ArgumentPromotion.cpp revision 252723
118334Speter//===-- ArgumentPromotion.cpp - Promote by-reference arguments ------------===//
218334Speter//
318334Speter//                     The LLVM Compiler Infrastructure
418334Speter//
518334Speter// This file is distributed under the University of Illinois Open Source
618334Speter// License. See LICENSE.TXT for details.
718334Speter//
818334Speter//===----------------------------------------------------------------------===//
918334Speter//
1018334Speter// This pass promotes "by reference" arguments to be "by value" arguments.  In
1118334Speter// practice, this means looking for internal functions that have pointer
1218334Speter// arguments.  If it can prove, through the use of alias analysis, that an
1318334Speter// argument is *only* loaded, then it can pass the value into the function
1418334Speter// instead of the address of the value.  This can cause recursive simplification
1518334Speter// of code and lead to the elimination of allocas (especially in C++ template
1618334Speter// code like the STL).
1718334Speter//
1818334Speter// This pass also handles aggregate arguments that are passed into a function,
1918334Speter// scalarizing them if the elements of the aggregate are only loaded.  Note that
2018334Speter// by default it refuses to scalarize aggregates which would require passing in
2118334Speter// more than three operands to the function, because passing thousands of
2218334Speter// operands for a large array or structure is unprofitable! This limit can be
2318334Speter// configured or disabled, however.
2418334Speter//
2518334Speter// Note that this transformation could also be done for arguments that are only
2618334Speter// stored to (returning the value instead), but does not currently.  This case
2718334Speter// would be best handled when and if LLVM begins supporting multiple return
2818334Speter// values from functions.
2918334Speter//
3018334Speter//===----------------------------------------------------------------------===//
3118334Speter
3218334Speter#define DEBUG_TYPE "argpromotion"
3318334Speter#include "llvm/Transforms/IPO.h"
3418334Speter#include "llvm/ADT/DepthFirstIterator.h"
3518334Speter#include "llvm/ADT/Statistic.h"
3618334Speter#include "llvm/ADT/StringExtras.h"
3718334Speter#include "llvm/Analysis/AliasAnalysis.h"
3818334Speter#include "llvm/Analysis/CallGraph.h"
3918334Speter#include "llvm/Analysis/CallGraphSCCPass.h"
4018334Speter#include "llvm/IR/Constants.h"
4118334Speter#include "llvm/IR/DerivedTypes.h"
4218334Speter#include "llvm/IR/Instructions.h"
4318334Speter#include "llvm/IR/LLVMContext.h"
4418334Speter#include "llvm/IR/Module.h"
4518334Speter#include "llvm/Support/CFG.h"
4618334Speter#include "llvm/Support/CallSite.h"
4718334Speter#include "llvm/Support/Debug.h"
4818334Speter#include "llvm/Support/raw_ostream.h"
4918334Speter#include <set>
5018334Speterusing namespace llvm;
5118334Speter
5218334SpeterSTATISTIC(NumArgumentsPromoted , "Number of pointer arguments promoted");
5318334SpeterSTATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
5418334SpeterSTATISTIC(NumByValArgsPromoted , "Number of byval arguments promoted");
5518334SpeterSTATISTIC(NumArgumentsDead     , "Number of dead pointer args eliminated");
5618334Speter
5718334Speternamespace {
5818334Speter  /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
5918334Speter  ///
6018334Speter  struct ArgPromotion : public CallGraphSCCPass {
6118334Speter    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
6218334Speter      AU.addRequired<AliasAnalysis>();
6318334Speter      CallGraphSCCPass::getAnalysisUsage(AU);
6418334Speter    }
6518334Speter
6618334Speter    virtual bool runOnSCC(CallGraphSCC &SCC);
6718334Speter    static char ID; // Pass identification, replacement for typeid
6818334Speter    explicit ArgPromotion(unsigned maxElements = 3)
6918334Speter        : CallGraphSCCPass(ID), maxElements(maxElements) {
7018334Speter      initializeArgPromotionPass(*PassRegistry::getPassRegistry());
7118334Speter    }
7218334Speter
7318334Speter    /// A vector used to hold the indices of a single GEP instruction
7418334Speter    typedef std::vector<uint64_t> IndicesVector;
7518334Speter
7618334Speter  private:
7718334Speter    CallGraphNode *PromoteArguments(CallGraphNode *CGN);
7818334Speter    bool isSafeToPromoteArgument(Argument *Arg, bool isByVal) const;
7918334Speter    CallGraphNode *DoPromotion(Function *F,
8018334Speter                               SmallPtrSet<Argument*, 8> &ArgsToPromote,
8118334Speter                               SmallPtrSet<Argument*, 8> &ByValArgsToTransform);
8218334Speter    /// The maximum number of elements to expand, or 0 for unlimited.
8318334Speter    unsigned maxElements;
8418334Speter  };
8518334Speter}
8618334Speter
8718334Speterchar ArgPromotion::ID = 0;
8818334SpeterINITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
8918334Speter                "Promote 'by reference' arguments to scalars", false, false)
9018334SpeterINITIALIZE_AG_DEPENDENCY(AliasAnalysis)
9118334SpeterINITIALIZE_AG_DEPENDENCY(CallGraph)
9218334SpeterINITIALIZE_PASS_END(ArgPromotion, "argpromotion",
9318334Speter                "Promote 'by reference' arguments to scalars", false, false)
9418334Speter
9518334SpeterPass *llvm::createArgumentPromotionPass(unsigned maxElements) {
9618334Speter  return new ArgPromotion(maxElements);
9718334Speter}
9818334Speter
9918334Speterbool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
10018334Speter  bool Changed = false, LocalChange;
10118334Speter
10218334Speter  do {  // Iterate until we stop promoting from this SCC.
10318334Speter    LocalChange = false;
10418334Speter    // Attempt to promote arguments from all functions in this SCC.
10518334Speter    for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
10618334Speter      if (CallGraphNode *CGN = PromoteArguments(*I)) {
10718334Speter        LocalChange = true;
10818334Speter        SCC.ReplaceNode(*I, CGN);
10918334Speter      }
11018334Speter    }
11118334Speter    Changed |= LocalChange;               // Remember that we changed something.
11218334Speter  } while (LocalChange);
11318334Speter
11418334Speter  return Changed;
11518334Speter}
11618334Speter
11718334Speter/// PromoteArguments - This method checks the specified function to see if there
11818334Speter/// are any promotable arguments and if it is safe to promote the function (for
11918334Speter/// example, all callers are direct).  If safe to promote some arguments, it
12018334Speter/// calls the DoPromotion method.
12118334Speter///
12218334SpeterCallGraphNode *ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
12318334Speter  Function *F = CGN->getFunction();
12418334Speter
12518334Speter  // Make sure that it is local to this module.
12618334Speter  if (!F || !F->hasLocalLinkage()) return 0;
12718334Speter
12818334Speter  // First check: see if there are any pointer arguments!  If not, quick exit.
12918334Speter  SmallVector<std::pair<Argument*, unsigned>, 16> PointerArgs;
13018334Speter  unsigned ArgNo = 0;
13118334Speter  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
13218334Speter       I != E; ++I, ++ArgNo)
13318334Speter    if (I->getType()->isPointerTy())
13418334Speter      PointerArgs.push_back(std::pair<Argument*, unsigned>(I, ArgNo));
13518334Speter  if (PointerArgs.empty()) return 0;
13618334Speter
13718334Speter  // Second check: make sure that all callers are direct callers.  We can't
13818334Speter  // transform functions that have indirect callers.  Also see if the function
13918334Speter  // is self-recursive.
14018334Speter  bool isSelfRecursive = false;
14118334Speter  for (Value::use_iterator UI = F->use_begin(), E = F->use_end();
14218334Speter       UI != E; ++UI) {
14318334Speter    CallSite CS(*UI);
14418334Speter    // Must be a direct call.
14518334Speter    if (CS.getInstruction() == 0 || !CS.isCallee(UI)) return 0;
14618334Speter
14718334Speter    if (CS.getInstruction()->getParent()->getParent() == F)
14818334Speter      isSelfRecursive = true;
14918334Speter  }
15018334Speter
15118334Speter  // Check to see which arguments are promotable.  If an argument is promotable,
15218334Speter  // add it to ArgsToPromote.
15318334Speter  SmallPtrSet<Argument*, 8> ArgsToPromote;
15418334Speter  SmallPtrSet<Argument*, 8> ByValArgsToTransform;
15518334Speter  for (unsigned i = 0; i != PointerArgs.size(); ++i) {
15618334Speter    bool isByVal=F->getAttributes().
15718334Speter      hasAttribute(PointerArgs[i].second+1, Attribute::ByVal);
15818334Speter    Argument *PtrArg = PointerArgs[i].first;
15918334Speter    Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
16018334Speter
16118334Speter    // If this is a byval argument, and if the aggregate type is small, just
16218334Speter    // pass the elements, which is always safe.
16318334Speter    if (isByVal) {
16418334Speter      if (StructType *STy = dyn_cast<StructType>(AgTy)) {
16518334Speter        if (maxElements > 0 && STy->getNumElements() > maxElements) {
16618334Speter          DEBUG(dbgs() << "argpromotion disable promoting argument '"
16718334Speter                << PtrArg->getName() << "' because it would require adding more"
16818334Speter                << " than " << maxElements << " arguments to the function.\n");
16918334Speter          continue;
17018334Speter        }
17118334Speter
17218334Speter        // If all the elements are single-value types, we can promote it.
17318334Speter        bool AllSimple = true;
17418334Speter        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
17518334Speter          if (!STy->getElementType(i)->isSingleValueType()) {
17618334Speter            AllSimple = false;
17718334Speter            break;
17818334Speter          }
17918334Speter        }
18018334Speter
18118334Speter        // Safe to transform, don't even bother trying to "promote" it.
18218334Speter        // Passing the elements as a scalar will allow scalarrepl to hack on
18318334Speter        // the new alloca we introduce.
18418334Speter        if (AllSimple) {
18518334Speter          ByValArgsToTransform.insert(PtrArg);
18618334Speter          continue;
18718334Speter        }
18818334Speter      }
18918334Speter    }
19018334Speter
19118334Speter    // If the argument is a recursive type and we're in a recursive
19218334Speter    // function, we could end up infinitely peeling the function argument.
19318334Speter    if (isSelfRecursive) {
19418334Speter      if (StructType *STy = dyn_cast<StructType>(AgTy)) {
19518334Speter        bool RecursiveType = false;
19618334Speter        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
19718334Speter          if (STy->getElementType(i) == PtrArg->getType()) {
19818334Speter            RecursiveType = true;
19918334Speter            break;
20018334Speter          }
20118334Speter        }
20218334Speter        if (RecursiveType)
20318334Speter          continue;
20418334Speter      }
20518334Speter    }
20618334Speter
20718334Speter    // Otherwise, see if we can promote the pointer to its value.
20818334Speter    if (isSafeToPromoteArgument(PtrArg, isByVal))
20918334Speter      ArgsToPromote.insert(PtrArg);
21018334Speter  }
21118334Speter
21218334Speter  // No promotable pointer arguments.
21318334Speter  if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
21418334Speter    return 0;
21518334Speter
21618334Speter  return DoPromotion(F, ArgsToPromote, ByValArgsToTransform);
21718334Speter}
21818334Speter
21918334Speter/// AllCallersPassInValidPointerForArgument - Return true if we can prove that
22018334Speter/// all callees pass in a valid pointer for the specified function argument.
22118334Speterstatic bool AllCallersPassInValidPointerForArgument(Argument *Arg) {
22218334Speter  Function *Callee = Arg->getParent();
22318334Speter
22418334Speter  unsigned ArgNo = std::distance(Callee->arg_begin(),
22518334Speter                                 Function::arg_iterator(Arg));
22618334Speter
22718334Speter  // Look at all call sites of the function.  At this pointer we know we only
22818334Speter  // have direct callees.
22918334Speter  for (Value::use_iterator UI = Callee->use_begin(), E = Callee->use_end();
23018334Speter       UI != E; ++UI) {
23118334Speter    CallSite CS(*UI);
23218334Speter    assert(CS && "Should only have direct calls!");
23318334Speter
23418334Speter    if (!CS.getArgument(ArgNo)->isDereferenceablePointer())
23518334Speter      return false;
23618334Speter  }
23718334Speter  return true;
23818334Speter}
23918334Speter
24018334Speter/// Returns true if Prefix is a prefix of longer. That means, Longer has a size
24118334Speter/// that is greater than or equal to the size of prefix, and each of the
24218334Speter/// elements in Prefix is the same as the corresponding elements in Longer.
24318334Speter///
24418334Speter/// This means it also returns true when Prefix and Longer are equal!
24518334Speterstatic bool IsPrefix(const ArgPromotion::IndicesVector &Prefix,
24618334Speter                     const ArgPromotion::IndicesVector &Longer) {
24718334Speter  if (Prefix.size() > Longer.size())
24818334Speter    return false;
24918334Speter  return std::equal(Prefix.begin(), Prefix.end(), Longer.begin());
25018334Speter}
25118334Speter
25218334Speter
25318334Speter/// Checks if Indices, or a prefix of Indices, is in Set.
25418334Speterstatic bool PrefixIn(const ArgPromotion::IndicesVector &Indices,
25518334Speter                     std::set<ArgPromotion::IndicesVector> &Set) {
25618334Speter    std::set<ArgPromotion::IndicesVector>::iterator Low;
25718334Speter    Low = Set.upper_bound(Indices);
25818334Speter    if (Low != Set.begin())
25918334Speter      Low--;
26018334Speter    // Low is now the last element smaller than or equal to Indices. This means
26118334Speter    // it points to a prefix of Indices (possibly Indices itself), if such
26218334Speter    // prefix exists.
26318334Speter    //
26418334Speter    // This load is safe if any prefix of its operands is safe to load.
26518334Speter    return Low != Set.end() && IsPrefix(*Low, Indices);
26618334Speter}
26718334Speter
26818334Speter/// Mark the given indices (ToMark) as safe in the given set of indices
26918334Speter/// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
27018334Speter/// is already a prefix of Indices in Safe, Indices are implicitely marked safe
27118334Speter/// already. Furthermore, any indices that Indices is itself a prefix of, are
27218334Speter/// removed from Safe (since they are implicitely safe because of Indices now).
27318334Speterstatic void MarkIndicesSafe(const ArgPromotion::IndicesVector &ToMark,
27418334Speter                            std::set<ArgPromotion::IndicesVector> &Safe) {
27518334Speter  std::set<ArgPromotion::IndicesVector>::iterator Low;
27618334Speter  Low = Safe.upper_bound(ToMark);
27718334Speter  // Guard against the case where Safe is empty
27818334Speter  if (Low != Safe.begin())
27918334Speter    Low--;
28018334Speter  // Low is now the last element smaller than or equal to Indices. This
28118334Speter  // means it points to a prefix of Indices (possibly Indices itself), if
28218334Speter  // such prefix exists.
28318334Speter  if (Low != Safe.end()) {
28418334Speter    if (IsPrefix(*Low, ToMark))
28518334Speter      // If there is already a prefix of these indices (or exactly these
28618334Speter      // indices) marked a safe, don't bother adding these indices
28718334Speter      return;
28818334Speter
28918334Speter    // Increment Low, so we can use it as a "insert before" hint
29018334Speter    ++Low;
29118334Speter  }
29218334Speter  // Insert
29318334Speter  Low = Safe.insert(Low, ToMark);
29418334Speter  ++Low;
29518334Speter  // If there we're a prefix of longer index list(s), remove those
29618334Speter  std::set<ArgPromotion::IndicesVector>::iterator End = Safe.end();
29718334Speter  while (Low != End && IsPrefix(ToMark, *Low)) {
29818334Speter    std::set<ArgPromotion::IndicesVector>::iterator Remove = Low;
29918334Speter    ++Low;
30018334Speter    Safe.erase(Remove);
30118334Speter  }
30218334Speter}
30318334Speter
30418334Speter/// isSafeToPromoteArgument - As you might guess from the name of this method,
30518334Speter/// it checks to see if it is both safe and useful to promote the argument.
30618334Speter/// This method limits promotion of aggregates to only promote up to three
30718334Speter/// elements of the aggregate in order to avoid exploding the number of
30818334Speter/// arguments passed in.
30918334Speterbool ArgPromotion::isSafeToPromoteArgument(Argument *Arg, bool isByVal) const {
31018334Speter  typedef std::set<IndicesVector> GEPIndicesSet;
31118334Speter
31218334Speter  // Quick exit for unused arguments
31318334Speter  if (Arg->use_empty())
31418334Speter    return true;
31518334Speter
31618334Speter  // We can only promote this argument if all of the uses are loads, or are GEP
31718334Speter  // instructions (with constant indices) that are subsequently loaded.
31818334Speter  //
31918334Speter  // Promoting the argument causes it to be loaded in the caller
32018334Speter  // unconditionally. This is only safe if we can prove that either the load
32118334Speter  // would have happened in the callee anyway (ie, there is a load in the entry
32218334Speter  // block) or the pointer passed in at every call site is guaranteed to be
32318334Speter  // valid.
32418334Speter  // In the former case, invalid loads can happen, but would have happened
32518334Speter  // anyway, in the latter case, invalid loads won't happen. This prevents us
32618334Speter  // from introducing an invalid load that wouldn't have happened in the
32718334Speter  // original code.
32818334Speter  //
32918334Speter  // This set will contain all sets of indices that are loaded in the entry
33018334Speter  // block, and thus are safe to unconditionally load in the caller.
33118334Speter  GEPIndicesSet SafeToUnconditionallyLoad;
33218334Speter
33318334Speter  // This set contains all the sets of indices that we are planning to promote.
33418334Speter  // This makes it possible to limit the number of arguments added.
33518334Speter  GEPIndicesSet ToPromote;
33618334Speter
33718334Speter  // If the pointer is always valid, any load with first index 0 is valid.
33818334Speter  if (isByVal || AllCallersPassInValidPointerForArgument(Arg))
33918334Speter    SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
34018334Speter
34118334Speter  // First, iterate the entry block and mark loads of (geps of) arguments as
34218334Speter  // safe.
34318334Speter  BasicBlock *EntryBlock = Arg->getParent()->begin();
34418334Speter  // Declare this here so we can reuse it
34518334Speter  IndicesVector Indices;
34618334Speter  for (BasicBlock::iterator I = EntryBlock->begin(), E = EntryBlock->end();
34718334Speter       I != E; ++I)
34818334Speter    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
34918334Speter      Value *V = LI->getPointerOperand();
35018334Speter      if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
35118334Speter        V = GEP->getPointerOperand();
35218334Speter        if (V == Arg) {
35318334Speter          // This load actually loads (part of) Arg? Check the indices then.
35418334Speter          Indices.reserve(GEP->getNumIndices());
35518334Speter          for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
35618334Speter               II != IE; ++II)
35718334Speter            if (ConstantInt *CI = dyn_cast<ConstantInt>(*II))
35818334Speter              Indices.push_back(CI->getSExtValue());
35918334Speter            else
36018334Speter              // We found a non-constant GEP index for this argument? Bail out
36118334Speter              // right away, can't promote this argument at all.
36218334Speter              return false;
36318334Speter
36418334Speter          // Indices checked out, mark them as safe
36518334Speter          MarkIndicesSafe(Indices, SafeToUnconditionallyLoad);
36618334Speter          Indices.clear();
36718334Speter        }
36818334Speter      } else if (V == Arg) {
36918334Speter        // Direct loads are equivalent to a GEP with a single 0 index.
37018334Speter        MarkIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
37118334Speter      }
37218334Speter    }
37318334Speter
37418334Speter  // Now, iterate all uses of the argument to see if there are any uses that are
37518334Speter  // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
37618334Speter  SmallVector<LoadInst*, 16> Loads;
37718334Speter  IndicesVector Operands;
37818334Speter  for (Value::use_iterator UI = Arg->use_begin(), E = Arg->use_end();
37918334Speter       UI != E; ++UI) {
38018334Speter    User *U = *UI;
38118334Speter    Operands.clear();
38218334Speter    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
38318334Speter      // Don't hack volatile/atomic loads
38418334Speter      if (!LI->isSimple()) return false;
38518334Speter      Loads.push_back(LI);
38618334Speter      // Direct loads are equivalent to a GEP with a zero index and then a load.
38718334Speter      Operands.push_back(0);
38818334Speter    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
38918334Speter      if (GEP->use_empty()) {
39018334Speter        // Dead GEP's cause trouble later.  Just remove them if we run into
39118334Speter        // them.
39218334Speter        getAnalysis<AliasAnalysis>().deleteValue(GEP);
39318334Speter        GEP->eraseFromParent();
39418334Speter        // TODO: This runs the above loop over and over again for dead GEPs
39518334Speter        // Couldn't we just do increment the UI iterator earlier and erase the
39618334Speter        // use?
39718334Speter        return isSafeToPromoteArgument(Arg, isByVal);
39818334Speter      }
39918334Speter
40018334Speter      // Ensure that all of the indices are constants.
40118334Speter      for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end();
40218334Speter        i != e; ++i)
40318334Speter        if (ConstantInt *C = dyn_cast<ConstantInt>(*i))
40418334Speter          Operands.push_back(C->getSExtValue());
40518334Speter        else
40618334Speter          return false;  // Not a constant operand GEP!
40718334Speter
40818334Speter      // Ensure that the only users of the GEP are load instructions.
40918334Speter      for (Value::use_iterator UI = GEP->use_begin(), E = GEP->use_end();
41018334Speter           UI != E; ++UI)
41118334Speter        if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
41218334Speter          // Don't hack volatile/atomic loads
41318334Speter          if (!LI->isSimple()) return false;
41418334Speter          Loads.push_back(LI);
41518334Speter        } else {
41618334Speter          // Other uses than load?
41718334Speter          return false;
41818334Speter        }
41918334Speter    } else {
42018334Speter      return false;  // Not a load or a GEP.
42118334Speter    }
42218334Speter
42318334Speter    // Now, see if it is safe to promote this load / loads of this GEP. Loading
42418334Speter    // is safe if Operands, or a prefix of Operands, is marked as safe.
42518334Speter    if (!PrefixIn(Operands, SafeToUnconditionallyLoad))
42618334Speter      return false;
42718334Speter
42818334Speter    // See if we are already promoting a load with these indices. If not, check
42918334Speter    // to make sure that we aren't promoting too many elements.  If so, nothing
43018334Speter    // to do.
43118334Speter    if (ToPromote.find(Operands) == ToPromote.end()) {
43218334Speter      if (maxElements > 0 && ToPromote.size() == maxElements) {
43318334Speter        DEBUG(dbgs() << "argpromotion not promoting argument '"
43418334Speter              << Arg->getName() << "' because it would require adding more "
43518334Speter              << "than " << maxElements << " arguments to the function.\n");
43618334Speter        // We limit aggregate promotion to only promoting up to a fixed number
43718334Speter        // of elements of the aggregate.
43818334Speter        return false;
43918334Speter      }
44018334Speter      ToPromote.insert(Operands);
44118334Speter    }
44218334Speter  }
44318334Speter
44418334Speter  if (Loads.empty()) return true;  // No users, this is a dead argument.
44518334Speter
44618334Speter  // Okay, now we know that the argument is only used by load instructions and
44718334Speter  // it is safe to unconditionally perform all of them. Use alias analysis to
44818334Speter  // check to see if the pointer is guaranteed to not be modified from entry of
44918334Speter  // the function to each of the load instructions.
45018334Speter
45118334Speter  // Because there could be several/many load instructions, remember which
45218334Speter  // blocks we know to be transparent to the load.
45318334Speter  SmallPtrSet<BasicBlock*, 16> TranspBlocks;
45418334Speter
45518334Speter  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
45618334Speter
45718334Speter  for (unsigned i = 0, e = Loads.size(); i != e; ++i) {
45818334Speter    // Check to see if the load is invalidated from the start of the block to
45918334Speter    // the load itself.
46018334Speter    LoadInst *Load = Loads[i];
46118334Speter    BasicBlock *BB = Load->getParent();
46218334Speter
46318334Speter    AliasAnalysis::Location Loc = AA.getLocation(Load);
46418334Speter    if (AA.canInstructionRangeModify(BB->front(), *Load, Loc))
46518334Speter      return false;  // Pointer is invalidated!
46618334Speter
46718334Speter    // Now check every path from the entry block to the load for transparency.
46818334Speter    // To do this, we perform a depth first search on the inverse CFG from the
46918334Speter    // loading block.
47018334Speter    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
47118334Speter      BasicBlock *P = *PI;
47218334Speter      for (idf_ext_iterator<BasicBlock*, SmallPtrSet<BasicBlock*, 16> >
47318334Speter             I = idf_ext_begin(P, TranspBlocks),
47418334Speter             E = idf_ext_end(P, TranspBlocks); I != E; ++I)
47518334Speter        if (AA.canBasicBlockModify(**I, Loc))
47618334Speter          return false;
47718334Speter    }
47818334Speter  }
47918334Speter
48018334Speter  // If the path from the entry of the function to each load is free of
48118334Speter  // instructions that potentially invalidate the load, we can make the
48218334Speter  // transformation!
48318334Speter  return true;
48418334Speter}
48518334Speter
48618334Speter/// DoPromotion - This method actually performs the promotion of the specified
48718334Speter/// arguments, and returns the new function.  At this point, we know that it's
48818334Speter/// safe to do so.
48918334SpeterCallGraphNode *ArgPromotion::DoPromotion(Function *F,
49018334Speter                               SmallPtrSet<Argument*, 8> &ArgsToPromote,
49118334Speter                              SmallPtrSet<Argument*, 8> &ByValArgsToTransform) {
49218334Speter
49318334Speter  // Start by computing a new prototype for the function, which is the same as
49418334Speter  // the old function, but has modified arguments.
49518334Speter  FunctionType *FTy = F->getFunctionType();
49618334Speter  std::vector<Type*> Params;
49718334Speter
49818334Speter  typedef std::set<IndicesVector> ScalarizeTable;
49918334Speter
50018334Speter  // ScalarizedElements - If we are promoting a pointer that has elements
50118334Speter  // accessed out of it, keep track of which elements are accessed so that we
50218334Speter  // can add one argument for each.
50318334Speter  //
50418334Speter  // Arguments that are directly loaded will have a zero element value here, to
50518334Speter  // handle cases where there are both a direct load and GEP accesses.
50618334Speter  //
50718334Speter  std::map<Argument*, ScalarizeTable> ScalarizedElements;
50818334Speter
50918334Speter  // OriginalLoads - Keep track of a representative load instruction from the
51018334Speter  // original function so that we can tell the alias analysis implementation
51118334Speter  // what the new GEP/Load instructions we are inserting look like.
51218334Speter  std::map<IndicesVector, LoadInst*> OriginalLoads;
51318334Speter
51418334Speter  // Attribute - Keep track of the parameter attributes for the arguments
51518334Speter  // that we are *not* promoting. For the ones that we do promote, the parameter
51618334Speter  // attributes are lost
51718334Speter  SmallVector<AttributeSet, 8> AttributesVec;
51818334Speter  const AttributeSet &PAL = F->getAttributes();
51918334Speter
52018334Speter  // Add any return attributes.
52118334Speter  if (PAL.hasAttributes(AttributeSet::ReturnIndex))
52218334Speter    AttributesVec.push_back(AttributeSet::get(F->getContext(),
52318334Speter                                              PAL.getRetAttributes()));
52418334Speter
52518334Speter  // First, determine the new argument list
52618334Speter  unsigned ArgIndex = 1;
52718334Speter  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
52818334Speter       ++I, ++ArgIndex) {
52918334Speter    if (ByValArgsToTransform.count(I)) {
53018334Speter      // Simple byval argument? Just add all the struct element types.
53118334Speter      Type *AgTy = cast<PointerType>(I->getType())->getElementType();
53218334Speter      StructType *STy = cast<StructType>(AgTy);
53318334Speter      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
53418334Speter        Params.push_back(STy->getElementType(i));
53518334Speter      ++NumByValArgsPromoted;
53618334Speter    } else if (!ArgsToPromote.count(I)) {
53718334Speter      // Unchanged argument
53818334Speter      Params.push_back(I->getType());
53918334Speter      AttributeSet attrs = PAL.getParamAttributes(ArgIndex);
54018334Speter      if (attrs.hasAttributes(ArgIndex)) {
54118334Speter        AttrBuilder B(attrs, ArgIndex);
54218334Speter        AttributesVec.
54318334Speter          push_back(AttributeSet::get(F->getContext(), Params.size(), B));
54418334Speter      }
54518334Speter    } else if (I->use_empty()) {
54618334Speter      // Dead argument (which are always marked as promotable)
54718334Speter      ++NumArgumentsDead;
54818334Speter    } else {
54918334Speter      // Okay, this is being promoted. This means that the only uses are loads
55018334Speter      // or GEPs which are only used by loads
55118334Speter
55218334Speter      // In this table, we will track which indices are loaded from the argument
55318334Speter      // (where direct loads are tracked as no indices).
55418334Speter      ScalarizeTable &ArgIndices = ScalarizedElements[I];
55518334Speter      for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
55618334Speter           ++UI) {
55718334Speter        Instruction *User = cast<Instruction>(*UI);
55818334Speter        assert(isa<LoadInst>(User) || isa<GetElementPtrInst>(User));
55918334Speter        IndicesVector Indices;
56018334Speter        Indices.reserve(User->getNumOperands() - 1);
56118334Speter        // Since loads will only have a single operand, and GEPs only a single
56218334Speter        // non-index operand, this will record direct loads without any indices,
56318334Speter        // and gep+loads with the GEP indices.
56418334Speter        for (User::op_iterator II = User->op_begin() + 1, IE = User->op_end();
56518334Speter             II != IE; ++II)
56618334Speter          Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
56718334Speter        // GEPs with a single 0 index can be merged with direct loads
56818334Speter        if (Indices.size() == 1 && Indices.front() == 0)
56918334Speter          Indices.clear();
57018334Speter        ArgIndices.insert(Indices);
57118334Speter        LoadInst *OrigLoad;
57218334Speter        if (LoadInst *L = dyn_cast<LoadInst>(User))
57318334Speter          OrigLoad = L;
57418334Speter        else
57518334Speter          // Take any load, we will use it only to update Alias Analysis
57618334Speter          OrigLoad = cast<LoadInst>(User->use_back());
57718334Speter        OriginalLoads[Indices] = OrigLoad;
57818334Speter      }
57918334Speter
58018334Speter      // Add a parameter to the function for each element passed in.
58118334Speter      for (ScalarizeTable::iterator SI = ArgIndices.begin(),
58218334Speter             E = ArgIndices.end(); SI != E; ++SI) {
58318334Speter        // not allowed to dereference ->begin() if size() is 0
58418334Speter        Params.push_back(GetElementPtrInst::getIndexedType(I->getType(), *SI));
58518334Speter        assert(Params.back());
58618334Speter      }
58718334Speter
58818334Speter      if (ArgIndices.size() == 1 && ArgIndices.begin()->empty())
58918334Speter        ++NumArgumentsPromoted;
59018334Speter      else
59118334Speter        ++NumAggregatesPromoted;
59218334Speter    }
59318334Speter  }
59418334Speter
59518334Speter  // Add any function attributes.
59618334Speter  if (PAL.hasAttributes(AttributeSet::FunctionIndex))
59718334Speter    AttributesVec.push_back(AttributeSet::get(FTy->getContext(),
59818334Speter                                              PAL.getFnAttributes()));
59918334Speter
60018334Speter  Type *RetTy = FTy->getReturnType();
60118334Speter
60218334Speter  // Construct the new function type using the new arguments.
60318334Speter  FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
60418334Speter
60518334Speter  // Create the new function body and insert it into the module.
60618334Speter  Function *NF = Function::Create(NFTy, F->getLinkage(), F->getName());
60718334Speter  NF->copyAttributesFrom(F);
60818334Speter
60918334Speter
61018334Speter  DEBUG(dbgs() << "ARG PROMOTION:  Promoting to:" << *NF << "\n"
61118334Speter        << "From: " << *F);
61218334Speter
61318334Speter  // Recompute the parameter attributes list based on the new arguments for
61418334Speter  // the function.
61518334Speter  NF->setAttributes(AttributeSet::get(F->getContext(), AttributesVec));
61618334Speter  AttributesVec.clear();
61718334Speter
61818334Speter  F->getParent()->getFunctionList().insert(F, NF);
61918334Speter  NF->takeName(F);
62018334Speter
62118334Speter  // Get the alias analysis information that we need to update to reflect our
62218334Speter  // changes.
62318334Speter  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
62418334Speter
62518334Speter  // Get the callgraph information that we need to update to reflect our
62618334Speter  // changes.
62718334Speter  CallGraph &CG = getAnalysis<CallGraph>();
62818334Speter
62918334Speter  // Get a new callgraph node for NF.
63018334Speter  CallGraphNode *NF_CGN = CG.getOrInsertFunction(NF);
63118334Speter
63218334Speter  // Loop over all of the callers of the function, transforming the call sites
63318334Speter  // to pass in the loaded pointers.
63418334Speter  //
63518334Speter  SmallVector<Value*, 16> Args;
63618334Speter  while (!F->use_empty()) {
63718334Speter    CallSite CS(F->use_back());
63818334Speter    assert(CS.getCalledFunction() == F);
63918334Speter    Instruction *Call = CS.getInstruction();
64018334Speter    const AttributeSet &CallPAL = CS.getAttributes();
64118334Speter
64218334Speter    // Add any return attributes.
64318334Speter    if (CallPAL.hasAttributes(AttributeSet::ReturnIndex))
64418334Speter      AttributesVec.push_back(AttributeSet::get(F->getContext(),
64518334Speter                                                CallPAL.getRetAttributes()));
64618334Speter
64718334Speter    // Loop over the operands, inserting GEP and loads in the caller as
64818334Speter    // appropriate.
64918334Speter    CallSite::arg_iterator AI = CS.arg_begin();
65018334Speter    ArgIndex = 1;
65118334Speter    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
65218334Speter         I != E; ++I, ++AI, ++ArgIndex)
65318334Speter      if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
65418334Speter        Args.push_back(*AI);          // Unmodified argument
65518334Speter
65618334Speter        if (CallPAL.hasAttributes(ArgIndex)) {
65718334Speter          AttrBuilder B(CallPAL, ArgIndex);
65818334Speter          AttributesVec.
65918334Speter            push_back(AttributeSet::get(F->getContext(), Args.size(), B));
66018334Speter        }
66118334Speter      } else if (ByValArgsToTransform.count(I)) {
66218334Speter        // Emit a GEP and load for each element of the struct.
66318334Speter        Type *AgTy = cast<PointerType>(I->getType())->getElementType();
66418334Speter        StructType *STy = cast<StructType>(AgTy);
66518334Speter        Value *Idxs[2] = {
66618334Speter              ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 0 };
66718334Speter        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
66818334Speter          Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
66918334Speter          Value *Idx = GetElementPtrInst::Create(*AI, Idxs,
67018334Speter                                                 (*AI)->getName()+"."+utostr(i),
67118334Speter                                                 Call);
67218334Speter          // TODO: Tell AA about the new values?
67318334Speter          Args.push_back(new LoadInst(Idx, Idx->getName()+".val", Call));
67418334Speter        }
67518334Speter      } else if (!I->use_empty()) {
67618334Speter        // Non-dead argument: insert GEPs and loads as appropriate.
67718334Speter        ScalarizeTable &ArgIndices = ScalarizedElements[I];
67818334Speter        // Store the Value* version of the indices in here, but declare it now
67918334Speter        // for reuse.
68018334Speter        std::vector<Value*> Ops;
68118334Speter        for (ScalarizeTable::iterator SI = ArgIndices.begin(),
68218334Speter               E = ArgIndices.end(); SI != E; ++SI) {
68318334Speter          Value *V = *AI;
68418334Speter          LoadInst *OrigLoad = OriginalLoads[*SI];
68518334Speter          if (!SI->empty()) {
68618334Speter            Ops.reserve(SI->size());
68718334Speter            Type *ElTy = V->getType();
68818334Speter            for (IndicesVector::const_iterator II = SI->begin(),
68918334Speter                 IE = SI->end(); II != IE; ++II) {
69018334Speter              // Use i32 to index structs, and i64 for others (pointers/arrays).
69118334Speter              // This satisfies GEP constraints.
69218334Speter              Type *IdxTy = (ElTy->isStructTy() ?
69318334Speter                    Type::getInt32Ty(F->getContext()) :
69418334Speter                    Type::getInt64Ty(F->getContext()));
69518334Speter              Ops.push_back(ConstantInt::get(IdxTy, *II));
69618334Speter              // Keep track of the type we're currently indexing.
69718334Speter              ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(*II);
69818334Speter            }
69918334Speter            // And create a GEP to extract those indices.
70018334Speter            V = GetElementPtrInst::Create(V, Ops, V->getName()+".idx", Call);
70118334Speter            Ops.clear();
70218334Speter            AA.copyValue(OrigLoad->getOperand(0), V);
70318334Speter          }
70418334Speter          // Since we're replacing a load make sure we take the alignment
70518334Speter          // of the previous load.
70618334Speter          LoadInst *newLoad = new LoadInst(V, V->getName()+".val", Call);
70718334Speter          newLoad->setAlignment(OrigLoad->getAlignment());
70818334Speter          // Transfer the TBAA info too.
70918334Speter          newLoad->setMetadata(LLVMContext::MD_tbaa,
71018334Speter                               OrigLoad->getMetadata(LLVMContext::MD_tbaa));
71118334Speter          Args.push_back(newLoad);
71218334Speter          AA.copyValue(OrigLoad, Args.back());
71318334Speter        }
71418334Speter      }
71518334Speter
71618334Speter    // Push any varargs arguments on the list.
71718334Speter    for (; AI != CS.arg_end(); ++AI, ++ArgIndex) {
71818334Speter      Args.push_back(*AI);
71918334Speter      if (CallPAL.hasAttributes(ArgIndex)) {
72018334Speter        AttrBuilder B(CallPAL, ArgIndex);
72118334Speter        AttributesVec.
72218334Speter          push_back(AttributeSet::get(F->getContext(), Args.size(), B));
72318334Speter      }
72418334Speter    }
72518334Speter
72618334Speter    // Add any function attributes.
72718334Speter    if (CallPAL.hasAttributes(AttributeSet::FunctionIndex))
72818334Speter      AttributesVec.push_back(AttributeSet::get(Call->getContext(),
72918334Speter                                                CallPAL.getFnAttributes()));
73018334Speter
73118334Speter    Instruction *New;
73218334Speter    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
73318334Speter      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
73418334Speter                               Args, "", Call);
73518334Speter      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
73618334Speter      cast<InvokeInst>(New)->setAttributes(AttributeSet::get(II->getContext(),
73718334Speter                                                            AttributesVec));
73818334Speter    } else {
73918334Speter      New = CallInst::Create(NF, Args, "", Call);
74018334Speter      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
74118334Speter      cast<CallInst>(New)->setAttributes(AttributeSet::get(New->getContext(),
74218334Speter                                                          AttributesVec));
74318334Speter      if (cast<CallInst>(Call)->isTailCall())
74418334Speter        cast<CallInst>(New)->setTailCall();
74518334Speter    }
74618334Speter    Args.clear();
74718334Speter    AttributesVec.clear();
74818334Speter
74918334Speter    // Update the alias analysis implementation to know that we are replacing
75018334Speter    // the old call with a new one.
75118334Speter    AA.replaceWithNewValue(Call, New);
75218334Speter
75318334Speter    // Update the callgraph to know that the callsite has been transformed.
75418334Speter    CallGraphNode *CalleeNode = CG[Call->getParent()->getParent()];
75518334Speter    CalleeNode->replaceCallEdge(Call, New, NF_CGN);
75618334Speter
75718334Speter    if (!Call->use_empty()) {
75818334Speter      Call->replaceAllUsesWith(New);
75918334Speter      New->takeName(Call);
76018334Speter    }
76118334Speter
76218334Speter    // Finally, remove the old call from the program, reducing the use-count of
76318334Speter    // F.
76418334Speter    Call->eraseFromParent();
76518334Speter  }
76618334Speter
76718334Speter  // Since we have now created the new function, splice the body of the old
76818334Speter  // function right into the new function, leaving the old rotting hulk of the
76918334Speter  // function empty.
77018334Speter  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
77118334Speter
77218334Speter  // Loop over the argument list, transferring uses of the old arguments over to
77318334Speter  // the new arguments, also transferring over the names as well.
77418334Speter  //
77518334Speter  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
77618334Speter       I2 = NF->arg_begin(); I != E; ++I) {
77718334Speter    if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
77818334Speter      // If this is an unmodified argument, move the name and users over to the
77918334Speter      // new version.
78018334Speter      I->replaceAllUsesWith(I2);
78118334Speter      I2->takeName(I);
78218334Speter      AA.replaceWithNewValue(I, I2);
78318334Speter      ++I2;
78418334Speter      continue;
78518334Speter    }
78618334Speter
78718334Speter    if (ByValArgsToTransform.count(I)) {
78818334Speter      // In the callee, we create an alloca, and store each of the new incoming
78918334Speter      // arguments into the alloca.
79018334Speter      Instruction *InsertPt = NF->begin()->begin();
79118334Speter
79218334Speter      // Just add all the struct element types.
79318334Speter      Type *AgTy = cast<PointerType>(I->getType())->getElementType();
79418334Speter      Value *TheAlloca = new AllocaInst(AgTy, 0, "", InsertPt);
79518334Speter      StructType *STy = cast<StructType>(AgTy);
79618334Speter      Value *Idxs[2] = {
79718334Speter            ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 0 };
79818334Speter
79918334Speter      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
80018334Speter        Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
80118334Speter        Value *Idx =
80218334Speter          GetElementPtrInst::Create(TheAlloca, Idxs,
80318334Speter                                    TheAlloca->getName()+"."+Twine(i),
80418334Speter                                    InsertPt);
80518334Speter        I2->setName(I->getName()+"."+Twine(i));
80618334Speter        new StoreInst(I2++, Idx, InsertPt);
80718334Speter      }
80818334Speter
80918334Speter      // Anything that used the arg should now use the alloca.
81018334Speter      I->replaceAllUsesWith(TheAlloca);
81118334Speter      TheAlloca->takeName(I);
81218334Speter      AA.replaceWithNewValue(I, TheAlloca);
81318334Speter      continue;
81418334Speter    }
81518334Speter
81618334Speter    if (I->use_empty()) {
81718334Speter      AA.deleteValue(I);
81818334Speter      continue;
81918334Speter    }
82018334Speter
82118334Speter    // Otherwise, if we promoted this argument, then all users are load
82218334Speter    // instructions (or GEPs with only load users), and all loads should be
82318334Speter    // using the new argument that we added.
82418334Speter    ScalarizeTable &ArgIndices = ScalarizedElements[I];
82518334Speter
82618334Speter    while (!I->use_empty()) {
82718334Speter      if (LoadInst *LI = dyn_cast<LoadInst>(I->use_back())) {
82818334Speter        assert(ArgIndices.begin()->empty() &&
82918334Speter               "Load element should sort to front!");
83018334Speter        I2->setName(I->getName()+".val");
83118334Speter        LI->replaceAllUsesWith(I2);
83218334Speter        AA.replaceWithNewValue(LI, I2);
83318334Speter        LI->eraseFromParent();
83418334Speter        DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
83518334Speter              << "' in function '" << F->getName() << "'\n");
83618334Speter      } else {
83718334Speter        GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->use_back());
83818334Speter        IndicesVector Operands;
83918334Speter        Operands.reserve(GEP->getNumIndices());
84018334Speter        for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
84118334Speter             II != IE; ++II)
84218334Speter          Operands.push_back(cast<ConstantInt>(*II)->getSExtValue());
84318334Speter
84418334Speter        // GEPs with a single 0 index can be merged with direct loads
84518334Speter        if (Operands.size() == 1 && Operands.front() == 0)
84618334Speter          Operands.clear();
84718334Speter
84818334Speter        Function::arg_iterator TheArg = I2;
84918334Speter        for (ScalarizeTable::iterator It = ArgIndices.begin();
85018334Speter             *It != Operands; ++It, ++TheArg) {
85118334Speter          assert(It != ArgIndices.end() && "GEP not handled??");
85218334Speter        }
85318334Speter
85418334Speter        std::string NewName = I->getName();
85518334Speter        for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
85618334Speter            NewName += "." + utostr(Operands[i]);
85718334Speter        }
85818334Speter        NewName += ".val";
85918334Speter        TheArg->setName(NewName);
86018334Speter
86118334Speter        DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
86218334Speter              << "' of function '" << NF->getName() << "'\n");
86318334Speter
86418334Speter        // All of the uses must be load instructions.  Replace them all with
86518334Speter        // the argument specified by ArgNo.
86618334Speter        while (!GEP->use_empty()) {
86718334Speter          LoadInst *L = cast<LoadInst>(GEP->use_back());
86818334Speter          L->replaceAllUsesWith(TheArg);
86918334Speter          AA.replaceWithNewValue(L, TheArg);
87018334Speter          L->eraseFromParent();
87118334Speter        }
87218334Speter        AA.deleteValue(GEP);
87318334Speter        GEP->eraseFromParent();
87418334Speter      }
87518334Speter    }
87618334Speter
87718334Speter    // Increment I2 past all of the arguments added for this promoted pointer.
87818334Speter    std::advance(I2, ArgIndices.size());
87918334Speter  }
88018334Speter
88118334Speter  // Tell the alias analysis that the old function is about to disappear.
88218334Speter  AA.replaceWithNewValue(F, NF);
88318334Speter
88418334Speter
88518334Speter  NF_CGN->stealCalledFunctionsFrom(CG[F]);
88618334Speter
88718334Speter  // Now that the old function is dead, delete it.  If there is a dangling
88818334Speter  // reference to the CallgraphNode, just leave the dead function around for
88918334Speter  // someone else to nuke.
89018334Speter  CallGraphNode *CGN = CG[F];
89118334Speter  if (CGN->getNumReferences() == 0)
89218334Speter    delete CG.removeFunctionFromModule(CGN);
89318334Speter  else
89418334Speter    F->setLinkage(Function::ExternalLinkage);
89518334Speter
89618334Speter  return NF_CGN;
89718334Speter}
89818334Speter