1523  const SCEV* CommonExprs = CollectIVUsers(Stride, Uses, L, AllUsesAreAddresses,
1524                                          AllUsesAreOutsideLoop,
1525                                          UsersToProcess);
1526
1527  // Sort the UsersToProcess array so that users with common bases are
1528  // next to each other.
1529  SortUsersToProcess(UsersToProcess);
1530
1531  // If we managed to find some expressions in common, we'll need to carry
1532  // their value in a register and add it in for each use. This will take up
1533  // a register operand, which potentially restricts what stride values are
1534  // valid.
1535  bool HaveCommonExprs = !CommonExprs->isZero();
1536  const Type *ReplacedTy = CommonExprs->getType();
1537
1538  // If all uses are addresses, consider sinking the immediate part of the
1539  // common expression back into uses if they can fit in the immediate fields.
1540  if (TLI && HaveCommonExprs && AllUsesAreAddresses) {
1541    const SCEV* NewCommon = CommonExprs;
1542    const SCEV* Imm = SE->getIntegerSCEV(0, ReplacedTy);
1543    MoveImmediateValues(TLI, Type::VoidTy, NewCommon, Imm, true, L, SE);
1544    if (!Imm->isZero()) {
1545      bool DoSink = true;
1546
1547      // If the immediate part of the common expression is a GV, check if it's
1548      // possible to fold it into the target addressing mode.
1549      GlobalValue *GV = 0;
1550      if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(Imm))
1551        GV = dyn_cast<GlobalValue>(SU->getValue());
1552      int64_t Offset = 0;
1553      if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Imm))
1554        Offset = SC->getValue()->getSExtValue();
1555      if (GV || Offset)
1556        // Pass VoidTy as the AccessTy to be conservative, because
1557        // there could be multiple access types among all the uses.
1558        DoSink = IsImmFoldedIntoAddrMode(GV, Offset, Type::VoidTy,
1559                                         UsersToProcess, TLI);
1560
1561      if (DoSink) {
1562        DOUT << "  Sinking " << *Imm << " back down into uses\n";
1563        for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i)
1564          UsersToProcess[i].Imm = SE->getAddExpr(UsersToProcess[i].Imm, Imm);
1565        CommonExprs = NewCommon;
1566        HaveCommonExprs = !CommonExprs->isZero();
1567        ++NumImmSunk;
1568      }
1569    }
1570  }
1571
1572  // Now that we know what we need to do, insert the PHI node itself.
1573  //
1574  DOUT << "LSR: Examining IVs of TYPE " << *ReplacedTy << " of STRIDE "
1575       << *Stride << ":\n"
1576       << "  Common base: " << *CommonExprs << "\n";
1577
1578  SCEVExpander Rewriter(*SE);
1579  SCEVExpander PreheaderRewriter(*SE);
1580
1581  BasicBlock  *Preheader = L->getLoopPreheader();
1582  Instruction *PreInsertPt = Preheader->getTerminator();
1583  BasicBlock *LatchBlock = L->getLoopLatch();
1584  Instruction *IVIncInsertPt = LatchBlock->getTerminator();
1585
1586  Value *CommonBaseV = Constant::getNullValue(ReplacedTy);
1587
1588  const SCEV* RewriteFactor = SE->getIntegerSCEV(0, ReplacedTy);
1589  IVExpr   ReuseIV(SE->getIntegerSCEV(0, Type::Int32Ty),
1590                   SE->getIntegerSCEV(0, Type::Int32Ty),
1591                   0);
1592
1593  /// Choose a strength-reduction strategy and prepare for it by creating
1594  /// the necessary PHIs and adjusting the bookkeeping.
1595  if (ShouldUseFullStrengthReductionMode(UsersToProcess, L,
1596                                         AllUsesAreAddresses, Stride)) {
1597    PrepareToStrengthReduceFully(UsersToProcess, Stride, CommonExprs, L,
1598                                 PreheaderRewriter);
1599  } else {
1600    // Emit the initial base value into the loop preheader.
1601    CommonBaseV = PreheaderRewriter.expandCodeFor(CommonExprs, ReplacedTy,
1602                                                  PreInsertPt);
1603
1604    // If all uses are addresses, check if it is possible to reuse an IV.  The
1605    // new IV must have a stride that is a multiple of the old stride; the
1606    // multiple must be a number that can be encoded in the scale field of the
1607    // target addressing mode; and we must have a valid instruction after this
1608    // substitution, including the immediate field, if any.
1609    RewriteFactor = CheckForIVReuse(HaveCommonExprs, AllUsesAreAddresses,
1610                                    AllUsesAreOutsideLoop,
1611                                    Stride, ReuseIV, ReplacedTy,
1612                                    UsersToProcess);
1613    if (!RewriteFactor->isZero())
1614      PrepareToStrengthReduceFromSmallerStride(UsersToProcess, CommonBaseV,
1615                                               ReuseIV, PreInsertPt);
1616    else {
1617      IVIncInsertPt = FindIVIncInsertPt(UsersToProcess, L);
1618      PrepareToStrengthReduceWithNewPhi(UsersToProcess, Stride, CommonExprs,
1619                                        CommonBaseV, IVIncInsertPt,
1620                                        L, PreheaderRewriter);
1621    }
1622  }
1623
1624  // Process all the users now, replacing their strided uses with
1625  // strength-reduced forms.  This outer loop handles all bases, the inner
1626  // loop handles all users of a particular base.
1627  while (!UsersToProcess.empty()) {
1628    const SCEV* Base = UsersToProcess.back().Base;
1629    Instruction *Inst = UsersToProcess.back().Inst;
1630
1631    // Emit the code for Base into the preheader.
1632    Value *BaseV = 0;
1633    if (!Base->isZero()) {
1634      BaseV = PreheaderRewriter.expandCodeFor(Base, 0, PreInsertPt);
1635
1636      DOUT << "  INSERTING code for BASE = " << *Base << ":";
1637      if (BaseV->hasName())
1638        DOUT << " Result value name = %" << BaseV->getNameStr();
1639      DOUT << "\n";
1640
1641      // If BaseV is a non-zero constant, make sure that it gets inserted into
1642      // the preheader, instead of being forward substituted into the uses.  We
1643      // do this by forcing a BitCast (noop cast) to be inserted into the
1644      // preheader in this case.
1645      if (!fitsInAddressMode(Base, getAccessType(Inst), TLI, false)) {
1646        // We want this constant emitted into the preheader! This is just
1647        // using cast as a copy so BitCast (no-op cast) is appropriate
1648        BaseV = new BitCastInst(BaseV, BaseV->getType(), "preheaderinsert",
1649                                PreInsertPt);
1650      }
1651    }
1652
1653    // Emit the code to add the immediate offset to the Phi value, just before
1654    // the instructions that we identified as using this stride and base.
1655    do {
1656      // FIXME: Use emitted users to emit other users.
1657      BasedUser &User = UsersToProcess.back();
1658
1659      DOUT << "    Examining ";
1660      if (User.isUseOfPostIncrementedValue)
1661        DOUT << "postinc";
1662      else
1663        DOUT << "preinc";
1664      DOUT << " use ";
1665      DEBUG(WriteAsOperand(*DOUT, UsersToProcess.back().OperandValToReplace,
1666                           /*PrintType=*/false));
1667      DOUT << " in Inst: " << *(User.Inst);
1668
1669      // If this instruction wants to use the post-incremented value, move it
1670      // after the post-inc and use its value instead of the PHI.
1671      Value *RewriteOp = User.Phi;
1672      if (User.isUseOfPostIncrementedValue) {
1673        RewriteOp = User.Phi->getIncomingValueForBlock(LatchBlock);
1674        // If this user is in the loop, make sure it is the last thing in the
1675        // loop to ensure it is dominated by the increment. In case it's the
1676        // only use of the iv, the increment instruction is already before the
1677        // use.
1678        if (L->contains(User.Inst->getParent()) && User.Inst != IVIncInsertPt)
1679          User.Inst->moveBefore(IVIncInsertPt);
1680      }
1681
1682      const SCEV* RewriteExpr = SE->getUnknown(RewriteOp);
1683
1684      if (SE->getEffectiveSCEVType(RewriteOp->getType()) !=
1685          SE->getEffectiveSCEVType(ReplacedTy)) {
1686        assert(SE->getTypeSizeInBits(RewriteOp->getType()) >
1687               SE->getTypeSizeInBits(ReplacedTy) &&
1688               "Unexpected widening cast!");
1689        RewriteExpr = SE->getTruncateExpr(RewriteExpr, ReplacedTy);
1690      }
1691
1692      // If we had to insert new instructions for RewriteOp, we have to
1693      // consider that they may not have been able to end up immediately
1694      // next to RewriteOp, because non-PHI instructions may never precede
1695      // PHI instructions in a block. In this case, remember where the last
1696      // instruction was inserted so that if we're replacing a different
1697      // PHI node, we can use the later point to expand the final
1698      // RewriteExpr.
1699      Instruction *NewBasePt = dyn_cast<Instruction>(RewriteOp);
1700      if (RewriteOp == User.Phi) NewBasePt = 0;
1701
1702      // Clear the SCEVExpander's expression map so that we are guaranteed
1703      // to have the code emitted where we expect it.
1704      Rewriter.clear();
1705
1706      // If we are reusing the iv, then it must be multiplied by a constant
1707      // factor to take advantage of the addressing mode scale component.
1708      if (!RewriteFactor->isZero()) {
1709        // If we're reusing an IV with a nonzero base (currently this happens
1710        // only when all reuses are outside the loop) subtract that base here.
1711        // The base has been used to initialize the PHI node but we don't want
1712        // it here.
1713        if (!ReuseIV.Base->isZero()) {
1714          const SCEV* typedBase = ReuseIV.Base;
1715          if (SE->getEffectiveSCEVType(RewriteExpr->getType()) !=
1716              SE->getEffectiveSCEVType(ReuseIV.Base->getType())) {
1717            // It's possible the original IV is a larger type than the new IV,
1718            // in which case we have to truncate the Base.  We checked in
1719            // RequiresTypeConversion that this is valid.
1720            assert(SE->getTypeSizeInBits(RewriteExpr->getType()) <
1721                   SE->getTypeSizeInBits(ReuseIV.Base->getType()) &&
1722                   "Unexpected lengthening conversion!");
1723            typedBase = SE->getTruncateExpr(ReuseIV.Base,
1724                                            RewriteExpr->getType());
1725          }
1726          RewriteExpr = SE->getMinusSCEV(RewriteExpr, typedBase);
1727        }
1728
1729        // Multiply old variable, with base removed, by new scale factor.
1730        RewriteExpr = SE->getMulExpr(RewriteFactor,
1731                                     RewriteExpr);
1732
1733        // The common base is emitted in the loop preheader. But since we
1734        // are reusing an IV, it has not been used to initialize the PHI node.
1735        // Add it to the expression used to rewrite the uses.
1736        // When this use is outside the loop, we earlier subtracted the
1737        // common base, and are adding it back here.  Use the same expression
1738        // as before, rather than CommonBaseV, so DAGCombiner will zap it.
1739        if (!CommonExprs->isZero()) {
1740          if (L->contains(User.Inst->getParent()))
1741            RewriteExpr = SE->getAddExpr(RewriteExpr,
1742                                       SE->getUnknown(CommonBaseV));
1743          else
1744            RewriteExpr = SE->getAddExpr(RewriteExpr, CommonExprs);
1745        }
1746      }
1747
1748      // Now that we know what we need to do, insert code before User for the
1749      // immediate and any loop-variant expressions.
1750      if (BaseV)
1751        // Add BaseV to the PHI value if needed.
1752        RewriteExpr = SE->getAddExpr(RewriteExpr, SE->getUnknown(BaseV));
1753
1754      User.RewriteInstructionToUseNewBase(RewriteExpr, NewBasePt,
1755                                          Rewriter, L, this, *LI,
1756                                          DeadInsts);
1757
1758      // Mark old value we replaced as possibly dead, so that it is eliminated
1759      // if we just replaced the last use of that value.
1760      DeadInsts.push_back(User.OperandValToReplace);
1761
1762      UsersToProcess.pop_back();
1763      ++NumReduced;
1764
1765      // If there are any more users to process with the same base, process them
1766      // now.  We sorted by base above, so we just have to check the last elt.
1767    } while (!UsersToProcess.empty() && UsersToProcess.back().Base == Base);
1768    // TODO: Next, find out which base index is the most common, pull it out.
1769  }
1770
1771  // IMPORTANT TODO: Figure out how to partition the IV's with this stride, but
1772  // different starting values, into different PHIs.
1773}
1774
1775/// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
1776/// set the IV user and stride information and return true, otherwise return
1777/// false.
1778bool LoopStrengthReduce::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse,
1779                                       const SCEV* const * &CondStride) {
1780  for (unsigned Stride = 0, e = IU->StrideOrder.size();
1781       Stride != e && !CondUse; ++Stride) {
1782    std::map<const SCEV*, IVUsersOfOneStride *>::iterator SI =
1783      IU->IVUsesByStride.find(IU->StrideOrder[Stride]);
1784    assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!");
1785
1786    for (ilist<IVStrideUse>::iterator UI = SI->second->Users.begin(),
1787         E = SI->second->Users.end(); UI != E; ++UI)
1788      if (UI->getUser() == Cond) {
1789        // NOTE: we could handle setcc instructions with multiple uses here, but
1790        // InstCombine does it as well for simple uses, it's not clear that it
1791        // occurs enough in real life to handle.
1792        CondUse = UI;
1793        CondStride = &SI->first;
1794        return true;
1795      }
1796  }
1797  return false;
1798}
1799
1800namespace {
1801  // Constant strides come first which in turns are sorted by their absolute
1802  // values. If absolute values are the same, then positive strides comes first.
1803  // e.g.
1804  // 4, -1, X, 1, 2 ==> 1, -1, 2, 4, X
1805  struct StrideCompare {
1806    const ScalarEvolution *SE;
1807    explicit StrideCompare(const ScalarEvolution *se) : SE(se) {}
1808
1809    bool operator()(const SCEV* const &LHS, const SCEV* const &RHS) {
1810      const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS);
1811      const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS);
1812      if (LHSC && RHSC) {
1813        int64_t  LV = LHSC->getValue()->getSExtValue();
1814        int64_t  RV = RHSC->getValue()->getSExtValue();
1815        uint64_t ALV = (LV < 0) ? -LV : LV;
1816        uint64_t ARV = (RV < 0) ? -RV : RV;
1817        if (ALV == ARV) {
1818          if (LV != RV)
1819            return LV > RV;
1820        } else {
1821          return ALV < ARV;
1822        }
1823
1824        // If it's the same value but different type, sort by bit width so
1825        // that we emit larger induction variables before smaller
1826        // ones, letting the smaller be re-written in terms of larger ones.
1827        return SE->getTypeSizeInBits(RHS->getType()) <
1828               SE->getTypeSizeInBits(LHS->getType());
1829      }
1830      return LHSC && !RHSC;
1831    }
1832  };
1833}
1834
1835/// ChangeCompareStride - If a loop termination compare instruction is the
1836/// only use of its stride, and the compaison is against a constant value,
1837/// try eliminate the stride by moving the compare instruction to another
1838/// stride and change its constant operand accordingly. e.g.
1839///
1840/// loop:
1841/// ...
1842/// v1 = v1 + 3
1843/// v2 = v2 + 1
1844/// if (v2 < 10) goto loop
1845/// =>
1846/// loop:
1847/// ...
1848/// v1 = v1 + 3
1849/// if (v1 < 30) goto loop
1850ICmpInst *LoopStrengthReduce::ChangeCompareStride(Loop *L, ICmpInst *Cond,
1851                                                IVStrideUse* &CondUse,
1852                                              const SCEV* const* &CondStride) {
1853  // If there's only one stride in the loop, there's nothing to do here.
1854  if (IU->StrideOrder.size() < 2)
1855    return Cond;
1856  // If there are other users of the condition's stride, don't bother
1857  // trying to change the condition because the stride will still
1858  // remain.
1859  std::map<const SCEV*, IVUsersOfOneStride *>::iterator I =
1860    IU->IVUsesByStride.find(*CondStride);
1861  if (I == IU->IVUsesByStride.end() ||
1862      I->second->Users.size() != 1)
1863    return Cond;
1864  // Only handle constant strides for now.
1865  const SCEVConstant *SC = dyn_cast<SCEVConstant>(*CondStride);
1866  if (!SC) return Cond;
1867
1868  ICmpInst::Predicate Predicate = Cond->getPredicate();
1869  int64_t CmpSSInt = SC->getValue()->getSExtValue();
1870  unsigned BitWidth = SE->getTypeSizeInBits((*CondStride)->getType());
1871  uint64_t SignBit = 1ULL << (BitWidth-1);
1872  const Type *CmpTy = Cond->getOperand(0)->getType();
1873  const Type *NewCmpTy = NULL;
1874  unsigned TyBits = SE->getTypeSizeInBits(CmpTy);
1875  unsigned NewTyBits = 0;
1876  const SCEV* *NewStride = NULL;
1877  Value *NewCmpLHS = NULL;
1878  Value *NewCmpRHS = NULL;
1879  int64_t Scale = 1;
1880  const SCEV* NewOffset = SE->getIntegerSCEV(0, CmpTy);
1881
1882  if (ConstantInt *C = dyn_cast<ConstantInt>(Cond->getOperand(1))) {
1883    int64_t CmpVal = C->getValue().getSExtValue();
1884
1885    // Check stride constant and the comparision constant signs to detect
1886    // overflow.
1887    if ((CmpVal & SignBit) != (CmpSSInt & SignBit))
1888      return Cond;
1889
1890    // Look for a suitable stride / iv as replacement.
1891    for (unsigned i = 0, e = IU->StrideOrder.size(); i != e; ++i) {
1892      std::map<const SCEV*, IVUsersOfOneStride *>::iterator SI =
1893        IU->IVUsesByStride.find(IU->StrideOrder[i]);
1894      if (!isa<SCEVConstant>(SI->first))
1895        continue;
1896      int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue();
1897      if (SSInt == CmpSSInt ||
1898          abs64(SSInt) < abs64(CmpSSInt) ||
1899          (SSInt % CmpSSInt) != 0)
1900        continue;
1901
1902      Scale = SSInt / CmpSSInt;
1903      int64_t NewCmpVal = CmpVal * Scale;
1904      APInt Mul = APInt(BitWidth*2, CmpVal, true);
1905      Mul = Mul * APInt(BitWidth*2, Scale, true);
1906      // Check for overflow.
1907      if (!Mul.isSignedIntN(BitWidth))
1908        continue;
1909      // Check for overflow in the stride's type too.
1910      if (!Mul.isSignedIntN(SE->getTypeSizeInBits(SI->first->getType())))
1911        continue;
1912
1913      // Watch out for overflow.
1914      if (ICmpInst::isSignedPredicate(Predicate) &&
1915          (CmpVal & SignBit) != (NewCmpVal & SignBit))
1916        continue;
1917
1918      if (NewCmpVal == CmpVal)
1919        continue;
1920      // Pick the best iv to use trying to avoid a cast.
1921      NewCmpLHS = NULL;
1922      for (ilist<IVStrideUse>::iterator UI = SI->second->Users.begin(),
1923             E = SI->second->Users.end(); UI != E; ++UI) {
1924        Value *Op = UI->getOperandValToReplace();
1925
1926        // If the IVStrideUse implies a cast, check for an actual cast which
1927        // can be used to find the original IV expression.
1928        if (SE->getEffectiveSCEVType(Op->getType()) !=
1929            SE->getEffectiveSCEVType(SI->first->getType())) {
1930          CastInst *CI = dyn_cast<CastInst>(Op);
1931          // If it's not a simple cast, it's complicated.
1932          if (!CI)
1933            continue;
1934          // If it's a cast from a type other than the stride type,
1935          // it's complicated.
1936          if (CI->getOperand(0)->getType() != SI->first->getType())
1937            continue;
1938          // Ok, we found the IV expression in the stride's type.
1939          Op = CI->getOperand(0);
1940        }
1941
1942        NewCmpLHS = Op;
1943        if (NewCmpLHS->getType() == CmpTy)
1944          break;
1945      }
1946      if (!NewCmpLHS)
1947        continue;
1948
1949      NewCmpTy = NewCmpLHS->getType();
1950      NewTyBits = SE->getTypeSizeInBits(NewCmpTy);
1951      const Type *NewCmpIntTy = IntegerType::get(NewTyBits);
1952      if (RequiresTypeConversion(NewCmpTy, CmpTy)) {
1953        // Check if it is possible to rewrite it using
1954        // an iv / stride of a smaller integer type.
1955        unsigned Bits = NewTyBits;
1956        if (ICmpInst::isSignedPredicate(Predicate))
1957          --Bits;
1958        uint64_t Mask = (1ULL << Bits) - 1;
1959        if (((uint64_t)NewCmpVal & Mask) != (uint64_t)NewCmpVal)
1960          continue;
1961      }
1962
1963      // Don't rewrite if use offset is non-constant and the new type is
1964      // of a different type.
1965      // FIXME: too conservative?
1966      if (NewTyBits != TyBits && !isa<SCEVConstant>(CondUse->getOffset()))
1967        continue;
1968
1969      bool AllUsesAreAddresses = true;
1970      bool AllUsesAreOutsideLoop = true;
1971      std::vector<BasedUser> UsersToProcess;
1972      const SCEV* CommonExprs = CollectIVUsers(SI->first, *SI->second, L,
1973                                              AllUsesAreAddresses,
1974                                              AllUsesAreOutsideLoop,
1975                                              UsersToProcess);
1976      // Avoid rewriting the compare instruction with an iv of new stride
1977      // if it's likely the new stride uses will be rewritten using the
1978      // stride of the compare instruction.
1979      if (AllUsesAreAddresses &&
1980          ValidScale(!CommonExprs->isZero(), Scale, UsersToProcess))
1981        continue;
1982
1983      // Avoid rewriting the compare instruction with an iv which has
1984      // implicit extension or truncation built into it.
1985      // TODO: This is over-conservative.
1986      if (SE->getTypeSizeInBits(CondUse->getOffset()->getType()) != TyBits)
1987        continue;
1988
1989      // If scale is negative, use swapped predicate unless it's testing
1990      // for equality.
1991      if (Scale < 0 && !Cond->isEquality())
1992        Predicate = ICmpInst::getSwappedPredicate(Predicate);
1993
1994      NewStride = &IU->StrideOrder[i];
1995      if (!isa<PointerType>(NewCmpTy))
1996        NewCmpRHS = ConstantInt::get(NewCmpTy, NewCmpVal);
1997      else {
1998        Constant *CI = ConstantInt::get(NewCmpIntTy, NewCmpVal);
1999        NewCmpRHS = ConstantExpr::getIntToPtr(CI, NewCmpTy);
2000      }
2001      NewOffset = TyBits == NewTyBits
2002        ? SE->getMulExpr(CondUse->getOffset(),
2003                         SE->getConstant(CmpTy, Scale))
2004        : SE->getConstant(NewCmpIntTy,
2005          cast<SCEVConstant>(CondUse->getOffset())->getValue()
2006            ->getSExtValue()*Scale);
2007      break;
2008    }
2009  }
2010
2011  // Forgo this transformation if it the increment happens to be
2012  // unfortunately positioned after the condition, and the condition
2013  // has multiple uses which prevent it from being moved immediately
2014  // before the branch. See
2015  // test/Transforms/LoopStrengthReduce/change-compare-stride-trickiness-*.ll
2016  // for an example of this situation.
2017  if (!Cond->hasOneUse()) {
2018    for (BasicBlock::iterator I = Cond, E = Cond->getParent()->end();
2019         I != E; ++I)
2020      if (I == NewCmpLHS)
2021        return Cond;
2022  }
2023
2024  if (NewCmpRHS) {
2025    // Create a new compare instruction using new stride / iv.
2026    ICmpInst *OldCond = Cond;
2027    // Insert new compare instruction.
2028    Cond = new ICmpInst(Predicate, NewCmpLHS, NewCmpRHS,
2029                        L->getHeader()->getName() + ".termcond",
2030                        OldCond);
2031
2032    // Remove the old compare instruction. The old indvar is probably dead too.
2033    DeadInsts.push_back(CondUse->getOperandValToReplace());
2034    OldCond->replaceAllUsesWith(Cond);
2035    OldCond->eraseFromParent();
2036
2037    IU->IVUsesByStride[*NewStride]->addUser(NewOffset, Cond, NewCmpLHS);
2038    CondUse = &IU->IVUsesByStride[*NewStride]->Users.back();
2039    CondStride = NewStride;
2040    ++NumEliminated;
2041    Changed = true;
2042  }
2043
2044  return Cond;
2045}
2046
2047/// OptimizeMax - Rewrite the loop's terminating condition if it uses
2048/// a max computation.
2049///
2050/// This is a narrow solution to a specific, but acute, problem. For loops
2051/// like this:
2052///
2053///   i = 0;
2054///   do {
2055///     p[i] = 0.0;
2056///   } while (++i < n);
2057///
2058/// the trip count isn't just 'n', because 'n' might not be positive. And
2059/// unfortunately this can come up even for loops where the user didn't use
2060/// a C do-while loop. For example, seemingly well-behaved top-test loops
2061/// will commonly be lowered like this:
2062//
2063///   if (n > 0) {
2064///     i = 0;
2065///     do {
2066///       p[i] = 0.0;
2067///     } while (++i < n);
2068///   }
2069///
2070/// and then it's possible for subsequent optimization to obscure the if
2071/// test in such a way that indvars can't find it.
2072///
2073/// When indvars can't find the if test in loops like this, it creates a
2074/// max expression, which allows it to give the loop a canonical
2075/// induction variable:
2076///
2077///   i = 0;
2078///   max = n < 1 ? 1 : n;
2079///   do {
2080///     p[i] = 0.0;
2081///   } while (++i != max);
2082///
2083/// Canonical induction variables are necessary because the loop passes
2084/// are designed around them. The most obvious example of this is the
2085/// LoopInfo analysis, which doesn't remember trip count values. It
2086/// expects to be able to rediscover the trip count each time it is
2087/// needed, and it does this using a simple analyis that only succeeds if
2088/// the loop has a canonical induction variable.
2089///
2090/// However, when it comes time to generate code, the maximum operation
2091/// can be quite costly, especially if it's inside of an outer loop.
2092///
2093/// This function solves this problem by detecting this type of loop and
2094/// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2095/// the instructions for the maximum computation.
2096///
2097ICmpInst *LoopStrengthReduce::OptimizeMax(Loop *L, ICmpInst *Cond,
2098                                          IVStrideUse* &CondUse) {
2099  // Check that the loop matches the pattern we're looking for.
2100  if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
2101      Cond->getPredicate() != CmpInst::ICMP_NE)
2102    return Cond;
2103
2104  SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
2105  if (!Sel || !Sel->hasOneUse()) return Cond;
2106
2107  const SCEV* BackedgeTakenCount = SE->getBackedgeTakenCount(L);
2108  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2109    return Cond;
2110  const SCEV* One = SE->getIntegerSCEV(1, BackedgeTakenCount->getType());
2111
2112  // Add one to the backedge-taken count to get the trip count.
2113  const SCEV* IterationCount = SE->getAddExpr(BackedgeTakenCount, One);
2114
2115  // Check for a max calculation that matches the pattern.
2116  if (!isa<SCEVSMaxExpr>(IterationCount) && !isa<SCEVUMaxExpr>(IterationCount))
2117    return Cond;
2118  const SCEVNAryExpr *Max = cast<SCEVNAryExpr>(IterationCount);
2119  if (Max != SE->getSCEV(Sel)) return Cond;
2120
2121  // To handle a max with more than two operands, this optimization would
2122  // require additional checking and setup.
2123  if (Max->getNumOperands() != 2)
2124    return Cond;
2125
2126  const SCEV* MaxLHS = Max->getOperand(0);
2127  const SCEV* MaxRHS = Max->getOperand(1);
2128  if (!MaxLHS || MaxLHS != One) return Cond;
2129
2130  // Check the relevant induction variable for conformance to
2131  // the pattern.
2132  const SCEV* IV = SE->getSCEV(Cond->getOperand(0));
2133  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2134  if (!AR || !AR->isAffine() ||
2135      AR->getStart() != One ||
2136      AR->getStepRecurrence(*SE) != One)
2137    return Cond;
2138
2139  assert(AR->getLoop() == L &&
2140         "Loop condition operand is an addrec in a different loop!");
2141
2142  // Check the right operand of the select, and remember it, as it will
2143  // be used in the new comparison instruction.
2144  Value *NewRHS = 0;
2145  if (SE->getSCEV(Sel->getOperand(1)) == MaxRHS)
2146    NewRHS = Sel->getOperand(1);
2147  else if (SE->getSCEV(Sel->getOperand(2)) == MaxRHS)
2148    NewRHS = Sel->getOperand(2);
2149  if (!NewRHS) return Cond;
2150
2151  // Determine the new comparison opcode. It may be signed or unsigned,
2152  // and the original comparison may be either equality or inequality.
2153  CmpInst::Predicate Pred =
2154    isa<SCEVSMaxExpr>(Max) ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
2155  if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2156    Pred = CmpInst::getInversePredicate(Pred);
2157
2158  // Ok, everything looks ok to change the condition into an SLT or SGE and
2159  // delete the max calculation.
2160  ICmpInst *NewCond =
2161    new ICmpInst(Pred, Cond->getOperand(0), NewRHS, "scmp", Cond);
2162
2163  // Delete the max calculation instructions.
2164  Cond->replaceAllUsesWith(NewCond);
2165  CondUse->setUser(NewCond);
2166  Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2167  Cond->eraseFromParent();
2168  Sel->eraseFromParent();
2169  if (Cmp->use_empty())
2170    Cmp->eraseFromParent();
2171  return NewCond;
2172}
2173
2174/// OptimizeShadowIV - If IV is used in a int-to-float cast
2175/// inside the loop then try to eliminate the cast opeation.
2176void LoopStrengthReduce::OptimizeShadowIV(Loop *L) {
2177
2178  const SCEV* BackedgeTakenCount = SE->getBackedgeTakenCount(L);
2179  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2180    return;
2181
2182  for (unsigned Stride = 0, e = IU->StrideOrder.size(); Stride != e;
2183       ++Stride) {
2184    std::map<const SCEV*, IVUsersOfOneStride *>::iterator SI =
2185      IU->IVUsesByStride.find(IU->StrideOrder[Stride]);
2186    assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!");
2187    if (!isa<SCEVConstant>(SI->first))
2188      continue;
2189
2190    for (ilist<IVStrideUse>::iterator UI = SI->second->Users.begin(),
2191           E = SI->second->Users.end(); UI != E; /* empty */) {
2192      ilist<IVStrideUse>::iterator CandidateUI = UI;
2193      ++UI;
2194      Instruction *ShadowUse = CandidateUI->getUser();
2195      const Type *DestTy = NULL;
2196
2197      /* If shadow use is a int->float cast then insert a second IV
2198         to eliminate this cast.
2199
2200           for (unsigned i = 0; i < n; ++i)
2201             foo((double)i);
2202
2203         is transformed into
2204
2205           double d = 0.0;
2206           for (unsigned i = 0; i < n; ++i, ++d)
2207             foo(d);
2208      */
2209      if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser()))
2210        DestTy = UCast->getDestTy();
2211      else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser()))
2212        DestTy = SCast->getDestTy();
2213      if (!DestTy) continue;
2214
2215      if (TLI) {
2216        // If target does not support DestTy natively then do not apply
2217        // this transformation.
2218        MVT DVT = TLI->getValueType(DestTy);
2219        if (!TLI->isTypeLegal(DVT)) continue;
2220      }
2221
2222      PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
2223      if (!PH) continue;
2224      if (PH->getNumIncomingValues() != 2) continue;
2225
2226      const Type *SrcTy = PH->getType();
2227      int Mantissa = DestTy->getFPMantissaWidth();
2228      if (Mantissa == -1) continue;
2229      if ((int)SE->getTypeSizeInBits(SrcTy) > Mantissa)
2230        continue;
2231
2232      unsigned Entry, Latch;
2233      if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
2234        Entry = 0;
2235        Latch = 1;
2236      } else {
2237        Entry = 1;
2238        Latch = 0;
2239      }
2240
2241      ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
2242      if (!Init) continue;
2243      Constant *NewInit = ConstantFP::get(DestTy, Init->getZExtValue());
2244
2245      BinaryOperator *Incr =
2246        dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
2247      if (!Incr) continue;
2248      if (Incr->getOpcode() != Instruction::Add
2249          && Incr->getOpcode() != Instruction::Sub)
2250        continue;
2251
2252      /* Initialize new IV, double d = 0.0 in above example. */
2253      ConstantInt *C = NULL;
2254      if (Incr->getOperand(0) == PH)
2255        C = dyn_cast<ConstantInt>(Incr->getOperand(1));
2256      else if (Incr->getOperand(1) == PH)
2257        C = dyn_cast<ConstantInt>(Incr->getOperand(0));
2258      else
2259        continue;
2260
2261      if (!C) continue;
2262
2263      /* Add new PHINode. */
2264      PHINode *NewPH = PHINode::Create(DestTy, "IV.S.", PH);
2265
2266      /* create new increment. '++d' in above example. */
2267      Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
2268      BinaryOperator *NewIncr =
2269        BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
2270                                 Instruction::FAdd : Instruction::FSub,
2271                               NewPH, CFP, "IV.S.next.", Incr);
2272
2273      NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
2274      NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
2275
2276      /* Remove cast operation */
2277      ShadowUse->replaceAllUsesWith(NewPH);
2278      ShadowUse->eraseFromParent();
2279      NumShadow++;
2280      break;
2281    }
2282  }
2283}
2284
2285/// OptimizeIndvars - Now that IVUsesByStride is set up with all of the indvar
2286/// uses in the loop, look to see if we can eliminate some, in favor of using
2287/// common indvars for the different uses.
2288void LoopStrengthReduce::OptimizeIndvars(Loop *L) {
2289  // TODO: implement optzns here.
2290
2291  OptimizeShadowIV(L);
2292}
2293
2294/// OptimizeLoopTermCond - Change loop terminating condition to use the
2295/// postinc iv when possible.
2296void LoopStrengthReduce::OptimizeLoopTermCond(Loop *L) {
2297  // Finally, get the terminating condition for the loop if possible.  If we
2298  // can, we want to change it to use a post-incremented version of its
2299  // induction variable, to allow coalescing the live ranges for the IV into
2300  // one register value.
2301  BasicBlock *LatchBlock = L->getLoopLatch();
2302  BasicBlock *ExitingBlock = L->getExitingBlock();
2303  if (!ExitingBlock)
2304    // Multiple exits, just look at the exit in the latch block if there is one.
2305    ExitingBlock = LatchBlock;
2306  BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2307  if (!TermBr)
2308    return;
2309  if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2310    return;
2311
2312  // Search IVUsesByStride to find Cond's IVUse if there is one.
2313  IVStrideUse *CondUse = 0;
2314  const SCEV* const *CondStride = 0;
2315  ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2316  if (!FindIVUserForCond(Cond, CondUse, CondStride))
2317    return; // setcc doesn't use the IV.
2318
2319  if (ExitingBlock != LatchBlock) {
2320    if (!Cond->hasOneUse())
2321      // See below, we don't want the condition to be cloned.
2322      return;
2323
2324    // If exiting block is the latch block, we know it's safe and profitable to
2325    // transform the icmp to use post-inc iv. Otherwise do so only if it would
2326    // not reuse another iv and its iv would be reused by other uses. We are
2327    // optimizing for the case where the icmp is the only use of the iv.
2328    IVUsersOfOneStride &StrideUses = *IU->IVUsesByStride[*CondStride];
2329    for (ilist<IVStrideUse>::iterator I = StrideUses.Users.begin(),
2330         E = StrideUses.Users.end(); I != E; ++I) {
2331      if (I->getUser() == Cond)
2332        continue;
2333      if (!I->isUseOfPostIncrementedValue())
2334        return;
2335    }
2336
2337    // FIXME: This is expensive, and worse still ChangeCompareStride does a
2338    // similar check. Can we perform all the icmp related transformations after
2339    // StrengthReduceStridedIVUsers?
2340    if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(*CondStride)) {
2341      int64_t SInt = SC->getValue()->getSExtValue();
2342      for (unsigned NewStride = 0, ee = IU->StrideOrder.size(); NewStride != ee;
2343           ++NewStride) {
2344        std::map<const SCEV*, IVUsersOfOneStride *>::iterator SI =
2345          IU->IVUsesByStride.find(IU->StrideOrder[NewStride]);
2346        if (!isa<SCEVConstant>(SI->first) || SI->first == *CondStride)
2347          continue;
2348        int64_t SSInt =
2349          cast<SCEVConstant>(SI->first)->getValue()->getSExtValue();
2350        if (SSInt == SInt)
2351          return; // This can definitely be reused.
2352        if (unsigned(abs64(SSInt)) < SInt || (SSInt % SInt) != 0)
2353          continue;
2354        int64_t Scale = SSInt / SInt;
2355        bool AllUsesAreAddresses = true;
2356        bool AllUsesAreOutsideLoop = true;
2357        std::vector<BasedUser> UsersToProcess;
2358        const SCEV* CommonExprs = CollectIVUsers(SI->first, *SI->second, L,
2359                                                AllUsesAreAddresses,
2360                                                AllUsesAreOutsideLoop,
2361                                                UsersToProcess);
2362        // Avoid rewriting the compare instruction with an iv of new stride
2363        // if it's likely the new stride uses will be rewritten using the
2364        // stride of the compare instruction.
2365        if (AllUsesAreAddresses &&
2366            ValidScale(!CommonExprs->isZero(), Scale, UsersToProcess))
2367          return;
2368      }
2369    }
2370
2371    StrideNoReuse.insert(*CondStride);
2372  }
2373
2374  // If the trip count is computed in terms of a max (due to ScalarEvolution
2375  // being unable to find a sufficient guard, for example), change the loop
2376  // comparison to use SLT or ULT instead of NE.
2377  Cond = OptimizeMax(L, Cond, CondUse);
2378
2379  // If possible, change stride and operands of the compare instruction to
2380  // eliminate one stride.
2381  if (ExitingBlock == LatchBlock)
2382    Cond = ChangeCompareStride(L, Cond, CondUse, CondStride);
2383
2384  // It's possible for the setcc instruction to be anywhere in the loop, and
2385  // possible for it to have multiple users.  If it is not immediately before
2386  // the latch block branch, move it.
2387  if (&*++BasicBlock::iterator(Cond) != (Instruction*)TermBr) {
2388    if (Cond->hasOneUse()) {   // Condition has a single use, just move it.
2389      Cond->moveBefore(TermBr);
2390    } else {
2391      // Otherwise, clone the terminating condition and insert into the loopend.
2392      Cond = cast<ICmpInst>(Cond->clone());
2393      Cond->setName(L->getHeader()->getName() + ".termcond");
2394      LatchBlock->getInstList().insert(TermBr, Cond);
2395
2396      // Clone the IVUse, as the old use still exists!
2397      IU->IVUsesByStride[*CondStride]->addUser(CondUse->getOffset(), Cond,
2398                                             CondUse->getOperandValToReplace());
2399      CondUse = &IU->IVUsesByStride[*CondStride]->Users.back();
2400    }
2401  }
2402
2403  // If we get to here, we know that we can transform the setcc instruction to
2404  // use the post-incremented version of the IV, allowing us to coalesce the
2405  // live ranges for the IV correctly.
2406  CondUse->setOffset(SE->getMinusSCEV(CondUse->getOffset(), *CondStride));
2407  CondUse->setIsUseOfPostIncrementedValue(true);
2408  Changed = true;
2409
2410  ++NumLoopCond;
2411}
2412
2413/// OptimizeLoopCountIV - If, after all sharing of IVs, the IV used for deciding
2414/// when to exit the loop is used only for that purpose, try to rearrange things
2415/// so it counts down to a test against zero.
2416void LoopStrengthReduce::OptimizeLoopCountIV(Loop *L) {
2417
2418  // If the number of times the loop is executed isn't computable, give up.
2419  const SCEV* BackedgeTakenCount = SE->getBackedgeTakenCount(L);
2420  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2421    return;
2422
2423  // Get the terminating condition for the loop if possible (this isn't
2424  // necessarily in the latch, or a block that's a predecessor of the header).
2425  if (!L->getExitBlock())
2426    return; // More than one loop exit blocks.
2427
2428  // Okay, there is one exit block.  Try to find the condition that causes the
2429  // loop to be exited.
2430  BasicBlock *ExitingBlock = L->getExitingBlock();
2431  if (!ExitingBlock)
2432    return; // More than one block exiting!
2433
2434  // Okay, we've computed the exiting block.  See what condition causes us to
2435  // exit.
2436  //
2437  // FIXME: we should be able to handle switch instructions (with a single exit)
2438  BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2439  if (TermBr == 0) return;
2440  assert(TermBr->isConditional() && "If unconditional, it can't be in loop!");
2441  if (!isa<ICmpInst>(TermBr->getCondition()))
2442    return;
2443  ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2444
2445  // Handle only tests for equality for the moment, and only stride 1.
2446  if (Cond->getPredicate() != CmpInst::ICMP_EQ)
2447    return;
2448  const SCEV* IV = SE->getSCEV(Cond->getOperand(0));
2449  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2450  const SCEV* One = SE->getIntegerSCEV(1, BackedgeTakenCount->getType());
2451  if (!AR || !AR->isAffine() || AR->getStepRecurrence(*SE) != One)
2452    return;
2453  // If the RHS of the comparison is defined inside the loop, the rewrite
2454  // cannot be done.
2455  if (Instruction *CR = dyn_cast<Instruction>(Cond->getOperand(1)))
2456    if (L->contains(CR->getParent()))
2457      return;
2458
2459  // Make sure the IV is only used for counting.  Value may be preinc or
2460  // postinc; 2 uses in either case.
2461  if (!Cond->getOperand(0)->hasNUses(2))
2462    return;
2463  PHINode *phi = dyn_cast<PHINode>(Cond->getOperand(0));
2464  Instruction *incr;
2465  if (phi && phi->getParent()==L->getHeader()) {
2466    // value tested is preinc.  Find the increment.
2467    // A CmpInst is not a BinaryOperator; we depend on this.
2468    Instruction::use_iterator UI = phi->use_begin();
2469    incr = dyn_cast<BinaryOperator>(UI);
2470    if (!incr)
2471      incr = dyn_cast<BinaryOperator>(++UI);
2472    // 1 use for postinc value, the phi.  Unnecessarily conservative?
2473    if (!incr || !incr->hasOneUse() || incr->getOpcode()!=Instruction::Add)
2474      return;
2475  } else {
2476    // Value tested is postinc.  Find the phi node.
2477    incr = dyn_cast<BinaryOperator>(Cond->getOperand(0));
2478    if (!incr || incr->getOpcode()!=Instruction::Add)
2479      return;
2480
2481    Instruction::use_iterator UI = Cond->getOperand(0)->use_begin();
2482    phi = dyn_cast<PHINode>(UI);
2483    if (!phi)
2484      phi = dyn_cast<PHINode>(++UI);
2485    // 1 use for preinc value, the increment.
2486    if (!phi || phi->getParent()!=L->getHeader() || !phi->hasOneUse())
2487      return;
2488  }
2489
2490  // Replace the increment with a decrement.
2491  BinaryOperator *decr =
2492    BinaryOperator::Create(Instruction::Sub, incr->getOperand(0),
2493                           incr->getOperand(1), "tmp", incr);
2494  incr->replaceAllUsesWith(decr);
2495  incr->eraseFromParent();
2496
2497  // Substitute endval-startval for the original startval, and 0 for the
2498  // original endval.  Since we're only testing for equality this is OK even
2499  // if the computation wraps around.
2500  BasicBlock  *Preheader = L->getLoopPreheader();
2501  Instruction *PreInsertPt = Preheader->getTerminator();
2502  int inBlock = L->contains(phi->getIncomingBlock(0)) ? 1 : 0;
2503  Value *startVal = phi->getIncomingValue(inBlock);
2504  Value *endVal = Cond->getOperand(1);
2505  // FIXME check for case where both are constant
2506  Constant* Zero = ConstantInt::get(Cond->getOperand(1)->getType(), 0);
2507  BinaryOperator *NewStartVal =
2508    BinaryOperator::Create(Instruction::Sub, endVal, startVal,
2509                           "tmp", PreInsertPt);
2510  phi->setIncomingValue(inBlock, NewStartVal);
2511  Cond->setOperand(1, Zero);
2512
2513  Changed = true;
2514}
2515
2516bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager &LPM) {
2517
2518  IU = &getAnalysis<IVUsers>();
2519  LI = &getAnalysis<LoopInfo>();
2520  DT = &getAnalysis<DominatorTree>();
2521  SE = &getAnalysis<ScalarEvolution>();
2522  Changed = false;
2523
2524  if (!IU->IVUsesByStride.empty()) {
2525#ifndef NDEBUG
2526    DOUT << "\nLSR on \"" << L->getHeader()->getParent()->getNameStart()
2527         << "\" ";
2528    DEBUG(L->dump());
2529#endif
2530
2531    // Sort the StrideOrder so we process larger strides first.
2532    std::stable_sort(IU->StrideOrder.begin(), IU->StrideOrder.end(),
2533                     StrideCompare(SE));
2534
2535    // Optimize induction variables.  Some indvar uses can be transformed to use
2536    // strides that will be needed for other purposes.  A common example of this
2537    // is the exit test for the loop, which can often be rewritten to use the
2538    // computation of some other indvar to decide when to terminate the loop.
2539    OptimizeIndvars(L);
2540
2541    // Change loop terminating condition to use the postinc iv when possible
2542    // and optimize loop terminating compare. FIXME: Move this after
2543    // StrengthReduceStridedIVUsers?
2544    OptimizeLoopTermCond(L);
2545
2546    // FIXME: We can shrink overlarge IV's here.  e.g. if the code has
2547    // computation in i64 values and the target doesn't support i64, demote
2548    // the computation to 32-bit if safe.
2549
2550    // FIXME: Attempt to reuse values across multiple IV's.  In particular, we
2551    // could have something like "for(i) { foo(i*8); bar(i*16) }", which should
2552    // be codegened as "for (j = 0;; j+=8) { foo(j); bar(j+j); }" on X86/PPC.
2553    // Need to be careful that IV's are all the same type.  Only works for
2554    // intptr_t indvars.
2555
2556    // IVsByStride keeps IVs for one particular loop.
2557    assert(IVsByStride.empty() && "Stale entries in IVsByStride?");
2558
2559    // Note: this processes each stride/type pair individually.  All users
2560    // passed into StrengthReduceStridedIVUsers have the same type AND stride.
2561    // Also, note that we iterate over IVUsesByStride indirectly by using
2562    // StrideOrder. This extra layer of indirection makes the ordering of
2563    // strides deterministic - not dependent on map order.
2564    for (unsigned Stride = 0, e = IU->StrideOrder.size();
2565         Stride != e; ++Stride) {
2566      std::map<const SCEV*, IVUsersOfOneStride *>::iterator SI =
2567        IU->IVUsesByStride.find(IU->StrideOrder[Stride]);
2568      assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!");
2569      // FIXME: Generalize to non-affine IV's.
2570      if (!SI->first->isLoopInvariant(L))
2571        continue;
2572      StrengthReduceStridedIVUsers(SI->first, *SI->second, L);
2573    }
2574  }
2575
2576  // After all sharing is done, see if we can adjust the loop to test against
2577  // zero instead of counting up to a maximum.  This is usually faster.
2578  OptimizeLoopCountIV(L);
2579
2580  // We're done analyzing this loop; release all the state we built up for it.
2581  IVsByStride.clear();
2582  StrideNoReuse.clear();
2583
2584  // Clean up after ourselves
2585  if (!DeadInsts.empty())
2586    DeleteTriviallyDeadInstructions();
2587
2588  // At this point, it is worth checking to see if any recurrence PHIs are also
2589  // dead, so that we can remove them as well.
2590  DeleteDeadPHIs(L->getHeader());
2591
2592  return Changed;
2593}
2594