LoopStrengthReduce.cpp revision 193574
1283625Sdim//===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2283625Sdim//
3283625Sdim//                     The LLVM Compiler Infrastructure
4283625Sdim//
5283625Sdim// This file is distributed under the University of Illinois Open Source
6283625Sdim// License. See LICENSE.TXT for details.
7283625Sdim//
8283625Sdim//===----------------------------------------------------------------------===//
9283625Sdim//
10283625Sdim// This transformation analyzes and transforms the induction variables (and
11283625Sdim// computations derived from them) into forms suitable for efficient execution
12283625Sdim// on the target.
13283625Sdim//
14283625Sdim// This pass performs a strength reduction on array references inside loops that
15283625Sdim// have as one or more of their components the loop induction variable, it
16283625Sdim// rewrites expressions to take advantage of scaled-index addressing modes
17283625Sdim// available on the target, and it performs a variety of other optimizations
18283625Sdim// related to loop induction variables.
19283625Sdim//
20283625Sdim//===----------------------------------------------------------------------===//
21283625Sdim
22283625Sdim#define DEBUG_TYPE "loop-reduce"
23283625Sdim#include "llvm/Transforms/Scalar.h"
24283625Sdim#include "llvm/Constants.h"
25283625Sdim#include "llvm/Instructions.h"
26283625Sdim#include "llvm/IntrinsicInst.h"
27283625Sdim#include "llvm/Type.h"
28283625Sdim#include "llvm/DerivedTypes.h"
29283625Sdim#include "llvm/Analysis/Dominators.h"
30283625Sdim#include "llvm/Analysis/IVUsers.h"
31283625Sdim#include "llvm/Analysis/LoopInfo.h"
32283625Sdim#include "llvm/Analysis/LoopPass.h"
33283625Sdim#include "llvm/Analysis/ScalarEvolutionExpander.h"
34283625Sdim#include "llvm/Transforms/Utils/AddrModeMatcher.h"
35283625Sdim#include "llvm/Transforms/Utils/BasicBlockUtils.h"
36283625Sdim#include "llvm/Transforms/Utils/Local.h"
37283625Sdim#include "llvm/ADT/Statistic.h"
38283625Sdim#include "llvm/Support/CFG.h"
39283625Sdim#include "llvm/Support/Debug.h"
40283625Sdim#include "llvm/Support/Compiler.h"
41283625Sdim#include "llvm/Support/CommandLine.h"
42283625Sdim#include "llvm/Support/ValueHandle.h"
43283625Sdim#include "llvm/Target/TargetLowering.h"
44283625Sdim#include <algorithm>
45283625Sdimusing namespace llvm;
46283625Sdim
47283625SdimSTATISTIC(NumReduced ,    "Number of IV uses strength reduced");
48283625SdimSTATISTIC(NumInserted,    "Number of PHIs inserted");
49283625SdimSTATISTIC(NumVariable,    "Number of PHIs with variable strides");
50283625SdimSTATISTIC(NumEliminated,  "Number of strides eliminated");
51283625SdimSTATISTIC(NumShadow,      "Number of Shadow IVs optimized");
52283625SdimSTATISTIC(NumImmSunk,     "Number of common expr immediates sunk into uses");
53283625SdimSTATISTIC(NumLoopCond,    "Number of loop terminating conds optimized");
54283625Sdim
55283625Sdimstatic cl::opt<bool> EnableFullLSRMode("enable-full-lsr",
56283625Sdim                                       cl::init(false),
57283625Sdim                                       cl::Hidden);
58283625Sdim
59283625Sdimnamespace {
60283625Sdim
61283625Sdim  struct BasedUser;
62283625Sdim
63283625Sdim  /// IVInfo - This structure keeps track of one IV expression inserted during
64283625Sdim  /// StrengthReduceStridedIVUsers. It contains the stride, the common base, as
65283625Sdim  /// well as the PHI node and increment value created for rewrite.
66283625Sdim  struct VISIBILITY_HIDDEN IVExpr {
67283625Sdim    SCEVHandle  Stride;
68283625Sdim    SCEVHandle  Base;
69283625Sdim    PHINode    *PHI;
70283625Sdim
71283625Sdim    IVExpr(const SCEVHandle &stride, const SCEVHandle &base, PHINode *phi)
72283625Sdim      : Stride(stride), Base(base), PHI(phi) {}
73283625Sdim  };
74283625Sdim
75283625Sdim  /// IVsOfOneStride - This structure keeps track of all IV expression inserted
76283625Sdim  /// during StrengthReduceStridedIVUsers for a particular stride of the IV.
77283625Sdim  struct VISIBILITY_HIDDEN IVsOfOneStride {
78283625Sdim    std::vector<IVExpr> IVs;
79283625Sdim
80283625Sdim    void addIV(const SCEVHandle &Stride, const SCEVHandle &Base, PHINode *PHI) {
81283625Sdim      IVs.push_back(IVExpr(Stride, Base, PHI));
82283625Sdim    }
83283625Sdim  };
84283625Sdim
85283625Sdim  class VISIBILITY_HIDDEN LoopStrengthReduce : public LoopPass {
86283625Sdim    IVUsers *IU;
87283625Sdim    LoopInfo *LI;
88283625Sdim    DominatorTree *DT;
89283625Sdim    ScalarEvolution *SE;
90283625Sdim    bool Changed;
91283625Sdim
92283625Sdim    /// IVsByStride - Keep track of all IVs that have been inserted for a
93283625Sdim    /// particular stride.
94283625Sdim    std::map<SCEVHandle, IVsOfOneStride> IVsByStride;
95283625Sdim
96283625Sdim    /// StrideNoReuse - Keep track of all the strides whose ivs cannot be
97283625Sdim    /// reused (nor should they be rewritten to reuse other strides).
98283625Sdim    SmallSet<SCEVHandle, 4> StrideNoReuse;
99283625Sdim
100283625Sdim    /// DeadInsts - Keep track of instructions we may have made dead, so that
101283625Sdim    /// we can remove them after we are done working.
102283625Sdim    SmallVector<WeakVH, 16> DeadInsts;
103283625Sdim
104283625Sdim    /// TLI - Keep a pointer of a TargetLowering to consult for determining
105283625Sdim    /// transformation profitability.
106283625Sdim    const TargetLowering *TLI;
107283625Sdim
108283625Sdim  public:
109283625Sdim    static char ID; // Pass ID, replacement for typeid
110283625Sdim    explicit LoopStrengthReduce(const TargetLowering *tli = NULL) :
111283625Sdim      LoopPass(&ID), TLI(tli) {
112283625Sdim    }
113283625Sdim
114283625Sdim    bool runOnLoop(Loop *L, LPPassManager &LPM);
115283625Sdim
116283625Sdim    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
117283625Sdim      // We split critical edges, so we change the CFG.  However, we do update
118283625Sdim      // many analyses if they are around.
119283625Sdim      AU.addPreservedID(LoopSimplifyID);
120283625Sdim      AU.addPreserved<LoopInfo>();
121283625Sdim      AU.addPreserved<DominanceFrontier>();
122283625Sdim      AU.addPreserved<DominatorTree>();
123283625Sdim
124283625Sdim      AU.addRequiredID(LoopSimplifyID);
125283625Sdim      AU.addRequired<LoopInfo>();
126283625Sdim      AU.addRequired<DominatorTree>();
127283625Sdim      AU.addRequired<ScalarEvolution>();
128283625Sdim      AU.addPreserved<ScalarEvolution>();
129283625Sdim      AU.addRequired<IVUsers>();
130283625Sdim      AU.addPreserved<IVUsers>();
131283625Sdim    }
132283625Sdim
133283625Sdim  private:
134283625Sdim    ICmpInst *ChangeCompareStride(Loop *L, ICmpInst *Cond,
135283625Sdim                                  IVStrideUse* &CondUse,
136283625Sdim                                  const SCEVHandle* &CondStride);
137283625Sdim
138283625Sdim    void OptimizeIndvars(Loop *L);
139283625Sdim    void OptimizeLoopCountIV(Loop *L);
140283625Sdim    void OptimizeLoopTermCond(Loop *L);
141283625Sdim
142296417Sdim    /// OptimizeShadowIV - If IV is used in a int-to-float cast
143283625Sdim    /// inside the loop then try to eliminate the cast opeation.
144283625Sdim    void OptimizeShadowIV(Loop *L);
145283625Sdim
146283625Sdim    /// OptimizeSMax - Rewrite the loop's terminating condition
147283625Sdim    /// if it uses an smax computation.
148283625Sdim    ICmpInst *OptimizeSMax(Loop *L, ICmpInst *Cond,
149283625Sdim                           IVStrideUse* &CondUse);
150283625Sdim
151283625Sdim    bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse,
152283625Sdim                           const SCEVHandle *&CondStride);
153283625Sdim    bool RequiresTypeConversion(const Type *Ty, const Type *NewTy);
154283625Sdim    SCEVHandle CheckForIVReuse(bool, bool, bool, const SCEVHandle&,
155283625Sdim                             IVExpr&, const Type*,
156283625Sdim                             const std::vector<BasedUser>& UsersToProcess);
157283625Sdim    bool ValidScale(bool, int64_t,
158283625Sdim                    const std::vector<BasedUser>& UsersToProcess);
159283625Sdim    bool ValidOffset(bool, int64_t, int64_t,
160283625Sdim                     const std::vector<BasedUser>& UsersToProcess);
161283625Sdim    SCEVHandle CollectIVUsers(const SCEVHandle &Stride,
162283625Sdim                              IVUsersOfOneStride &Uses,
163283625Sdim                              Loop *L,
164283625Sdim                              bool &AllUsesAreAddresses,
165283625Sdim                              bool &AllUsesAreOutsideLoop,
166283625Sdim                              std::vector<BasedUser> &UsersToProcess);
167283625Sdim    bool ShouldUseFullStrengthReductionMode(
168283625Sdim                                const std::vector<BasedUser> &UsersToProcess,
169283625Sdim                                const Loop *L,
170283625Sdim                                bool AllUsesAreAddresses,
171283625Sdim                                SCEVHandle Stride);
172283625Sdim    void PrepareToStrengthReduceFully(
173283625Sdim                             std::vector<BasedUser> &UsersToProcess,
174283625Sdim                             SCEVHandle Stride,
175283625Sdim                             SCEVHandle CommonExprs,
176283625Sdim                             const Loop *L,
177283625Sdim                             SCEVExpander &PreheaderRewriter);
178283625Sdim    void PrepareToStrengthReduceFromSmallerStride(
179283625Sdim                                         std::vector<BasedUser> &UsersToProcess,
180283625Sdim                                         Value *CommonBaseV,
181283625Sdim                                         const IVExpr &ReuseIV,
182283625Sdim                                         Instruction *PreInsertPt);
183283625Sdim    void PrepareToStrengthReduceWithNewPhi(
184285181Sdim                                  std::vector<BasedUser> &UsersToProcess,
185283625Sdim                                  SCEVHandle Stride,
186283625Sdim                                  SCEVHandle CommonExprs,
187283625Sdim                                  Value *CommonBaseV,
188283625Sdim                                  Instruction *IVIncInsertPt,
189283625Sdim                                  const Loop *L,
190283625Sdim                                  SCEVExpander &PreheaderRewriter);
191283625Sdim    void StrengthReduceStridedIVUsers(const SCEVHandle &Stride,
192283625Sdim                                      IVUsersOfOneStride &Uses,
193                                      Loop *L);
194    void DeleteTriviallyDeadInstructions();
195  };
196}
197
198char LoopStrengthReduce::ID = 0;
199static RegisterPass<LoopStrengthReduce>
200X("loop-reduce", "Loop Strength Reduction");
201
202Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
203  return new LoopStrengthReduce(TLI);
204}
205
206/// DeleteTriviallyDeadInstructions - If any of the instructions is the
207/// specified set are trivially dead, delete them and see if this makes any of
208/// their operands subsequently dead.
209void LoopStrengthReduce::DeleteTriviallyDeadInstructions() {
210  if (DeadInsts.empty()) return;
211
212  while (!DeadInsts.empty()) {
213    Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.back());
214    DeadInsts.pop_back();
215
216    if (I == 0 || !isInstructionTriviallyDead(I))
217      continue;
218
219    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) {
220      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
221        *OI = 0;
222        if (U->use_empty())
223          DeadInsts.push_back(U);
224      }
225    }
226
227    I->eraseFromParent();
228    Changed = true;
229  }
230}
231
232/// containsAddRecFromDifferentLoop - Determine whether expression S involves a
233/// subexpression that is an AddRec from a loop other than L.  An outer loop
234/// of L is OK, but not an inner loop nor a disjoint loop.
235static bool containsAddRecFromDifferentLoop(SCEVHandle S, Loop *L) {
236  // This is very common, put it first.
237  if (isa<SCEVConstant>(S))
238    return false;
239  if (const SCEVCommutativeExpr *AE = dyn_cast<SCEVCommutativeExpr>(S)) {
240    for (unsigned int i=0; i< AE->getNumOperands(); i++)
241      if (containsAddRecFromDifferentLoop(AE->getOperand(i), L))
242        return true;
243    return false;
244  }
245  if (const SCEVAddRecExpr *AE = dyn_cast<SCEVAddRecExpr>(S)) {
246    if (const Loop *newLoop = AE->getLoop()) {
247      if (newLoop == L)
248        return false;
249      // if newLoop is an outer loop of L, this is OK.
250      if (!LoopInfoBase<BasicBlock>::isNotAlreadyContainedIn(L, newLoop))
251        return false;
252    }
253    return true;
254  }
255  if (const SCEVUDivExpr *DE = dyn_cast<SCEVUDivExpr>(S))
256    return containsAddRecFromDifferentLoop(DE->getLHS(), L) ||
257           containsAddRecFromDifferentLoop(DE->getRHS(), L);
258#if 0
259  // SCEVSDivExpr has been backed out temporarily, but will be back; we'll
260  // need this when it is.
261  if (const SCEVSDivExpr *DE = dyn_cast<SCEVSDivExpr>(S))
262    return containsAddRecFromDifferentLoop(DE->getLHS(), L) ||
263           containsAddRecFromDifferentLoop(DE->getRHS(), L);
264#endif
265  if (const SCEVCastExpr *CE = dyn_cast<SCEVCastExpr>(S))
266    return containsAddRecFromDifferentLoop(CE->getOperand(), L);
267  return false;
268}
269
270/// isAddressUse - Returns true if the specified instruction is using the
271/// specified value as an address.
272static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
273  bool isAddress = isa<LoadInst>(Inst);
274  if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
275    if (SI->getOperand(1) == OperandVal)
276      isAddress = true;
277  } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
278    // Addressing modes can also be folded into prefetches and a variety
279    // of intrinsics.
280    switch (II->getIntrinsicID()) {
281      default: break;
282      case Intrinsic::prefetch:
283      case Intrinsic::x86_sse2_loadu_dq:
284      case Intrinsic::x86_sse2_loadu_pd:
285      case Intrinsic::x86_sse_loadu_ps:
286      case Intrinsic::x86_sse_storeu_ps:
287      case Intrinsic::x86_sse2_storeu_pd:
288      case Intrinsic::x86_sse2_storeu_dq:
289      case Intrinsic::x86_sse2_storel_dq:
290        if (II->getOperand(1) == OperandVal)
291          isAddress = true;
292        break;
293    }
294  }
295  return isAddress;
296}
297
298/// getAccessType - Return the type of the memory being accessed.
299static const Type *getAccessType(const Instruction *Inst) {
300  const Type *AccessTy = Inst->getType();
301  if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
302    AccessTy = SI->getOperand(0)->getType();
303  else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
304    // Addressing modes can also be folded into prefetches and a variety
305    // of intrinsics.
306    switch (II->getIntrinsicID()) {
307    default: break;
308    case Intrinsic::x86_sse_storeu_ps:
309    case Intrinsic::x86_sse2_storeu_pd:
310    case Intrinsic::x86_sse2_storeu_dq:
311    case Intrinsic::x86_sse2_storel_dq:
312      AccessTy = II->getOperand(1)->getType();
313      break;
314    }
315  }
316  return AccessTy;
317}
318
319namespace {
320  /// BasedUser - For a particular base value, keep information about how we've
321  /// partitioned the expression so far.
322  struct BasedUser {
323    /// SE - The current ScalarEvolution object.
324    ScalarEvolution *SE;
325
326    /// Base - The Base value for the PHI node that needs to be inserted for
327    /// this use.  As the use is processed, information gets moved from this
328    /// field to the Imm field (below).  BasedUser values are sorted by this
329    /// field.
330    SCEVHandle Base;
331
332    /// Inst - The instruction using the induction variable.
333    Instruction *Inst;
334
335    /// OperandValToReplace - The operand value of Inst to replace with the
336    /// EmittedBase.
337    Value *OperandValToReplace;
338
339    /// isSigned - The stride (and thus also the Base) of this use may be in
340    /// a narrower type than the use itself (OperandValToReplace->getType()).
341    /// When this is the case, the isSigned field indicates whether the
342    /// IV expression should be signed-extended instead of zero-extended to
343    /// fit the type of the use.
344    bool isSigned;
345
346    /// Imm - The immediate value that should be added to the base immediately
347    /// before Inst, because it will be folded into the imm field of the
348    /// instruction.  This is also sometimes used for loop-variant values that
349    /// must be added inside the loop.
350    SCEVHandle Imm;
351
352    /// Phi - The induction variable that performs the striding that
353    /// should be used for this user.
354    PHINode *Phi;
355
356    // isUseOfPostIncrementedValue - True if this should use the
357    // post-incremented version of this IV, not the preincremented version.
358    // This can only be set in special cases, such as the terminating setcc
359    // instruction for a loop and uses outside the loop that are dominated by
360    // the loop.
361    bool isUseOfPostIncrementedValue;
362
363    BasedUser(IVStrideUse &IVSU, ScalarEvolution *se)
364      : SE(se), Base(IVSU.getOffset()), Inst(IVSU.getUser()),
365        OperandValToReplace(IVSU.getOperandValToReplace()),
366        isSigned(IVSU.isSigned()),
367        Imm(SE->getIntegerSCEV(0, Base->getType())),
368        isUseOfPostIncrementedValue(IVSU.isUseOfPostIncrementedValue()) {}
369
370    // Once we rewrite the code to insert the new IVs we want, update the
371    // operands of Inst to use the new expression 'NewBase', with 'Imm' added
372    // to it.
373    void RewriteInstructionToUseNewBase(const SCEVHandle &NewBase,
374                                        Instruction *InsertPt,
375                                       SCEVExpander &Rewriter, Loop *L, Pass *P,
376                                        LoopInfo &LI,
377                                        SmallVectorImpl<WeakVH> &DeadInsts);
378
379    Value *InsertCodeForBaseAtPosition(const SCEVHandle &NewBase,
380                                       const Type *Ty,
381                                       SCEVExpander &Rewriter,
382                                       Instruction *IP, Loop *L,
383                                       LoopInfo &LI);
384    void dump() const;
385  };
386}
387
388void BasedUser::dump() const {
389  cerr << " Base=" << *Base;
390  cerr << " Imm=" << *Imm;
391  cerr << "   Inst: " << *Inst;
392}
393
394Value *BasedUser::InsertCodeForBaseAtPosition(const SCEVHandle &NewBase,
395                                              const Type *Ty,
396                                              SCEVExpander &Rewriter,
397                                              Instruction *IP, Loop *L,
398                                              LoopInfo &LI) {
399  // Figure out where we *really* want to insert this code.  In particular, if
400  // the user is inside of a loop that is nested inside of L, we really don't
401  // want to insert this expression before the user, we'd rather pull it out as
402  // many loops as possible.
403  Instruction *BaseInsertPt = IP;
404
405  // Figure out the most-nested loop that IP is in.
406  Loop *InsertLoop = LI.getLoopFor(IP->getParent());
407
408  // If InsertLoop is not L, and InsertLoop is nested inside of L, figure out
409  // the preheader of the outer-most loop where NewBase is not loop invariant.
410  if (L->contains(IP->getParent()))
411    while (InsertLoop && NewBase->isLoopInvariant(InsertLoop)) {
412      BaseInsertPt = InsertLoop->getLoopPreheader()->getTerminator();
413      InsertLoop = InsertLoop->getParentLoop();
414    }
415
416  Value *Base = Rewriter.expandCodeFor(NewBase, 0, BaseInsertPt);
417
418  SCEVHandle NewValSCEV = SE->getUnknown(Base);
419
420  // If there is no immediate value, skip the next part.
421  if (!Imm->isZero()) {
422    // If we are inserting the base and imm values in the same block, make sure
423    // to adjust the IP position if insertion reused a result.
424    if (IP == BaseInsertPt)
425      IP = Rewriter.getInsertionPoint();
426
427    // Always emit the immediate (if non-zero) into the same block as the user.
428    NewValSCEV = SE->getAddExpr(NewValSCEV, Imm);
429  }
430
431  if (isSigned)
432    NewValSCEV = SE->getTruncateOrSignExtend(NewValSCEV, Ty);
433  else
434    NewValSCEV = SE->getTruncateOrZeroExtend(NewValSCEV, Ty);
435
436  return Rewriter.expandCodeFor(NewValSCEV, Ty, IP);
437}
438
439
440// Once we rewrite the code to insert the new IVs we want, update the
441// operands of Inst to use the new expression 'NewBase', with 'Imm' added
442// to it. NewBasePt is the last instruction which contributes to the
443// value of NewBase in the case that it's a diffferent instruction from
444// the PHI that NewBase is computed from, or null otherwise.
445//
446void BasedUser::RewriteInstructionToUseNewBase(const SCEVHandle &NewBase,
447                                               Instruction *NewBasePt,
448                                      SCEVExpander &Rewriter, Loop *L, Pass *P,
449                                      LoopInfo &LI,
450                                      SmallVectorImpl<WeakVH> &DeadInsts) {
451  if (!isa<PHINode>(Inst)) {
452    // By default, insert code at the user instruction.
453    BasicBlock::iterator InsertPt = Inst;
454
455    // However, if the Operand is itself an instruction, the (potentially
456    // complex) inserted code may be shared by many users.  Because of this, we
457    // want to emit code for the computation of the operand right before its old
458    // computation.  This is usually safe, because we obviously used to use the
459    // computation when it was computed in its current block.  However, in some
460    // cases (e.g. use of a post-incremented induction variable) the NewBase
461    // value will be pinned to live somewhere after the original computation.
462    // In this case, we have to back off.
463    //
464    // If this is a use outside the loop (which means after, since it is based
465    // on a loop indvar) we use the post-incremented value, so that we don't
466    // artificially make the preinc value live out the bottom of the loop.
467    if (!isUseOfPostIncrementedValue && L->contains(Inst->getParent())) {
468      if (NewBasePt && isa<PHINode>(OperandValToReplace)) {
469        InsertPt = NewBasePt;
470        ++InsertPt;
471      } else if (Instruction *OpInst
472                 = dyn_cast<Instruction>(OperandValToReplace)) {
473        InsertPt = OpInst;
474        while (isa<PHINode>(InsertPt)) ++InsertPt;
475      }
476    }
477    Value *NewVal = InsertCodeForBaseAtPosition(NewBase,
478                                                OperandValToReplace->getType(),
479                                                Rewriter, InsertPt, L, LI);
480    // Replace the use of the operand Value with the new Phi we just created.
481    Inst->replaceUsesOfWith(OperandValToReplace, NewVal);
482
483    DOUT << "      Replacing with ";
484    DEBUG(WriteAsOperand(*DOUT, NewVal, /*PrintType=*/false));
485    DOUT << ", which has value " << *NewBase << " plus IMM " << *Imm << "\n";
486    return;
487  }
488
489  // PHI nodes are more complex.  We have to insert one copy of the NewBase+Imm
490  // expression into each operand block that uses it.  Note that PHI nodes can
491  // have multiple entries for the same predecessor.  We use a map to make sure
492  // that a PHI node only has a single Value* for each predecessor (which also
493  // prevents us from inserting duplicate code in some blocks).
494  DenseMap<BasicBlock*, Value*> InsertedCode;
495  PHINode *PN = cast<PHINode>(Inst);
496  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
497    if (PN->getIncomingValue(i) == OperandValToReplace) {
498      // If the original expression is outside the loop, put the replacement
499      // code in the same place as the original expression,
500      // which need not be an immediate predecessor of this PHI.  This way we
501      // need only one copy of it even if it is referenced multiple times in
502      // the PHI.  We don't do this when the original expression is inside the
503      // loop because multiple copies sometimes do useful sinking of code in
504      // that case(?).
505      Instruction *OldLoc = dyn_cast<Instruction>(OperandValToReplace);
506      if (L->contains(OldLoc->getParent())) {
507        // If this is a critical edge, split the edge so that we do not insert
508        // the code on all predecessor/successor paths.  We do this unless this
509        // is the canonical backedge for this loop, as this can make some
510        // inserted code be in an illegal position.
511        BasicBlock *PHIPred = PN->getIncomingBlock(i);
512        if (e != 1 && PHIPred->getTerminator()->getNumSuccessors() > 1 &&
513            (PN->getParent() != L->getHeader() || !L->contains(PHIPred))) {
514
515          // First step, split the critical edge.
516          SplitCriticalEdge(PHIPred, PN->getParent(), P, false);
517
518          // Next step: move the basic block.  In particular, if the PHI node
519          // is outside of the loop, and PredTI is in the loop, we want to
520          // move the block to be immediately before the PHI block, not
521          // immediately after PredTI.
522          if (L->contains(PHIPred) && !L->contains(PN->getParent())) {
523            BasicBlock *NewBB = PN->getIncomingBlock(i);
524            NewBB->moveBefore(PN->getParent());
525          }
526
527          // Splitting the edge can reduce the number of PHI entries we have.
528          e = PN->getNumIncomingValues();
529        }
530      }
531      Value *&Code = InsertedCode[PN->getIncomingBlock(i)];
532      if (!Code) {
533        // Insert the code into the end of the predecessor block.
534        Instruction *InsertPt = (L->contains(OldLoc->getParent())) ?
535                                PN->getIncomingBlock(i)->getTerminator() :
536                                OldLoc->getParent()->getTerminator();
537        Code = InsertCodeForBaseAtPosition(NewBase, PN->getType(),
538                                           Rewriter, InsertPt, L, LI);
539
540        DOUT << "      Changing PHI use to ";
541        DEBUG(WriteAsOperand(*DOUT, Code, /*PrintType=*/false));
542        DOUT << ", which has value " << *NewBase << " plus IMM " << *Imm << "\n";
543      }
544
545      // Replace the use of the operand Value with the new Phi we just created.
546      PN->setIncomingValue(i, Code);
547      Rewriter.clear();
548    }
549  }
550
551  // PHI node might have become a constant value after SplitCriticalEdge.
552  DeadInsts.push_back(Inst);
553}
554
555
556/// fitsInAddressMode - Return true if V can be subsumed within an addressing
557/// mode, and does not need to be put in a register first.
558static bool fitsInAddressMode(const SCEVHandle &V, const Type *AccessTy,
559                             const TargetLowering *TLI, bool HasBaseReg) {
560  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) {
561    int64_t VC = SC->getValue()->getSExtValue();
562    if (TLI) {
563      TargetLowering::AddrMode AM;
564      AM.BaseOffs = VC;
565      AM.HasBaseReg = HasBaseReg;
566      return TLI->isLegalAddressingMode(AM, AccessTy);
567    } else {
568      // Defaults to PPC. PPC allows a sign-extended 16-bit immediate field.
569      return (VC > -(1 << 16) && VC < (1 << 16)-1);
570    }
571  }
572
573  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V))
574    if (GlobalValue *GV = dyn_cast<GlobalValue>(SU->getValue())) {
575      if (TLI) {
576        TargetLowering::AddrMode AM;
577        AM.BaseGV = GV;
578        AM.HasBaseReg = HasBaseReg;
579        return TLI->isLegalAddressingMode(AM, AccessTy);
580      } else {
581        // Default: assume global addresses are not legal.
582      }
583    }
584
585  return false;
586}
587
588/// MoveLoopVariantsToImmediateField - Move any subexpressions from Val that are
589/// loop varying to the Imm operand.
590static void MoveLoopVariantsToImmediateField(SCEVHandle &Val, SCEVHandle &Imm,
591                                             Loop *L, ScalarEvolution *SE) {
592  if (Val->isLoopInvariant(L)) return;  // Nothing to do.
593
594  if (const SCEVAddExpr *SAE = dyn_cast<SCEVAddExpr>(Val)) {
595    std::vector<SCEVHandle> NewOps;
596    NewOps.reserve(SAE->getNumOperands());
597
598    for (unsigned i = 0; i != SAE->getNumOperands(); ++i)
599      if (!SAE->getOperand(i)->isLoopInvariant(L)) {
600        // If this is a loop-variant expression, it must stay in the immediate
601        // field of the expression.
602        Imm = SE->getAddExpr(Imm, SAE->getOperand(i));
603      } else {
604        NewOps.push_back(SAE->getOperand(i));
605      }
606
607    if (NewOps.empty())
608      Val = SE->getIntegerSCEV(0, Val->getType());
609    else
610      Val = SE->getAddExpr(NewOps);
611  } else if (const SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Val)) {
612    // Try to pull immediates out of the start value of nested addrec's.
613    SCEVHandle Start = SARE->getStart();
614    MoveLoopVariantsToImmediateField(Start, Imm, L, SE);
615
616    std::vector<SCEVHandle> Ops(SARE->op_begin(), SARE->op_end());
617    Ops[0] = Start;
618    Val = SE->getAddRecExpr(Ops, SARE->getLoop());
619  } else {
620    // Otherwise, all of Val is variant, move the whole thing over.
621    Imm = SE->getAddExpr(Imm, Val);
622    Val = SE->getIntegerSCEV(0, Val->getType());
623  }
624}
625
626
627/// MoveImmediateValues - Look at Val, and pull out any additions of constants
628/// that can fit into the immediate field of instructions in the target.
629/// Accumulate these immediate values into the Imm value.
630static void MoveImmediateValues(const TargetLowering *TLI,
631                                const Type *AccessTy,
632                                SCEVHandle &Val, SCEVHandle &Imm,
633                                bool isAddress, Loop *L,
634                                ScalarEvolution *SE) {
635  if (const SCEVAddExpr *SAE = dyn_cast<SCEVAddExpr>(Val)) {
636    std::vector<SCEVHandle> NewOps;
637    NewOps.reserve(SAE->getNumOperands());
638
639    for (unsigned i = 0; i != SAE->getNumOperands(); ++i) {
640      SCEVHandle NewOp = SAE->getOperand(i);
641      MoveImmediateValues(TLI, AccessTy, NewOp, Imm, isAddress, L, SE);
642
643      if (!NewOp->isLoopInvariant(L)) {
644        // If this is a loop-variant expression, it must stay in the immediate
645        // field of the expression.
646        Imm = SE->getAddExpr(Imm, NewOp);
647      } else {
648        NewOps.push_back(NewOp);
649      }
650    }
651
652    if (NewOps.empty())
653      Val = SE->getIntegerSCEV(0, Val->getType());
654    else
655      Val = SE->getAddExpr(NewOps);
656    return;
657  } else if (const SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Val)) {
658    // Try to pull immediates out of the start value of nested addrec's.
659    SCEVHandle Start = SARE->getStart();
660    MoveImmediateValues(TLI, AccessTy, Start, Imm, isAddress, L, SE);
661
662    if (Start != SARE->getStart()) {
663      std::vector<SCEVHandle> Ops(SARE->op_begin(), SARE->op_end());
664      Ops[0] = Start;
665      Val = SE->getAddRecExpr(Ops, SARE->getLoop());
666    }
667    return;
668  } else if (const SCEVMulExpr *SME = dyn_cast<SCEVMulExpr>(Val)) {
669    // Transform "8 * (4 + v)" -> "32 + 8*V" if "32" fits in the immed field.
670    if (isAddress &&
671        fitsInAddressMode(SME->getOperand(0), AccessTy, TLI, false) &&
672        SME->getNumOperands() == 2 && SME->isLoopInvariant(L)) {
673
674      SCEVHandle SubImm = SE->getIntegerSCEV(0, Val->getType());
675      SCEVHandle NewOp = SME->getOperand(1);
676      MoveImmediateValues(TLI, AccessTy, NewOp, SubImm, isAddress, L, SE);
677
678      // If we extracted something out of the subexpressions, see if we can
679      // simplify this!
680      if (NewOp != SME->getOperand(1)) {
681        // Scale SubImm up by "8".  If the result is a target constant, we are
682        // good.
683        SubImm = SE->getMulExpr(SubImm, SME->getOperand(0));
684        if (fitsInAddressMode(SubImm, AccessTy, TLI, false)) {
685          // Accumulate the immediate.
686          Imm = SE->getAddExpr(Imm, SubImm);
687
688          // Update what is left of 'Val'.
689          Val = SE->getMulExpr(SME->getOperand(0), NewOp);
690          return;
691        }
692      }
693    }
694  }
695
696  // Loop-variant expressions must stay in the immediate field of the
697  // expression.
698  if ((isAddress && fitsInAddressMode(Val, AccessTy, TLI, false)) ||
699      !Val->isLoopInvariant(L)) {
700    Imm = SE->getAddExpr(Imm, Val);
701    Val = SE->getIntegerSCEV(0, Val->getType());
702    return;
703  }
704
705  // Otherwise, no immediates to move.
706}
707
708static void MoveImmediateValues(const TargetLowering *TLI,
709                                Instruction *User,
710                                SCEVHandle &Val, SCEVHandle &Imm,
711                                bool isAddress, Loop *L,
712                                ScalarEvolution *SE) {
713  const Type *AccessTy = getAccessType(User);
714  MoveImmediateValues(TLI, AccessTy, Val, Imm, isAddress, L, SE);
715}
716
717/// SeparateSubExprs - Decompose Expr into all of the subexpressions that are
718/// added together.  This is used to reassociate common addition subexprs
719/// together for maximal sharing when rewriting bases.
720static void SeparateSubExprs(std::vector<SCEVHandle> &SubExprs,
721                             SCEVHandle Expr,
722                             ScalarEvolution *SE) {
723  if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(Expr)) {
724    for (unsigned j = 0, e = AE->getNumOperands(); j != e; ++j)
725      SeparateSubExprs(SubExprs, AE->getOperand(j), SE);
726  } else if (const SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Expr)) {
727    SCEVHandle Zero = SE->getIntegerSCEV(0, Expr->getType());
728    if (SARE->getOperand(0) == Zero) {
729      SubExprs.push_back(Expr);
730    } else {
731      // Compute the addrec with zero as its base.
732      std::vector<SCEVHandle> Ops(SARE->op_begin(), SARE->op_end());
733      Ops[0] = Zero;   // Start with zero base.
734      SubExprs.push_back(SE->getAddRecExpr(Ops, SARE->getLoop()));
735
736
737      SeparateSubExprs(SubExprs, SARE->getOperand(0), SE);
738    }
739  } else if (!Expr->isZero()) {
740    // Do not add zero.
741    SubExprs.push_back(Expr);
742  }
743}
744
745// This is logically local to the following function, but C++ says we have
746// to make it file scope.
747struct SubExprUseData { unsigned Count; bool notAllUsesAreFree; };
748
749/// RemoveCommonExpressionsFromUseBases - Look through all of the Bases of all
750/// the Uses, removing any common subexpressions, except that if all such
751/// subexpressions can be folded into an addressing mode for all uses inside
752/// the loop (this case is referred to as "free" in comments herein) we do
753/// not remove anything.  This looks for things like (a+b+c) and
754/// (a+c+d) and computes the common (a+c) subexpression.  The common expression
755/// is *removed* from the Bases and returned.
756static SCEVHandle
757RemoveCommonExpressionsFromUseBases(std::vector<BasedUser> &Uses,
758                                    ScalarEvolution *SE, Loop *L,
759                                    const TargetLowering *TLI) {
760  unsigned NumUses = Uses.size();
761
762  // Only one use?  This is a very common case, so we handle it specially and
763  // cheaply.
764  SCEVHandle Zero = SE->getIntegerSCEV(0, Uses[0].Base->getType());
765  SCEVHandle Result = Zero;
766  SCEVHandle FreeResult = Zero;
767  if (NumUses == 1) {
768    // If the use is inside the loop, use its base, regardless of what it is:
769    // it is clearly shared across all the IV's.  If the use is outside the loop
770    // (which means after it) we don't want to factor anything *into* the loop,
771    // so just use 0 as the base.
772    if (L->contains(Uses[0].Inst->getParent()))
773      std::swap(Result, Uses[0].Base);
774    return Result;
775  }
776
777  // To find common subexpressions, count how many of Uses use each expression.
778  // If any subexpressions are used Uses.size() times, they are common.
779  // Also track whether all uses of each expression can be moved into an
780  // an addressing mode "for free"; such expressions are left within the loop.
781  // struct SubExprUseData { unsigned Count; bool notAllUsesAreFree; };
782  std::map<SCEVHandle, SubExprUseData> SubExpressionUseData;
783
784  // UniqueSubExprs - Keep track of all of the subexpressions we see in the
785  // order we see them.
786  std::vector<SCEVHandle> UniqueSubExprs;
787
788  std::vector<SCEVHandle> SubExprs;
789  unsigned NumUsesInsideLoop = 0;
790  for (unsigned i = 0; i != NumUses; ++i) {
791    // If the user is outside the loop, just ignore it for base computation.
792    // Since the user is outside the loop, it must be *after* the loop (if it
793    // were before, it could not be based on the loop IV).  We don't want users
794    // after the loop to affect base computation of values *inside* the loop,
795    // because we can always add their offsets to the result IV after the loop
796    // is done, ensuring we get good code inside the loop.
797    if (!L->contains(Uses[i].Inst->getParent()))
798      continue;
799    NumUsesInsideLoop++;
800
801    // If the base is zero (which is common), return zero now, there are no
802    // CSEs we can find.
803    if (Uses[i].Base == Zero) return Zero;
804
805    // If this use is as an address we may be able to put CSEs in the addressing
806    // mode rather than hoisting them.
807    bool isAddrUse = isAddressUse(Uses[i].Inst, Uses[i].OperandValToReplace);
808    // We may need the AccessTy below, but only when isAddrUse, so compute it
809    // only in that case.
810    const Type *AccessTy = 0;
811    if (isAddrUse)
812      AccessTy = getAccessType(Uses[i].Inst);
813
814    // Split the expression into subexprs.
815    SeparateSubExprs(SubExprs, Uses[i].Base, SE);
816    // Add one to SubExpressionUseData.Count for each subexpr present, and
817    // if the subexpr is not a valid immediate within an addressing mode use,
818    // set SubExpressionUseData.notAllUsesAreFree.  We definitely want to
819    // hoist these out of the loop (if they are common to all uses).
820    for (unsigned j = 0, e = SubExprs.size(); j != e; ++j) {
821      if (++SubExpressionUseData[SubExprs[j]].Count == 1)
822        UniqueSubExprs.push_back(SubExprs[j]);
823      if (!isAddrUse || !fitsInAddressMode(SubExprs[j], AccessTy, TLI, false))
824        SubExpressionUseData[SubExprs[j]].notAllUsesAreFree = true;
825    }
826    SubExprs.clear();
827  }
828
829  // Now that we know how many times each is used, build Result.  Iterate over
830  // UniqueSubexprs so that we have a stable ordering.
831  for (unsigned i = 0, e = UniqueSubExprs.size(); i != e; ++i) {
832    std::map<SCEVHandle, SubExprUseData>::iterator I =
833       SubExpressionUseData.find(UniqueSubExprs[i]);
834    assert(I != SubExpressionUseData.end() && "Entry not found?");
835    if (I->second.Count == NumUsesInsideLoop) { // Found CSE!
836      if (I->second.notAllUsesAreFree)
837        Result = SE->getAddExpr(Result, I->first);
838      else
839        FreeResult = SE->getAddExpr(FreeResult, I->first);
840    } else
841      // Remove non-cse's from SubExpressionUseData.
842      SubExpressionUseData.erase(I);
843  }
844
845  if (FreeResult != Zero) {
846    // We have some subexpressions that can be subsumed into addressing
847    // modes in every use inside the loop.  However, it's possible that
848    // there are so many of them that the combined FreeResult cannot
849    // be subsumed, or that the target cannot handle both a FreeResult
850    // and a Result in the same instruction (for example because it would
851    // require too many registers).  Check this.
852    for (unsigned i=0; i<NumUses; ++i) {
853      if (!L->contains(Uses[i].Inst->getParent()))
854        continue;
855      // We know this is an addressing mode use; if there are any uses that
856      // are not, FreeResult would be Zero.
857      const Type *AccessTy = getAccessType(Uses[i].Inst);
858      if (!fitsInAddressMode(FreeResult, AccessTy, TLI, Result!=Zero)) {
859        // FIXME:  could split up FreeResult into pieces here, some hoisted
860        // and some not.  There is no obvious advantage to this.
861        Result = SE->getAddExpr(Result, FreeResult);
862        FreeResult = Zero;
863        break;
864      }
865    }
866  }
867
868  // If we found no CSE's, return now.
869  if (Result == Zero) return Result;
870
871  // If we still have a FreeResult, remove its subexpressions from
872  // SubExpressionUseData.  This means they will remain in the use Bases.
873  if (FreeResult != Zero) {
874    SeparateSubExprs(SubExprs, FreeResult, SE);
875    for (unsigned j = 0, e = SubExprs.size(); j != e; ++j) {
876      std::map<SCEVHandle, SubExprUseData>::iterator I =
877         SubExpressionUseData.find(SubExprs[j]);
878      SubExpressionUseData.erase(I);
879    }
880    SubExprs.clear();
881  }
882
883  // Otherwise, remove all of the CSE's we found from each of the base values.
884  for (unsigned i = 0; i != NumUses; ++i) {
885    // Uses outside the loop don't necessarily include the common base, but
886    // the final IV value coming into those uses does.  Instead of trying to
887    // remove the pieces of the common base, which might not be there,
888    // subtract off the base to compensate for this.
889    if (!L->contains(Uses[i].Inst->getParent())) {
890      Uses[i].Base = SE->getMinusSCEV(Uses[i].Base, Result);
891      continue;
892    }
893
894    // Split the expression into subexprs.
895    SeparateSubExprs(SubExprs, Uses[i].Base, SE);
896
897    // Remove any common subexpressions.
898    for (unsigned j = 0, e = SubExprs.size(); j != e; ++j)
899      if (SubExpressionUseData.count(SubExprs[j])) {
900        SubExprs.erase(SubExprs.begin()+j);
901        --j; --e;
902      }
903
904    // Finally, add the non-shared expressions together.
905    if (SubExprs.empty())
906      Uses[i].Base = Zero;
907    else
908      Uses[i].Base = SE->getAddExpr(SubExprs);
909    SubExprs.clear();
910  }
911
912  return Result;
913}
914
915/// ValidScale - Check whether the given Scale is valid for all loads and
916/// stores in UsersToProcess.
917///
918bool LoopStrengthReduce::ValidScale(bool HasBaseReg, int64_t Scale,
919                               const std::vector<BasedUser>& UsersToProcess) {
920  if (!TLI)
921    return true;
922
923  for (unsigned i = 0, e = UsersToProcess.size(); i!=e; ++i) {
924    // If this is a load or other access, pass the type of the access in.
925    const Type *AccessTy = Type::VoidTy;
926    if (isAddressUse(UsersToProcess[i].Inst,
927                     UsersToProcess[i].OperandValToReplace))
928      AccessTy = getAccessType(UsersToProcess[i].Inst);
929    else if (isa<PHINode>(UsersToProcess[i].Inst))
930      continue;
931
932    TargetLowering::AddrMode AM;
933    if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(UsersToProcess[i].Imm))
934      AM.BaseOffs = SC->getValue()->getSExtValue();
935    AM.HasBaseReg = HasBaseReg || !UsersToProcess[i].Base->isZero();
936    AM.Scale = Scale;
937
938    // If load[imm+r*scale] is illegal, bail out.
939    if (!TLI->isLegalAddressingMode(AM, AccessTy))
940      return false;
941  }
942  return true;
943}
944
945/// ValidOffset - Check whether the given Offset is valid for all loads and
946/// stores in UsersToProcess.
947///
948bool LoopStrengthReduce::ValidOffset(bool HasBaseReg,
949                               int64_t Offset,
950                               int64_t Scale,
951                               const std::vector<BasedUser>& UsersToProcess) {
952  if (!TLI)
953    return true;
954
955  for (unsigned i=0, e = UsersToProcess.size(); i!=e; ++i) {
956    // If this is a load or other access, pass the type of the access in.
957    const Type *AccessTy = Type::VoidTy;
958    if (isAddressUse(UsersToProcess[i].Inst,
959                     UsersToProcess[i].OperandValToReplace))
960      AccessTy = getAccessType(UsersToProcess[i].Inst);
961    else if (isa<PHINode>(UsersToProcess[i].Inst))
962      continue;
963
964    TargetLowering::AddrMode AM;
965    if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(UsersToProcess[i].Imm))
966      AM.BaseOffs = SC->getValue()->getSExtValue();
967    AM.BaseOffs = (uint64_t)AM.BaseOffs + (uint64_t)Offset;
968    AM.HasBaseReg = HasBaseReg || !UsersToProcess[i].Base->isZero();
969    AM.Scale = Scale;
970
971    // If load[imm+r*scale] is illegal, bail out.
972    if (!TLI->isLegalAddressingMode(AM, AccessTy))
973      return false;
974  }
975  return true;
976}
977
978/// RequiresTypeConversion - Returns true if converting Ty1 to Ty2 is not
979/// a nop.
980bool LoopStrengthReduce::RequiresTypeConversion(const Type *Ty1,
981                                                const Type *Ty2) {
982  if (Ty1 == Ty2)
983    return false;
984  Ty1 = SE->getEffectiveSCEVType(Ty1);
985  Ty2 = SE->getEffectiveSCEVType(Ty2);
986  if (Ty1 == Ty2)
987    return false;
988  if (Ty1->canLosslesslyBitCastTo(Ty2))
989    return false;
990  if (TLI && TLI->isTruncateFree(Ty1, Ty2))
991    return false;
992  return true;
993}
994
995/// CheckForIVReuse - Returns the multiple if the stride is the multiple
996/// of a previous stride and it is a legal value for the target addressing
997/// mode scale component and optional base reg. This allows the users of
998/// this stride to be rewritten as prev iv * factor. It returns 0 if no
999/// reuse is possible.  Factors can be negative on same targets, e.g. ARM.
1000///
1001/// If all uses are outside the loop, we don't require that all multiplies
1002/// be folded into the addressing mode, nor even that the factor be constant;
1003/// a multiply (executed once) outside the loop is better than another IV
1004/// within.  Well, usually.
1005SCEVHandle LoopStrengthReduce::CheckForIVReuse(bool HasBaseReg,
1006                                bool AllUsesAreAddresses,
1007                                bool AllUsesAreOutsideLoop,
1008                                const SCEVHandle &Stride,
1009                                IVExpr &IV, const Type *Ty,
1010                                const std::vector<BasedUser>& UsersToProcess) {
1011  if (StrideNoReuse.count(Stride))
1012    return SE->getIntegerSCEV(0, Stride->getType());
1013
1014  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Stride)) {
1015    int64_t SInt = SC->getValue()->getSExtValue();
1016    for (unsigned NewStride = 0, e = IU->StrideOrder.size();
1017         NewStride != e; ++NewStride) {
1018      std::map<SCEVHandle, IVsOfOneStride>::iterator SI =
1019                IVsByStride.find(IU->StrideOrder[NewStride]);
1020      if (SI == IVsByStride.end() || !isa<SCEVConstant>(SI->first) ||
1021          StrideNoReuse.count(SI->first))
1022        continue;
1023      int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue();
1024      if (SI->first != Stride &&
1025          (unsigned(abs64(SInt)) < SSInt || (SInt % SSInt) != 0))
1026        continue;
1027      int64_t Scale = SInt / SSInt;
1028      // Check that this stride is valid for all the types used for loads and
1029      // stores; if it can be used for some and not others, we might as well use
1030      // the original stride everywhere, since we have to create the IV for it
1031      // anyway. If the scale is 1, then we don't need to worry about folding
1032      // multiplications.
1033      if (Scale == 1 ||
1034          (AllUsesAreAddresses &&
1035           ValidScale(HasBaseReg, Scale, UsersToProcess))) {
1036        // Prefer to reuse an IV with a base of zero.
1037        for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
1038               IE = SI->second.IVs.end(); II != IE; ++II)
1039          // Only reuse previous IV if it would not require a type conversion
1040          // and if the base difference can be folded.
1041          if (II->Base->isZero() &&
1042              !RequiresTypeConversion(II->Base->getType(), Ty)) {
1043            IV = *II;
1044            return SE->getIntegerSCEV(Scale, Stride->getType());
1045          }
1046        // Otherwise, settle for an IV with a foldable base.
1047        if (AllUsesAreAddresses)
1048          for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
1049                 IE = SI->second.IVs.end(); II != IE; ++II)
1050            // Only reuse previous IV if it would not require a type conversion
1051            // and if the base difference can be folded.
1052            if (SE->getEffectiveSCEVType(II->Base->getType()) ==
1053                SE->getEffectiveSCEVType(Ty) &&
1054                isa<SCEVConstant>(II->Base)) {
1055              int64_t Base =
1056                cast<SCEVConstant>(II->Base)->getValue()->getSExtValue();
1057              if (Base > INT32_MIN && Base <= INT32_MAX &&
1058                  ValidOffset(HasBaseReg, -Base * Scale,
1059                              Scale, UsersToProcess)) {
1060                IV = *II;
1061                return SE->getIntegerSCEV(Scale, Stride->getType());
1062              }
1063            }
1064      }
1065    }
1066  } else if (AllUsesAreOutsideLoop) {
1067    // Accept nonconstant strides here; it is really really right to substitute
1068    // an existing IV if we can.
1069    for (unsigned NewStride = 0, e = IU->StrideOrder.size();
1070         NewStride != e; ++NewStride) {
1071      std::map<SCEVHandle, IVsOfOneStride>::iterator SI =
1072                IVsByStride.find(IU->StrideOrder[NewStride]);
1073      if (SI == IVsByStride.end() || !isa<SCEVConstant>(SI->first))
1074        continue;
1075      int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue();
1076      if (SI->first != Stride && SSInt != 1)
1077        continue;
1078      for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
1079             IE = SI->second.IVs.end(); II != IE; ++II)
1080        // Accept nonzero base here.
1081        // Only reuse previous IV if it would not require a type conversion.
1082        if (!RequiresTypeConversion(II->Base->getType(), Ty)) {
1083          IV = *II;
1084          return Stride;
1085        }
1086    }
1087    // Special case, old IV is -1*x and this one is x.  Can treat this one as
1088    // -1*old.
1089    for (unsigned NewStride = 0, e = IU->StrideOrder.size();
1090         NewStride != e; ++NewStride) {
1091      std::map<SCEVHandle, IVsOfOneStride>::iterator SI =
1092                IVsByStride.find(IU->StrideOrder[NewStride]);
1093      if (SI == IVsByStride.end())
1094        continue;
1095      if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(SI->first))
1096        if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(ME->getOperand(0)))
1097          if (Stride == ME->getOperand(1) &&
1098              SC->getValue()->getSExtValue() == -1LL)
1099            for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
1100                   IE = SI->second.IVs.end(); II != IE; ++II)
1101              // Accept nonzero base here.
1102              // Only reuse previous IV if it would not require type conversion.
1103              if (!RequiresTypeConversion(II->Base->getType(), Ty)) {
1104                IV = *II;
1105                return SE->getIntegerSCEV(-1LL, Stride->getType());
1106              }
1107    }
1108  }
1109  return SE->getIntegerSCEV(0, Stride->getType());
1110}
1111
1112/// PartitionByIsUseOfPostIncrementedValue - Simple boolean predicate that
1113/// returns true if Val's isUseOfPostIncrementedValue is true.
1114static bool PartitionByIsUseOfPostIncrementedValue(const BasedUser &Val) {
1115  return Val.isUseOfPostIncrementedValue;
1116}
1117
1118/// isNonConstantNegative - Return true if the specified scev is negated, but
1119/// not a constant.
1120static bool isNonConstantNegative(const SCEVHandle &Expr) {
1121  const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Expr);
1122  if (!Mul) return false;
1123
1124  // If there is a constant factor, it will be first.
1125  const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
1126  if (!SC) return false;
1127
1128  // Return true if the value is negative, this matches things like (-42 * V).
1129  return SC->getValue()->getValue().isNegative();
1130}
1131
1132// CollectIVUsers - Transform our list of users and offsets to a bit more
1133// complex table. In this new vector, each 'BasedUser' contains 'Base', the base
1134// of the strided accesses, as well as the old information from Uses. We
1135// progressively move information from the Base field to the Imm field, until
1136// we eventually have the full access expression to rewrite the use.
1137SCEVHandle LoopStrengthReduce::CollectIVUsers(const SCEVHandle &Stride,
1138                                              IVUsersOfOneStride &Uses,
1139                                              Loop *L,
1140                                              bool &AllUsesAreAddresses,
1141                                              bool &AllUsesAreOutsideLoop,
1142                                       std::vector<BasedUser> &UsersToProcess) {
1143  // FIXME: Generalize to non-affine IV's.
1144  if (!Stride->isLoopInvariant(L))
1145    return SE->getIntegerSCEV(0, Stride->getType());
1146
1147  UsersToProcess.reserve(Uses.Users.size());
1148  for (ilist<IVStrideUse>::iterator I = Uses.Users.begin(),
1149       E = Uses.Users.end(); I != E; ++I) {
1150    UsersToProcess.push_back(BasedUser(*I, SE));
1151
1152    // Move any loop variant operands from the offset field to the immediate
1153    // field of the use, so that we don't try to use something before it is
1154    // computed.
1155    MoveLoopVariantsToImmediateField(UsersToProcess.back().Base,
1156                                     UsersToProcess.back().Imm, L, SE);
1157    assert(UsersToProcess.back().Base->isLoopInvariant(L) &&
1158           "Base value is not loop invariant!");
1159  }
1160
1161  // We now have a whole bunch of uses of like-strided induction variables, but
1162  // they might all have different bases.  We want to emit one PHI node for this
1163  // stride which we fold as many common expressions (between the IVs) into as
1164  // possible.  Start by identifying the common expressions in the base values
1165  // for the strides (e.g. if we have "A+C+B" and "A+B+D" as our bases, find
1166  // "A+B"), emit it to the preheader, then remove the expression from the
1167  // UsersToProcess base values.
1168  SCEVHandle CommonExprs =
1169    RemoveCommonExpressionsFromUseBases(UsersToProcess, SE, L, TLI);
1170
1171  // Next, figure out what we can represent in the immediate fields of
1172  // instructions.  If we can represent anything there, move it to the imm
1173  // fields of the BasedUsers.  We do this so that it increases the commonality
1174  // of the remaining uses.
1175  unsigned NumPHI = 0;
1176  bool HasAddress = false;
1177  for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) {
1178    // If the user is not in the current loop, this means it is using the exit
1179    // value of the IV.  Do not put anything in the base, make sure it's all in
1180    // the immediate field to allow as much factoring as possible.
1181    if (!L->contains(UsersToProcess[i].Inst->getParent())) {
1182      UsersToProcess[i].Imm = SE->getAddExpr(UsersToProcess[i].Imm,
1183                                             UsersToProcess[i].Base);
1184      UsersToProcess[i].Base =
1185        SE->getIntegerSCEV(0, UsersToProcess[i].Base->getType());
1186    } else {
1187      // Not all uses are outside the loop.
1188      AllUsesAreOutsideLoop = false;
1189
1190      // Addressing modes can be folded into loads and stores.  Be careful that
1191      // the store is through the expression, not of the expression though.
1192      bool isPHI = false;
1193      bool isAddress = isAddressUse(UsersToProcess[i].Inst,
1194                                    UsersToProcess[i].OperandValToReplace);
1195      if (isa<PHINode>(UsersToProcess[i].Inst)) {
1196        isPHI = true;
1197        ++NumPHI;
1198      }
1199
1200      if (isAddress)
1201        HasAddress = true;
1202
1203      // If this use isn't an address, then not all uses are addresses.
1204      if (!isAddress && !isPHI)
1205        AllUsesAreAddresses = false;
1206
1207      MoveImmediateValues(TLI, UsersToProcess[i].Inst, UsersToProcess[i].Base,
1208                          UsersToProcess[i].Imm, isAddress, L, SE);
1209    }
1210  }
1211
1212  // If one of the use is a PHI node and all other uses are addresses, still
1213  // allow iv reuse. Essentially we are trading one constant multiplication
1214  // for one fewer iv.
1215  if (NumPHI > 1)
1216    AllUsesAreAddresses = false;
1217
1218  // There are no in-loop address uses.
1219  if (AllUsesAreAddresses && (!HasAddress && !AllUsesAreOutsideLoop))
1220    AllUsesAreAddresses = false;
1221
1222  return CommonExprs;
1223}
1224
1225/// ShouldUseFullStrengthReductionMode - Test whether full strength-reduction
1226/// is valid and profitable for the given set of users of a stride. In
1227/// full strength-reduction mode, all addresses at the current stride are
1228/// strength-reduced all the way down to pointer arithmetic.
1229///
1230bool LoopStrengthReduce::ShouldUseFullStrengthReductionMode(
1231                                   const std::vector<BasedUser> &UsersToProcess,
1232                                   const Loop *L,
1233                                   bool AllUsesAreAddresses,
1234                                   SCEVHandle Stride) {
1235  if (!EnableFullLSRMode)
1236    return false;
1237
1238  // The heuristics below aim to avoid increasing register pressure, but
1239  // fully strength-reducing all the addresses increases the number of
1240  // add instructions, so don't do this when optimizing for size.
1241  // TODO: If the loop is large, the savings due to simpler addresses
1242  // may oughtweight the costs of the extra increment instructions.
1243  if (L->getHeader()->getParent()->hasFnAttr(Attribute::OptimizeForSize))
1244    return false;
1245
1246  // TODO: For now, don't do full strength reduction if there could
1247  // potentially be greater-stride multiples of the current stride
1248  // which could reuse the current stride IV.
1249  if (IU->StrideOrder.back() != Stride)
1250    return false;
1251
1252  // Iterate through the uses to find conditions that automatically rule out
1253  // full-lsr mode.
1254  for (unsigned i = 0, e = UsersToProcess.size(); i != e; ) {
1255    const SCEV *Base = UsersToProcess[i].Base;
1256    const SCEV *Imm = UsersToProcess[i].Imm;
1257    // If any users have a loop-variant component, they can't be fully
1258    // strength-reduced.
1259    if (Imm && !Imm->isLoopInvariant(L))
1260      return false;
1261    // If there are to users with the same base and the difference between
1262    // the two Imm values can't be folded into the address, full
1263    // strength reduction would increase register pressure.
1264    do {
1265      const SCEV *CurImm = UsersToProcess[i].Imm;
1266      if ((CurImm || Imm) && CurImm != Imm) {
1267        if (!CurImm) CurImm = SE->getIntegerSCEV(0, Stride->getType());
1268        if (!Imm)       Imm = SE->getIntegerSCEV(0, Stride->getType());
1269        const Instruction *Inst = UsersToProcess[i].Inst;
1270        const Type *AccessTy = getAccessType(Inst);
1271        SCEVHandle Diff = SE->getMinusSCEV(UsersToProcess[i].Imm, Imm);
1272        if (!Diff->isZero() &&
1273            (!AllUsesAreAddresses ||
1274             !fitsInAddressMode(Diff, AccessTy, TLI, /*HasBaseReg=*/true)))
1275          return false;
1276      }
1277    } while (++i != e && Base == UsersToProcess[i].Base);
1278  }
1279
1280  // If there's exactly one user in this stride, fully strength-reducing it
1281  // won't increase register pressure. If it's starting from a non-zero base,
1282  // it'll be simpler this way.
1283  if (UsersToProcess.size() == 1 && !UsersToProcess[0].Base->isZero())
1284    return true;
1285
1286  // Otherwise, if there are any users in this stride that don't require
1287  // a register for their base, full strength-reduction will increase
1288  // register pressure.
1289  for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i)
1290    if (UsersToProcess[i].Base->isZero())
1291      return false;
1292
1293  // Otherwise, go for it.
1294  return true;
1295}
1296
1297/// InsertAffinePhi Create and insert a PHI node for an induction variable
1298/// with the specified start and step values in the specified loop.
1299///
1300/// If NegateStride is true, the stride should be negated by using a
1301/// subtract instead of an add.
1302///
1303/// Return the created phi node.
1304///
1305static PHINode *InsertAffinePhi(SCEVHandle Start, SCEVHandle Step,
1306                                Instruction *IVIncInsertPt,
1307                                const Loop *L,
1308                                SCEVExpander &Rewriter) {
1309  assert(Start->isLoopInvariant(L) && "New PHI start is not loop invariant!");
1310  assert(Step->isLoopInvariant(L) && "New PHI stride is not loop invariant!");
1311
1312  BasicBlock *Header = L->getHeader();
1313  BasicBlock *Preheader = L->getLoopPreheader();
1314  BasicBlock *LatchBlock = L->getLoopLatch();
1315  const Type *Ty = Start->getType();
1316  Ty = Rewriter.SE.getEffectiveSCEVType(Ty);
1317
1318  PHINode *PN = PHINode::Create(Ty, "lsr.iv", Header->begin());
1319  PN->addIncoming(Rewriter.expandCodeFor(Start, Ty, Preheader->getTerminator()),
1320                  Preheader);
1321
1322  // If the stride is negative, insert a sub instead of an add for the
1323  // increment.
1324  bool isNegative = isNonConstantNegative(Step);
1325  SCEVHandle IncAmount = Step;
1326  if (isNegative)
1327    IncAmount = Rewriter.SE.getNegativeSCEV(Step);
1328
1329  // Insert an add instruction right before the terminator corresponding
1330  // to the back-edge or just before the only use. The location is determined
1331  // by the caller and passed in as IVIncInsertPt.
1332  Value *StepV = Rewriter.expandCodeFor(IncAmount, Ty,
1333                                        Preheader->getTerminator());
1334  Instruction *IncV;
1335  if (isNegative) {
1336    IncV = BinaryOperator::CreateSub(PN, StepV, "lsr.iv.next",
1337                                     IVIncInsertPt);
1338  } else {
1339    IncV = BinaryOperator::CreateAdd(PN, StepV, "lsr.iv.next",
1340                                     IVIncInsertPt);
1341  }
1342  if (!isa<ConstantInt>(StepV)) ++NumVariable;
1343
1344  PN->addIncoming(IncV, LatchBlock);
1345
1346  ++NumInserted;
1347  return PN;
1348}
1349
1350static void SortUsersToProcess(std::vector<BasedUser> &UsersToProcess) {
1351  // We want to emit code for users inside the loop first.  To do this, we
1352  // rearrange BasedUser so that the entries at the end have
1353  // isUseOfPostIncrementedValue = false, because we pop off the end of the
1354  // vector (so we handle them first).
1355  std::partition(UsersToProcess.begin(), UsersToProcess.end(),
1356                 PartitionByIsUseOfPostIncrementedValue);
1357
1358  // Sort this by base, so that things with the same base are handled
1359  // together.  By partitioning first and stable-sorting later, we are
1360  // guaranteed that within each base we will pop off users from within the
1361  // loop before users outside of the loop with a particular base.
1362  //
1363  // We would like to use stable_sort here, but we can't.  The problem is that
1364  // SCEVHandle's don't have a deterministic ordering w.r.t to each other, so
1365  // we don't have anything to do a '<' comparison on.  Because we think the
1366  // number of uses is small, do a horrible bubble sort which just relies on
1367  // ==.
1368  for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) {
1369    // Get a base value.
1370    SCEVHandle Base = UsersToProcess[i].Base;
1371
1372    // Compact everything with this base to be consecutive with this one.
1373    for (unsigned j = i+1; j != e; ++j) {
1374      if (UsersToProcess[j].Base == Base) {
1375        std::swap(UsersToProcess[i+1], UsersToProcess[j]);
1376        ++i;
1377      }
1378    }
1379  }
1380}
1381
1382/// PrepareToStrengthReduceFully - Prepare to fully strength-reduce
1383/// UsersToProcess, meaning lowering addresses all the way down to direct
1384/// pointer arithmetic.
1385///
1386void
1387LoopStrengthReduce::PrepareToStrengthReduceFully(
1388                                        std::vector<BasedUser> &UsersToProcess,
1389                                        SCEVHandle Stride,
1390                                        SCEVHandle CommonExprs,
1391                                        const Loop *L,
1392                                        SCEVExpander &PreheaderRewriter) {
1393  DOUT << "  Fully reducing all users\n";
1394
1395  // Rewrite the UsersToProcess records, creating a separate PHI for each
1396  // unique Base value.
1397  Instruction *IVIncInsertPt = L->getLoopLatch()->getTerminator();
1398  for (unsigned i = 0, e = UsersToProcess.size(); i != e; ) {
1399    // TODO: The uses are grouped by base, but not sorted. We arbitrarily
1400    // pick the first Imm value here to start with, and adjust it for the
1401    // other uses.
1402    SCEVHandle Imm = UsersToProcess[i].Imm;
1403    SCEVHandle Base = UsersToProcess[i].Base;
1404    SCEVHandle Start = SE->getAddExpr(CommonExprs, Base, Imm);
1405    PHINode *Phi = InsertAffinePhi(Start, Stride, IVIncInsertPt, L,
1406                                   PreheaderRewriter);
1407    // Loop over all the users with the same base.
1408    do {
1409      UsersToProcess[i].Base = SE->getIntegerSCEV(0, Stride->getType());
1410      UsersToProcess[i].Imm = SE->getMinusSCEV(UsersToProcess[i].Imm, Imm);
1411      UsersToProcess[i].Phi = Phi;
1412      assert(UsersToProcess[i].Imm->isLoopInvariant(L) &&
1413             "ShouldUseFullStrengthReductionMode should reject this!");
1414    } while (++i != e && Base == UsersToProcess[i].Base);
1415  }
1416}
1417
1418/// FindIVIncInsertPt - Return the location to insert the increment instruction.
1419/// If the only use if a use of postinc value, (must be the loop termination
1420/// condition), then insert it just before the use.
1421static Instruction *FindIVIncInsertPt(std::vector<BasedUser> &UsersToProcess,
1422                                      const Loop *L) {
1423  if (UsersToProcess.size() == 1 &&
1424      UsersToProcess[0].isUseOfPostIncrementedValue &&
1425      L->contains(UsersToProcess[0].Inst->getParent()))
1426    return UsersToProcess[0].Inst;
1427  return L->getLoopLatch()->getTerminator();
1428}
1429
1430/// PrepareToStrengthReduceWithNewPhi - Insert a new induction variable for the
1431/// given users to share.
1432///
1433void
1434LoopStrengthReduce::PrepareToStrengthReduceWithNewPhi(
1435                                         std::vector<BasedUser> &UsersToProcess,
1436                                         SCEVHandle Stride,
1437                                         SCEVHandle CommonExprs,
1438                                         Value *CommonBaseV,
1439                                         Instruction *IVIncInsertPt,
1440                                         const Loop *L,
1441                                         SCEVExpander &PreheaderRewriter) {
1442  DOUT << "  Inserting new PHI:\n";
1443
1444  PHINode *Phi = InsertAffinePhi(SE->getUnknown(CommonBaseV),
1445                                 Stride, IVIncInsertPt, L,
1446                                 PreheaderRewriter);
1447
1448  // Remember this in case a later stride is multiple of this.
1449  IVsByStride[Stride].addIV(Stride, CommonExprs, Phi);
1450
1451  // All the users will share this new IV.
1452  for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i)
1453    UsersToProcess[i].Phi = Phi;
1454
1455  DOUT << "    IV=";
1456  DEBUG(WriteAsOperand(*DOUT, Phi, /*PrintType=*/false));
1457  DOUT << "\n";
1458}
1459
1460/// PrepareToStrengthReduceFromSmallerStride - Prepare for the given users to
1461/// reuse an induction variable with a stride that is a factor of the current
1462/// induction variable.
1463///
1464void
1465LoopStrengthReduce::PrepareToStrengthReduceFromSmallerStride(
1466                                         std::vector<BasedUser> &UsersToProcess,
1467                                         Value *CommonBaseV,
1468                                         const IVExpr &ReuseIV,
1469                                         Instruction *PreInsertPt) {
1470  DOUT << "  Rewriting in terms of existing IV of STRIDE " << *ReuseIV.Stride
1471       << " and BASE " << *ReuseIV.Base << "\n";
1472
1473  // All the users will share the reused IV.
1474  for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i)
1475    UsersToProcess[i].Phi = ReuseIV.PHI;
1476
1477  Constant *C = dyn_cast<Constant>(CommonBaseV);
1478  if (C &&
1479      (!C->isNullValue() &&
1480       !fitsInAddressMode(SE->getUnknown(CommonBaseV), CommonBaseV->getType(),
1481                         TLI, false)))
1482    // We want the common base emitted into the preheader! This is just
1483    // using cast as a copy so BitCast (no-op cast) is appropriate
1484    CommonBaseV = new BitCastInst(CommonBaseV, CommonBaseV->getType(),
1485                                  "commonbase", PreInsertPt);
1486}
1487
1488static bool IsImmFoldedIntoAddrMode(GlobalValue *GV, int64_t Offset,
1489                                    const Type *AccessTy,
1490                                   std::vector<BasedUser> &UsersToProcess,
1491                                   const TargetLowering *TLI) {
1492  SmallVector<Instruction*, 16> AddrModeInsts;
1493  for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) {
1494    if (UsersToProcess[i].isUseOfPostIncrementedValue)
1495      continue;
1496    ExtAddrMode AddrMode =
1497      AddressingModeMatcher::Match(UsersToProcess[i].OperandValToReplace,
1498                                   AccessTy, UsersToProcess[i].Inst,
1499                                   AddrModeInsts, *TLI);
1500    if (GV && GV != AddrMode.BaseGV)
1501      return false;
1502    if (Offset && !AddrMode.BaseOffs)
1503      // FIXME: How to accurate check it's immediate offset is folded.
1504      return false;
1505    AddrModeInsts.clear();
1506  }
1507  return true;
1508}
1509
1510/// StrengthReduceStridedIVUsers - Strength reduce all of the users of a single
1511/// stride of IV.  All of the users may have different starting values, and this
1512/// may not be the only stride.
1513void LoopStrengthReduce::StrengthReduceStridedIVUsers(const SCEVHandle &Stride,
1514                                                      IVUsersOfOneStride &Uses,
1515                                                      Loop *L) {
1516  // If all the users are moved to another stride, then there is nothing to do.
1517  if (Uses.Users.empty())
1518    return;
1519
1520  // Keep track if every use in UsersToProcess is an address. If they all are,
1521  // we may be able to rewrite the entire collection of them in terms of a
1522  // smaller-stride IV.
1523  bool AllUsesAreAddresses = true;
1524
1525  // Keep track if every use of a single stride is outside the loop.  If so,
1526  // we want to be more aggressive about reusing a smaller-stride IV; a
1527  // multiply outside the loop is better than another IV inside.  Well, usually.
1528  bool AllUsesAreOutsideLoop = true;
1529
1530  // Transform our list of users and offsets to a bit more complex table.  In
1531  // this new vector, each 'BasedUser' contains 'Base' the base of the
1532  // strided accessas well as the old information from Uses.  We progressively
1533  // move information from the Base field to the Imm field, until we eventually
1534  // have the full access expression to rewrite the use.
1535  std::vector<BasedUser> UsersToProcess;
1536  SCEVHandle CommonExprs = CollectIVUsers(Stride, Uses, L, AllUsesAreAddresses,
1537                                          AllUsesAreOutsideLoop,
1538                                          UsersToProcess);
1539
1540  // Sort the UsersToProcess array so that users with common bases are
1541  // next to each other.
1542  SortUsersToProcess(UsersToProcess);
1543
1544  // If we managed to find some expressions in common, we'll need to carry
1545  // their value in a register and add it in for each use. This will take up
1546  // a register operand, which potentially restricts what stride values are
1547  // valid.
1548  bool HaveCommonExprs = !CommonExprs->isZero();
1549  const Type *ReplacedTy = CommonExprs->getType();
1550
1551  // If all uses are addresses, consider sinking the immediate part of the
1552  // common expression back into uses if they can fit in the immediate fields.
1553  if (TLI && HaveCommonExprs && AllUsesAreAddresses) {
1554    SCEVHandle NewCommon = CommonExprs;
1555    SCEVHandle Imm = SE->getIntegerSCEV(0, ReplacedTy);
1556    MoveImmediateValues(TLI, Type::VoidTy, NewCommon, Imm, true, L, SE);
1557    if (!Imm->isZero()) {
1558      bool DoSink = true;
1559
1560      // If the immediate part of the common expression is a GV, check if it's
1561      // possible to fold it into the target addressing mode.
1562      GlobalValue *GV = 0;
1563      if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(Imm))
1564        GV = dyn_cast<GlobalValue>(SU->getValue());
1565      int64_t Offset = 0;
1566      if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Imm))
1567        Offset = SC->getValue()->getSExtValue();
1568      if (GV || Offset)
1569        // Pass VoidTy as the AccessTy to be conservative, because
1570        // there could be multiple access types among all the uses.
1571        DoSink = IsImmFoldedIntoAddrMode(GV, Offset, Type::VoidTy,
1572                                         UsersToProcess, TLI);
1573
1574      if (DoSink) {
1575        DOUT << "  Sinking " << *Imm << " back down into uses\n";
1576        for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i)
1577          UsersToProcess[i].Imm = SE->getAddExpr(UsersToProcess[i].Imm, Imm);
1578        CommonExprs = NewCommon;
1579        HaveCommonExprs = !CommonExprs->isZero();
1580        ++NumImmSunk;
1581      }
1582    }
1583  }
1584
1585  // Now that we know what we need to do, insert the PHI node itself.
1586  //
1587  DOUT << "LSR: Examining IVs of TYPE " << *ReplacedTy << " of STRIDE "
1588       << *Stride << ":\n"
1589       << "  Common base: " << *CommonExprs << "\n";
1590
1591  SCEVExpander Rewriter(*SE);
1592  SCEVExpander PreheaderRewriter(*SE);
1593
1594  BasicBlock  *Preheader = L->getLoopPreheader();
1595  Instruction *PreInsertPt = Preheader->getTerminator();
1596  BasicBlock *LatchBlock = L->getLoopLatch();
1597  Instruction *IVIncInsertPt = LatchBlock->getTerminator();
1598
1599  Value *CommonBaseV = Constant::getNullValue(ReplacedTy);
1600
1601  SCEVHandle RewriteFactor = SE->getIntegerSCEV(0, ReplacedTy);
1602  IVExpr   ReuseIV(SE->getIntegerSCEV(0, Type::Int32Ty),
1603                   SE->getIntegerSCEV(0, Type::Int32Ty),
1604                   0);
1605
1606  /// Choose a strength-reduction strategy and prepare for it by creating
1607  /// the necessary PHIs and adjusting the bookkeeping.
1608  if (ShouldUseFullStrengthReductionMode(UsersToProcess, L,
1609                                         AllUsesAreAddresses, Stride)) {
1610    PrepareToStrengthReduceFully(UsersToProcess, Stride, CommonExprs, L,
1611                                 PreheaderRewriter);
1612  } else {
1613    // Emit the initial base value into the loop preheader.
1614    CommonBaseV = PreheaderRewriter.expandCodeFor(CommonExprs, ReplacedTy,
1615                                                  PreInsertPt);
1616
1617    // If all uses are addresses, check if it is possible to reuse an IV.  The
1618    // new IV must have a stride that is a multiple of the old stride; the
1619    // multiple must be a number that can be encoded in the scale field of the
1620    // target addressing mode; and we must have a valid instruction after this
1621    // substitution, including the immediate field, if any.
1622    RewriteFactor = CheckForIVReuse(HaveCommonExprs, AllUsesAreAddresses,
1623                                    AllUsesAreOutsideLoop,
1624                                    Stride, ReuseIV, ReplacedTy,
1625                                    UsersToProcess);
1626    if (!RewriteFactor->isZero())
1627      PrepareToStrengthReduceFromSmallerStride(UsersToProcess, CommonBaseV,
1628                                               ReuseIV, PreInsertPt);
1629    else {
1630      IVIncInsertPt = FindIVIncInsertPt(UsersToProcess, L);
1631      PrepareToStrengthReduceWithNewPhi(UsersToProcess, Stride, CommonExprs,
1632                                        CommonBaseV, IVIncInsertPt,
1633                                        L, PreheaderRewriter);
1634    }
1635  }
1636
1637  // Process all the users now, replacing their strided uses with
1638  // strength-reduced forms.  This outer loop handles all bases, the inner
1639  // loop handles all users of a particular base.
1640  while (!UsersToProcess.empty()) {
1641    SCEVHandle Base = UsersToProcess.back().Base;
1642    Instruction *Inst = UsersToProcess.back().Inst;
1643
1644    // Emit the code for Base into the preheader.
1645    Value *BaseV = 0;
1646    if (!Base->isZero()) {
1647      BaseV = PreheaderRewriter.expandCodeFor(Base, 0, PreInsertPt);
1648
1649      DOUT << "  INSERTING code for BASE = " << *Base << ":";
1650      if (BaseV->hasName())
1651        DOUT << " Result value name = %" << BaseV->getNameStr();
1652      DOUT << "\n";
1653
1654      // If BaseV is a non-zero constant, make sure that it gets inserted into
1655      // the preheader, instead of being forward substituted into the uses.  We
1656      // do this by forcing a BitCast (noop cast) to be inserted into the
1657      // preheader in this case.
1658      if (!fitsInAddressMode(Base, getAccessType(Inst), TLI, false)) {
1659        // We want this constant emitted into the preheader! This is just
1660        // using cast as a copy so BitCast (no-op cast) is appropriate
1661        BaseV = new BitCastInst(BaseV, BaseV->getType(), "preheaderinsert",
1662                                PreInsertPt);
1663      }
1664    }
1665
1666    // Emit the code to add the immediate offset to the Phi value, just before
1667    // the instructions that we identified as using this stride and base.
1668    do {
1669      // FIXME: Use emitted users to emit other users.
1670      BasedUser &User = UsersToProcess.back();
1671
1672      DOUT << "    Examining ";
1673      if (User.isUseOfPostIncrementedValue)
1674        DOUT << "postinc";
1675      else
1676        DOUT << "preinc";
1677      DOUT << " use ";
1678      DEBUG(WriteAsOperand(*DOUT, UsersToProcess.back().OperandValToReplace,
1679                           /*PrintType=*/false));
1680      DOUT << " in Inst: " << *(User.Inst);
1681
1682      // If this instruction wants to use the post-incremented value, move it
1683      // after the post-inc and use its value instead of the PHI.
1684      Value *RewriteOp = User.Phi;
1685      if (User.isUseOfPostIncrementedValue) {
1686        RewriteOp = User.Phi->getIncomingValueForBlock(LatchBlock);
1687        // If this user is in the loop, make sure it is the last thing in the
1688        // loop to ensure it is dominated by the increment. In case it's the
1689        // only use of the iv, the increment instruction is already before the
1690        // use.
1691        if (L->contains(User.Inst->getParent()) && User.Inst != IVIncInsertPt)
1692          User.Inst->moveBefore(IVIncInsertPt);
1693      }
1694
1695      SCEVHandle RewriteExpr = SE->getUnknown(RewriteOp);
1696
1697      if (SE->getEffectiveSCEVType(RewriteOp->getType()) !=
1698          SE->getEffectiveSCEVType(ReplacedTy)) {
1699        assert(SE->getTypeSizeInBits(RewriteOp->getType()) >
1700               SE->getTypeSizeInBits(ReplacedTy) &&
1701               "Unexpected widening cast!");
1702        RewriteExpr = SE->getTruncateExpr(RewriteExpr, ReplacedTy);
1703      }
1704
1705      // If we had to insert new instructions for RewriteOp, we have to
1706      // consider that they may not have been able to end up immediately
1707      // next to RewriteOp, because non-PHI instructions may never precede
1708      // PHI instructions in a block. In this case, remember where the last
1709      // instruction was inserted so that if we're replacing a different
1710      // PHI node, we can use the later point to expand the final
1711      // RewriteExpr.
1712      Instruction *NewBasePt = dyn_cast<Instruction>(RewriteOp);
1713      if (RewriteOp == User.Phi) NewBasePt = 0;
1714
1715      // Clear the SCEVExpander's expression map so that we are guaranteed
1716      // to have the code emitted where we expect it.
1717      Rewriter.clear();
1718
1719      // If we are reusing the iv, then it must be multiplied by a constant
1720      // factor to take advantage of the addressing mode scale component.
1721      if (!RewriteFactor->isZero()) {
1722        // If we're reusing an IV with a nonzero base (currently this happens
1723        // only when all reuses are outside the loop) subtract that base here.
1724        // The base has been used to initialize the PHI node but we don't want
1725        // it here.
1726        if (!ReuseIV.Base->isZero()) {
1727          SCEVHandle typedBase = ReuseIV.Base;
1728          if (SE->getEffectiveSCEVType(RewriteExpr->getType()) !=
1729              SE->getEffectiveSCEVType(ReuseIV.Base->getType())) {
1730            // It's possible the original IV is a larger type than the new IV,
1731            // in which case we have to truncate the Base.  We checked in
1732            // RequiresTypeConversion that this is valid.
1733            assert(SE->getTypeSizeInBits(RewriteExpr->getType()) <
1734                   SE->getTypeSizeInBits(ReuseIV.Base->getType()) &&
1735                   "Unexpected lengthening conversion!");
1736            typedBase = SE->getTruncateExpr(ReuseIV.Base,
1737                                            RewriteExpr->getType());
1738          }
1739          RewriteExpr = SE->getMinusSCEV(RewriteExpr, typedBase);
1740        }
1741
1742        // Multiply old variable, with base removed, by new scale factor.
1743        RewriteExpr = SE->getMulExpr(RewriteFactor,
1744                                     RewriteExpr);
1745
1746        // The common base is emitted in the loop preheader. But since we
1747        // are reusing an IV, it has not been used to initialize the PHI node.
1748        // Add it to the expression used to rewrite the uses.
1749        // When this use is outside the loop, we earlier subtracted the
1750        // common base, and are adding it back here.  Use the same expression
1751        // as before, rather than CommonBaseV, so DAGCombiner will zap it.
1752        if (!CommonExprs->isZero()) {
1753          if (L->contains(User.Inst->getParent()))
1754            RewriteExpr = SE->getAddExpr(RewriteExpr,
1755                                       SE->getUnknown(CommonBaseV));
1756          else
1757            RewriteExpr = SE->getAddExpr(RewriteExpr, CommonExprs);
1758        }
1759      }
1760
1761      // Now that we know what we need to do, insert code before User for the
1762      // immediate and any loop-variant expressions.
1763      if (BaseV)
1764        // Add BaseV to the PHI value if needed.
1765        RewriteExpr = SE->getAddExpr(RewriteExpr, SE->getUnknown(BaseV));
1766
1767      User.RewriteInstructionToUseNewBase(RewriteExpr, NewBasePt,
1768                                          Rewriter, L, this, *LI,
1769                                          DeadInsts);
1770
1771      // Mark old value we replaced as possibly dead, so that it is eliminated
1772      // if we just replaced the last use of that value.
1773      DeadInsts.push_back(User.OperandValToReplace);
1774
1775      UsersToProcess.pop_back();
1776      ++NumReduced;
1777
1778      // If there are any more users to process with the same base, process them
1779      // now.  We sorted by base above, so we just have to check the last elt.
1780    } while (!UsersToProcess.empty() && UsersToProcess.back().Base == Base);
1781    // TODO: Next, find out which base index is the most common, pull it out.
1782  }
1783
1784  // IMPORTANT TODO: Figure out how to partition the IV's with this stride, but
1785  // different starting values, into different PHIs.
1786}
1787
1788/// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
1789/// set the IV user and stride information and return true, otherwise return
1790/// false.
1791bool LoopStrengthReduce::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse,
1792                                       const SCEVHandle *&CondStride) {
1793  for (unsigned Stride = 0, e = IU->StrideOrder.size();
1794       Stride != e && !CondUse; ++Stride) {
1795    std::map<SCEVHandle, IVUsersOfOneStride *>::iterator SI =
1796      IU->IVUsesByStride.find(IU->StrideOrder[Stride]);
1797    assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!");
1798
1799    for (ilist<IVStrideUse>::iterator UI = SI->second->Users.begin(),
1800         E = SI->second->Users.end(); UI != E; ++UI)
1801      if (UI->getUser() == Cond) {
1802        // NOTE: we could handle setcc instructions with multiple uses here, but
1803        // InstCombine does it as well for simple uses, it's not clear that it
1804        // occurs enough in real life to handle.
1805        CondUse = UI;
1806        CondStride = &SI->first;
1807        return true;
1808      }
1809  }
1810  return false;
1811}
1812
1813namespace {
1814  // Constant strides come first which in turns are sorted by their absolute
1815  // values. If absolute values are the same, then positive strides comes first.
1816  // e.g.
1817  // 4, -1, X, 1, 2 ==> 1, -1, 2, 4, X
1818  struct StrideCompare {
1819    const ScalarEvolution *SE;
1820    explicit StrideCompare(const ScalarEvolution *se) : SE(se) {}
1821
1822    bool operator()(const SCEVHandle &LHS, const SCEVHandle &RHS) {
1823      const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS);
1824      const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS);
1825      if (LHSC && RHSC) {
1826        int64_t  LV = LHSC->getValue()->getSExtValue();
1827        int64_t  RV = RHSC->getValue()->getSExtValue();
1828        uint64_t ALV = (LV < 0) ? -LV : LV;
1829        uint64_t ARV = (RV < 0) ? -RV : RV;
1830        if (ALV == ARV) {
1831          if (LV != RV)
1832            return LV > RV;
1833        } else {
1834          return ALV < ARV;
1835        }
1836
1837        // If it's the same value but different type, sort by bit width so
1838        // that we emit larger induction variables before smaller
1839        // ones, letting the smaller be re-written in terms of larger ones.
1840        return SE->getTypeSizeInBits(RHS->getType()) <
1841               SE->getTypeSizeInBits(LHS->getType());
1842      }
1843      return LHSC && !RHSC;
1844    }
1845  };
1846}
1847
1848/// ChangeCompareStride - If a loop termination compare instruction is the
1849/// only use of its stride, and the compaison is against a constant value,
1850/// try eliminate the stride by moving the compare instruction to another
1851/// stride and change its constant operand accordingly. e.g.
1852///
1853/// loop:
1854/// ...
1855/// v1 = v1 + 3
1856/// v2 = v2 + 1
1857/// if (v2 < 10) goto loop
1858/// =>
1859/// loop:
1860/// ...
1861/// v1 = v1 + 3
1862/// if (v1 < 30) goto loop
1863ICmpInst *LoopStrengthReduce::ChangeCompareStride(Loop *L, ICmpInst *Cond,
1864                                                IVStrideUse* &CondUse,
1865                                                const SCEVHandle* &CondStride) {
1866  // If there's only one stride in the loop, there's nothing to do here.
1867  if (IU->StrideOrder.size() < 2)
1868    return Cond;
1869  // If there are other users of the condition's stride, don't bother
1870  // trying to change the condition because the stride will still
1871  // remain.
1872  std::map<SCEVHandle, IVUsersOfOneStride *>::iterator I =
1873    IU->IVUsesByStride.find(*CondStride);
1874  if (I == IU->IVUsesByStride.end() ||
1875      I->second->Users.size() != 1)
1876    return Cond;
1877  // Only handle constant strides for now.
1878  const SCEVConstant *SC = dyn_cast<SCEVConstant>(*CondStride);
1879  if (!SC) return Cond;
1880
1881  ICmpInst::Predicate Predicate = Cond->getPredicate();
1882  int64_t CmpSSInt = SC->getValue()->getSExtValue();
1883  unsigned BitWidth = SE->getTypeSizeInBits((*CondStride)->getType());
1884  uint64_t SignBit = 1ULL << (BitWidth-1);
1885  const Type *CmpTy = Cond->getOperand(0)->getType();
1886  const Type *NewCmpTy = NULL;
1887  unsigned TyBits = SE->getTypeSizeInBits(CmpTy);
1888  unsigned NewTyBits = 0;
1889  SCEVHandle *NewStride = NULL;
1890  Value *NewCmpLHS = NULL;
1891  Value *NewCmpRHS = NULL;
1892  int64_t Scale = 1;
1893  SCEVHandle NewOffset = SE->getIntegerSCEV(0, CmpTy);
1894
1895  if (ConstantInt *C = dyn_cast<ConstantInt>(Cond->getOperand(1))) {
1896    int64_t CmpVal = C->getValue().getSExtValue();
1897
1898    // Check stride constant and the comparision constant signs to detect
1899    // overflow.
1900    if ((CmpVal & SignBit) != (CmpSSInt & SignBit))
1901      return Cond;
1902
1903    // Look for a suitable stride / iv as replacement.
1904    for (unsigned i = 0, e = IU->StrideOrder.size(); i != e; ++i) {
1905      std::map<SCEVHandle, IVUsersOfOneStride *>::iterator SI =
1906        IU->IVUsesByStride.find(IU->StrideOrder[i]);
1907      if (!isa<SCEVConstant>(SI->first))
1908        continue;
1909      int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue();
1910      if (SSInt == CmpSSInt ||
1911          abs64(SSInt) < abs64(CmpSSInt) ||
1912          (SSInt % CmpSSInt) != 0)
1913        continue;
1914
1915      Scale = SSInt / CmpSSInt;
1916      int64_t NewCmpVal = CmpVal * Scale;
1917      APInt Mul = APInt(BitWidth*2, CmpVal, true);
1918      Mul = Mul * APInt(BitWidth*2, Scale, true);
1919      // Check for overflow.
1920      if (!Mul.isSignedIntN(BitWidth))
1921        continue;
1922      // Check for overflow in the stride's type too.
1923      if (!Mul.isSignedIntN(SE->getTypeSizeInBits(SI->first->getType())))
1924        continue;
1925
1926      // Watch out for overflow.
1927      if (ICmpInst::isSignedPredicate(Predicate) &&
1928          (CmpVal & SignBit) != (NewCmpVal & SignBit))
1929        continue;
1930
1931      if (NewCmpVal == CmpVal)
1932        continue;
1933      // Pick the best iv to use trying to avoid a cast.
1934      NewCmpLHS = NULL;
1935      for (ilist<IVStrideUse>::iterator UI = SI->second->Users.begin(),
1936             E = SI->second->Users.end(); UI != E; ++UI) {
1937        Value *Op = UI->getOperandValToReplace();
1938
1939        // If the IVStrideUse implies a cast, check for an actual cast which
1940        // can be used to find the original IV expression.
1941        if (SE->getEffectiveSCEVType(Op->getType()) !=
1942            SE->getEffectiveSCEVType(SI->first->getType())) {
1943          CastInst *CI = dyn_cast<CastInst>(Op);
1944          // If it's not a simple cast, it's complicated.
1945          if (!CI)
1946            continue;
1947          // If it's a cast from a type other than the stride type,
1948          // it's complicated.
1949          if (CI->getOperand(0)->getType() != SI->first->getType())
1950            continue;
1951          // Ok, we found the IV expression in the stride's type.
1952          Op = CI->getOperand(0);
1953        }
1954
1955        NewCmpLHS = Op;
1956        if (NewCmpLHS->getType() == CmpTy)
1957          break;
1958      }
1959      if (!NewCmpLHS)
1960        continue;
1961
1962      NewCmpTy = NewCmpLHS->getType();
1963      NewTyBits = SE->getTypeSizeInBits(NewCmpTy);
1964      const Type *NewCmpIntTy = IntegerType::get(NewTyBits);
1965      if (RequiresTypeConversion(NewCmpTy, CmpTy)) {
1966        // Check if it is possible to rewrite it using
1967        // an iv / stride of a smaller integer type.
1968        unsigned Bits = NewTyBits;
1969        if (ICmpInst::isSignedPredicate(Predicate))
1970          --Bits;
1971        uint64_t Mask = (1ULL << Bits) - 1;
1972        if (((uint64_t)NewCmpVal & Mask) != (uint64_t)NewCmpVal)
1973          continue;
1974      }
1975
1976      // Don't rewrite if use offset is non-constant and the new type is
1977      // of a different type.
1978      // FIXME: too conservative?
1979      if (NewTyBits != TyBits && !isa<SCEVConstant>(CondUse->getOffset()))
1980        continue;
1981
1982      bool AllUsesAreAddresses = true;
1983      bool AllUsesAreOutsideLoop = true;
1984      std::vector<BasedUser> UsersToProcess;
1985      SCEVHandle CommonExprs = CollectIVUsers(SI->first, *SI->second, L,
1986                                              AllUsesAreAddresses,
1987                                              AllUsesAreOutsideLoop,
1988                                              UsersToProcess);
1989      // Avoid rewriting the compare instruction with an iv of new stride
1990      // if it's likely the new stride uses will be rewritten using the
1991      // stride of the compare instruction.
1992      if (AllUsesAreAddresses &&
1993          ValidScale(!CommonExprs->isZero(), Scale, UsersToProcess))
1994        continue;
1995
1996      // Avoid rewriting the compare instruction with an iv which has
1997      // implicit extension or truncation built into it.
1998      // TODO: This is over-conservative.
1999      if (SE->getTypeSizeInBits(CondUse->getOffset()->getType()) != TyBits)
2000        continue;
2001
2002      // If scale is negative, use swapped predicate unless it's testing
2003      // for equality.
2004      if (Scale < 0 && !Cond->isEquality())
2005        Predicate = ICmpInst::getSwappedPredicate(Predicate);
2006
2007      NewStride = &IU->StrideOrder[i];
2008      if (!isa<PointerType>(NewCmpTy))
2009        NewCmpRHS = ConstantInt::get(NewCmpTy, NewCmpVal);
2010      else {
2011        ConstantInt *CI = ConstantInt::get(NewCmpIntTy, NewCmpVal);
2012        NewCmpRHS = ConstantExpr::getIntToPtr(CI, NewCmpTy);
2013      }
2014      NewOffset = TyBits == NewTyBits
2015        ? SE->getMulExpr(CondUse->getOffset(),
2016                         SE->getConstant(ConstantInt::get(CmpTy, Scale)))
2017        : SE->getConstant(ConstantInt::get(NewCmpIntTy,
2018          cast<SCEVConstant>(CondUse->getOffset())->getValue()
2019            ->getSExtValue()*Scale));
2020      break;
2021    }
2022  }
2023
2024  // Forgo this transformation if it the increment happens to be
2025  // unfortunately positioned after the condition, and the condition
2026  // has multiple uses which prevent it from being moved immediately
2027  // before the branch. See
2028  // test/Transforms/LoopStrengthReduce/change-compare-stride-trickiness-*.ll
2029  // for an example of this situation.
2030  if (!Cond->hasOneUse()) {
2031    for (BasicBlock::iterator I = Cond, E = Cond->getParent()->end();
2032         I != E; ++I)
2033      if (I == NewCmpLHS)
2034        return Cond;
2035  }
2036
2037  if (NewCmpRHS) {
2038    // Create a new compare instruction using new stride / iv.
2039    ICmpInst *OldCond = Cond;
2040    // Insert new compare instruction.
2041    Cond = new ICmpInst(Predicate, NewCmpLHS, NewCmpRHS,
2042                        L->getHeader()->getName() + ".termcond",
2043                        OldCond);
2044
2045    // Remove the old compare instruction. The old indvar is probably dead too.
2046    DeadInsts.push_back(CondUse->getOperandValToReplace());
2047    OldCond->replaceAllUsesWith(Cond);
2048    OldCond->eraseFromParent();
2049
2050    IU->IVUsesByStride[*NewStride]->addUser(NewOffset, Cond, NewCmpLHS, false);
2051    CondUse = &IU->IVUsesByStride[*NewStride]->Users.back();
2052    CondStride = NewStride;
2053    ++NumEliminated;
2054    Changed = true;
2055  }
2056
2057  return Cond;
2058}
2059
2060/// OptimizeSMax - Rewrite the loop's terminating condition if it uses
2061/// an smax computation.
2062///
2063/// This is a narrow solution to a specific, but acute, problem. For loops
2064/// like this:
2065///
2066///   i = 0;
2067///   do {
2068///     p[i] = 0.0;
2069///   } while (++i < n);
2070///
2071/// where the comparison is signed, the trip count isn't just 'n', because
2072/// 'n' could be negative. And unfortunately this can come up even for loops
2073/// where the user didn't use a C do-while loop. For example, seemingly
2074/// well-behaved top-test loops will commonly be lowered like this:
2075//
2076///   if (n > 0) {
2077///     i = 0;
2078///     do {
2079///       p[i] = 0.0;
2080///     } while (++i < n);
2081///   }
2082///
2083/// and then it's possible for subsequent optimization to obscure the if
2084/// test in such a way that indvars can't find it.
2085///
2086/// When indvars can't find the if test in loops like this, it creates a
2087/// signed-max expression, which allows it to give the loop a canonical
2088/// induction variable:
2089///
2090///   i = 0;
2091///   smax = n < 1 ? 1 : n;
2092///   do {
2093///     p[i] = 0.0;
2094///   } while (++i != smax);
2095///
2096/// Canonical induction variables are necessary because the loop passes
2097/// are designed around them. The most obvious example of this is the
2098/// LoopInfo analysis, which doesn't remember trip count values. It
2099/// expects to be able to rediscover the trip count each time it is
2100/// needed, and it does this using a simple analyis that only succeeds if
2101/// the loop has a canonical induction variable.
2102///
2103/// However, when it comes time to generate code, the maximum operation
2104/// can be quite costly, especially if it's inside of an outer loop.
2105///
2106/// This function solves this problem by detecting this type of loop and
2107/// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2108/// the instructions for the maximum computation.
2109///
2110ICmpInst *LoopStrengthReduce::OptimizeSMax(Loop *L, ICmpInst *Cond,
2111                                           IVStrideUse* &CondUse) {
2112  // Check that the loop matches the pattern we're looking for.
2113  if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
2114      Cond->getPredicate() != CmpInst::ICMP_NE)
2115    return Cond;
2116
2117  SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
2118  if (!Sel || !Sel->hasOneUse()) return Cond;
2119
2120  SCEVHandle BackedgeTakenCount = SE->getBackedgeTakenCount(L);
2121  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2122    return Cond;
2123  SCEVHandle One = SE->getIntegerSCEV(1, BackedgeTakenCount->getType());
2124
2125  // Add one to the backedge-taken count to get the trip count.
2126  SCEVHandle IterationCount = SE->getAddExpr(BackedgeTakenCount, One);
2127
2128  // Check for a max calculation that matches the pattern.
2129  const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(IterationCount);
2130  if (!SMax || SMax != SE->getSCEV(Sel)) return Cond;
2131
2132  SCEVHandle SMaxLHS = SMax->getOperand(0);
2133  SCEVHandle SMaxRHS = SMax->getOperand(1);
2134  if (!SMaxLHS || SMaxLHS != One) return Cond;
2135
2136  // Check the relevant induction variable for conformance to
2137  // the pattern.
2138  SCEVHandle IV = SE->getSCEV(Cond->getOperand(0));
2139  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2140  if (!AR || !AR->isAffine() ||
2141      AR->getStart() != One ||
2142      AR->getStepRecurrence(*SE) != One)
2143    return Cond;
2144
2145  assert(AR->getLoop() == L &&
2146         "Loop condition operand is an addrec in a different loop!");
2147
2148  // Check the right operand of the select, and remember it, as it will
2149  // be used in the new comparison instruction.
2150  Value *NewRHS = 0;
2151  if (SE->getSCEV(Sel->getOperand(1)) == SMaxRHS)
2152    NewRHS = Sel->getOperand(1);
2153  else if (SE->getSCEV(Sel->getOperand(2)) == SMaxRHS)
2154    NewRHS = Sel->getOperand(2);
2155  if (!NewRHS) return Cond;
2156
2157  // Ok, everything looks ok to change the condition into an SLT or SGE and
2158  // delete the max calculation.
2159  ICmpInst *NewCond =
2160    new ICmpInst(Cond->getPredicate() == CmpInst::ICMP_NE ?
2161                   CmpInst::ICMP_SLT :
2162                   CmpInst::ICMP_SGE,
2163                 Cond->getOperand(0), NewRHS, "scmp", Cond);
2164
2165  // Delete the max calculation instructions.
2166  Cond->replaceAllUsesWith(NewCond);
2167  CondUse->setUser(NewCond);
2168  Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2169  Cond->eraseFromParent();
2170  Sel->eraseFromParent();
2171  if (Cmp->use_empty())
2172    Cmp->eraseFromParent();
2173  return NewCond;
2174}
2175
2176/// OptimizeShadowIV - If IV is used in a int-to-float cast
2177/// inside the loop then try to eliminate the cast opeation.
2178void LoopStrengthReduce::OptimizeShadowIV(Loop *L) {
2179
2180  SCEVHandle BackedgeTakenCount = SE->getBackedgeTakenCount(L);
2181  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2182    return;
2183
2184  for (unsigned Stride = 0, e = IU->StrideOrder.size(); Stride != e;
2185       ++Stride) {
2186    std::map<SCEVHandle, IVUsersOfOneStride *>::iterator SI =
2187      IU->IVUsesByStride.find(IU->StrideOrder[Stride]);
2188    assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!");
2189    if (!isa<SCEVConstant>(SI->first))
2190      continue;
2191
2192    for (ilist<IVStrideUse>::iterator UI = SI->second->Users.begin(),
2193           E = SI->second->Users.end(); UI != E; /* empty */) {
2194      ilist<IVStrideUse>::iterator CandidateUI = UI;
2195      ++UI;
2196      Instruction *ShadowUse = CandidateUI->getUser();
2197      const Type *DestTy = NULL;
2198
2199      /* If shadow use is a int->float cast then insert a second IV
2200         to eliminate this cast.
2201
2202           for (unsigned i = 0; i < n; ++i)
2203             foo((double)i);
2204
2205         is transformed into
2206
2207           double d = 0.0;
2208           for (unsigned i = 0; i < n; ++i, ++d)
2209             foo(d);
2210      */
2211      if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser()))
2212        DestTy = UCast->getDestTy();
2213      else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser()))
2214        DestTy = SCast->getDestTy();
2215      if (!DestTy) continue;
2216
2217      if (TLI) {
2218        // If target does not support DestTy natively then do not apply
2219        // this transformation.
2220        MVT DVT = TLI->getValueType(DestTy);
2221        if (!TLI->isTypeLegal(DVT)) continue;
2222      }
2223
2224      PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
2225      if (!PH) continue;
2226      if (PH->getNumIncomingValues() != 2) continue;
2227
2228      const Type *SrcTy = PH->getType();
2229      int Mantissa = DestTy->getFPMantissaWidth();
2230      if (Mantissa == -1) continue;
2231      if ((int)SE->getTypeSizeInBits(SrcTy) > Mantissa)
2232        continue;
2233
2234      unsigned Entry, Latch;
2235      if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
2236        Entry = 0;
2237        Latch = 1;
2238      } else {
2239        Entry = 1;
2240        Latch = 0;
2241      }
2242
2243      ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
2244      if (!Init) continue;
2245      ConstantFP *NewInit = ConstantFP::get(DestTy, Init->getZExtValue());
2246
2247      BinaryOperator *Incr =
2248        dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
2249      if (!Incr) continue;
2250      if (Incr->getOpcode() != Instruction::Add
2251          && Incr->getOpcode() != Instruction::Sub)
2252        continue;
2253
2254      /* Initialize new IV, double d = 0.0 in above example. */
2255      ConstantInt *C = NULL;
2256      if (Incr->getOperand(0) == PH)
2257        C = dyn_cast<ConstantInt>(Incr->getOperand(1));
2258      else if (Incr->getOperand(1) == PH)
2259        C = dyn_cast<ConstantInt>(Incr->getOperand(0));
2260      else
2261        continue;
2262
2263      if (!C) continue;
2264
2265      /* Add new PHINode. */
2266      PHINode *NewPH = PHINode::Create(DestTy, "IV.S.", PH);
2267
2268      /* create new increment. '++d' in above example. */
2269      ConstantFP *CFP = ConstantFP::get(DestTy, C->getZExtValue());
2270      BinaryOperator *NewIncr =
2271        BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
2272                                 Instruction::FAdd : Instruction::FSub,
2273                               NewPH, CFP, "IV.S.next.", Incr);
2274
2275      NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
2276      NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
2277
2278      /* Remove cast operation */
2279      ShadowUse->replaceAllUsesWith(NewPH);
2280      ShadowUse->eraseFromParent();
2281      NumShadow++;
2282      break;
2283    }
2284  }
2285}
2286
2287// OptimizeIndvars - Now that IVUsesByStride is set up with all of the indvar
2288// uses in the loop, look to see if we can eliminate some, in favor of using
2289// common indvars for the different uses.
2290void LoopStrengthReduce::OptimizeIndvars(Loop *L) {
2291  // TODO: implement optzns here.
2292
2293  OptimizeShadowIV(L);
2294}
2295
2296/// OptimizeLoopTermCond - Change loop terminating condition to use the
2297/// postinc iv when possible.
2298void LoopStrengthReduce::OptimizeLoopTermCond(Loop *L) {
2299  // Finally, get the terminating condition for the loop if possible.  If we
2300  // can, we want to change it to use a post-incremented version of its
2301  // induction variable, to allow coalescing the live ranges for the IV into
2302  // one register value.
2303  BasicBlock *LatchBlock = L->getLoopLatch();
2304  BasicBlock *ExitBlock = L->getExitingBlock();
2305  if (!ExitBlock)
2306    // Multiple exits, just look at the exit in the latch block if there is one.
2307    ExitBlock = LatchBlock;
2308  BranchInst *TermBr = dyn_cast<BranchInst>(ExitBlock->getTerminator());
2309  if (!TermBr)
2310    return;
2311  if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2312    return;
2313
2314  // Search IVUsesByStride to find Cond's IVUse if there is one.
2315  IVStrideUse *CondUse = 0;
2316  const SCEVHandle *CondStride = 0;
2317  ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2318  if (!FindIVUserForCond(Cond, CondUse, CondStride))
2319    return; // setcc doesn't use the IV.
2320
2321  if (ExitBlock != LatchBlock) {
2322    if (!Cond->hasOneUse())
2323      // See below, we don't want the condition to be cloned.
2324      return;
2325
2326    // If exiting block is the latch block, we know it's safe and profitable to
2327    // transform the icmp to use post-inc iv. Otherwise do so only if it would
2328    // not reuse another iv and its iv would be reused by other uses. We are
2329    // optimizing for the case where the icmp is the only use of the iv.
2330    IVUsersOfOneStride &StrideUses = *IU->IVUsesByStride[*CondStride];
2331    for (ilist<IVStrideUse>::iterator I = StrideUses.Users.begin(),
2332         E = StrideUses.Users.end(); I != E; ++I) {
2333      if (I->getUser() == Cond)
2334        continue;
2335      if (!I->isUseOfPostIncrementedValue())
2336        return;
2337    }
2338
2339    // FIXME: This is expensive, and worse still ChangeCompareStride does a
2340    // similar check. Can we perform all the icmp related transformations after
2341    // StrengthReduceStridedIVUsers?
2342    if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(*CondStride)) {
2343      int64_t SInt = SC->getValue()->getSExtValue();
2344      for (unsigned NewStride = 0, ee = IU->StrideOrder.size(); NewStride != ee;
2345           ++NewStride) {
2346        std::map<SCEVHandle, IVUsersOfOneStride *>::iterator SI =
2347          IU->IVUsesByStride.find(IU->StrideOrder[NewStride]);
2348        if (!isa<SCEVConstant>(SI->first) || SI->first == *CondStride)
2349          continue;
2350        int64_t SSInt =
2351          cast<SCEVConstant>(SI->first)->getValue()->getSExtValue();
2352        if (SSInt == SInt)
2353          return; // This can definitely be reused.
2354        if (unsigned(abs64(SSInt)) < SInt || (SSInt % SInt) != 0)
2355          continue;
2356        int64_t Scale = SSInt / SInt;
2357        bool AllUsesAreAddresses = true;
2358        bool AllUsesAreOutsideLoop = true;
2359        std::vector<BasedUser> UsersToProcess;
2360        SCEVHandle CommonExprs = CollectIVUsers(SI->first, *SI->second, L,
2361                                                AllUsesAreAddresses,
2362                                                AllUsesAreOutsideLoop,
2363                                                UsersToProcess);
2364        // Avoid rewriting the compare instruction with an iv of new stride
2365        // if it's likely the new stride uses will be rewritten using the
2366        // stride of the compare instruction.
2367        if (AllUsesAreAddresses &&
2368            ValidScale(!CommonExprs->isZero(), Scale, UsersToProcess))
2369          return;
2370      }
2371    }
2372
2373    StrideNoReuse.insert(*CondStride);
2374  }
2375
2376  // If the trip count is computed in terms of an smax (due to ScalarEvolution
2377  // being unable to find a sufficient guard, for example), change the loop
2378  // comparison to use SLT instead of NE.
2379  Cond = OptimizeSMax(L, Cond, CondUse);
2380
2381  // If possible, change stride and operands of the compare instruction to
2382  // eliminate one stride.
2383  if (ExitBlock == LatchBlock)
2384    Cond = ChangeCompareStride(L, Cond, CondUse, CondStride);
2385
2386  // It's possible for the setcc instruction to be anywhere in the loop, and
2387  // possible for it to have multiple users.  If it is not immediately before
2388  // the latch block branch, move it.
2389  if (&*++BasicBlock::iterator(Cond) != (Instruction*)TermBr) {
2390    if (Cond->hasOneUse()) {   // Condition has a single use, just move it.
2391      Cond->moveBefore(TermBr);
2392    } else {
2393      // Otherwise, clone the terminating condition and insert into the loopend.
2394      Cond = cast<ICmpInst>(Cond->clone());
2395      Cond->setName(L->getHeader()->getName() + ".termcond");
2396      LatchBlock->getInstList().insert(TermBr, Cond);
2397
2398      // Clone the IVUse, as the old use still exists!
2399      IU->IVUsesByStride[*CondStride]->addUser(CondUse->getOffset(), Cond,
2400                                              CondUse->getOperandValToReplace(),
2401                                               false);
2402      CondUse = &IU->IVUsesByStride[*CondStride]->Users.back();
2403    }
2404  }
2405
2406  // If we get to here, we know that we can transform the setcc instruction to
2407  // use the post-incremented version of the IV, allowing us to coalesce the
2408  // live ranges for the IV correctly.
2409  CondUse->setOffset(SE->getMinusSCEV(CondUse->getOffset(), *CondStride));
2410  CondUse->setIsUseOfPostIncrementedValue(true);
2411  Changed = true;
2412
2413  ++NumLoopCond;
2414}
2415
2416// OptimizeLoopCountIV - If, after all sharing of IVs, the IV used for deciding
2417// when to exit the loop is used only for that purpose, try to rearrange things
2418// so it counts down to a test against zero.
2419void LoopStrengthReduce::OptimizeLoopCountIV(Loop *L) {
2420
2421  // If the number of times the loop is executed isn't computable, give up.
2422  SCEVHandle BackedgeTakenCount = SE->getBackedgeTakenCount(L);
2423  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2424    return;
2425
2426  // Get the terminating condition for the loop if possible (this isn't
2427  // necessarily in the latch, or a block that's a predecessor of the header).
2428  if (!L->getExitBlock())
2429    return; // More than one loop exit blocks.
2430
2431  // Okay, there is one exit block.  Try to find the condition that causes the
2432  // loop to be exited.
2433  BasicBlock *ExitingBlock = L->getExitingBlock();
2434  if (!ExitingBlock)
2435    return; // More than one block exiting!
2436
2437  // Okay, we've computed the exiting block.  See what condition causes us to
2438  // exit.
2439  //
2440  // FIXME: we should be able to handle switch instructions (with a single exit)
2441  BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2442  if (TermBr == 0) return;
2443  assert(TermBr->isConditional() && "If unconditional, it can't be in loop!");
2444  if (!isa<ICmpInst>(TermBr->getCondition()))
2445    return;
2446  ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2447
2448  // Handle only tests for equality for the moment, and only stride 1.
2449  if (Cond->getPredicate() != CmpInst::ICMP_EQ)
2450    return;
2451  SCEVHandle IV = SE->getSCEV(Cond->getOperand(0));
2452  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2453  SCEVHandle One = SE->getIntegerSCEV(1, BackedgeTakenCount->getType());
2454  if (!AR || !AR->isAffine() || AR->getStepRecurrence(*SE) != One)
2455    return;
2456  // If the RHS of the comparison is defined inside the loop, the rewrite
2457  // cannot be done.
2458  if (Instruction *CR = dyn_cast<Instruction>(Cond->getOperand(1)))
2459    if (L->contains(CR->getParent()))
2460      return;
2461
2462  // Make sure the IV is only used for counting.  Value may be preinc or
2463  // postinc; 2 uses in either case.
2464  if (!Cond->getOperand(0)->hasNUses(2))
2465    return;
2466  PHINode *phi = dyn_cast<PHINode>(Cond->getOperand(0));
2467  Instruction *incr;
2468  if (phi && phi->getParent()==L->getHeader()) {
2469    // value tested is preinc.  Find the increment.
2470    // A CmpInst is not a BinaryOperator; we depend on this.
2471    Instruction::use_iterator UI = phi->use_begin();
2472    incr = dyn_cast<BinaryOperator>(UI);
2473    if (!incr)
2474      incr = dyn_cast<BinaryOperator>(++UI);
2475    // 1 use for postinc value, the phi.  Unnecessarily conservative?
2476    if (!incr || !incr->hasOneUse() || incr->getOpcode()!=Instruction::Add)
2477      return;
2478  } else {
2479    // Value tested is postinc.  Find the phi node.
2480    incr = dyn_cast<BinaryOperator>(Cond->getOperand(0));
2481    if (!incr || incr->getOpcode()!=Instruction::Add)
2482      return;
2483
2484    Instruction::use_iterator UI = Cond->getOperand(0)->use_begin();
2485    phi = dyn_cast<PHINode>(UI);
2486    if (!phi)
2487      phi = dyn_cast<PHINode>(++UI);
2488    // 1 use for preinc value, the increment.
2489    if (!phi || phi->getParent()!=L->getHeader() || !phi->hasOneUse())
2490      return;
2491  }
2492
2493  // Replace the increment with a decrement.
2494  BinaryOperator *decr =
2495    BinaryOperator::Create(Instruction::Sub, incr->getOperand(0),
2496                           incr->getOperand(1), "tmp", incr);
2497  incr->replaceAllUsesWith(decr);
2498  incr->eraseFromParent();
2499
2500  // Substitute endval-startval for the original startval, and 0 for the
2501  // original endval.  Since we're only testing for equality this is OK even
2502  // if the computation wraps around.
2503  BasicBlock  *Preheader = L->getLoopPreheader();
2504  Instruction *PreInsertPt = Preheader->getTerminator();
2505  int inBlock = L->contains(phi->getIncomingBlock(0)) ? 1 : 0;
2506  Value *startVal = phi->getIncomingValue(inBlock);
2507  Value *endVal = Cond->getOperand(1);
2508  // FIXME check for case where both are constant
2509  ConstantInt* Zero = ConstantInt::get(Cond->getOperand(1)->getType(), 0);
2510  BinaryOperator *NewStartVal =
2511    BinaryOperator::Create(Instruction::Sub, endVal, startVal,
2512                           "tmp", PreInsertPt);
2513  phi->setIncomingValue(inBlock, NewStartVal);
2514  Cond->setOperand(1, Zero);
2515
2516  Changed = true;
2517}
2518
2519bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager &LPM) {
2520
2521  IU = &getAnalysis<IVUsers>();
2522  LI = &getAnalysis<LoopInfo>();
2523  DT = &getAnalysis<DominatorTree>();
2524  SE = &getAnalysis<ScalarEvolution>();
2525  Changed = false;
2526
2527  if (!IU->IVUsesByStride.empty()) {
2528#ifndef NDEBUG
2529    DOUT << "\nLSR on \"" << L->getHeader()->getParent()->getNameStart()
2530         << "\" ";
2531    DEBUG(L->dump());
2532#endif
2533
2534    // Sort the StrideOrder so we process larger strides first.
2535    std::stable_sort(IU->StrideOrder.begin(), IU->StrideOrder.end(),
2536                     StrideCompare(SE));
2537
2538    // Optimize induction variables.  Some indvar uses can be transformed to use
2539    // strides that will be needed for other purposes.  A common example of this
2540    // is the exit test for the loop, which can often be rewritten to use the
2541    // computation of some other indvar to decide when to terminate the loop.
2542    OptimizeIndvars(L);
2543
2544    // Change loop terminating condition to use the postinc iv when possible
2545    // and optimize loop terminating compare. FIXME: Move this after
2546    // StrengthReduceStridedIVUsers?
2547    OptimizeLoopTermCond(L);
2548
2549    // FIXME: We can shrink overlarge IV's here.  e.g. if the code has
2550    // computation in i64 values and the target doesn't support i64, demote
2551    // the computation to 32-bit if safe.
2552
2553    // FIXME: Attempt to reuse values across multiple IV's.  In particular, we
2554    // could have something like "for(i) { foo(i*8); bar(i*16) }", which should
2555    // be codegened as "for (j = 0;; j+=8) { foo(j); bar(j+j); }" on X86/PPC.
2556    // Need to be careful that IV's are all the same type.  Only works for
2557    // intptr_t indvars.
2558
2559    // IVsByStride keeps IVs for one particular loop.
2560    assert(IVsByStride.empty() && "Stale entries in IVsByStride?");
2561
2562    // Note: this processes each stride/type pair individually.  All users
2563    // passed into StrengthReduceStridedIVUsers have the same type AND stride.
2564    // Also, note that we iterate over IVUsesByStride indirectly by using
2565    // StrideOrder. This extra layer of indirection makes the ordering of
2566    // strides deterministic - not dependent on map order.
2567    for (unsigned Stride = 0, e = IU->StrideOrder.size();
2568         Stride != e; ++Stride) {
2569      std::map<SCEVHandle, IVUsersOfOneStride *>::iterator SI =
2570        IU->IVUsesByStride.find(IU->StrideOrder[Stride]);
2571      assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!");
2572      // FIXME: Generalize to non-affine IV's.
2573      if (!SI->first->isLoopInvariant(L))
2574        continue;
2575      StrengthReduceStridedIVUsers(SI->first, *SI->second, L);
2576    }
2577  }
2578
2579  // After all sharing is done, see if we can adjust the loop to test against
2580  // zero instead of counting up to a maximum.  This is usually faster.
2581  OptimizeLoopCountIV(L);
2582
2583  // We're done analyzing this loop; release all the state we built up for it.
2584  IVsByStride.clear();
2585  StrideNoReuse.clear();
2586
2587  // Clean up after ourselves
2588  if (!DeadInsts.empty())
2589    DeleteTriviallyDeadInstructions();
2590
2591  // At this point, it is worth checking to see if any recurrence PHIs are also
2592  // dead, so that we can remove them as well.
2593  DeleteDeadPHIs(L->getHeader());
2594
2595  return Changed;
2596}
2597