InstCombineCompares.cpp revision 204642
1//===- InstCombineCompares.cpp --------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitICmp and visitFCmp functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/IntrinsicInst.h"
16#include "llvm/Analysis/InstructionSimplify.h"
17#include "llvm/Analysis/MemoryBuiltins.h"
18#include "llvm/Target/TargetData.h"
19#include "llvm/Support/ConstantRange.h"
20#include "llvm/Support/GetElementPtrTypeIterator.h"
21#include "llvm/Support/PatternMatch.h"
22using namespace llvm;
23using namespace PatternMatch;
24
25/// AddOne - Add one to a ConstantInt
26static Constant *AddOne(Constant *C) {
27  return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
28}
29/// SubOne - Subtract one from a ConstantInt
30static Constant *SubOne(ConstantInt *C) {
31  return ConstantExpr::getSub(C,  ConstantInt::get(C->getType(), 1));
32}
33
34static ConstantInt *ExtractElement(Constant *V, Constant *Idx) {
35  return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
36}
37
38static bool HasAddOverflow(ConstantInt *Result,
39                           ConstantInt *In1, ConstantInt *In2,
40                           bool IsSigned) {
41  if (IsSigned)
42    if (In2->getValue().isNegative())
43      return Result->getValue().sgt(In1->getValue());
44    else
45      return Result->getValue().slt(In1->getValue());
46  else
47    return Result->getValue().ult(In1->getValue());
48}
49
50/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
51/// overflowed for this type.
52static bool AddWithOverflow(Constant *&Result, Constant *In1,
53                            Constant *In2, bool IsSigned = false) {
54  Result = ConstantExpr::getAdd(In1, In2);
55
56  if (const VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
57    for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
58      Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
59      if (HasAddOverflow(ExtractElement(Result, Idx),
60                         ExtractElement(In1, Idx),
61                         ExtractElement(In2, Idx),
62                         IsSigned))
63        return true;
64    }
65    return false;
66  }
67
68  return HasAddOverflow(cast<ConstantInt>(Result),
69                        cast<ConstantInt>(In1), cast<ConstantInt>(In2),
70                        IsSigned);
71}
72
73static bool HasSubOverflow(ConstantInt *Result,
74                           ConstantInt *In1, ConstantInt *In2,
75                           bool IsSigned) {
76  if (IsSigned)
77    if (In2->getValue().isNegative())
78      return Result->getValue().slt(In1->getValue());
79    else
80      return Result->getValue().sgt(In1->getValue());
81  else
82    return Result->getValue().ugt(In1->getValue());
83}
84
85/// SubWithOverflow - Compute Result = In1-In2, returning true if the result
86/// overflowed for this type.
87static bool SubWithOverflow(Constant *&Result, Constant *In1,
88                            Constant *In2, bool IsSigned = false) {
89  Result = ConstantExpr::getSub(In1, In2);
90
91  if (const VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
92    for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
93      Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
94      if (HasSubOverflow(ExtractElement(Result, Idx),
95                         ExtractElement(In1, Idx),
96                         ExtractElement(In2, Idx),
97                         IsSigned))
98        return true;
99    }
100    return false;
101  }
102
103  return HasSubOverflow(cast<ConstantInt>(Result),
104                        cast<ConstantInt>(In1), cast<ConstantInt>(In2),
105                        IsSigned);
106}
107
108/// isSignBitCheck - Given an exploded icmp instruction, return true if the
109/// comparison only checks the sign bit.  If it only checks the sign bit, set
110/// TrueIfSigned if the result of the comparison is true when the input value is
111/// signed.
112static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
113                           bool &TrueIfSigned) {
114  switch (pred) {
115  case ICmpInst::ICMP_SLT:   // True if LHS s< 0
116    TrueIfSigned = true;
117    return RHS->isZero();
118  case ICmpInst::ICMP_SLE:   // True if LHS s<= RHS and RHS == -1
119    TrueIfSigned = true;
120    return RHS->isAllOnesValue();
121  case ICmpInst::ICMP_SGT:   // True if LHS s> -1
122    TrueIfSigned = false;
123    return RHS->isAllOnesValue();
124  case ICmpInst::ICMP_UGT:
125    // True if LHS u> RHS and RHS == high-bit-mask - 1
126    TrueIfSigned = true;
127    return RHS->getValue() ==
128      APInt::getSignedMaxValue(RHS->getType()->getPrimitiveSizeInBits());
129  case ICmpInst::ICMP_UGE:
130    // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
131    TrueIfSigned = true;
132    return RHS->getValue().isSignBit();
133  default:
134    return false;
135  }
136}
137
138// isHighOnes - Return true if the constant is of the form 1+0+.
139// This is the same as lowones(~X).
140static bool isHighOnes(const ConstantInt *CI) {
141  return (~CI->getValue() + 1).isPowerOf2();
142}
143
144/// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
145/// set of known zero and one bits, compute the maximum and minimum values that
146/// could have the specified known zero and known one bits, returning them in
147/// min/max.
148static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero,
149                                                   const APInt& KnownOne,
150                                                   APInt& Min, APInt& Max) {
151  assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
152         KnownZero.getBitWidth() == Min.getBitWidth() &&
153         KnownZero.getBitWidth() == Max.getBitWidth() &&
154         "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
155  APInt UnknownBits = ~(KnownZero|KnownOne);
156
157  // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
158  // bit if it is unknown.
159  Min = KnownOne;
160  Max = KnownOne|UnknownBits;
161
162  if (UnknownBits.isNegative()) { // Sign bit is unknown
163    Min.set(Min.getBitWidth()-1);
164    Max.clear(Max.getBitWidth()-1);
165  }
166}
167
168// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
169// a set of known zero and one bits, compute the maximum and minimum values that
170// could have the specified known zero and known one bits, returning them in
171// min/max.
172static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
173                                                     const APInt &KnownOne,
174                                                     APInt &Min, APInt &Max) {
175  assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
176         KnownZero.getBitWidth() == Min.getBitWidth() &&
177         KnownZero.getBitWidth() == Max.getBitWidth() &&
178         "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
179  APInt UnknownBits = ~(KnownZero|KnownOne);
180
181  // The minimum value is when the unknown bits are all zeros.
182  Min = KnownOne;
183  // The maximum value is when the unknown bits are all ones.
184  Max = KnownOne|UnknownBits;
185}
186
187
188
189/// FoldCmpLoadFromIndexedGlobal - Called we see this pattern:
190///   cmp pred (load (gep GV, ...)), cmpcst
191/// where GV is a global variable with a constant initializer.  Try to simplify
192/// this into some simple computation that does not need the load.  For example
193/// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
194///
195/// If AndCst is non-null, then the loaded value is masked with that constant
196/// before doing the comparison.  This handles cases like "A[i]&4 == 0".
197Instruction *InstCombiner::
198FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
199                             CmpInst &ICI, ConstantInt *AndCst) {
200  // We need TD information to know the pointer size unless this is inbounds.
201  if (!GEP->isInBounds() && TD == 0) return 0;
202
203  ConstantArray *Init = dyn_cast<ConstantArray>(GV->getInitializer());
204  if (Init == 0 || Init->getNumOperands() > 1024) return 0;
205
206  // There are many forms of this optimization we can handle, for now, just do
207  // the simple index into a single-dimensional array.
208  //
209  // Require: GEP GV, 0, i {{, constant indices}}
210  if (GEP->getNumOperands() < 3 ||
211      !isa<ConstantInt>(GEP->getOperand(1)) ||
212      !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
213      isa<Constant>(GEP->getOperand(2)))
214    return 0;
215
216  // Check that indices after the variable are constants and in-range for the
217  // type they index.  Collect the indices.  This is typically for arrays of
218  // structs.
219  SmallVector<unsigned, 4> LaterIndices;
220
221  const Type *EltTy = cast<ArrayType>(Init->getType())->getElementType();
222  for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
223    ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
224    if (Idx == 0) return 0;  // Variable index.
225
226    uint64_t IdxVal = Idx->getZExtValue();
227    if ((unsigned)IdxVal != IdxVal) return 0; // Too large array index.
228
229    if (const StructType *STy = dyn_cast<StructType>(EltTy))
230      EltTy = STy->getElementType(IdxVal);
231    else if (const ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
232      if (IdxVal >= ATy->getNumElements()) return 0;
233      EltTy = ATy->getElementType();
234    } else {
235      return 0; // Unknown type.
236    }
237
238    LaterIndices.push_back(IdxVal);
239  }
240
241  enum { Overdefined = -3, Undefined = -2 };
242
243  // Variables for our state machines.
244
245  // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
246  // "i == 47 | i == 87", where 47 is the first index the condition is true for,
247  // and 87 is the second (and last) index.  FirstTrueElement is -2 when
248  // undefined, otherwise set to the first true element.  SecondTrueElement is
249  // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
250  int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
251
252  // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
253  // form "i != 47 & i != 87".  Same state transitions as for true elements.
254  int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
255
256  /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
257  /// define a state machine that triggers for ranges of values that the index
258  /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
259  /// This is -2 when undefined, -3 when overdefined, and otherwise the last
260  /// index in the range (inclusive).  We use -2 for undefined here because we
261  /// use relative comparisons and don't want 0-1 to match -1.
262  int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
263
264  // MagicBitvector - This is a magic bitvector where we set a bit if the
265  // comparison is true for element 'i'.  If there are 64 elements or less in
266  // the array, this will fully represent all the comparison results.
267  uint64_t MagicBitvector = 0;
268
269
270  // Scan the array and see if one of our patterns matches.
271  Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
272  for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
273    Constant *Elt = Init->getOperand(i);
274
275    // If this is indexing an array of structures, get the structure element.
276    if (!LaterIndices.empty())
277      Elt = ConstantExpr::getExtractValue(Elt, LaterIndices.data(),
278                                          LaterIndices.size());
279
280    // If the element is masked, handle it.
281    if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
282
283    // Find out if the comparison would be true or false for the i'th element.
284    Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
285                                                  CompareRHS, TD);
286    // If the result is undef for this element, ignore it.
287    if (isa<UndefValue>(C)) {
288      // Extend range state machines to cover this element in case there is an
289      // undef in the middle of the range.
290      if (TrueRangeEnd == (int)i-1)
291        TrueRangeEnd = i;
292      if (FalseRangeEnd == (int)i-1)
293        FalseRangeEnd = i;
294      continue;
295    }
296
297    // If we can't compute the result for any of the elements, we have to give
298    // up evaluating the entire conditional.
299    if (!isa<ConstantInt>(C)) return 0;
300
301    // Otherwise, we know if the comparison is true or false for this element,
302    // update our state machines.
303    bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
304
305    // State machine for single/double/range index comparison.
306    if (IsTrueForElt) {
307      // Update the TrueElement state machine.
308      if (FirstTrueElement == Undefined)
309        FirstTrueElement = TrueRangeEnd = i;  // First true element.
310      else {
311        // Update double-compare state machine.
312        if (SecondTrueElement == Undefined)
313          SecondTrueElement = i;
314        else
315          SecondTrueElement = Overdefined;
316
317        // Update range state machine.
318        if (TrueRangeEnd == (int)i-1)
319          TrueRangeEnd = i;
320        else
321          TrueRangeEnd = Overdefined;
322      }
323    } else {
324      // Update the FalseElement state machine.
325      if (FirstFalseElement == Undefined)
326        FirstFalseElement = FalseRangeEnd = i; // First false element.
327      else {
328        // Update double-compare state machine.
329        if (SecondFalseElement == Undefined)
330          SecondFalseElement = i;
331        else
332          SecondFalseElement = Overdefined;
333
334        // Update range state machine.
335        if (FalseRangeEnd == (int)i-1)
336          FalseRangeEnd = i;
337        else
338          FalseRangeEnd = Overdefined;
339      }
340    }
341
342
343    // If this element is in range, update our magic bitvector.
344    if (i < 64 && IsTrueForElt)
345      MagicBitvector |= 1ULL << i;
346
347    // If all of our states become overdefined, bail out early.  Since the
348    // predicate is expensive, only check it every 8 elements.  This is only
349    // really useful for really huge arrays.
350    if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
351        SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
352        FalseRangeEnd == Overdefined)
353      return 0;
354  }
355
356  // Now that we've scanned the entire array, emit our new comparison(s).  We
357  // order the state machines in complexity of the generated code.
358  Value *Idx = GEP->getOperand(2);
359
360  // If the index is larger than the pointer size of the target, truncate the
361  // index down like the GEP would do implicitly.  We don't have to do this for
362  // an inbounds GEP because the index can't be out of range.
363  if (!GEP->isInBounds() &&
364      Idx->getType()->getPrimitiveSizeInBits() > TD->getPointerSizeInBits())
365    Idx = Builder->CreateTrunc(Idx, TD->getIntPtrType(Idx->getContext()));
366
367  // If the comparison is only true for one or two elements, emit direct
368  // comparisons.
369  if (SecondTrueElement != Overdefined) {
370    // None true -> false.
371    if (FirstTrueElement == Undefined)
372      return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(GEP->getContext()));
373
374    Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
375
376    // True for one element -> 'i == 47'.
377    if (SecondTrueElement == Undefined)
378      return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
379
380    // True for two elements -> 'i == 47 | i == 72'.
381    Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx);
382    Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
383    Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx);
384    return BinaryOperator::CreateOr(C1, C2);
385  }
386
387  // If the comparison is only false for one or two elements, emit direct
388  // comparisons.
389  if (SecondFalseElement != Overdefined) {
390    // None false -> true.
391    if (FirstFalseElement == Undefined)
392      return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(GEP->getContext()));
393
394    Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
395
396    // False for one element -> 'i != 47'.
397    if (SecondFalseElement == Undefined)
398      return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
399
400    // False for two elements -> 'i != 47 & i != 72'.
401    Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx);
402    Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
403    Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx);
404    return BinaryOperator::CreateAnd(C1, C2);
405  }
406
407  // If the comparison can be replaced with a range comparison for the elements
408  // where it is true, emit the range check.
409  if (TrueRangeEnd != Overdefined) {
410    assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
411
412    // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
413    if (FirstTrueElement) {
414      Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
415      Idx = Builder->CreateAdd(Idx, Offs);
416    }
417
418    Value *End = ConstantInt::get(Idx->getType(),
419                                  TrueRangeEnd-FirstTrueElement+1);
420    return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
421  }
422
423  // False range check.
424  if (FalseRangeEnd != Overdefined) {
425    assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
426    // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
427    if (FirstFalseElement) {
428      Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
429      Idx = Builder->CreateAdd(Idx, Offs);
430    }
431
432    Value *End = ConstantInt::get(Idx->getType(),
433                                  FalseRangeEnd-FirstFalseElement);
434    return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
435  }
436
437
438  // If a 32-bit or 64-bit magic bitvector captures the entire comparison state
439  // of this load, replace it with computation that does:
440  //   ((magic_cst >> i) & 1) != 0
441  if (Init->getNumOperands() <= 32 ||
442      (TD && Init->getNumOperands() <= 64 && TD->isLegalInteger(64))) {
443    const Type *Ty;
444    if (Init->getNumOperands() <= 32)
445      Ty = Type::getInt32Ty(Init->getContext());
446    else
447      Ty = Type::getInt64Ty(Init->getContext());
448    Value *V = Builder->CreateIntCast(Idx, Ty, false);
449    V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
450    V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V);
451    return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
452  }
453
454  return 0;
455}
456
457
458/// EvaluateGEPOffsetExpression - Return a value that can be used to compare
459/// the *offset* implied by a GEP to zero.  For example, if we have &A[i], we
460/// want to return 'i' for "icmp ne i, 0".  Note that, in general, indices can
461/// be complex, and scales are involved.  The above expression would also be
462/// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32).
463/// This later form is less amenable to optimization though, and we are allowed
464/// to generate the first by knowing that pointer arithmetic doesn't overflow.
465///
466/// If we can't emit an optimized form for this expression, this returns null.
467///
468static Value *EvaluateGEPOffsetExpression(User *GEP, Instruction &I,
469                                          InstCombiner &IC) {
470  TargetData &TD = *IC.getTargetData();
471  gep_type_iterator GTI = gep_type_begin(GEP);
472
473  // Check to see if this gep only has a single variable index.  If so, and if
474  // any constant indices are a multiple of its scale, then we can compute this
475  // in terms of the scale of the variable index.  For example, if the GEP
476  // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
477  // because the expression will cross zero at the same point.
478  unsigned i, e = GEP->getNumOperands();
479  int64_t Offset = 0;
480  for (i = 1; i != e; ++i, ++GTI) {
481    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
482      // Compute the aggregate offset of constant indices.
483      if (CI->isZero()) continue;
484
485      // Handle a struct index, which adds its field offset to the pointer.
486      if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
487        Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
488      } else {
489        uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
490        Offset += Size*CI->getSExtValue();
491      }
492    } else {
493      // Found our variable index.
494      break;
495    }
496  }
497
498  // If there are no variable indices, we must have a constant offset, just
499  // evaluate it the general way.
500  if (i == e) return 0;
501
502  Value *VariableIdx = GEP->getOperand(i);
503  // Determine the scale factor of the variable element.  For example, this is
504  // 4 if the variable index is into an array of i32.
505  uint64_t VariableScale = TD.getTypeAllocSize(GTI.getIndexedType());
506
507  // Verify that there are no other variable indices.  If so, emit the hard way.
508  for (++i, ++GTI; i != e; ++i, ++GTI) {
509    ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
510    if (!CI) return 0;
511
512    // Compute the aggregate offset of constant indices.
513    if (CI->isZero()) continue;
514
515    // Handle a struct index, which adds its field offset to the pointer.
516    if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
517      Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
518    } else {
519      uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
520      Offset += Size*CI->getSExtValue();
521    }
522  }
523
524  // Okay, we know we have a single variable index, which must be a
525  // pointer/array/vector index.  If there is no offset, life is simple, return
526  // the index.
527  unsigned IntPtrWidth = TD.getPointerSizeInBits();
528  if (Offset == 0) {
529    // Cast to intptrty in case a truncation occurs.  If an extension is needed,
530    // we don't need to bother extending: the extension won't affect where the
531    // computation crosses zero.
532    if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth)
533      VariableIdx = new TruncInst(VariableIdx,
534                                  TD.getIntPtrType(VariableIdx->getContext()),
535                                  VariableIdx->getName(), &I);
536    return VariableIdx;
537  }
538
539  // Otherwise, there is an index.  The computation we will do will be modulo
540  // the pointer size, so get it.
541  uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
542
543  Offset &= PtrSizeMask;
544  VariableScale &= PtrSizeMask;
545
546  // To do this transformation, any constant index must be a multiple of the
547  // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
548  // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
549  // multiple of the variable scale.
550  int64_t NewOffs = Offset / (int64_t)VariableScale;
551  if (Offset != NewOffs*(int64_t)VariableScale)
552    return 0;
553
554  // Okay, we can do this evaluation.  Start by converting the index to intptr.
555  const Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());
556  if (VariableIdx->getType() != IntPtrTy)
557    VariableIdx = CastInst::CreateIntegerCast(VariableIdx, IntPtrTy,
558                                              true /*SExt*/,
559                                              VariableIdx->getName(), &I);
560  Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
561  return BinaryOperator::CreateAdd(VariableIdx, OffsetVal, "offset", &I);
562}
563
564/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
565/// else.  At this point we know that the GEP is on the LHS of the comparison.
566Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
567                                       ICmpInst::Predicate Cond,
568                                       Instruction &I) {
569  // Look through bitcasts.
570  if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
571    RHS = BCI->getOperand(0);
572
573  Value *PtrBase = GEPLHS->getOperand(0);
574  if (TD && PtrBase == RHS && GEPLHS->isInBounds()) {
575    // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
576    // This transformation (ignoring the base and scales) is valid because we
577    // know pointers can't overflow since the gep is inbounds.  See if we can
578    // output an optimized form.
579    Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, I, *this);
580
581    // If not, synthesize the offset the hard way.
582    if (Offset == 0)
583      Offset = EmitGEPOffset(GEPLHS);
584    return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
585                        Constant::getNullValue(Offset->getType()));
586  } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
587    // If the base pointers are different, but the indices are the same, just
588    // compare the base pointer.
589    if (PtrBase != GEPRHS->getOperand(0)) {
590      bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
591      IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
592                        GEPRHS->getOperand(0)->getType();
593      if (IndicesTheSame)
594        for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
595          if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
596            IndicesTheSame = false;
597            break;
598          }
599
600      // If all indices are the same, just compare the base pointers.
601      if (IndicesTheSame)
602        return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
603                            GEPLHS->getOperand(0), GEPRHS->getOperand(0));
604
605      // Otherwise, the base pointers are different and the indices are
606      // different, bail out.
607      return 0;
608    }
609
610    // If one of the GEPs has all zero indices, recurse.
611    bool AllZeros = true;
612    for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
613      if (!isa<Constant>(GEPLHS->getOperand(i)) ||
614          !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
615        AllZeros = false;
616        break;
617      }
618    if (AllZeros)
619      return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
620                          ICmpInst::getSwappedPredicate(Cond), I);
621
622    // If the other GEP has all zero indices, recurse.
623    AllZeros = true;
624    for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
625      if (!isa<Constant>(GEPRHS->getOperand(i)) ||
626          !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
627        AllZeros = false;
628        break;
629      }
630    if (AllZeros)
631      return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
632
633    if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
634      // If the GEPs only differ by one index, compare it.
635      unsigned NumDifferences = 0;  // Keep track of # differences.
636      unsigned DiffOperand = 0;     // The operand that differs.
637      for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
638        if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
639          if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
640                   GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
641            // Irreconcilable differences.
642            NumDifferences = 2;
643            break;
644          } else {
645            if (NumDifferences++) break;
646            DiffOperand = i;
647          }
648        }
649
650      if (NumDifferences == 0)   // SAME GEP?
651        return ReplaceInstUsesWith(I, // No comparison is needed here.
652                               ConstantInt::get(Type::getInt1Ty(I.getContext()),
653                                             ICmpInst::isTrueWhenEqual(Cond)));
654
655      else if (NumDifferences == 1) {
656        Value *LHSV = GEPLHS->getOperand(DiffOperand);
657        Value *RHSV = GEPRHS->getOperand(DiffOperand);
658        // Make sure we do a signed comparison here.
659        return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
660      }
661    }
662
663    // Only lower this if the icmp is the only user of the GEP or if we expect
664    // the result to fold to a constant!
665    if (TD &&
666        (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
667        (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
668      // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
669      Value *L = EmitGEPOffset(GEPLHS);
670      Value *R = EmitGEPOffset(GEPRHS);
671      return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
672    }
673  }
674  return 0;
675}
676
677/// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X".
678Instruction *InstCombiner::FoldICmpAddOpCst(ICmpInst &ICI,
679                                            Value *X, ConstantInt *CI,
680                                            ICmpInst::Predicate Pred,
681                                            Value *TheAdd) {
682  // If we have X+0, exit early (simplifying logic below) and let it get folded
683  // elsewhere.   icmp X+0, X  -> icmp X, X
684  if (CI->isZero()) {
685    bool isTrue = ICmpInst::isTrueWhenEqual(Pred);
686    return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
687  }
688
689  // (X+4) == X -> false.
690  if (Pred == ICmpInst::ICMP_EQ)
691    return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(X->getContext()));
692
693  // (X+4) != X -> true.
694  if (Pred == ICmpInst::ICMP_NE)
695    return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(X->getContext()));
696
697  // If this is an instruction (as opposed to constantexpr) get NUW/NSW info.
698  bool isNUW = false, isNSW = false;
699  if (BinaryOperator *Add = dyn_cast<BinaryOperator>(TheAdd)) {
700    isNUW = Add->hasNoUnsignedWrap();
701    isNSW = Add->hasNoSignedWrap();
702  }
703
704  // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
705  // so the values can never be equal.  Similiarly for all other "or equals"
706  // operators.
707
708  // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
709  // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
710  // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
711  if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
712    // If this is an NUW add, then this is always false.
713    if (isNUW)
714      return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(X->getContext()));
715
716    Value *R =
717      ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI);
718    return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
719  }
720
721  // (X+1) >u X        --> X <u (0-1)        --> X != 255
722  // (X+2) >u X        --> X <u (0-2)        --> X <u 254
723  // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
724  if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
725    // If this is an NUW add, then this is always true.
726    if (isNUW)
727      return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(X->getContext()));
728    return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI));
729  }
730
731  unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
732  ConstantInt *SMax = ConstantInt::get(X->getContext(),
733                                       APInt::getSignedMaxValue(BitWidth));
734
735  // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
736  // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
737  // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
738  // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
739  // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
740  // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
741  if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
742    // If this is an NSW add, then we have two cases: if the constant is
743    // positive, then this is always false, if negative, this is always true.
744    if (isNSW) {
745      bool isTrue = CI->getValue().isNegative();
746      return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
747    }
748
749    return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
750  }
751
752  // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
753  // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
754  // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
755  // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
756  // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
757  // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
758
759  // If this is an NSW add, then we have two cases: if the constant is
760  // positive, then this is always true, if negative, this is always false.
761  if (isNSW) {
762    bool isTrue = !CI->getValue().isNegative();
763    return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
764  }
765
766  assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
767  Constant *C = ConstantInt::get(X->getContext(), CI->getValue()-1);
768  return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
769}
770
771/// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
772/// and CmpRHS are both known to be integer constants.
773Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
774                                          ConstantInt *DivRHS) {
775  ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
776  const APInt &CmpRHSV = CmpRHS->getValue();
777
778  // FIXME: If the operand types don't match the type of the divide
779  // then don't attempt this transform. The code below doesn't have the
780  // logic to deal with a signed divide and an unsigned compare (and
781  // vice versa). This is because (x /s C1) <s C2  produces different
782  // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
783  // (x /u C1) <u C2.  Simply casting the operands and result won't
784  // work. :(  The if statement below tests that condition and bails
785  // if it finds it.
786  bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
787  if (!ICI.isEquality() && DivIsSigned != ICI.isSigned())
788    return 0;
789  if (DivRHS->isZero())
790    return 0; // The ProdOV computation fails on divide by zero.
791  if (DivIsSigned && DivRHS->isAllOnesValue())
792    return 0; // The overflow computation also screws up here
793  if (DivRHS->isOne())
794    return 0; // Not worth bothering, and eliminates some funny cases
795              // with INT_MIN.
796
797  // Compute Prod = CI * DivRHS. We are essentially solving an equation
798  // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
799  // C2 (CI). By solving for X we can turn this into a range check
800  // instead of computing a divide.
801  Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
802
803  // Determine if the product overflows by seeing if the product is
804  // not equal to the divide. Make sure we do the same kind of divide
805  // as in the LHS instruction that we're folding.
806  bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
807                 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
808
809  // Get the ICmp opcode
810  ICmpInst::Predicate Pred = ICI.getPredicate();
811
812  // Figure out the interval that is being checked.  For example, a comparison
813  // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
814  // Compute this interval based on the constants involved and the signedness of
815  // the compare/divide.  This computes a half-open interval, keeping track of
816  // whether either value in the interval overflows.  After analysis each
817  // overflow variable is set to 0 if it's corresponding bound variable is valid
818  // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
819  int LoOverflow = 0, HiOverflow = 0;
820  Constant *LoBound = 0, *HiBound = 0;
821
822  if (!DivIsSigned) {  // udiv
823    // e.g. X/5 op 3  --> [15, 20)
824    LoBound = Prod;
825    HiOverflow = LoOverflow = ProdOV;
826    if (!HiOverflow)
827      HiOverflow = AddWithOverflow(HiBound, LoBound, DivRHS, false);
828  } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
829    if (CmpRHSV == 0) {       // (X / pos) op 0
830      // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
831      LoBound = cast<ConstantInt>(ConstantExpr::getNeg(SubOne(DivRHS)));
832      HiBound = DivRHS;
833    } else if (CmpRHSV.isStrictlyPositive()) {   // (X / pos) op pos
834      LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
835      HiOverflow = LoOverflow = ProdOV;
836      if (!HiOverflow)
837        HiOverflow = AddWithOverflow(HiBound, Prod, DivRHS, true);
838    } else {                       // (X / pos) op neg
839      // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
840      HiBound = AddOne(Prod);
841      LoOverflow = HiOverflow = ProdOV ? -1 : 0;
842      if (!LoOverflow) {
843        ConstantInt* DivNeg =
844                         cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
845        LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
846       }
847    }
848  } else if (DivRHS->getValue().isNegative()) { // Divisor is < 0.
849    if (CmpRHSV == 0) {       // (X / neg) op 0
850      // e.g. X/-5 op 0  --> [-4, 5)
851      LoBound = AddOne(DivRHS);
852      HiBound = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
853      if (HiBound == DivRHS) {     // -INTMIN = INTMIN
854        HiOverflow = 1;            // [INTMIN+1, overflow)
855        HiBound = 0;               // e.g. X/INTMIN = 0 --> X > INTMIN
856      }
857    } else if (CmpRHSV.isStrictlyPositive()) {   // (X / neg) op pos
858      // e.g. X/-5 op 3  --> [-19, -14)
859      HiBound = AddOne(Prod);
860      HiOverflow = LoOverflow = ProdOV ? -1 : 0;
861      if (!LoOverflow)
862        LoOverflow = AddWithOverflow(LoBound, HiBound, DivRHS, true) ? -1 : 0;
863    } else {                       // (X / neg) op neg
864      LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
865      LoOverflow = HiOverflow = ProdOV;
866      if (!HiOverflow)
867        HiOverflow = SubWithOverflow(HiBound, Prod, DivRHS, true);
868    }
869
870    // Dividing by a negative swaps the condition.  LT <-> GT
871    Pred = ICmpInst::getSwappedPredicate(Pred);
872  }
873
874  Value *X = DivI->getOperand(0);
875  switch (Pred) {
876  default: llvm_unreachable("Unhandled icmp opcode!");
877  case ICmpInst::ICMP_EQ:
878    if (LoOverflow && HiOverflow)
879      return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
880    else if (HiOverflow)
881      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
882                          ICmpInst::ICMP_UGE, X, LoBound);
883    else if (LoOverflow)
884      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
885                          ICmpInst::ICMP_ULT, X, HiBound);
886    else
887      return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, true, ICI);
888  case ICmpInst::ICMP_NE:
889    if (LoOverflow && HiOverflow)
890      return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
891    else if (HiOverflow)
892      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
893                          ICmpInst::ICMP_ULT, X, LoBound);
894    else if (LoOverflow)
895      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
896                          ICmpInst::ICMP_UGE, X, HiBound);
897    else
898      return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, false, ICI);
899  case ICmpInst::ICMP_ULT:
900  case ICmpInst::ICMP_SLT:
901    if (LoOverflow == +1)   // Low bound is greater than input range.
902      return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
903    if (LoOverflow == -1)   // Low bound is less than input range.
904      return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
905    return new ICmpInst(Pred, X, LoBound);
906  case ICmpInst::ICMP_UGT:
907  case ICmpInst::ICMP_SGT:
908    if (HiOverflow == +1)       // High bound greater than input range.
909      return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
910    else if (HiOverflow == -1)  // High bound less than input range.
911      return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
912    if (Pred == ICmpInst::ICMP_UGT)
913      return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
914    else
915      return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
916  }
917}
918
919
920/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
921///
922Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
923                                                          Instruction *LHSI,
924                                                          ConstantInt *RHS) {
925  const APInt &RHSV = RHS->getValue();
926
927  switch (LHSI->getOpcode()) {
928  case Instruction::Trunc:
929    if (ICI.isEquality() && LHSI->hasOneUse()) {
930      // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
931      // of the high bits truncated out of x are known.
932      unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(),
933             SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
934      APInt Mask(APInt::getHighBitsSet(SrcBits, SrcBits-DstBits));
935      APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
936      ComputeMaskedBits(LHSI->getOperand(0), Mask, KnownZero, KnownOne);
937
938      // If all the high bits are known, we can do this xform.
939      if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) {
940        // Pull in the high bits from known-ones set.
941        APInt NewRHS(RHS->getValue());
942        NewRHS.zext(SrcBits);
943        NewRHS |= KnownOne;
944        return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
945                            ConstantInt::get(ICI.getContext(), NewRHS));
946      }
947    }
948    break;
949
950  case Instruction::Xor:         // (icmp pred (xor X, XorCST), CI)
951    if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
952      // If this is a comparison that tests the signbit (X < 0) or (x > -1),
953      // fold the xor.
954      if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
955          (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
956        Value *CompareVal = LHSI->getOperand(0);
957
958        // If the sign bit of the XorCST is not set, there is no change to
959        // the operation, just stop using the Xor.
960        if (!XorCST->getValue().isNegative()) {
961          ICI.setOperand(0, CompareVal);
962          Worklist.Add(LHSI);
963          return &ICI;
964        }
965
966        // Was the old condition true if the operand is positive?
967        bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
968
969        // If so, the new one isn't.
970        isTrueIfPositive ^= true;
971
972        if (isTrueIfPositive)
973          return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal,
974                              SubOne(RHS));
975        else
976          return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal,
977                              AddOne(RHS));
978      }
979
980      if (LHSI->hasOneUse()) {
981        // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit))
982        if (!ICI.isEquality() && XorCST->getValue().isSignBit()) {
983          const APInt &SignBit = XorCST->getValue();
984          ICmpInst::Predicate Pred = ICI.isSigned()
985                                         ? ICI.getUnsignedPredicate()
986                                         : ICI.getSignedPredicate();
987          return new ICmpInst(Pred, LHSI->getOperand(0),
988                              ConstantInt::get(ICI.getContext(),
989                                               RHSV ^ SignBit));
990        }
991
992        // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A)
993        if (!ICI.isEquality() && XorCST->getValue().isMaxSignedValue()) {
994          const APInt &NotSignBit = XorCST->getValue();
995          ICmpInst::Predicate Pred = ICI.isSigned()
996                                         ? ICI.getUnsignedPredicate()
997                                         : ICI.getSignedPredicate();
998          Pred = ICI.getSwappedPredicate(Pred);
999          return new ICmpInst(Pred, LHSI->getOperand(0),
1000                              ConstantInt::get(ICI.getContext(),
1001                                               RHSV ^ NotSignBit));
1002        }
1003      }
1004    }
1005    break;
1006  case Instruction::And:         // (icmp pred (and X, AndCST), RHS)
1007    if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
1008        LHSI->getOperand(0)->hasOneUse()) {
1009      ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
1010
1011      // If the LHS is an AND of a truncating cast, we can widen the
1012      // and/compare to be the input width without changing the value
1013      // produced, eliminating a cast.
1014      if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
1015        // We can do this transformation if either the AND constant does not
1016        // have its sign bit set or if it is an equality comparison.
1017        // Extending a relational comparison when we're checking the sign
1018        // bit would not work.
1019        if (Cast->hasOneUse() &&
1020            (ICI.isEquality() ||
1021             (AndCST->getValue().isNonNegative() && RHSV.isNonNegative()))) {
1022          uint32_t BitWidth =
1023            cast<IntegerType>(Cast->getOperand(0)->getType())->getBitWidth();
1024          APInt NewCST = AndCST->getValue();
1025          NewCST.zext(BitWidth);
1026          APInt NewCI = RHSV;
1027          NewCI.zext(BitWidth);
1028          Value *NewAnd =
1029            Builder->CreateAnd(Cast->getOperand(0),
1030                           ConstantInt::get(ICI.getContext(), NewCST),
1031                               LHSI->getName());
1032          return new ICmpInst(ICI.getPredicate(), NewAnd,
1033                              ConstantInt::get(ICI.getContext(), NewCI));
1034        }
1035      }
1036
1037      // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
1038      // could exist), turn it into (X & (C2 << C1)) != (C3 << C1).  This
1039      // happens a LOT in code produced by the C front-end, for bitfield
1040      // access.
1041      BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
1042      if (Shift && !Shift->isShift())
1043        Shift = 0;
1044
1045      ConstantInt *ShAmt;
1046      ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
1047      const Type *Ty = Shift ? Shift->getType() : 0;  // Type of the shift.
1048      const Type *AndTy = AndCST->getType();          // Type of the and.
1049
1050      // We can fold this as long as we can't shift unknown bits
1051      // into the mask.  This can only happen with signed shift
1052      // rights, as they sign-extend.
1053      if (ShAmt) {
1054        bool CanFold = Shift->isLogicalShift();
1055        if (!CanFold) {
1056          // To test for the bad case of the signed shr, see if any
1057          // of the bits shifted in could be tested after the mask.
1058          uint32_t TyBits = Ty->getPrimitiveSizeInBits();
1059          int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
1060
1061          uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
1062          if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) &
1063               AndCST->getValue()) == 0)
1064            CanFold = true;
1065        }
1066
1067        if (CanFold) {
1068          Constant *NewCst;
1069          if (Shift->getOpcode() == Instruction::Shl)
1070            NewCst = ConstantExpr::getLShr(RHS, ShAmt);
1071          else
1072            NewCst = ConstantExpr::getShl(RHS, ShAmt);
1073
1074          // Check to see if we are shifting out any of the bits being
1075          // compared.
1076          if (ConstantExpr::get(Shift->getOpcode(),
1077                                       NewCst, ShAmt) != RHS) {
1078            // If we shifted bits out, the fold is not going to work out.
1079            // As a special case, check to see if this means that the
1080            // result is always true or false now.
1081            if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1082              return ReplaceInstUsesWith(ICI,
1083                                       ConstantInt::getFalse(ICI.getContext()));
1084            if (ICI.getPredicate() == ICmpInst::ICMP_NE)
1085              return ReplaceInstUsesWith(ICI,
1086                                       ConstantInt::getTrue(ICI.getContext()));
1087          } else {
1088            ICI.setOperand(1, NewCst);
1089            Constant *NewAndCST;
1090            if (Shift->getOpcode() == Instruction::Shl)
1091              NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
1092            else
1093              NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
1094            LHSI->setOperand(1, NewAndCST);
1095            LHSI->setOperand(0, Shift->getOperand(0));
1096            Worklist.Add(Shift); // Shift is dead.
1097            return &ICI;
1098          }
1099        }
1100      }
1101
1102      // Turn ((X >> Y) & C) == 0  into  (X & (C << Y)) == 0.  The later is
1103      // preferable because it allows the C<<Y expression to be hoisted out
1104      // of a loop if Y is invariant and X is not.
1105      if (Shift && Shift->hasOneUse() && RHSV == 0 &&
1106          ICI.isEquality() && !Shift->isArithmeticShift() &&
1107          !isa<Constant>(Shift->getOperand(0))) {
1108        // Compute C << Y.
1109        Value *NS;
1110        if (Shift->getOpcode() == Instruction::LShr) {
1111          NS = Builder->CreateShl(AndCST, Shift->getOperand(1), "tmp");
1112        } else {
1113          // Insert a logical shift.
1114          NS = Builder->CreateLShr(AndCST, Shift->getOperand(1), "tmp");
1115        }
1116
1117        // Compute X & (C << Y).
1118        Value *NewAnd =
1119          Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
1120
1121        ICI.setOperand(0, NewAnd);
1122        return &ICI;
1123      }
1124    }
1125
1126    // Try to optimize things like "A[i]&42 == 0" to index computations.
1127    if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) {
1128      if (GetElementPtrInst *GEP =
1129          dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1130        if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1131          if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1132              !LI->isVolatile() && isa<ConstantInt>(LHSI->getOperand(1))) {
1133            ConstantInt *C = cast<ConstantInt>(LHSI->getOperand(1));
1134            if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV,ICI, C))
1135              return Res;
1136          }
1137    }
1138    break;
1139
1140  case Instruction::Or: {
1141    if (!ICI.isEquality() || !RHS->isNullValue() || !LHSI->hasOneUse())
1142      break;
1143    Value *P, *Q;
1144    if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1145      // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1146      // -> and (icmp eq P, null), (icmp eq Q, null).
1147
1148      Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P,
1149                                        Constant::getNullValue(P->getType()));
1150      Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q,
1151                                        Constant::getNullValue(Q->getType()));
1152      Instruction *Op;
1153      if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1154        Op = BinaryOperator::CreateAnd(ICIP, ICIQ);
1155      else
1156        Op = BinaryOperator::CreateOr(ICIP, ICIQ);
1157      return Op;
1158    }
1159    break;
1160  }
1161
1162  case Instruction::Shl: {       // (icmp pred (shl X, ShAmt), CI)
1163    ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1164    if (!ShAmt) break;
1165
1166    uint32_t TypeBits = RHSV.getBitWidth();
1167
1168    // Check that the shift amount is in range.  If not, don't perform
1169    // undefined shifts.  When the shift is visited it will be
1170    // simplified.
1171    if (ShAmt->uge(TypeBits))
1172      break;
1173
1174    if (ICI.isEquality()) {
1175      // If we are comparing against bits always shifted out, the
1176      // comparison cannot succeed.
1177      Constant *Comp =
1178        ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt),
1179                                                                 ShAmt);
1180      if (Comp != RHS) {// Comparing against a bit that we know is zero.
1181        bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1182        Constant *Cst =
1183          ConstantInt::get(Type::getInt1Ty(ICI.getContext()), IsICMP_NE);
1184        return ReplaceInstUsesWith(ICI, Cst);
1185      }
1186
1187      if (LHSI->hasOneUse()) {
1188        // Otherwise strength reduce the shift into an and.
1189        uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
1190        Constant *Mask =
1191          ConstantInt::get(ICI.getContext(), APInt::getLowBitsSet(TypeBits,
1192                                                       TypeBits-ShAmtVal));
1193
1194        Value *And =
1195          Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask");
1196        return new ICmpInst(ICI.getPredicate(), And,
1197                            ConstantInt::get(ICI.getContext(),
1198                                             RHSV.lshr(ShAmtVal)));
1199      }
1200    }
1201
1202    // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
1203    bool TrueIfSigned = false;
1204    if (LHSI->hasOneUse() &&
1205        isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
1206      // (X << 31) <s 0  --> (X&1) != 0
1207      Constant *Mask = ConstantInt::get(ICI.getContext(), APInt(TypeBits, 1) <<
1208                                           (TypeBits-ShAmt->getZExtValue()-1));
1209      Value *And =
1210        Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask");
1211      return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
1212                          And, Constant::getNullValue(And->getType()));
1213    }
1214    break;
1215  }
1216
1217  case Instruction::LShr:         // (icmp pred (shr X, ShAmt), CI)
1218  case Instruction::AShr: {
1219    // Only handle equality comparisons of shift-by-constant.
1220    ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1221    if (!ShAmt || !ICI.isEquality()) break;
1222
1223    // Check that the shift amount is in range.  If not, don't perform
1224    // undefined shifts.  When the shift is visited it will be
1225    // simplified.
1226    uint32_t TypeBits = RHSV.getBitWidth();
1227    if (ShAmt->uge(TypeBits))
1228      break;
1229
1230    uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
1231
1232    // If we are comparing against bits always shifted out, the
1233    // comparison cannot succeed.
1234    APInt Comp = RHSV << ShAmtVal;
1235    if (LHSI->getOpcode() == Instruction::LShr)
1236      Comp = Comp.lshr(ShAmtVal);
1237    else
1238      Comp = Comp.ashr(ShAmtVal);
1239
1240    if (Comp != RHSV) { // Comparing against a bit that we know is zero.
1241      bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1242      Constant *Cst = ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
1243                                       IsICMP_NE);
1244      return ReplaceInstUsesWith(ICI, Cst);
1245    }
1246
1247    // Otherwise, check to see if the bits shifted out are known to be zero.
1248    // If so, we can compare against the unshifted value:
1249    //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
1250    if (LHSI->hasOneUse() &&
1251        MaskedValueIsZero(LHSI->getOperand(0),
1252                          APInt::getLowBitsSet(Comp.getBitWidth(), ShAmtVal))) {
1253      return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1254                          ConstantExpr::getShl(RHS, ShAmt));
1255    }
1256
1257    if (LHSI->hasOneUse()) {
1258      // Otherwise strength reduce the shift into an and.
1259      APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
1260      Constant *Mask = ConstantInt::get(ICI.getContext(), Val);
1261
1262      Value *And = Builder->CreateAnd(LHSI->getOperand(0),
1263                                      Mask, LHSI->getName()+".mask");
1264      return new ICmpInst(ICI.getPredicate(), And,
1265                          ConstantExpr::getShl(RHS, ShAmt));
1266    }
1267    break;
1268  }
1269
1270  case Instruction::SDiv:
1271  case Instruction::UDiv:
1272    // Fold: icmp pred ([us]div X, C1), C2 -> range test
1273    // Fold this div into the comparison, producing a range check.
1274    // Determine, based on the divide type, what the range is being
1275    // checked.  If there is an overflow on the low or high side, remember
1276    // it, otherwise compute the range [low, hi) bounding the new value.
1277    // See: InsertRangeTest above for the kinds of replacements possible.
1278    if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
1279      if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
1280                                          DivRHS))
1281        return R;
1282    break;
1283
1284  case Instruction::Add:
1285    // Fold: icmp pred (add X, C1), C2
1286    if (!ICI.isEquality()) {
1287      ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1288      if (!LHSC) break;
1289      const APInt &LHSV = LHSC->getValue();
1290
1291      ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
1292                            .subtract(LHSV);
1293
1294      if (ICI.isSigned()) {
1295        if (CR.getLower().isSignBit()) {
1296          return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
1297                              ConstantInt::get(ICI.getContext(),CR.getUpper()));
1298        } else if (CR.getUpper().isSignBit()) {
1299          return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
1300                              ConstantInt::get(ICI.getContext(),CR.getLower()));
1301        }
1302      } else {
1303        if (CR.getLower().isMinValue()) {
1304          return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
1305                              ConstantInt::get(ICI.getContext(),CR.getUpper()));
1306        } else if (CR.getUpper().isMinValue()) {
1307          return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
1308                              ConstantInt::get(ICI.getContext(),CR.getLower()));
1309        }
1310      }
1311    }
1312    break;
1313  }
1314
1315  // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
1316  if (ICI.isEquality()) {
1317    bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1318
1319    // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
1320    // the second operand is a constant, simplify a bit.
1321    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
1322      switch (BO->getOpcode()) {
1323      case Instruction::SRem:
1324        // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
1325        if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
1326          const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
1327          if (V.sgt(APInt(V.getBitWidth(), 1)) && V.isPowerOf2()) {
1328            Value *NewRem =
1329              Builder->CreateURem(BO->getOperand(0), BO->getOperand(1),
1330                                  BO->getName());
1331            return new ICmpInst(ICI.getPredicate(), NewRem,
1332                                Constant::getNullValue(BO->getType()));
1333          }
1334        }
1335        break;
1336      case Instruction::Add:
1337        // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
1338        if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1339          if (BO->hasOneUse())
1340            return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1341                                ConstantExpr::getSub(RHS, BOp1C));
1342        } else if (RHSV == 0) {
1343          // Replace ((add A, B) != 0) with (A != -B) if A or B is
1344          // efficiently invertible, or if the add has just this one use.
1345          Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
1346
1347          if (Value *NegVal = dyn_castNegVal(BOp1))
1348            return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
1349          else if (Value *NegVal = dyn_castNegVal(BOp0))
1350            return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
1351          else if (BO->hasOneUse()) {
1352            Value *Neg = Builder->CreateNeg(BOp1);
1353            Neg->takeName(BO);
1354            return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
1355          }
1356        }
1357        break;
1358      case Instruction::Xor:
1359        // For the xor case, we can xor two constants together, eliminating
1360        // the explicit xor.
1361        if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
1362          return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1363                              ConstantExpr::getXor(RHS, BOC));
1364
1365        // FALLTHROUGH
1366      case Instruction::Sub:
1367        // Replace (([sub|xor] A, B) != 0) with (A != B)
1368        if (RHSV == 0)
1369          return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1370                              BO->getOperand(1));
1371        break;
1372
1373      case Instruction::Or:
1374        // If bits are being or'd in that are not present in the constant we
1375        // are comparing against, then the comparison could never succeed!
1376        if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
1377          Constant *NotCI = ConstantExpr::getNot(RHS);
1378          if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
1379            return ReplaceInstUsesWith(ICI,
1380                             ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
1381                                       isICMP_NE));
1382        }
1383        break;
1384
1385      case Instruction::And:
1386        if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1387          // If bits are being compared against that are and'd out, then the
1388          // comparison can never succeed!
1389          if ((RHSV & ~BOC->getValue()) != 0)
1390            return ReplaceInstUsesWith(ICI,
1391                             ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
1392                                       isICMP_NE));
1393
1394          // If we have ((X & C) == C), turn it into ((X & C) != 0).
1395          if (RHS == BOC && RHSV.isPowerOf2())
1396            return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
1397                                ICmpInst::ICMP_NE, LHSI,
1398                                Constant::getNullValue(RHS->getType()));
1399
1400          // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
1401          if (BOC->getValue().isSignBit()) {
1402            Value *X = BO->getOperand(0);
1403            Constant *Zero = Constant::getNullValue(X->getType());
1404            ICmpInst::Predicate pred = isICMP_NE ?
1405              ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1406            return new ICmpInst(pred, X, Zero);
1407          }
1408
1409          // ((X & ~7) == 0) --> X < 8
1410          if (RHSV == 0 && isHighOnes(BOC)) {
1411            Value *X = BO->getOperand(0);
1412            Constant *NegX = ConstantExpr::getNeg(BOC);
1413            ICmpInst::Predicate pred = isICMP_NE ?
1414              ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1415            return new ICmpInst(pred, X, NegX);
1416          }
1417        }
1418      default: break;
1419      }
1420    } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
1421      // Handle icmp {eq|ne} <intrinsic>, intcst.
1422      switch (II->getIntrinsicID()) {
1423      case Intrinsic::bswap:
1424        Worklist.Add(II);
1425        ICI.setOperand(0, II->getOperand(1));
1426        ICI.setOperand(1, ConstantInt::get(II->getContext(), RHSV.byteSwap()));
1427        return &ICI;
1428      case Intrinsic::ctlz:
1429      case Intrinsic::cttz:
1430        // ctz(A) == bitwidth(a)  ->  A == 0 and likewise for !=
1431        if (RHSV == RHS->getType()->getBitWidth()) {
1432          Worklist.Add(II);
1433          ICI.setOperand(0, II->getOperand(1));
1434          ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0));
1435          return &ICI;
1436        }
1437        break;
1438      case Intrinsic::ctpop:
1439        // popcount(A) == 0  ->  A == 0 and likewise for !=
1440        if (RHS->isZero()) {
1441          Worklist.Add(II);
1442          ICI.setOperand(0, II->getOperand(1));
1443          ICI.setOperand(1, RHS);
1444          return &ICI;
1445        }
1446        break;
1447      default:
1448      	break;
1449      }
1450    }
1451  }
1452  return 0;
1453}
1454
1455/// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
1456/// We only handle extending casts so far.
1457///
1458Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
1459  const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
1460  Value *LHSCIOp        = LHSCI->getOperand(0);
1461  const Type *SrcTy     = LHSCIOp->getType();
1462  const Type *DestTy    = LHSCI->getType();
1463  Value *RHSCIOp;
1464
1465  // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
1466  // integer type is the same size as the pointer type.
1467  if (TD && LHSCI->getOpcode() == Instruction::PtrToInt &&
1468      TD->getPointerSizeInBits() ==
1469         cast<IntegerType>(DestTy)->getBitWidth()) {
1470    Value *RHSOp = 0;
1471    if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
1472      RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
1473    } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
1474      RHSOp = RHSC->getOperand(0);
1475      // If the pointer types don't match, insert a bitcast.
1476      if (LHSCIOp->getType() != RHSOp->getType())
1477        RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
1478    }
1479
1480    if (RHSOp)
1481      return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
1482  }
1483
1484  // The code below only handles extension cast instructions, so far.
1485  // Enforce this.
1486  if (LHSCI->getOpcode() != Instruction::ZExt &&
1487      LHSCI->getOpcode() != Instruction::SExt)
1488    return 0;
1489
1490  bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
1491  bool isSignedCmp = ICI.isSigned();
1492
1493  if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
1494    // Not an extension from the same type?
1495    RHSCIOp = CI->getOperand(0);
1496    if (RHSCIOp->getType() != LHSCIOp->getType())
1497      return 0;
1498
1499    // If the signedness of the two casts doesn't agree (i.e. one is a sext
1500    // and the other is a zext), then we can't handle this.
1501    if (CI->getOpcode() != LHSCI->getOpcode())
1502      return 0;
1503
1504    // Deal with equality cases early.
1505    if (ICI.isEquality())
1506      return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
1507
1508    // A signed comparison of sign extended values simplifies into a
1509    // signed comparison.
1510    if (isSignedCmp && isSignedExt)
1511      return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
1512
1513    // The other three cases all fold into an unsigned comparison.
1514    return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
1515  }
1516
1517  // If we aren't dealing with a constant on the RHS, exit early
1518  ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
1519  if (!CI)
1520    return 0;
1521
1522  // Compute the constant that would happen if we truncated to SrcTy then
1523  // reextended to DestTy.
1524  Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
1525  Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(),
1526                                                Res1, DestTy);
1527
1528  // If the re-extended constant didn't change...
1529  if (Res2 == CI) {
1530    // Deal with equality cases early.
1531    if (ICI.isEquality())
1532      return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
1533
1534    // A signed comparison of sign extended values simplifies into a
1535    // signed comparison.
1536    if (isSignedExt && isSignedCmp)
1537      return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
1538
1539    // The other three cases all fold into an unsigned comparison.
1540    return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1);
1541  }
1542
1543  // The re-extended constant changed so the constant cannot be represented
1544  // in the shorter type. Consequently, we cannot emit a simple comparison.
1545
1546  // First, handle some easy cases. We know the result cannot be equal at this
1547  // point so handle the ICI.isEquality() cases
1548  if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1549    return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
1550  if (ICI.getPredicate() == ICmpInst::ICMP_NE)
1551    return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
1552
1553  // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
1554  // should have been folded away previously and not enter in here.
1555  Value *Result;
1556  if (isSignedCmp) {
1557    // We're performing a signed comparison.
1558    if (cast<ConstantInt>(CI)->getValue().isNegative())
1559      Result = ConstantInt::getFalse(ICI.getContext()); // X < (small) --> false
1560    else
1561      Result = ConstantInt::getTrue(ICI.getContext());  // X < (large) --> true
1562  } else {
1563    // We're performing an unsigned comparison.
1564    if (isSignedExt) {
1565      // We're performing an unsigned comp with a sign extended value.
1566      // This is true if the input is >= 0. [aka >s -1]
1567      Constant *NegOne = Constant::getAllOnesValue(SrcTy);
1568      Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName());
1569    } else {
1570      // Unsigned extend & unsigned compare -> always true.
1571      Result = ConstantInt::getTrue(ICI.getContext());
1572    }
1573  }
1574
1575  // Finally, return the value computed.
1576  if (ICI.getPredicate() == ICmpInst::ICMP_ULT ||
1577      ICI.getPredicate() == ICmpInst::ICMP_SLT)
1578    return ReplaceInstUsesWith(ICI, Result);
1579
1580  assert((ICI.getPredicate()==ICmpInst::ICMP_UGT ||
1581          ICI.getPredicate()==ICmpInst::ICMP_SGT) &&
1582         "ICmp should be folded!");
1583  if (Constant *CI = dyn_cast<Constant>(Result))
1584    return ReplaceInstUsesWith(ICI, ConstantExpr::getNot(CI));
1585  return BinaryOperator::CreateNot(Result);
1586}
1587
1588
1589
1590Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
1591  bool Changed = false;
1592  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1593
1594  /// Orders the operands of the compare so that they are listed from most
1595  /// complex to least complex.  This puts constants before unary operators,
1596  /// before binary operators.
1597  if (getComplexity(Op0) < getComplexity(Op1)) {
1598    I.swapOperands();
1599    std::swap(Op0, Op1);
1600    Changed = true;
1601  }
1602
1603  if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, TD))
1604    return ReplaceInstUsesWith(I, V);
1605
1606  const Type *Ty = Op0->getType();
1607
1608  // icmp's with boolean values can always be turned into bitwise operations
1609  if (Ty->isIntegerTy(1)) {
1610    switch (I.getPredicate()) {
1611    default: llvm_unreachable("Invalid icmp instruction!");
1612    case ICmpInst::ICMP_EQ: {               // icmp eq i1 A, B -> ~(A^B)
1613      Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp");
1614      return BinaryOperator::CreateNot(Xor);
1615    }
1616    case ICmpInst::ICMP_NE:                  // icmp eq i1 A, B -> A^B
1617      return BinaryOperator::CreateXor(Op0, Op1);
1618
1619    case ICmpInst::ICMP_UGT:
1620      std::swap(Op0, Op1);                   // Change icmp ugt -> icmp ult
1621      // FALL THROUGH
1622    case ICmpInst::ICMP_ULT:{               // icmp ult i1 A, B -> ~A & B
1623      Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
1624      return BinaryOperator::CreateAnd(Not, Op1);
1625    }
1626    case ICmpInst::ICMP_SGT:
1627      std::swap(Op0, Op1);                   // Change icmp sgt -> icmp slt
1628      // FALL THROUGH
1629    case ICmpInst::ICMP_SLT: {               // icmp slt i1 A, B -> A & ~B
1630      Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
1631      return BinaryOperator::CreateAnd(Not, Op0);
1632    }
1633    case ICmpInst::ICMP_UGE:
1634      std::swap(Op0, Op1);                   // Change icmp uge -> icmp ule
1635      // FALL THROUGH
1636    case ICmpInst::ICMP_ULE: {               //  icmp ule i1 A, B -> ~A | B
1637      Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
1638      return BinaryOperator::CreateOr(Not, Op1);
1639    }
1640    case ICmpInst::ICMP_SGE:
1641      std::swap(Op0, Op1);                   // Change icmp sge -> icmp sle
1642      // FALL THROUGH
1643    case ICmpInst::ICMP_SLE: {               //  icmp sle i1 A, B -> A | ~B
1644      Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
1645      return BinaryOperator::CreateOr(Not, Op0);
1646    }
1647    }
1648  }
1649
1650  unsigned BitWidth = 0;
1651  if (TD)
1652    BitWidth = TD->getTypeSizeInBits(Ty->getScalarType());
1653  else if (Ty->isIntOrIntVectorTy())
1654    BitWidth = Ty->getScalarSizeInBits();
1655
1656  bool isSignBit = false;
1657
1658  // See if we are doing a comparison with a constant.
1659  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1660    Value *A = 0, *B = 0;
1661
1662    // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
1663    if (I.isEquality() && CI->isZero() &&
1664        match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
1665      // (icmp cond A B) if cond is equality
1666      return new ICmpInst(I.getPredicate(), A, B);
1667    }
1668
1669    // If we have an icmp le or icmp ge instruction, turn it into the
1670    // appropriate icmp lt or icmp gt instruction.  This allows us to rely on
1671    // them being folded in the code below.  The SimplifyICmpInst code has
1672    // already handled the edge cases for us, so we just assert on them.
1673    switch (I.getPredicate()) {
1674    default: break;
1675    case ICmpInst::ICMP_ULE:
1676      assert(!CI->isMaxValue(false));                 // A <=u MAX -> TRUE
1677      return new ICmpInst(ICmpInst::ICMP_ULT, Op0,
1678                          ConstantInt::get(CI->getContext(), CI->getValue()+1));
1679    case ICmpInst::ICMP_SLE:
1680      assert(!CI->isMaxValue(true));                  // A <=s MAX -> TRUE
1681      return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
1682                          ConstantInt::get(CI->getContext(), CI->getValue()+1));
1683    case ICmpInst::ICMP_UGE:
1684      assert(!CI->isMinValue(false));                  // A >=u MIN -> TRUE
1685      return new ICmpInst(ICmpInst::ICMP_UGT, Op0,
1686                          ConstantInt::get(CI->getContext(), CI->getValue()-1));
1687    case ICmpInst::ICMP_SGE:
1688      assert(!CI->isMinValue(true));                   // A >=s MIN -> TRUE
1689      return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
1690                          ConstantInt::get(CI->getContext(), CI->getValue()-1));
1691    }
1692
1693    // If this comparison is a normal comparison, it demands all
1694    // bits, if it is a sign bit comparison, it only demands the sign bit.
1695    bool UnusedBit;
1696    isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
1697  }
1698
1699  // See if we can fold the comparison based on range information we can get
1700  // by checking whether bits are known to be zero or one in the input.
1701  if (BitWidth != 0) {
1702    APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
1703    APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
1704
1705    if (SimplifyDemandedBits(I.getOperandUse(0),
1706                             isSignBit ? APInt::getSignBit(BitWidth)
1707                                       : APInt::getAllOnesValue(BitWidth),
1708                             Op0KnownZero, Op0KnownOne, 0))
1709      return &I;
1710    if (SimplifyDemandedBits(I.getOperandUse(1),
1711                             APInt::getAllOnesValue(BitWidth),
1712                             Op1KnownZero, Op1KnownOne, 0))
1713      return &I;
1714
1715    // Given the known and unknown bits, compute a range that the LHS could be
1716    // in.  Compute the Min, Max and RHS values based on the known bits. For the
1717    // EQ and NE we use unsigned values.
1718    APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
1719    APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
1720    if (I.isSigned()) {
1721      ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
1722                                             Op0Min, Op0Max);
1723      ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
1724                                             Op1Min, Op1Max);
1725    } else {
1726      ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
1727                                               Op0Min, Op0Max);
1728      ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
1729                                               Op1Min, Op1Max);
1730    }
1731
1732    // If Min and Max are known to be the same, then SimplifyDemandedBits
1733    // figured out that the LHS is a constant.  Just constant fold this now so
1734    // that code below can assume that Min != Max.
1735    if (!isa<Constant>(Op0) && Op0Min == Op0Max)
1736      return new ICmpInst(I.getPredicate(),
1737                          ConstantInt::get(I.getContext(), Op0Min), Op1);
1738    if (!isa<Constant>(Op1) && Op1Min == Op1Max)
1739      return new ICmpInst(I.getPredicate(), Op0,
1740                          ConstantInt::get(I.getContext(), Op1Min));
1741
1742    // Based on the range information we know about the LHS, see if we can
1743    // simplify this comparison.  For example, (x&4) < 8  is always true.
1744    switch (I.getPredicate()) {
1745    default: llvm_unreachable("Unknown icmp opcode!");
1746    case ICmpInst::ICMP_EQ:
1747      if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
1748        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
1749      break;
1750    case ICmpInst::ICMP_NE:
1751      if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
1752        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
1753      break;
1754    case ICmpInst::ICMP_ULT:
1755      if (Op0Max.ult(Op1Min))          // A <u B -> true if max(A) < min(B)
1756        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
1757      if (Op0Min.uge(Op1Max))          // A <u B -> false if min(A) >= max(B)
1758        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
1759      if (Op1Min == Op0Max)            // A <u B -> A != B if max(A) == min(B)
1760        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
1761      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1762        if (Op1Max == Op0Min+1)        // A <u C -> A == C-1 if min(A)+1 == C
1763          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
1764                          ConstantInt::get(CI->getContext(), CI->getValue()-1));
1765
1766        // (x <u 2147483648) -> (x >s -1)  -> true if sign bit clear
1767        if (CI->isMinValue(true))
1768          return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
1769                           Constant::getAllOnesValue(Op0->getType()));
1770      }
1771      break;
1772    case ICmpInst::ICMP_UGT:
1773      if (Op0Min.ugt(Op1Max))          // A >u B -> true if min(A) > max(B)
1774        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
1775      if (Op0Max.ule(Op1Min))          // A >u B -> false if max(A) <= max(B)
1776        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
1777
1778      if (Op1Max == Op0Min)            // A >u B -> A != B if min(A) == max(B)
1779        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
1780      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1781        if (Op1Min == Op0Max-1)        // A >u C -> A == C+1 if max(a)-1 == C
1782          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
1783                          ConstantInt::get(CI->getContext(), CI->getValue()+1));
1784
1785        // (x >u 2147483647) -> (x <s 0)  -> true if sign bit set
1786        if (CI->isMaxValue(true))
1787          return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
1788                              Constant::getNullValue(Op0->getType()));
1789      }
1790      break;
1791    case ICmpInst::ICMP_SLT:
1792      if (Op0Max.slt(Op1Min))          // A <s B -> true if max(A) < min(C)
1793        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
1794      if (Op0Min.sge(Op1Max))          // A <s B -> false if min(A) >= max(C)
1795        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
1796      if (Op1Min == Op0Max)            // A <s B -> A != B if max(A) == min(B)
1797        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
1798      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1799        if (Op1Max == Op0Min+1)        // A <s C -> A == C-1 if min(A)+1 == C
1800          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
1801                          ConstantInt::get(CI->getContext(), CI->getValue()-1));
1802      }
1803      break;
1804    case ICmpInst::ICMP_SGT:
1805      if (Op0Min.sgt(Op1Max))          // A >s B -> true if min(A) > max(B)
1806        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
1807      if (Op0Max.sle(Op1Min))          // A >s B -> false if max(A) <= min(B)
1808        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
1809
1810      if (Op1Max == Op0Min)            // A >s B -> A != B if min(A) == max(B)
1811        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
1812      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1813        if (Op1Min == Op0Max-1)        // A >s C -> A == C+1 if max(A)-1 == C
1814          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
1815                          ConstantInt::get(CI->getContext(), CI->getValue()+1));
1816      }
1817      break;
1818    case ICmpInst::ICMP_SGE:
1819      assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
1820      if (Op0Min.sge(Op1Max))          // A >=s B -> true if min(A) >= max(B)
1821        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
1822      if (Op0Max.slt(Op1Min))          // A >=s B -> false if max(A) < min(B)
1823        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
1824      break;
1825    case ICmpInst::ICMP_SLE:
1826      assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
1827      if (Op0Max.sle(Op1Min))          // A <=s B -> true if max(A) <= min(B)
1828        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
1829      if (Op0Min.sgt(Op1Max))          // A <=s B -> false if min(A) > max(B)
1830        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
1831      break;
1832    case ICmpInst::ICMP_UGE:
1833      assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
1834      if (Op0Min.uge(Op1Max))          // A >=u B -> true if min(A) >= max(B)
1835        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
1836      if (Op0Max.ult(Op1Min))          // A >=u B -> false if max(A) < min(B)
1837        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
1838      break;
1839    case ICmpInst::ICMP_ULE:
1840      assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
1841      if (Op0Max.ule(Op1Min))          // A <=u B -> true if max(A) <= min(B)
1842        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
1843      if (Op0Min.ugt(Op1Max))          // A <=u B -> false if min(A) > max(B)
1844        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
1845      break;
1846    }
1847
1848    // Turn a signed comparison into an unsigned one if both operands
1849    // are known to have the same sign.
1850    if (I.isSigned() &&
1851        ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) ||
1852         (Op0KnownOne.isNegative() && Op1KnownOne.isNegative())))
1853      return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
1854  }
1855
1856  // Test if the ICmpInst instruction is used exclusively by a select as
1857  // part of a minimum or maximum operation. If so, refrain from doing
1858  // any other folding. This helps out other analyses which understand
1859  // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
1860  // and CodeGen. And in this case, at least one of the comparison
1861  // operands has at least one user besides the compare (the select),
1862  // which would often largely negate the benefit of folding anyway.
1863  if (I.hasOneUse())
1864    if (SelectInst *SI = dyn_cast<SelectInst>(*I.use_begin()))
1865      if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
1866          (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
1867        return 0;
1868
1869  // See if we are doing a comparison between a constant and an instruction that
1870  // can be folded into the comparison.
1871  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1872    // Since the RHS is a ConstantInt (CI), if the left hand side is an
1873    // instruction, see if that instruction also has constants so that the
1874    // instruction can be folded into the icmp
1875    if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
1876      if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
1877        return Res;
1878  }
1879
1880  // Handle icmp with constant (but not simple integer constant) RHS
1881  if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
1882    if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
1883      switch (LHSI->getOpcode()) {
1884      case Instruction::GetElementPtr:
1885          // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
1886        if (RHSC->isNullValue() &&
1887            cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
1888          return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
1889                  Constant::getNullValue(LHSI->getOperand(0)->getType()));
1890        break;
1891      case Instruction::PHI:
1892        // Only fold icmp into the PHI if the phi and icmp are in the same
1893        // block.  If in the same block, we're encouraging jump threading.  If
1894        // not, we are just pessimizing the code by making an i1 phi.
1895        if (LHSI->getParent() == I.getParent())
1896          if (Instruction *NV = FoldOpIntoPhi(I, true))
1897            return NV;
1898        break;
1899      case Instruction::Select: {
1900        // If either operand of the select is a constant, we can fold the
1901        // comparison into the select arms, which will cause one to be
1902        // constant folded and the select turned into a bitwise or.
1903        Value *Op1 = 0, *Op2 = 0;
1904        if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1)))
1905          Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
1906        if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2)))
1907          Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
1908
1909        // We only want to perform this transformation if it will not lead to
1910        // additional code. This is true if either both sides of the select
1911        // fold to a constant (in which case the icmp is replaced with a select
1912        // which will usually simplify) or this is the only user of the
1913        // select (in which case we are trading a select+icmp for a simpler
1914        // select+icmp).
1915        if ((Op1 && Op2) || (LHSI->hasOneUse() && (Op1 || Op2))) {
1916          if (!Op1)
1917            Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1),
1918                                      RHSC, I.getName());
1919          if (!Op2)
1920            Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2),
1921                                      RHSC, I.getName());
1922          return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
1923        }
1924        break;
1925      }
1926      case Instruction::Call:
1927        // If we have (malloc != null), and if the malloc has a single use, we
1928        // can assume it is successful and remove the malloc.
1929        if (isMalloc(LHSI) && LHSI->hasOneUse() &&
1930            isa<ConstantPointerNull>(RHSC)) {
1931          // Need to explicitly erase malloc call here, instead of adding it to
1932          // Worklist, because it won't get DCE'd from the Worklist since
1933          // isInstructionTriviallyDead() returns false for function calls.
1934          // It is OK to replace LHSI/MallocCall with Undef because the
1935          // instruction that uses it will be erased via Worklist.
1936          if (extractMallocCall(LHSI)) {
1937            LHSI->replaceAllUsesWith(UndefValue::get(LHSI->getType()));
1938            EraseInstFromFunction(*LHSI);
1939            return ReplaceInstUsesWith(I,
1940                               ConstantInt::get(Type::getInt1Ty(I.getContext()),
1941                                                      !I.isTrueWhenEqual()));
1942          }
1943          if (CallInst* MallocCall = extractMallocCallFromBitCast(LHSI))
1944            if (MallocCall->hasOneUse()) {
1945              MallocCall->replaceAllUsesWith(
1946                                        UndefValue::get(MallocCall->getType()));
1947              EraseInstFromFunction(*MallocCall);
1948              Worklist.Add(LHSI); // The malloc's bitcast use.
1949              return ReplaceInstUsesWith(I,
1950                               ConstantInt::get(Type::getInt1Ty(I.getContext()),
1951                                                      !I.isTrueWhenEqual()));
1952            }
1953        }
1954        break;
1955      case Instruction::IntToPtr:
1956        // icmp pred inttoptr(X), null -> icmp pred X, 0
1957        if (RHSC->isNullValue() && TD &&
1958            TD->getIntPtrType(RHSC->getContext()) ==
1959               LHSI->getOperand(0)->getType())
1960          return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
1961                        Constant::getNullValue(LHSI->getOperand(0)->getType()));
1962        break;
1963
1964      case Instruction::Load:
1965        // Try to optimize things like "A[i] > 4" to index computations.
1966        if (GetElementPtrInst *GEP =
1967              dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
1968          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1969            if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1970                !cast<LoadInst>(LHSI)->isVolatile())
1971              if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
1972                return Res;
1973        }
1974        break;
1975      }
1976  }
1977
1978  // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
1979  if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
1980    if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
1981      return NI;
1982  if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
1983    if (Instruction *NI = FoldGEPICmp(GEP, Op0,
1984                           ICmpInst::getSwappedPredicate(I.getPredicate()), I))
1985      return NI;
1986
1987  // Test to see if the operands of the icmp are casted versions of other
1988  // values.  If the ptr->ptr cast can be stripped off both arguments, we do so
1989  // now.
1990  if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
1991    if (Op0->getType()->isPointerTy() &&
1992        (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
1993      // We keep moving the cast from the left operand over to the right
1994      // operand, where it can often be eliminated completely.
1995      Op0 = CI->getOperand(0);
1996
1997      // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
1998      // so eliminate it as well.
1999      if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
2000        Op1 = CI2->getOperand(0);
2001
2002      // If Op1 is a constant, we can fold the cast into the constant.
2003      if (Op0->getType() != Op1->getType()) {
2004        if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
2005          Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
2006        } else {
2007          // Otherwise, cast the RHS right before the icmp
2008          Op1 = Builder->CreateBitCast(Op1, Op0->getType());
2009        }
2010      }
2011      return new ICmpInst(I.getPredicate(), Op0, Op1);
2012    }
2013  }
2014
2015  if (isa<CastInst>(Op0)) {
2016    // Handle the special case of: icmp (cast bool to X), <cst>
2017    // This comes up when you have code like
2018    //   int X = A < B;
2019    //   if (X) ...
2020    // For generality, we handle any zero-extension of any operand comparison
2021    // with a constant or another cast from the same type.
2022    if (isa<Constant>(Op1) || isa<CastInst>(Op1))
2023      if (Instruction *R = visitICmpInstWithCastAndCast(I))
2024        return R;
2025  }
2026
2027  // See if it's the same type of instruction on the left and right.
2028  if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
2029    if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
2030      if (Op0I->getOpcode() == Op1I->getOpcode() && Op0I->hasOneUse() &&
2031          Op1I->hasOneUse() && Op0I->getOperand(1) == Op1I->getOperand(1)) {
2032        switch (Op0I->getOpcode()) {
2033        default: break;
2034        case Instruction::Add:
2035        case Instruction::Sub:
2036        case Instruction::Xor:
2037          if (I.isEquality())    // a+x icmp eq/ne b+x --> a icmp b
2038            return new ICmpInst(I.getPredicate(), Op0I->getOperand(0),
2039                                Op1I->getOperand(0));
2040          // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
2041          if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
2042            if (CI->getValue().isSignBit()) {
2043              ICmpInst::Predicate Pred = I.isSigned()
2044                                             ? I.getUnsignedPredicate()
2045                                             : I.getSignedPredicate();
2046              return new ICmpInst(Pred, Op0I->getOperand(0),
2047                                  Op1I->getOperand(0));
2048            }
2049
2050            if (CI->getValue().isMaxSignedValue()) {
2051              ICmpInst::Predicate Pred = I.isSigned()
2052                                             ? I.getUnsignedPredicate()
2053                                             : I.getSignedPredicate();
2054              Pred = I.getSwappedPredicate(Pred);
2055              return new ICmpInst(Pred, Op0I->getOperand(0),
2056                                  Op1I->getOperand(0));
2057            }
2058          }
2059          break;
2060        case Instruction::Mul:
2061          if (!I.isEquality())
2062            break;
2063
2064          if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
2065            // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
2066            // Mask = -1 >> count-trailing-zeros(Cst).
2067            if (!CI->isZero() && !CI->isOne()) {
2068              const APInt &AP = CI->getValue();
2069              ConstantInt *Mask = ConstantInt::get(I.getContext(),
2070                                      APInt::getLowBitsSet(AP.getBitWidth(),
2071                                                           AP.getBitWidth() -
2072                                                      AP.countTrailingZeros()));
2073              Value *And1 = Builder->CreateAnd(Op0I->getOperand(0), Mask);
2074              Value *And2 = Builder->CreateAnd(Op1I->getOperand(0), Mask);
2075              return new ICmpInst(I.getPredicate(), And1, And2);
2076            }
2077          }
2078          break;
2079        }
2080      }
2081    }
2082  }
2083
2084  // ~x < ~y --> y < x
2085  { Value *A, *B;
2086    if (match(Op0, m_Not(m_Value(A))) &&
2087        match(Op1, m_Not(m_Value(B))))
2088      return new ICmpInst(I.getPredicate(), B, A);
2089  }
2090
2091  if (I.isEquality()) {
2092    Value *A, *B, *C, *D;
2093
2094    // -x == -y --> x == y
2095    if (match(Op0, m_Neg(m_Value(A))) &&
2096        match(Op1, m_Neg(m_Value(B))))
2097      return new ICmpInst(I.getPredicate(), A, B);
2098
2099    if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
2100      if (A == Op1 || B == Op1) {    // (A^B) == A  ->  B == 0
2101        Value *OtherVal = A == Op1 ? B : A;
2102        return new ICmpInst(I.getPredicate(), OtherVal,
2103                            Constant::getNullValue(A->getType()));
2104      }
2105
2106      if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
2107        // A^c1 == C^c2 --> A == C^(c1^c2)
2108        ConstantInt *C1, *C2;
2109        if (match(B, m_ConstantInt(C1)) &&
2110            match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
2111          Constant *NC = ConstantInt::get(I.getContext(),
2112                                          C1->getValue() ^ C2->getValue());
2113          Value *Xor = Builder->CreateXor(C, NC, "tmp");
2114          return new ICmpInst(I.getPredicate(), A, Xor);
2115        }
2116
2117        // A^B == A^D -> B == D
2118        if (A == C) return new ICmpInst(I.getPredicate(), B, D);
2119        if (A == D) return new ICmpInst(I.getPredicate(), B, C);
2120        if (B == C) return new ICmpInst(I.getPredicate(), A, D);
2121        if (B == D) return new ICmpInst(I.getPredicate(), A, C);
2122      }
2123    }
2124
2125    if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
2126        (A == Op0 || B == Op0)) {
2127      // A == (A^B)  ->  B == 0
2128      Value *OtherVal = A == Op0 ? B : A;
2129      return new ICmpInst(I.getPredicate(), OtherVal,
2130                          Constant::getNullValue(A->getType()));
2131    }
2132
2133    // (A-B) == A  ->  B == 0
2134    if (match(Op0, m_Sub(m_Specific(Op1), m_Value(B))))
2135      return new ICmpInst(I.getPredicate(), B,
2136                          Constant::getNullValue(B->getType()));
2137
2138    // A == (A-B)  ->  B == 0
2139    if (match(Op1, m_Sub(m_Specific(Op0), m_Value(B))))
2140      return new ICmpInst(I.getPredicate(), B,
2141                          Constant::getNullValue(B->getType()));
2142
2143    // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
2144    if (Op0->hasOneUse() && Op1->hasOneUse() &&
2145        match(Op0, m_And(m_Value(A), m_Value(B))) &&
2146        match(Op1, m_And(m_Value(C), m_Value(D)))) {
2147      Value *X = 0, *Y = 0, *Z = 0;
2148
2149      if (A == C) {
2150        X = B; Y = D; Z = A;
2151      } else if (A == D) {
2152        X = B; Y = C; Z = A;
2153      } else if (B == C) {
2154        X = A; Y = D; Z = B;
2155      } else if (B == D) {
2156        X = A; Y = C; Z = B;
2157      }
2158
2159      if (X) {   // Build (X^Y) & Z
2160        Op1 = Builder->CreateXor(X, Y, "tmp");
2161        Op1 = Builder->CreateAnd(Op1, Z, "tmp");
2162        I.setOperand(0, Op1);
2163        I.setOperand(1, Constant::getNullValue(Op1->getType()));
2164        return &I;
2165      }
2166    }
2167  }
2168
2169  {
2170    Value *X; ConstantInt *Cst;
2171    // icmp X+Cst, X
2172    if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X)
2173      return FoldICmpAddOpCst(I, X, Cst, I.getPredicate(), Op0);
2174
2175    // icmp X, X+Cst
2176    if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X)
2177      return FoldICmpAddOpCst(I, X, Cst, I.getSwappedPredicate(), Op1);
2178  }
2179  return Changed ? &I : 0;
2180}
2181
2182
2183
2184
2185
2186
2187/// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
2188///
2189Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
2190                                                Instruction *LHSI,
2191                                                Constant *RHSC) {
2192  if (!isa<ConstantFP>(RHSC)) return 0;
2193  const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
2194
2195  // Get the width of the mantissa.  We don't want to hack on conversions that
2196  // might lose information from the integer, e.g. "i64 -> float"
2197  int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
2198  if (MantissaWidth == -1) return 0;  // Unknown.
2199
2200  // Check to see that the input is converted from an integer type that is small
2201  // enough that preserves all bits.  TODO: check here for "known" sign bits.
2202  // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
2203  unsigned InputSize = LHSI->getOperand(0)->getType()->getScalarSizeInBits();
2204
2205  // If this is a uitofp instruction, we need an extra bit to hold the sign.
2206  bool LHSUnsigned = isa<UIToFPInst>(LHSI);
2207  if (LHSUnsigned)
2208    ++InputSize;
2209
2210  // If the conversion would lose info, don't hack on this.
2211  if ((int)InputSize > MantissaWidth)
2212    return 0;
2213
2214  // Otherwise, we can potentially simplify the comparison.  We know that it
2215  // will always come through as an integer value and we know the constant is
2216  // not a NAN (it would have been previously simplified).
2217  assert(!RHS.isNaN() && "NaN comparison not already folded!");
2218
2219  ICmpInst::Predicate Pred;
2220  switch (I.getPredicate()) {
2221  default: llvm_unreachable("Unexpected predicate!");
2222  case FCmpInst::FCMP_UEQ:
2223  case FCmpInst::FCMP_OEQ:
2224    Pred = ICmpInst::ICMP_EQ;
2225    break;
2226  case FCmpInst::FCMP_UGT:
2227  case FCmpInst::FCMP_OGT:
2228    Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
2229    break;
2230  case FCmpInst::FCMP_UGE:
2231  case FCmpInst::FCMP_OGE:
2232    Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
2233    break;
2234  case FCmpInst::FCMP_ULT:
2235  case FCmpInst::FCMP_OLT:
2236    Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
2237    break;
2238  case FCmpInst::FCMP_ULE:
2239  case FCmpInst::FCMP_OLE:
2240    Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
2241    break;
2242  case FCmpInst::FCMP_UNE:
2243  case FCmpInst::FCMP_ONE:
2244    Pred = ICmpInst::ICMP_NE;
2245    break;
2246  case FCmpInst::FCMP_ORD:
2247    return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2248  case FCmpInst::FCMP_UNO:
2249    return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2250  }
2251
2252  const IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
2253
2254  // Now we know that the APFloat is a normal number, zero or inf.
2255
2256  // See if the FP constant is too large for the integer.  For example,
2257  // comparing an i8 to 300.0.
2258  unsigned IntWidth = IntTy->getScalarSizeInBits();
2259
2260  if (!LHSUnsigned) {
2261    // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
2262    // and large values.
2263    APFloat SMax(RHS.getSemantics(), APFloat::fcZero, false);
2264    SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
2265                          APFloat::rmNearestTiesToEven);
2266    if (SMax.compare(RHS) == APFloat::cmpLessThan) {  // smax < 13123.0
2267      if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
2268          Pred == ICmpInst::ICMP_SLE)
2269        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2270      return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2271    }
2272  } else {
2273    // If the RHS value is > UnsignedMax, fold the comparison. This handles
2274    // +INF and large values.
2275    APFloat UMax(RHS.getSemantics(), APFloat::fcZero, false);
2276    UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
2277                          APFloat::rmNearestTiesToEven);
2278    if (UMax.compare(RHS) == APFloat::cmpLessThan) {  // umax < 13123.0
2279      if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
2280          Pred == ICmpInst::ICMP_ULE)
2281        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2282      return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2283    }
2284  }
2285
2286  if (!LHSUnsigned) {
2287    // See if the RHS value is < SignedMin.
2288    APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false);
2289    SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
2290                          APFloat::rmNearestTiesToEven);
2291    if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
2292      if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
2293          Pred == ICmpInst::ICMP_SGE)
2294        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2295      return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2296    }
2297  }
2298
2299  // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
2300  // [0, UMAX], but it may still be fractional.  See if it is fractional by
2301  // casting the FP value to the integer value and back, checking for equality.
2302  // Don't do this for zero, because -0.0 is not fractional.
2303  Constant *RHSInt = LHSUnsigned
2304    ? ConstantExpr::getFPToUI(RHSC, IntTy)
2305    : ConstantExpr::getFPToSI(RHSC, IntTy);
2306  if (!RHS.isZero()) {
2307    bool Equal = LHSUnsigned
2308      ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
2309      : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
2310    if (!Equal) {
2311      // If we had a comparison against a fractional value, we have to adjust
2312      // the compare predicate and sometimes the value.  RHSC is rounded towards
2313      // zero at this point.
2314      switch (Pred) {
2315      default: llvm_unreachable("Unexpected integer comparison!");
2316      case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
2317        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2318      case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
2319        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2320      case ICmpInst::ICMP_ULE:
2321        // (float)int <= 4.4   --> int <= 4
2322        // (float)int <= -4.4  --> false
2323        if (RHS.isNegative())
2324          return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2325        break;
2326      case ICmpInst::ICMP_SLE:
2327        // (float)int <= 4.4   --> int <= 4
2328        // (float)int <= -4.4  --> int < -4
2329        if (RHS.isNegative())
2330          Pred = ICmpInst::ICMP_SLT;
2331        break;
2332      case ICmpInst::ICMP_ULT:
2333        // (float)int < -4.4   --> false
2334        // (float)int < 4.4    --> int <= 4
2335        if (RHS.isNegative())
2336          return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2337        Pred = ICmpInst::ICMP_ULE;
2338        break;
2339      case ICmpInst::ICMP_SLT:
2340        // (float)int < -4.4   --> int < -4
2341        // (float)int < 4.4    --> int <= 4
2342        if (!RHS.isNegative())
2343          Pred = ICmpInst::ICMP_SLE;
2344        break;
2345      case ICmpInst::ICMP_UGT:
2346        // (float)int > 4.4    --> int > 4
2347        // (float)int > -4.4   --> true
2348        if (RHS.isNegative())
2349          return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2350        break;
2351      case ICmpInst::ICMP_SGT:
2352        // (float)int > 4.4    --> int > 4
2353        // (float)int > -4.4   --> int >= -4
2354        if (RHS.isNegative())
2355          Pred = ICmpInst::ICMP_SGE;
2356        break;
2357      case ICmpInst::ICMP_UGE:
2358        // (float)int >= -4.4   --> true
2359        // (float)int >= 4.4    --> int > 4
2360        if (!RHS.isNegative())
2361          return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2362        Pred = ICmpInst::ICMP_UGT;
2363        break;
2364      case ICmpInst::ICMP_SGE:
2365        // (float)int >= -4.4   --> int >= -4
2366        // (float)int >= 4.4    --> int > 4
2367        if (!RHS.isNegative())
2368          Pred = ICmpInst::ICMP_SGT;
2369        break;
2370      }
2371    }
2372  }
2373
2374  // Lower this FP comparison into an appropriate integer version of the
2375  // comparison.
2376  return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
2377}
2378
2379Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
2380  bool Changed = false;
2381
2382  /// Orders the operands of the compare so that they are listed from most
2383  /// complex to least complex.  This puts constants before unary operators,
2384  /// before binary operators.
2385  if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
2386    I.swapOperands();
2387    Changed = true;
2388  }
2389
2390  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2391
2392  if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, TD))
2393    return ReplaceInstUsesWith(I, V);
2394
2395  // Simplify 'fcmp pred X, X'
2396  if (Op0 == Op1) {
2397    switch (I.getPredicate()) {
2398    default: llvm_unreachable("Unknown predicate!");
2399    case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
2400    case FCmpInst::FCMP_ULT:    // True if unordered or less than
2401    case FCmpInst::FCMP_UGT:    // True if unordered or greater than
2402    case FCmpInst::FCMP_UNE:    // True if unordered or not equal
2403      // Canonicalize these to be 'fcmp uno %X, 0.0'.
2404      I.setPredicate(FCmpInst::FCMP_UNO);
2405      I.setOperand(1, Constant::getNullValue(Op0->getType()));
2406      return &I;
2407
2408    case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
2409    case FCmpInst::FCMP_OEQ:    // True if ordered and equal
2410    case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
2411    case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
2412      // Canonicalize these to be 'fcmp ord %X, 0.0'.
2413      I.setPredicate(FCmpInst::FCMP_ORD);
2414      I.setOperand(1, Constant::getNullValue(Op0->getType()));
2415      return &I;
2416    }
2417  }
2418
2419  // Handle fcmp with constant RHS
2420  if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
2421    if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
2422      switch (LHSI->getOpcode()) {
2423      case Instruction::PHI:
2424        // Only fold fcmp into the PHI if the phi and fcmp are in the same
2425        // block.  If in the same block, we're encouraging jump threading.  If
2426        // not, we are just pessimizing the code by making an i1 phi.
2427        if (LHSI->getParent() == I.getParent())
2428          if (Instruction *NV = FoldOpIntoPhi(I, true))
2429            return NV;
2430        break;
2431      case Instruction::SIToFP:
2432      case Instruction::UIToFP:
2433        if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
2434          return NV;
2435        break;
2436      case Instruction::Select: {
2437        // If either operand of the select is a constant, we can fold the
2438        // comparison into the select arms, which will cause one to be
2439        // constant folded and the select turned into a bitwise or.
2440        Value *Op1 = 0, *Op2 = 0;
2441        if (LHSI->hasOneUse()) {
2442          if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
2443            // Fold the known value into the constant operand.
2444            Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
2445            // Insert a new FCmp of the other select operand.
2446            Op2 = Builder->CreateFCmp(I.getPredicate(),
2447                                      LHSI->getOperand(2), RHSC, I.getName());
2448          } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
2449            // Fold the known value into the constant operand.
2450            Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
2451            // Insert a new FCmp of the other select operand.
2452            Op1 = Builder->CreateFCmp(I.getPredicate(), LHSI->getOperand(1),
2453                                      RHSC, I.getName());
2454          }
2455        }
2456
2457        if (Op1)
2458          return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
2459        break;
2460      }
2461      case Instruction::Load:
2462        if (GetElementPtrInst *GEP =
2463            dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
2464          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
2465            if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
2466                !cast<LoadInst>(LHSI)->isVolatile())
2467              if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
2468                return Res;
2469        }
2470        break;
2471      }
2472  }
2473
2474  return Changed ? &I : 0;
2475}
2476