1//===-- X86AsmParser.cpp - Parse X86 assembly to MCInst instructions ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "MCTargetDesc/X86BaseInfo.h"
11#include "llvm/ADT/APFloat.h"
12#include "llvm/ADT/STLExtras.h"
13#include "llvm/ADT/SmallString.h"
14#include "llvm/ADT/SmallVector.h"
15#include "llvm/ADT/StringSwitch.h"
16#include "llvm/ADT/Twine.h"
17#include "llvm/MC/MCContext.h"
18#include "llvm/MC/MCExpr.h"
19#include "llvm/MC/MCInst.h"
20#include "llvm/MC/MCParser/MCAsmLexer.h"
21#include "llvm/MC/MCParser/MCAsmParser.h"
22#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
23#include "llvm/MC/MCRegisterInfo.h"
24#include "llvm/MC/MCStreamer.h"
25#include "llvm/MC/MCSubtargetInfo.h"
26#include "llvm/MC/MCSymbol.h"
27#include "llvm/MC/MCTargetAsmParser.h"
28#include "llvm/Support/SourceMgr.h"
29#include "llvm/Support/TargetRegistry.h"
30#include "llvm/Support/raw_ostream.h"
31
32using namespace llvm;
33
34namespace {
35struct X86Operand;
36
37static const char OpPrecedence[] = {
38  0, // IC_PLUS
39  0, // IC_MINUS
40  1, // IC_MULTIPLY
41  1, // IC_DIVIDE
42  2, // IC_RPAREN
43  3, // IC_LPAREN
44  0, // IC_IMM
45  0  // IC_REGISTER
46};
47
48class X86AsmParser : public MCTargetAsmParser {
49  MCSubtargetInfo &STI;
50  MCAsmParser &Parser;
51  ParseInstructionInfo *InstInfo;
52private:
53  enum InfixCalculatorTok {
54    IC_PLUS = 0,
55    IC_MINUS,
56    IC_MULTIPLY,
57    IC_DIVIDE,
58    IC_RPAREN,
59    IC_LPAREN,
60    IC_IMM,
61    IC_REGISTER
62  };
63
64  class InfixCalculator {
65    typedef std::pair< InfixCalculatorTok, int64_t > ICToken;
66    SmallVector<InfixCalculatorTok, 4> InfixOperatorStack;
67    SmallVector<ICToken, 4> PostfixStack;
68
69  public:
70    int64_t popOperand() {
71      assert (!PostfixStack.empty() && "Poped an empty stack!");
72      ICToken Op = PostfixStack.pop_back_val();
73      assert ((Op.first == IC_IMM || Op.first == IC_REGISTER)
74              && "Expected and immediate or register!");
75      return Op.second;
76    }
77    void pushOperand(InfixCalculatorTok Op, int64_t Val = 0) {
78      assert ((Op == IC_IMM || Op == IC_REGISTER) &&
79              "Unexpected operand!");
80      PostfixStack.push_back(std::make_pair(Op, Val));
81    }
82
83    void popOperator() { InfixOperatorStack.pop_back(); }
84    void pushOperator(InfixCalculatorTok Op) {
85      // Push the new operator if the stack is empty.
86      if (InfixOperatorStack.empty()) {
87        InfixOperatorStack.push_back(Op);
88        return;
89      }
90
91      // Push the new operator if it has a higher precedence than the operator
92      // on the top of the stack or the operator on the top of the stack is a
93      // left parentheses.
94      unsigned Idx = InfixOperatorStack.size() - 1;
95      InfixCalculatorTok StackOp = InfixOperatorStack[Idx];
96      if (OpPrecedence[Op] > OpPrecedence[StackOp] || StackOp == IC_LPAREN) {
97        InfixOperatorStack.push_back(Op);
98        return;
99      }
100
101      // The operator on the top of the stack has higher precedence than the
102      // new operator.
103      unsigned ParenCount = 0;
104      while (1) {
105        // Nothing to process.
106        if (InfixOperatorStack.empty())
107          break;
108
109        Idx = InfixOperatorStack.size() - 1;
110        StackOp = InfixOperatorStack[Idx];
111        if (!(OpPrecedence[StackOp] >= OpPrecedence[Op] || ParenCount))
112          break;
113
114        // If we have an even parentheses count and we see a left parentheses,
115        // then stop processing.
116        if (!ParenCount && StackOp == IC_LPAREN)
117          break;
118
119        if (StackOp == IC_RPAREN) {
120          ++ParenCount;
121          InfixOperatorStack.pop_back();
122        } else if (StackOp == IC_LPAREN) {
123          --ParenCount;
124          InfixOperatorStack.pop_back();
125        } else {
126          InfixOperatorStack.pop_back();
127          PostfixStack.push_back(std::make_pair(StackOp, 0));
128        }
129      }
130      // Push the new operator.
131      InfixOperatorStack.push_back(Op);
132    }
133    int64_t execute() {
134      // Push any remaining operators onto the postfix stack.
135      while (!InfixOperatorStack.empty()) {
136        InfixCalculatorTok StackOp = InfixOperatorStack.pop_back_val();
137        if (StackOp != IC_LPAREN && StackOp != IC_RPAREN)
138          PostfixStack.push_back(std::make_pair(StackOp, 0));
139      }
140
141      if (PostfixStack.empty())
142        return 0;
143
144      SmallVector<ICToken, 16> OperandStack;
145      for (unsigned i = 0, e = PostfixStack.size(); i != e; ++i) {
146        ICToken Op = PostfixStack[i];
147        if (Op.first == IC_IMM || Op.first == IC_REGISTER) {
148          OperandStack.push_back(Op);
149        } else {
150          assert (OperandStack.size() > 1 && "Too few operands.");
151          int64_t Val;
152          ICToken Op2 = OperandStack.pop_back_val();
153          ICToken Op1 = OperandStack.pop_back_val();
154          switch (Op.first) {
155          default:
156            report_fatal_error("Unexpected operator!");
157            break;
158          case IC_PLUS:
159            Val = Op1.second + Op2.second;
160            OperandStack.push_back(std::make_pair(IC_IMM, Val));
161            break;
162          case IC_MINUS:
163            Val = Op1.second - Op2.second;
164            OperandStack.push_back(std::make_pair(IC_IMM, Val));
165            break;
166          case IC_MULTIPLY:
167            assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
168                    "Multiply operation with an immediate and a register!");
169            Val = Op1.second * Op2.second;
170            OperandStack.push_back(std::make_pair(IC_IMM, Val));
171            break;
172          case IC_DIVIDE:
173            assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
174                    "Divide operation with an immediate and a register!");
175            assert (Op2.second != 0 && "Division by zero!");
176            Val = Op1.second / Op2.second;
177            OperandStack.push_back(std::make_pair(IC_IMM, Val));
178            break;
179          }
180        }
181      }
182      assert (OperandStack.size() == 1 && "Expected a single result.");
183      return OperandStack.pop_back_val().second;
184    }
185  };
186
187  enum IntelExprState {
188    IES_PLUS,
189    IES_MINUS,
190    IES_MULTIPLY,
191    IES_DIVIDE,
192    IES_LBRAC,
193    IES_RBRAC,
194    IES_LPAREN,
195    IES_RPAREN,
196    IES_REGISTER,
197    IES_INTEGER,
198    IES_IDENTIFIER,
199    IES_ERROR
200  };
201
202  class IntelExprStateMachine {
203    IntelExprState State, PrevState;
204    unsigned BaseReg, IndexReg, TmpReg, Scale;
205    int64_t Imm;
206    const MCExpr *Sym;
207    StringRef SymName;
208    bool StopOnLBrac, AddImmPrefix;
209    InfixCalculator IC;
210    InlineAsmIdentifierInfo Info;
211  public:
212    IntelExprStateMachine(int64_t imm, bool stoponlbrac, bool addimmprefix) :
213      State(IES_PLUS), PrevState(IES_ERROR), BaseReg(0), IndexReg(0), TmpReg(0),
214      Scale(1), Imm(imm), Sym(0), StopOnLBrac(stoponlbrac),
215      AddImmPrefix(addimmprefix) { Info.clear(); }
216
217    unsigned getBaseReg() { return BaseReg; }
218    unsigned getIndexReg() { return IndexReg; }
219    unsigned getScale() { return Scale; }
220    const MCExpr *getSym() { return Sym; }
221    StringRef getSymName() { return SymName; }
222    int64_t getImm() { return Imm + IC.execute(); }
223    bool isValidEndState() {
224      return State == IES_RBRAC || State == IES_INTEGER;
225    }
226    bool getStopOnLBrac() { return StopOnLBrac; }
227    bool getAddImmPrefix() { return AddImmPrefix; }
228    bool hadError() { return State == IES_ERROR; }
229
230    InlineAsmIdentifierInfo &getIdentifierInfo() {
231      return Info;
232    }
233
234    void onPlus() {
235      IntelExprState CurrState = State;
236      switch (State) {
237      default:
238        State = IES_ERROR;
239        break;
240      case IES_INTEGER:
241      case IES_RPAREN:
242      case IES_REGISTER:
243        State = IES_PLUS;
244        IC.pushOperator(IC_PLUS);
245        if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) {
246          // If we already have a BaseReg, then assume this is the IndexReg with
247          // a scale of 1.
248          if (!BaseReg) {
249            BaseReg = TmpReg;
250          } else {
251            assert (!IndexReg && "BaseReg/IndexReg already set!");
252            IndexReg = TmpReg;
253            Scale = 1;
254          }
255        }
256        break;
257      }
258      PrevState = CurrState;
259    }
260    void onMinus() {
261      IntelExprState CurrState = State;
262      switch (State) {
263      default:
264        State = IES_ERROR;
265        break;
266      case IES_PLUS:
267      case IES_MULTIPLY:
268      case IES_DIVIDE:
269      case IES_LPAREN:
270      case IES_RPAREN:
271      case IES_LBRAC:
272      case IES_RBRAC:
273      case IES_INTEGER:
274      case IES_REGISTER:
275        State = IES_MINUS;
276        // Only push the minus operator if it is not a unary operator.
277        if (!(CurrState == IES_PLUS || CurrState == IES_MINUS ||
278              CurrState == IES_MULTIPLY || CurrState == IES_DIVIDE ||
279              CurrState == IES_LPAREN || CurrState == IES_LBRAC))
280          IC.pushOperator(IC_MINUS);
281        if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) {
282          // If we already have a BaseReg, then assume this is the IndexReg with
283          // a scale of 1.
284          if (!BaseReg) {
285            BaseReg = TmpReg;
286          } else {
287            assert (!IndexReg && "BaseReg/IndexReg already set!");
288            IndexReg = TmpReg;
289            Scale = 1;
290          }
291        }
292        break;
293      }
294      PrevState = CurrState;
295    }
296    void onRegister(unsigned Reg) {
297      IntelExprState CurrState = State;
298      switch (State) {
299      default:
300        State = IES_ERROR;
301        break;
302      case IES_PLUS:
303      case IES_LPAREN:
304        State = IES_REGISTER;
305        TmpReg = Reg;
306        IC.pushOperand(IC_REGISTER);
307        break;
308      case IES_MULTIPLY:
309        // Index Register - Scale * Register
310        if (PrevState == IES_INTEGER) {
311          assert (!IndexReg && "IndexReg already set!");
312          State = IES_REGISTER;
313          IndexReg = Reg;
314          // Get the scale and replace the 'Scale * Register' with '0'.
315          Scale = IC.popOperand();
316          IC.pushOperand(IC_IMM);
317          IC.popOperator();
318        } else {
319          State = IES_ERROR;
320        }
321        break;
322      }
323      PrevState = CurrState;
324    }
325    void onIdentifierExpr(const MCExpr *SymRef, StringRef SymRefName) {
326      PrevState = State;
327      switch (State) {
328      default:
329        State = IES_ERROR;
330        break;
331      case IES_PLUS:
332      case IES_MINUS:
333        State = IES_INTEGER;
334        Sym = SymRef;
335        SymName = SymRefName;
336        IC.pushOperand(IC_IMM);
337        break;
338      }
339    }
340    void onInteger(int64_t TmpInt) {
341      IntelExprState CurrState = State;
342      switch (State) {
343      default:
344        State = IES_ERROR;
345        break;
346      case IES_PLUS:
347      case IES_MINUS:
348      case IES_DIVIDE:
349      case IES_MULTIPLY:
350      case IES_LPAREN:
351        State = IES_INTEGER;
352        if (PrevState == IES_REGISTER && CurrState == IES_MULTIPLY) {
353          // Index Register - Register * Scale
354          assert (!IndexReg && "IndexReg already set!");
355          IndexReg = TmpReg;
356          Scale = TmpInt;
357          // Get the scale and replace the 'Register * Scale' with '0'.
358          IC.popOperator();
359        } else if ((PrevState == IES_PLUS || PrevState == IES_MINUS ||
360                    PrevState == IES_MULTIPLY || PrevState == IES_DIVIDE ||
361                    PrevState == IES_LPAREN || PrevState == IES_LBRAC) &&
362                   CurrState == IES_MINUS) {
363          // Unary minus.  No need to pop the minus operand because it was never
364          // pushed.
365          IC.pushOperand(IC_IMM, -TmpInt); // Push -Imm.
366        } else {
367          IC.pushOperand(IC_IMM, TmpInt);
368        }
369        break;
370      }
371      PrevState = CurrState;
372    }
373    void onStar() {
374      PrevState = State;
375      switch (State) {
376      default:
377        State = IES_ERROR;
378        break;
379      case IES_INTEGER:
380      case IES_REGISTER:
381      case IES_RPAREN:
382        State = IES_MULTIPLY;
383        IC.pushOperator(IC_MULTIPLY);
384        break;
385      }
386    }
387    void onDivide() {
388      PrevState = State;
389      switch (State) {
390      default:
391        State = IES_ERROR;
392        break;
393      case IES_INTEGER:
394      case IES_RPAREN:
395        State = IES_DIVIDE;
396        IC.pushOperator(IC_DIVIDE);
397        break;
398      }
399    }
400    void onLBrac() {
401      PrevState = State;
402      switch (State) {
403      default:
404        State = IES_ERROR;
405        break;
406      case IES_RBRAC:
407        State = IES_PLUS;
408        IC.pushOperator(IC_PLUS);
409        break;
410      }
411    }
412    void onRBrac() {
413      IntelExprState CurrState = State;
414      switch (State) {
415      default:
416        State = IES_ERROR;
417        break;
418      case IES_INTEGER:
419      case IES_REGISTER:
420      case IES_RPAREN:
421        State = IES_RBRAC;
422        if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) {
423          // If we already have a BaseReg, then assume this is the IndexReg with
424          // a scale of 1.
425          if (!BaseReg) {
426            BaseReg = TmpReg;
427          } else {
428            assert (!IndexReg && "BaseReg/IndexReg already set!");
429            IndexReg = TmpReg;
430            Scale = 1;
431          }
432        }
433        break;
434      }
435      PrevState = CurrState;
436    }
437    void onLParen() {
438      IntelExprState CurrState = State;
439      switch (State) {
440      default:
441        State = IES_ERROR;
442        break;
443      case IES_PLUS:
444      case IES_MINUS:
445      case IES_MULTIPLY:
446      case IES_DIVIDE:
447      case IES_LPAREN:
448        // FIXME: We don't handle this type of unary minus, yet.
449        if ((PrevState == IES_PLUS || PrevState == IES_MINUS ||
450            PrevState == IES_MULTIPLY || PrevState == IES_DIVIDE ||
451            PrevState == IES_LPAREN || PrevState == IES_LBRAC) &&
452            CurrState == IES_MINUS) {
453          State = IES_ERROR;
454          break;
455        }
456        State = IES_LPAREN;
457        IC.pushOperator(IC_LPAREN);
458        break;
459      }
460      PrevState = CurrState;
461    }
462    void onRParen() {
463      PrevState = State;
464      switch (State) {
465      default:
466        State = IES_ERROR;
467        break;
468      case IES_INTEGER:
469      case IES_REGISTER:
470      case IES_RPAREN:
471        State = IES_RPAREN;
472        IC.pushOperator(IC_RPAREN);
473        break;
474      }
475    }
476  };
477
478  MCAsmParser &getParser() const { return Parser; }
479
480  MCAsmLexer &getLexer() const { return Parser.getLexer(); }
481
482  bool Error(SMLoc L, const Twine &Msg,
483             ArrayRef<SMRange> Ranges = None,
484             bool MatchingInlineAsm = false) {
485    if (MatchingInlineAsm) return true;
486    return Parser.Error(L, Msg, Ranges);
487  }
488
489  X86Operand *ErrorOperand(SMLoc Loc, StringRef Msg) {
490    Error(Loc, Msg);
491    return 0;
492  }
493
494  X86Operand *ParseOperand();
495  X86Operand *ParseATTOperand();
496  X86Operand *ParseIntelOperand();
497  X86Operand *ParseIntelOffsetOfOperator();
498  bool ParseIntelDotOperator(const MCExpr *Disp, const MCExpr *&NewDisp);
499  X86Operand *ParseIntelOperator(unsigned OpKind);
500  X86Operand *ParseIntelSegmentOverride(unsigned SegReg, SMLoc Start, unsigned Size);
501  X86Operand *ParseIntelMemOperand(int64_t ImmDisp, SMLoc StartLoc,
502                                   unsigned Size);
503  bool ParseIntelExpression(IntelExprStateMachine &SM, SMLoc &End);
504  X86Operand *ParseIntelBracExpression(unsigned SegReg, SMLoc Start,
505                                       int64_t ImmDisp, unsigned Size);
506  bool ParseIntelIdentifier(const MCExpr *&Val, StringRef &Identifier,
507                            InlineAsmIdentifierInfo &Info,
508                            bool IsUnevaluatedOperand, SMLoc &End);
509
510  X86Operand *ParseMemOperand(unsigned SegReg, SMLoc StartLoc);
511
512  X86Operand *CreateMemForInlineAsm(unsigned SegReg, const MCExpr *Disp,
513                                    unsigned BaseReg, unsigned IndexReg,
514                                    unsigned Scale, SMLoc Start, SMLoc End,
515                                    unsigned Size, StringRef Identifier,
516                                    InlineAsmIdentifierInfo &Info);
517
518  bool ParseDirectiveWord(unsigned Size, SMLoc L);
519  bool ParseDirectiveCode(StringRef IDVal, SMLoc L);
520
521  bool processInstruction(MCInst &Inst,
522                          const SmallVectorImpl<MCParsedAsmOperand*> &Ops);
523
524  bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
525                               SmallVectorImpl<MCParsedAsmOperand*> &Operands,
526                               MCStreamer &Out, unsigned &ErrorInfo,
527                               bool MatchingInlineAsm);
528
529  /// isSrcOp - Returns true if operand is either (%rsi) or %ds:%(rsi)
530  /// in 64bit mode or (%esi) or %es:(%esi) in 32bit mode.
531  bool isSrcOp(X86Operand &Op);
532
533  /// isDstOp - Returns true if operand is either (%rdi) or %es:(%rdi)
534  /// in 64bit mode or (%edi) or %es:(%edi) in 32bit mode.
535  bool isDstOp(X86Operand &Op);
536
537  bool is64BitMode() const {
538    // FIXME: Can tablegen auto-generate this?
539    return (STI.getFeatureBits() & X86::Mode64Bit) != 0;
540  }
541  void SwitchMode() {
542    unsigned FB = ComputeAvailableFeatures(STI.ToggleFeature(X86::Mode64Bit));
543    setAvailableFeatures(FB);
544  }
545
546  bool isParsingIntelSyntax() {
547    return getParser().getAssemblerDialect();
548  }
549
550  /// @name Auto-generated Matcher Functions
551  /// {
552
553#define GET_ASSEMBLER_HEADER
554#include "X86GenAsmMatcher.inc"
555
556  /// }
557
558public:
559  X86AsmParser(MCSubtargetInfo &sti, MCAsmParser &parser,
560               const MCInstrInfo &MII)
561      : MCTargetAsmParser(), STI(sti), Parser(parser), InstInfo(0) {
562
563    // Initialize the set of available features.
564    setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
565  }
566  virtual bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc);
567
568  virtual bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
569                                SMLoc NameLoc,
570                                SmallVectorImpl<MCParsedAsmOperand*> &Operands);
571
572  virtual bool ParseDirective(AsmToken DirectiveID);
573};
574} // end anonymous namespace
575
576/// @name Auto-generated Match Functions
577/// {
578
579static unsigned MatchRegisterName(StringRef Name);
580
581/// }
582
583static bool isImmSExti16i8Value(uint64_t Value) {
584  return ((                                  Value <= 0x000000000000007FULL)||
585          (0x000000000000FF80ULL <= Value && Value <= 0x000000000000FFFFULL)||
586          (0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
587}
588
589static bool isImmSExti32i8Value(uint64_t Value) {
590  return ((                                  Value <= 0x000000000000007FULL)||
591          (0x00000000FFFFFF80ULL <= Value && Value <= 0x00000000FFFFFFFFULL)||
592          (0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
593}
594
595static bool isImmZExtu32u8Value(uint64_t Value) {
596    return (Value <= 0x00000000000000FFULL);
597}
598
599static bool isImmSExti64i8Value(uint64_t Value) {
600  return ((                                  Value <= 0x000000000000007FULL)||
601          (0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
602}
603
604static bool isImmSExti64i32Value(uint64_t Value) {
605  return ((                                  Value <= 0x000000007FFFFFFFULL)||
606          (0xFFFFFFFF80000000ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL));
607}
608namespace {
609
610/// X86Operand - Instances of this class represent a parsed X86 machine
611/// instruction.
612struct X86Operand : public MCParsedAsmOperand {
613  enum KindTy {
614    Token,
615    Register,
616    Immediate,
617    Memory
618  } Kind;
619
620  SMLoc StartLoc, EndLoc;
621  SMLoc OffsetOfLoc;
622  StringRef SymName;
623  void *OpDecl;
624  bool AddressOf;
625
626  struct TokOp {
627    const char *Data;
628    unsigned Length;
629  };
630
631  struct RegOp {
632    unsigned RegNo;
633  };
634
635  struct ImmOp {
636    const MCExpr *Val;
637  };
638
639  struct MemOp {
640    unsigned SegReg;
641    const MCExpr *Disp;
642    unsigned BaseReg;
643    unsigned IndexReg;
644    unsigned Scale;
645    unsigned Size;
646  };
647
648  union {
649    struct TokOp Tok;
650    struct RegOp Reg;
651    struct ImmOp Imm;
652    struct MemOp Mem;
653  };
654
655  X86Operand(KindTy K, SMLoc Start, SMLoc End)
656    : Kind(K), StartLoc(Start), EndLoc(End) {}
657
658  StringRef getSymName() { return SymName; }
659  void *getOpDecl() { return OpDecl; }
660
661  /// getStartLoc - Get the location of the first token of this operand.
662  SMLoc getStartLoc() const { return StartLoc; }
663  /// getEndLoc - Get the location of the last token of this operand.
664  SMLoc getEndLoc() const { return EndLoc; }
665  /// getLocRange - Get the range between the first and last token of this
666  /// operand.
667  SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
668  /// getOffsetOfLoc - Get the location of the offset operator.
669  SMLoc getOffsetOfLoc() const { return OffsetOfLoc; }
670
671  virtual void print(raw_ostream &OS) const {}
672
673  StringRef getToken() const {
674    assert(Kind == Token && "Invalid access!");
675    return StringRef(Tok.Data, Tok.Length);
676  }
677  void setTokenValue(StringRef Value) {
678    assert(Kind == Token && "Invalid access!");
679    Tok.Data = Value.data();
680    Tok.Length = Value.size();
681  }
682
683  unsigned getReg() const {
684    assert(Kind == Register && "Invalid access!");
685    return Reg.RegNo;
686  }
687
688  const MCExpr *getImm() const {
689    assert(Kind == Immediate && "Invalid access!");
690    return Imm.Val;
691  }
692
693  const MCExpr *getMemDisp() const {
694    assert(Kind == Memory && "Invalid access!");
695    return Mem.Disp;
696  }
697  unsigned getMemSegReg() const {
698    assert(Kind == Memory && "Invalid access!");
699    return Mem.SegReg;
700  }
701  unsigned getMemBaseReg() const {
702    assert(Kind == Memory && "Invalid access!");
703    return Mem.BaseReg;
704  }
705  unsigned getMemIndexReg() const {
706    assert(Kind == Memory && "Invalid access!");
707    return Mem.IndexReg;
708  }
709  unsigned getMemScale() const {
710    assert(Kind == Memory && "Invalid access!");
711    return Mem.Scale;
712  }
713
714  bool isToken() const {return Kind == Token; }
715
716  bool isImm() const { return Kind == Immediate; }
717
718  bool isImmSExti16i8() const {
719    if (!isImm())
720      return false;
721
722    // If this isn't a constant expr, just assume it fits and let relaxation
723    // handle it.
724    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
725    if (!CE)
726      return true;
727
728    // Otherwise, check the value is in a range that makes sense for this
729    // extension.
730    return isImmSExti16i8Value(CE->getValue());
731  }
732  bool isImmSExti32i8() const {
733    if (!isImm())
734      return false;
735
736    // If this isn't a constant expr, just assume it fits and let relaxation
737    // handle it.
738    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
739    if (!CE)
740      return true;
741
742    // Otherwise, check the value is in a range that makes sense for this
743    // extension.
744    return isImmSExti32i8Value(CE->getValue());
745  }
746  bool isImmZExtu32u8() const {
747    if (!isImm())
748      return false;
749
750    // If this isn't a constant expr, just assume it fits and let relaxation
751    // handle it.
752    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
753    if (!CE)
754      return true;
755
756    // Otherwise, check the value is in a range that makes sense for this
757    // extension.
758    return isImmZExtu32u8Value(CE->getValue());
759  }
760  bool isImmSExti64i8() const {
761    if (!isImm())
762      return false;
763
764    // If this isn't a constant expr, just assume it fits and let relaxation
765    // handle it.
766    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
767    if (!CE)
768      return true;
769
770    // Otherwise, check the value is in a range that makes sense for this
771    // extension.
772    return isImmSExti64i8Value(CE->getValue());
773  }
774  bool isImmSExti64i32() const {
775    if (!isImm())
776      return false;
777
778    // If this isn't a constant expr, just assume it fits and let relaxation
779    // handle it.
780    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
781    if (!CE)
782      return true;
783
784    // Otherwise, check the value is in a range that makes sense for this
785    // extension.
786    return isImmSExti64i32Value(CE->getValue());
787  }
788
789  bool isOffsetOf() const {
790    return OffsetOfLoc.getPointer();
791  }
792
793  bool needAddressOf() const {
794    return AddressOf;
795  }
796
797  bool isMem() const { return Kind == Memory; }
798  bool isMem8() const {
799    return Kind == Memory && (!Mem.Size || Mem.Size == 8);
800  }
801  bool isMem16() const {
802    return Kind == Memory && (!Mem.Size || Mem.Size == 16);
803  }
804  bool isMem32() const {
805    return Kind == Memory && (!Mem.Size || Mem.Size == 32);
806  }
807  bool isMem64() const {
808    return Kind == Memory && (!Mem.Size || Mem.Size == 64);
809  }
810  bool isMem80() const {
811    return Kind == Memory && (!Mem.Size || Mem.Size == 80);
812  }
813  bool isMem128() const {
814    return Kind == Memory && (!Mem.Size || Mem.Size == 128);
815  }
816  bool isMem256() const {
817    return Kind == Memory && (!Mem.Size || Mem.Size == 256);
818  }
819  bool isMem512() const {
820    return Kind == Memory && (!Mem.Size || Mem.Size == 512);
821  }
822
823  bool isMemVX32() const {
824    return Kind == Memory && (!Mem.Size || Mem.Size == 32) &&
825      getMemIndexReg() >= X86::XMM0 && getMemIndexReg() <= X86::XMM15;
826  }
827  bool isMemVY32() const {
828    return Kind == Memory && (!Mem.Size || Mem.Size == 32) &&
829      getMemIndexReg() >= X86::YMM0 && getMemIndexReg() <= X86::YMM15;
830  }
831  bool isMemVX64() const {
832    return Kind == Memory && (!Mem.Size || Mem.Size == 64) &&
833      getMemIndexReg() >= X86::XMM0 && getMemIndexReg() <= X86::XMM15;
834  }
835  bool isMemVY64() const {
836    return Kind == Memory && (!Mem.Size || Mem.Size == 64) &&
837      getMemIndexReg() >= X86::YMM0 && getMemIndexReg() <= X86::YMM15;
838  }
839  bool isMemVZ32() const {
840    return Kind == Memory && (!Mem.Size || Mem.Size == 32) &&
841      getMemIndexReg() >= X86::ZMM0 && getMemIndexReg() <= X86::ZMM31;
842  }
843  bool isMemVZ64() const {
844    return Kind == Memory && (!Mem.Size || Mem.Size == 64) &&
845      getMemIndexReg() >= X86::ZMM0 && getMemIndexReg() <= X86::ZMM31;
846  }
847
848  bool isAbsMem() const {
849    return Kind == Memory && !getMemSegReg() && !getMemBaseReg() &&
850      !getMemIndexReg() && getMemScale() == 1;
851  }
852
853  bool isMemOffs8() const {
854    return Kind == Memory && !getMemSegReg() && !getMemBaseReg() &&
855      !getMemIndexReg() && getMemScale() == 1 && (!Mem.Size || Mem.Size == 8);
856  }
857  bool isMemOffs16() const {
858    return Kind == Memory && !getMemSegReg() && !getMemBaseReg() &&
859      !getMemIndexReg() && getMemScale() == 1 && (!Mem.Size || Mem.Size == 16);
860  }
861  bool isMemOffs32() const {
862    return Kind == Memory && !getMemSegReg() && !getMemBaseReg() &&
863      !getMemIndexReg() && getMemScale() == 1 && (!Mem.Size || Mem.Size == 32);
864  }
865  bool isMemOffs64() const {
866    return Kind == Memory && !getMemSegReg() && !getMemBaseReg() &&
867      !getMemIndexReg() && getMemScale() == 1 && (!Mem.Size || Mem.Size == 64);
868  }
869
870  bool isReg() const { return Kind == Register; }
871
872  bool isGR32orGR64() const {
873    return Kind == Register &&
874      (X86MCRegisterClasses[X86::GR32RegClassID].contains(getReg()) ||
875      X86MCRegisterClasses[X86::GR64RegClassID].contains(getReg()));
876  }
877
878  void addExpr(MCInst &Inst, const MCExpr *Expr) const {
879    // Add as immediates when possible.
880    if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
881      Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
882    else
883      Inst.addOperand(MCOperand::CreateExpr(Expr));
884  }
885
886  void addRegOperands(MCInst &Inst, unsigned N) const {
887    assert(N == 1 && "Invalid number of operands!");
888    Inst.addOperand(MCOperand::CreateReg(getReg()));
889  }
890
891  static unsigned getGR32FromGR64(unsigned RegNo) {
892    switch (RegNo) {
893    default: llvm_unreachable("Unexpected register");
894    case X86::RAX: return X86::EAX;
895    case X86::RCX: return X86::ECX;
896    case X86::RDX: return X86::EDX;
897    case X86::RBX: return X86::EBX;
898    case X86::RBP: return X86::EBP;
899    case X86::RSP: return X86::ESP;
900    case X86::RSI: return X86::ESI;
901    case X86::RDI: return X86::EDI;
902    case X86::R8: return X86::R8D;
903    case X86::R9: return X86::R9D;
904    case X86::R10: return X86::R10D;
905    case X86::R11: return X86::R11D;
906    case X86::R12: return X86::R12D;
907    case X86::R13: return X86::R13D;
908    case X86::R14: return X86::R14D;
909    case X86::R15: return X86::R15D;
910    case X86::RIP: return X86::EIP;
911    }
912  }
913
914  void addGR32orGR64Operands(MCInst &Inst, unsigned N) const {
915    assert(N == 1 && "Invalid number of operands!");
916    unsigned RegNo = getReg();
917    if (X86MCRegisterClasses[X86::GR64RegClassID].contains(RegNo))
918      RegNo = getGR32FromGR64(RegNo);
919    Inst.addOperand(MCOperand::CreateReg(RegNo));
920  }
921
922  void addImmOperands(MCInst &Inst, unsigned N) const {
923    assert(N == 1 && "Invalid number of operands!");
924    addExpr(Inst, getImm());
925  }
926
927  void addMemOperands(MCInst &Inst, unsigned N) const {
928    assert((N == 5) && "Invalid number of operands!");
929    Inst.addOperand(MCOperand::CreateReg(getMemBaseReg()));
930    Inst.addOperand(MCOperand::CreateImm(getMemScale()));
931    Inst.addOperand(MCOperand::CreateReg(getMemIndexReg()));
932    addExpr(Inst, getMemDisp());
933    Inst.addOperand(MCOperand::CreateReg(getMemSegReg()));
934  }
935
936  void addAbsMemOperands(MCInst &Inst, unsigned N) const {
937    assert((N == 1) && "Invalid number of operands!");
938    // Add as immediates when possible.
939    if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getMemDisp()))
940      Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
941    else
942      Inst.addOperand(MCOperand::CreateExpr(getMemDisp()));
943  }
944
945  void addMemOffsOperands(MCInst &Inst, unsigned N) const {
946    assert((N == 1) && "Invalid number of operands!");
947    // Add as immediates when possible.
948    if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getMemDisp()))
949      Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
950    else
951      Inst.addOperand(MCOperand::CreateExpr(getMemDisp()));
952  }
953
954  static X86Operand *CreateToken(StringRef Str, SMLoc Loc) {
955    SMLoc EndLoc = SMLoc::getFromPointer(Loc.getPointer() + Str.size());
956    X86Operand *Res = new X86Operand(Token, Loc, EndLoc);
957    Res->Tok.Data = Str.data();
958    Res->Tok.Length = Str.size();
959    return Res;
960  }
961
962  static X86Operand *CreateReg(unsigned RegNo, SMLoc StartLoc, SMLoc EndLoc,
963                               bool AddressOf = false,
964                               SMLoc OffsetOfLoc = SMLoc(),
965                               StringRef SymName = StringRef(),
966                               void *OpDecl = 0) {
967    X86Operand *Res = new X86Operand(Register, StartLoc, EndLoc);
968    Res->Reg.RegNo = RegNo;
969    Res->AddressOf = AddressOf;
970    Res->OffsetOfLoc = OffsetOfLoc;
971    Res->SymName = SymName;
972    Res->OpDecl = OpDecl;
973    return Res;
974  }
975
976  static X86Operand *CreateImm(const MCExpr *Val, SMLoc StartLoc, SMLoc EndLoc){
977    X86Operand *Res = new X86Operand(Immediate, StartLoc, EndLoc);
978    Res->Imm.Val = Val;
979    return Res;
980  }
981
982  /// Create an absolute memory operand.
983  static X86Operand *CreateMem(const MCExpr *Disp, SMLoc StartLoc, SMLoc EndLoc,
984                               unsigned Size = 0, StringRef SymName = StringRef(),
985                               void *OpDecl = 0) {
986    X86Operand *Res = new X86Operand(Memory, StartLoc, EndLoc);
987    Res->Mem.SegReg   = 0;
988    Res->Mem.Disp     = Disp;
989    Res->Mem.BaseReg  = 0;
990    Res->Mem.IndexReg = 0;
991    Res->Mem.Scale    = 1;
992    Res->Mem.Size     = Size;
993    Res->SymName      = SymName;
994    Res->OpDecl       = OpDecl;
995    Res->AddressOf    = false;
996    return Res;
997  }
998
999  /// Create a generalized memory operand.
1000  static X86Operand *CreateMem(unsigned SegReg, const MCExpr *Disp,
1001                               unsigned BaseReg, unsigned IndexReg,
1002                               unsigned Scale, SMLoc StartLoc, SMLoc EndLoc,
1003                               unsigned Size = 0,
1004                               StringRef SymName = StringRef(),
1005                               void *OpDecl = 0) {
1006    // We should never just have a displacement, that should be parsed as an
1007    // absolute memory operand.
1008    assert((SegReg || BaseReg || IndexReg) && "Invalid memory operand!");
1009
1010    // The scale should always be one of {1,2,4,8}.
1011    assert(((Scale == 1 || Scale == 2 || Scale == 4 || Scale == 8)) &&
1012           "Invalid scale!");
1013    X86Operand *Res = new X86Operand(Memory, StartLoc, EndLoc);
1014    Res->Mem.SegReg   = SegReg;
1015    Res->Mem.Disp     = Disp;
1016    Res->Mem.BaseReg  = BaseReg;
1017    Res->Mem.IndexReg = IndexReg;
1018    Res->Mem.Scale    = Scale;
1019    Res->Mem.Size     = Size;
1020    Res->SymName      = SymName;
1021    Res->OpDecl       = OpDecl;
1022    Res->AddressOf    = false;
1023    return Res;
1024  }
1025};
1026
1027} // end anonymous namespace.
1028
1029bool X86AsmParser::isSrcOp(X86Operand &Op) {
1030  unsigned basereg = is64BitMode() ? X86::RSI : X86::ESI;
1031
1032  return (Op.isMem() &&
1033    (Op.Mem.SegReg == 0 || Op.Mem.SegReg == X86::DS) &&
1034    isa<MCConstantExpr>(Op.Mem.Disp) &&
1035    cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 &&
1036    Op.Mem.BaseReg == basereg && Op.Mem.IndexReg == 0);
1037}
1038
1039bool X86AsmParser::isDstOp(X86Operand &Op) {
1040  unsigned basereg = is64BitMode() ? X86::RDI : X86::EDI;
1041
1042  return Op.isMem() &&
1043    (Op.Mem.SegReg == 0 || Op.Mem.SegReg == X86::ES) &&
1044    isa<MCConstantExpr>(Op.Mem.Disp) &&
1045    cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 &&
1046    Op.Mem.BaseReg == basereg && Op.Mem.IndexReg == 0;
1047}
1048
1049bool X86AsmParser::ParseRegister(unsigned &RegNo,
1050                                 SMLoc &StartLoc, SMLoc &EndLoc) {
1051  RegNo = 0;
1052  const AsmToken &PercentTok = Parser.getTok();
1053  StartLoc = PercentTok.getLoc();
1054
1055  // If we encounter a %, ignore it. This code handles registers with and
1056  // without the prefix, unprefixed registers can occur in cfi directives.
1057  if (!isParsingIntelSyntax() && PercentTok.is(AsmToken::Percent))
1058    Parser.Lex(); // Eat percent token.
1059
1060  const AsmToken &Tok = Parser.getTok();
1061  EndLoc = Tok.getEndLoc();
1062
1063  if (Tok.isNot(AsmToken::Identifier)) {
1064    if (isParsingIntelSyntax()) return true;
1065    return Error(StartLoc, "invalid register name",
1066                 SMRange(StartLoc, EndLoc));
1067  }
1068
1069  RegNo = MatchRegisterName(Tok.getString());
1070
1071  // If the match failed, try the register name as lowercase.
1072  if (RegNo == 0)
1073    RegNo = MatchRegisterName(Tok.getString().lower());
1074
1075  if (!is64BitMode()) {
1076    // FIXME: This should be done using Requires<In32BitMode> and
1077    // Requires<In64BitMode> so "eiz" usage in 64-bit instructions can be also
1078    // checked.
1079    // FIXME: Check AH, CH, DH, BH cannot be used in an instruction requiring a
1080    // REX prefix.
1081    if (RegNo == X86::RIZ ||
1082        X86MCRegisterClasses[X86::GR64RegClassID].contains(RegNo) ||
1083        X86II::isX86_64NonExtLowByteReg(RegNo) ||
1084        X86II::isX86_64ExtendedReg(RegNo))
1085      return Error(StartLoc, "register %"
1086                   + Tok.getString() + " is only available in 64-bit mode",
1087                   SMRange(StartLoc, EndLoc));
1088  }
1089
1090  // Parse "%st" as "%st(0)" and "%st(1)", which is multiple tokens.
1091  if (RegNo == 0 && (Tok.getString() == "st" || Tok.getString() == "ST")) {
1092    RegNo = X86::ST0;
1093    Parser.Lex(); // Eat 'st'
1094
1095    // Check to see if we have '(4)' after %st.
1096    if (getLexer().isNot(AsmToken::LParen))
1097      return false;
1098    // Lex the paren.
1099    getParser().Lex();
1100
1101    const AsmToken &IntTok = Parser.getTok();
1102    if (IntTok.isNot(AsmToken::Integer))
1103      return Error(IntTok.getLoc(), "expected stack index");
1104    switch (IntTok.getIntVal()) {
1105    case 0: RegNo = X86::ST0; break;
1106    case 1: RegNo = X86::ST1; break;
1107    case 2: RegNo = X86::ST2; break;
1108    case 3: RegNo = X86::ST3; break;
1109    case 4: RegNo = X86::ST4; break;
1110    case 5: RegNo = X86::ST5; break;
1111    case 6: RegNo = X86::ST6; break;
1112    case 7: RegNo = X86::ST7; break;
1113    default: return Error(IntTok.getLoc(), "invalid stack index");
1114    }
1115
1116    if (getParser().Lex().isNot(AsmToken::RParen))
1117      return Error(Parser.getTok().getLoc(), "expected ')'");
1118
1119    EndLoc = Parser.getTok().getEndLoc();
1120    Parser.Lex(); // Eat ')'
1121    return false;
1122  }
1123
1124  EndLoc = Parser.getTok().getEndLoc();
1125
1126  // If this is "db[0-7]", match it as an alias
1127  // for dr[0-7].
1128  if (RegNo == 0 && Tok.getString().size() == 3 &&
1129      Tok.getString().startswith("db")) {
1130    switch (Tok.getString()[2]) {
1131    case '0': RegNo = X86::DR0; break;
1132    case '1': RegNo = X86::DR1; break;
1133    case '2': RegNo = X86::DR2; break;
1134    case '3': RegNo = X86::DR3; break;
1135    case '4': RegNo = X86::DR4; break;
1136    case '5': RegNo = X86::DR5; break;
1137    case '6': RegNo = X86::DR6; break;
1138    case '7': RegNo = X86::DR7; break;
1139    }
1140
1141    if (RegNo != 0) {
1142      EndLoc = Parser.getTok().getEndLoc();
1143      Parser.Lex(); // Eat it.
1144      return false;
1145    }
1146  }
1147
1148  if (RegNo == 0) {
1149    if (isParsingIntelSyntax()) return true;
1150    return Error(StartLoc, "invalid register name",
1151                 SMRange(StartLoc, EndLoc));
1152  }
1153
1154  Parser.Lex(); // Eat identifier token.
1155  return false;
1156}
1157
1158X86Operand *X86AsmParser::ParseOperand() {
1159  if (isParsingIntelSyntax())
1160    return ParseIntelOperand();
1161  return ParseATTOperand();
1162}
1163
1164/// getIntelMemOperandSize - Return intel memory operand size.
1165static unsigned getIntelMemOperandSize(StringRef OpStr) {
1166  unsigned Size = StringSwitch<unsigned>(OpStr)
1167    .Cases("BYTE", "byte", 8)
1168    .Cases("WORD", "word", 16)
1169    .Cases("DWORD", "dword", 32)
1170    .Cases("QWORD", "qword", 64)
1171    .Cases("XWORD", "xword", 80)
1172    .Cases("XMMWORD", "xmmword", 128)
1173    .Cases("YMMWORD", "ymmword", 256)
1174    .Default(0);
1175  return Size;
1176}
1177
1178X86Operand *
1179X86AsmParser::CreateMemForInlineAsm(unsigned SegReg, const MCExpr *Disp,
1180                                    unsigned BaseReg, unsigned IndexReg,
1181                                    unsigned Scale, SMLoc Start, SMLoc End,
1182                                    unsigned Size, StringRef Identifier,
1183                                    InlineAsmIdentifierInfo &Info){
1184  // If this is not a VarDecl then assume it is a FuncDecl or some other label
1185  // reference.  We need an 'r' constraint here, so we need to create register
1186  // operand to ensure proper matching.  Just pick a GPR based on the size of
1187  // a pointer.
1188  if (isa<MCSymbolRefExpr>(Disp) && !Info.IsVarDecl) {
1189    unsigned RegNo = is64BitMode() ? X86::RBX : X86::EBX;
1190    return X86Operand::CreateReg(RegNo, Start, End, /*AddressOf=*/true,
1191                                 SMLoc(), Identifier, Info.OpDecl);
1192  }
1193
1194  // We either have a direct symbol reference, or an offset from a symbol.  The
1195  // parser always puts the symbol on the LHS, so look there for size
1196  // calculation purposes.
1197  const MCBinaryExpr *BinOp = dyn_cast<MCBinaryExpr>(Disp);
1198  bool IsSymRef =
1199      isa<MCSymbolRefExpr>(BinOp ? BinOp->getLHS() : Disp);
1200  if (IsSymRef) {
1201    if (!Size) {
1202      Size = Info.Type * 8; // Size is in terms of bits in this context.
1203      if (Size)
1204        InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_SizeDirective, Start,
1205                                                    /*Len=*/0, Size));
1206    }
1207  }
1208
1209  // When parsing inline assembly we set the base register to a non-zero value
1210  // if we don't know the actual value at this time.  This is necessary to
1211  // get the matching correct in some cases.
1212  BaseReg = BaseReg ? BaseReg : 1;
1213  return X86Operand::CreateMem(SegReg, Disp, BaseReg, IndexReg, Scale, Start,
1214                               End, Size, Identifier, Info.OpDecl);
1215}
1216
1217static void
1218RewriteIntelBracExpression(SmallVectorImpl<AsmRewrite> *AsmRewrites,
1219                           StringRef SymName, int64_t ImmDisp,
1220                           int64_t FinalImmDisp, SMLoc &BracLoc,
1221                           SMLoc &StartInBrac, SMLoc &End) {
1222  // Remove the '[' and ']' from the IR string.
1223  AsmRewrites->push_back(AsmRewrite(AOK_Skip, BracLoc, 1));
1224  AsmRewrites->push_back(AsmRewrite(AOK_Skip, End, 1));
1225
1226  // If ImmDisp is non-zero, then we parsed a displacement before the
1227  // bracketed expression (i.e., ImmDisp [ BaseReg + Scale*IndexReg + Disp])
1228  // If ImmDisp doesn't match the displacement computed by the state machine
1229  // then we have an additional displacement in the bracketed expression.
1230  if (ImmDisp != FinalImmDisp) {
1231    if (ImmDisp) {
1232      // We have an immediate displacement before the bracketed expression.
1233      // Adjust this to match the final immediate displacement.
1234      bool Found = false;
1235      for (SmallVectorImpl<AsmRewrite>::iterator I = AsmRewrites->begin(),
1236             E = AsmRewrites->end(); I != E; ++I) {
1237        if ((*I).Loc.getPointer() > BracLoc.getPointer())
1238          continue;
1239        if ((*I).Kind == AOK_ImmPrefix || (*I).Kind == AOK_Imm) {
1240          assert (!Found && "ImmDisp already rewritten.");
1241          (*I).Kind = AOK_Imm;
1242          (*I).Len = BracLoc.getPointer() - (*I).Loc.getPointer();
1243          (*I).Val = FinalImmDisp;
1244          Found = true;
1245          break;
1246        }
1247      }
1248      assert (Found && "Unable to rewrite ImmDisp.");
1249      (void)Found;
1250    } else {
1251      // We have a symbolic and an immediate displacement, but no displacement
1252      // before the bracketed expression.  Put the immediate displacement
1253      // before the bracketed expression.
1254      AsmRewrites->push_back(AsmRewrite(AOK_Imm, BracLoc, 0, FinalImmDisp));
1255    }
1256  }
1257  // Remove all the ImmPrefix rewrites within the brackets.
1258  for (SmallVectorImpl<AsmRewrite>::iterator I = AsmRewrites->begin(),
1259         E = AsmRewrites->end(); I != E; ++I) {
1260    if ((*I).Loc.getPointer() < StartInBrac.getPointer())
1261      continue;
1262    if ((*I).Kind == AOK_ImmPrefix)
1263      (*I).Kind = AOK_Delete;
1264  }
1265  const char *SymLocPtr = SymName.data();
1266  // Skip everything before the symbol.
1267  if (unsigned Len = SymLocPtr - StartInBrac.getPointer()) {
1268    assert(Len > 0 && "Expected a non-negative length.");
1269    AsmRewrites->push_back(AsmRewrite(AOK_Skip, StartInBrac, Len));
1270  }
1271  // Skip everything after the symbol.
1272  if (unsigned Len = End.getPointer() - (SymLocPtr + SymName.size())) {
1273    SMLoc Loc = SMLoc::getFromPointer(SymLocPtr + SymName.size());
1274    assert(Len > 0 && "Expected a non-negative length.");
1275    AsmRewrites->push_back(AsmRewrite(AOK_Skip, Loc, Len));
1276  }
1277}
1278
1279bool X86AsmParser::ParseIntelExpression(IntelExprStateMachine &SM, SMLoc &End) {
1280  const AsmToken &Tok = Parser.getTok();
1281
1282  bool Done = false;
1283  while (!Done) {
1284    bool UpdateLocLex = true;
1285
1286    // The period in the dot operator (e.g., [ebx].foo.bar) is parsed as an
1287    // identifier.  Don't try an parse it as a register.
1288    if (Tok.getString().startswith("."))
1289      break;
1290
1291    // If we're parsing an immediate expression, we don't expect a '['.
1292    if (SM.getStopOnLBrac() && getLexer().getKind() == AsmToken::LBrac)
1293      break;
1294
1295    switch (getLexer().getKind()) {
1296    default: {
1297      if (SM.isValidEndState()) {
1298        Done = true;
1299        break;
1300      }
1301      return Error(Tok.getLoc(), "unknown token in expression");
1302    }
1303    case AsmToken::EndOfStatement: {
1304      Done = true;
1305      break;
1306    }
1307    case AsmToken::Identifier: {
1308      // This could be a register or a symbolic displacement.
1309      unsigned TmpReg;
1310      const MCExpr *Val;
1311      SMLoc IdentLoc = Tok.getLoc();
1312      StringRef Identifier = Tok.getString();
1313      if(!ParseRegister(TmpReg, IdentLoc, End)) {
1314        SM.onRegister(TmpReg);
1315        UpdateLocLex = false;
1316        break;
1317      } else {
1318        if (!isParsingInlineAsm()) {
1319          if (getParser().parsePrimaryExpr(Val, End))
1320            return Error(Tok.getLoc(), "Unexpected identifier!");
1321        } else {
1322          // This is a dot operator, not an adjacent identifier.
1323          if (Identifier.find('.') != StringRef::npos) {
1324            return false;
1325          } else {
1326            InlineAsmIdentifierInfo &Info = SM.getIdentifierInfo();
1327            if (ParseIntelIdentifier(Val, Identifier, Info,
1328                                     /*Unevaluated=*/false, End))
1329              return true;
1330          }
1331        }
1332        SM.onIdentifierExpr(Val, Identifier);
1333        UpdateLocLex = false;
1334        break;
1335      }
1336      return Error(Tok.getLoc(), "Unexpected identifier!");
1337    }
1338    case AsmToken::Integer:
1339      if (isParsingInlineAsm() && SM.getAddImmPrefix())
1340        InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_ImmPrefix,
1341                                                    Tok.getLoc()));
1342      SM.onInteger(Tok.getIntVal());
1343      break;
1344    case AsmToken::Plus:    SM.onPlus(); break;
1345    case AsmToken::Minus:   SM.onMinus(); break;
1346    case AsmToken::Star:    SM.onStar(); break;
1347    case AsmToken::Slash:   SM.onDivide(); break;
1348    case AsmToken::LBrac:   SM.onLBrac(); break;
1349    case AsmToken::RBrac:   SM.onRBrac(); break;
1350    case AsmToken::LParen:  SM.onLParen(); break;
1351    case AsmToken::RParen:  SM.onRParen(); break;
1352    }
1353    if (SM.hadError())
1354      return Error(Tok.getLoc(), "unknown token in expression");
1355
1356    if (!Done && UpdateLocLex) {
1357      End = Tok.getLoc();
1358      Parser.Lex(); // Consume the token.
1359    }
1360  }
1361  return false;
1362}
1363
1364X86Operand *X86AsmParser::ParseIntelBracExpression(unsigned SegReg, SMLoc Start,
1365                                                   int64_t ImmDisp,
1366                                                   unsigned Size) {
1367  const AsmToken &Tok = Parser.getTok();
1368  SMLoc BracLoc = Tok.getLoc(), End = Tok.getEndLoc();
1369  if (getLexer().isNot(AsmToken::LBrac))
1370    return ErrorOperand(BracLoc, "Expected '[' token!");
1371  Parser.Lex(); // Eat '['
1372
1373  SMLoc StartInBrac = Tok.getLoc();
1374  // Parse [ Symbol + ImmDisp ] and [ BaseReg + Scale*IndexReg + ImmDisp ].  We
1375  // may have already parsed an immediate displacement before the bracketed
1376  // expression.
1377  IntelExprStateMachine SM(ImmDisp, /*StopOnLBrac=*/false, /*AddImmPrefix=*/true);
1378  if (ParseIntelExpression(SM, End))
1379    return 0;
1380
1381  const MCExpr *Disp = 0;
1382  if (const MCExpr *Sym = SM.getSym()) {
1383    // A symbolic displacement.
1384    Disp = Sym;
1385    if (isParsingInlineAsm())
1386      RewriteIntelBracExpression(InstInfo->AsmRewrites, SM.getSymName(),
1387                                 ImmDisp, SM.getImm(), BracLoc, StartInBrac,
1388                                 End);
1389  }
1390
1391  if (SM.getImm() || !Disp) {
1392    const MCExpr *Imm = MCConstantExpr::Create(SM.getImm(), getContext());
1393    if (Disp)
1394      Disp = MCBinaryExpr::CreateAdd(Disp, Imm, getContext());
1395    else
1396      Disp = Imm;  // An immediate displacement only.
1397  }
1398
1399  // Parse struct field access.  Intel requires a dot, but MSVC doesn't.  MSVC
1400  // will in fact do global lookup the field name inside all global typedefs,
1401  // but we don't emulate that.
1402  if (Tok.getString().find('.') != StringRef::npos) {
1403    const MCExpr *NewDisp;
1404    if (ParseIntelDotOperator(Disp, NewDisp))
1405      return 0;
1406
1407    End = Tok.getEndLoc();
1408    Parser.Lex();  // Eat the field.
1409    Disp = NewDisp;
1410  }
1411
1412  int BaseReg = SM.getBaseReg();
1413  int IndexReg = SM.getIndexReg();
1414  int Scale = SM.getScale();
1415  if (!isParsingInlineAsm()) {
1416    // handle [-42]
1417    if (!BaseReg && !IndexReg) {
1418      if (!SegReg)
1419        return X86Operand::CreateMem(Disp, Start, End, Size);
1420      else
1421        return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, Start, End, Size);
1422    }
1423    return X86Operand::CreateMem(SegReg, Disp, BaseReg, IndexReg, Scale, Start,
1424                                 End, Size);
1425  }
1426
1427  InlineAsmIdentifierInfo &Info = SM.getIdentifierInfo();
1428  return CreateMemForInlineAsm(SegReg, Disp, BaseReg, IndexReg, Scale, Start,
1429                               End, Size, SM.getSymName(), Info);
1430}
1431
1432// Inline assembly may use variable names with namespace alias qualifiers.
1433bool X86AsmParser::ParseIntelIdentifier(const MCExpr *&Val,
1434                                        StringRef &Identifier,
1435                                        InlineAsmIdentifierInfo &Info,
1436                                        bool IsUnevaluatedOperand, SMLoc &End) {
1437  assert (isParsingInlineAsm() && "Expected to be parsing inline assembly.");
1438  Val = 0;
1439
1440  StringRef LineBuf(Identifier.data());
1441  SemaCallback->LookupInlineAsmIdentifier(LineBuf, Info, IsUnevaluatedOperand);
1442
1443  const AsmToken &Tok = Parser.getTok();
1444
1445  // Advance the token stream until the end of the current token is
1446  // after the end of what the frontend claimed.
1447  const char *EndPtr = Tok.getLoc().getPointer() + LineBuf.size();
1448  while (true) {
1449    End = Tok.getEndLoc();
1450    getLexer().Lex();
1451
1452    assert(End.getPointer() <= EndPtr && "frontend claimed part of a token?");
1453    if (End.getPointer() == EndPtr) break;
1454  }
1455
1456  // Create the symbol reference.
1457  Identifier = LineBuf;
1458  MCSymbol *Sym = getContext().GetOrCreateSymbol(Identifier);
1459  MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
1460  Val = MCSymbolRefExpr::Create(Sym, Variant, getParser().getContext());
1461  return false;
1462}
1463
1464/// \brief Parse intel style segment override.
1465X86Operand *X86AsmParser::ParseIntelSegmentOverride(unsigned SegReg,
1466                                                    SMLoc Start,
1467                                                    unsigned Size) {
1468  assert(SegReg != 0 && "Tried to parse a segment override without a segment!");
1469  const AsmToken &Tok = Parser.getTok(); // Eat colon.
1470  if (Tok.isNot(AsmToken::Colon))
1471    return ErrorOperand(Tok.getLoc(), "Expected ':' token!");
1472  Parser.Lex(); // Eat ':'
1473
1474  int64_t ImmDisp = 0;
1475  if (getLexer().is(AsmToken::Integer)) {
1476    ImmDisp = Tok.getIntVal();
1477    AsmToken ImmDispToken = Parser.Lex(); // Eat the integer.
1478
1479    if (isParsingInlineAsm())
1480      InstInfo->AsmRewrites->push_back(
1481          AsmRewrite(AOK_ImmPrefix, ImmDispToken.getLoc()));
1482
1483    if (getLexer().isNot(AsmToken::LBrac)) {
1484      // An immediate following a 'segment register', 'colon' token sequence can
1485      // be followed by a bracketed expression.  If it isn't we know we have our
1486      // final segment override.
1487      const MCExpr *Disp = MCConstantExpr::Create(ImmDisp, getContext());
1488      return X86Operand::CreateMem(SegReg, Disp, /*BaseReg=*/0, /*IndexReg=*/0,
1489                                   /*Scale=*/1, Start, ImmDispToken.getEndLoc(),
1490                                   Size);
1491    }
1492  }
1493
1494  if (getLexer().is(AsmToken::LBrac))
1495    return ParseIntelBracExpression(SegReg, Start, ImmDisp, Size);
1496
1497  const MCExpr *Val;
1498  SMLoc End;
1499  if (!isParsingInlineAsm()) {
1500    if (getParser().parsePrimaryExpr(Val, End))
1501      return ErrorOperand(Tok.getLoc(), "unknown token in expression");
1502
1503    return X86Operand::CreateMem(Val, Start, End, Size);
1504  }
1505
1506  InlineAsmIdentifierInfo Info;
1507  StringRef Identifier = Tok.getString();
1508  if (ParseIntelIdentifier(Val, Identifier, Info,
1509                           /*Unevaluated=*/false, End))
1510    return 0;
1511  return CreateMemForInlineAsm(/*SegReg=*/0, Val, /*BaseReg=*/0,/*IndexReg=*/0,
1512                               /*Scale=*/1, Start, End, Size, Identifier, Info);
1513}
1514
1515/// ParseIntelMemOperand - Parse intel style memory operand.
1516X86Operand *X86AsmParser::ParseIntelMemOperand(int64_t ImmDisp, SMLoc Start,
1517                                               unsigned Size) {
1518  const AsmToken &Tok = Parser.getTok();
1519  SMLoc End;
1520
1521  // Parse ImmDisp [ BaseReg + Scale*IndexReg + Disp ].
1522  if (getLexer().is(AsmToken::LBrac))
1523    return ParseIntelBracExpression(/*SegReg=*/0, Start, ImmDisp, Size);
1524
1525  const MCExpr *Val;
1526  if (!isParsingInlineAsm()) {
1527    if (getParser().parsePrimaryExpr(Val, End))
1528      return ErrorOperand(Tok.getLoc(), "unknown token in expression");
1529
1530    return X86Operand::CreateMem(Val, Start, End, Size);
1531  }
1532
1533  InlineAsmIdentifierInfo Info;
1534  StringRef Identifier = Tok.getString();
1535  if (ParseIntelIdentifier(Val, Identifier, Info,
1536                           /*Unevaluated=*/false, End))
1537    return 0;
1538  return CreateMemForInlineAsm(/*SegReg=*/0, Val, /*BaseReg=*/0, /*IndexReg=*/0,
1539                               /*Scale=*/1, Start, End, Size, Identifier, Info);
1540}
1541
1542/// Parse the '.' operator.
1543bool X86AsmParser::ParseIntelDotOperator(const MCExpr *Disp,
1544                                                const MCExpr *&NewDisp) {
1545  const AsmToken &Tok = Parser.getTok();
1546  int64_t OrigDispVal, DotDispVal;
1547
1548  // FIXME: Handle non-constant expressions.
1549  if (const MCConstantExpr *OrigDisp = dyn_cast<MCConstantExpr>(Disp))
1550    OrigDispVal = OrigDisp->getValue();
1551  else
1552    return Error(Tok.getLoc(), "Non-constant offsets are not supported!");
1553
1554  // Drop the optional '.'.
1555  StringRef DotDispStr = Tok.getString();
1556  if (DotDispStr.startswith("."))
1557    DotDispStr = DotDispStr.drop_front(1);
1558
1559  // .Imm gets lexed as a real.
1560  if (Tok.is(AsmToken::Real)) {
1561    APInt DotDisp;
1562    DotDispStr.getAsInteger(10, DotDisp);
1563    DotDispVal = DotDisp.getZExtValue();
1564  } else if (isParsingInlineAsm() && Tok.is(AsmToken::Identifier)) {
1565    unsigned DotDisp;
1566    std::pair<StringRef, StringRef> BaseMember = DotDispStr.split('.');
1567    if (SemaCallback->LookupInlineAsmField(BaseMember.first, BaseMember.second,
1568                                           DotDisp))
1569      return Error(Tok.getLoc(), "Unable to lookup field reference!");
1570    DotDispVal = DotDisp;
1571  } else
1572    return Error(Tok.getLoc(), "Unexpected token type!");
1573
1574  if (isParsingInlineAsm() && Tok.is(AsmToken::Identifier)) {
1575    SMLoc Loc = SMLoc::getFromPointer(DotDispStr.data());
1576    unsigned Len = DotDispStr.size();
1577    unsigned Val = OrigDispVal + DotDispVal;
1578    InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_DotOperator, Loc, Len,
1579                                                Val));
1580  }
1581
1582  NewDisp = MCConstantExpr::Create(OrigDispVal + DotDispVal, getContext());
1583  return false;
1584}
1585
1586/// Parse the 'offset' operator.  This operator is used to specify the
1587/// location rather then the content of a variable.
1588X86Operand *X86AsmParser::ParseIntelOffsetOfOperator() {
1589  const AsmToken &Tok = Parser.getTok();
1590  SMLoc OffsetOfLoc = Tok.getLoc();
1591  Parser.Lex(); // Eat offset.
1592
1593  const MCExpr *Val;
1594  InlineAsmIdentifierInfo Info;
1595  SMLoc Start = Tok.getLoc(), End;
1596  StringRef Identifier = Tok.getString();
1597  if (ParseIntelIdentifier(Val, Identifier, Info,
1598                           /*Unevaluated=*/false, End))
1599    return 0;
1600
1601  // Don't emit the offset operator.
1602  InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_Skip, OffsetOfLoc, 7));
1603
1604  // The offset operator will have an 'r' constraint, thus we need to create
1605  // register operand to ensure proper matching.  Just pick a GPR based on
1606  // the size of a pointer.
1607  unsigned RegNo = is64BitMode() ? X86::RBX : X86::EBX;
1608  return X86Operand::CreateReg(RegNo, Start, End, /*GetAddress=*/true,
1609                               OffsetOfLoc, Identifier, Info.OpDecl);
1610}
1611
1612enum IntelOperatorKind {
1613  IOK_LENGTH,
1614  IOK_SIZE,
1615  IOK_TYPE
1616};
1617
1618/// Parse the 'LENGTH', 'TYPE' and 'SIZE' operators.  The LENGTH operator
1619/// returns the number of elements in an array.  It returns the value 1 for
1620/// non-array variables.  The SIZE operator returns the size of a C or C++
1621/// variable.  A variable's size is the product of its LENGTH and TYPE.  The
1622/// TYPE operator returns the size of a C or C++ type or variable. If the
1623/// variable is an array, TYPE returns the size of a single element.
1624X86Operand *X86AsmParser::ParseIntelOperator(unsigned OpKind) {
1625  const AsmToken &Tok = Parser.getTok();
1626  SMLoc TypeLoc = Tok.getLoc();
1627  Parser.Lex(); // Eat operator.
1628
1629  const MCExpr *Val = 0;
1630  InlineAsmIdentifierInfo Info;
1631  SMLoc Start = Tok.getLoc(), End;
1632  StringRef Identifier = Tok.getString();
1633  if (ParseIntelIdentifier(Val, Identifier, Info,
1634                           /*Unevaluated=*/true, End))
1635    return 0;
1636
1637  if (!Info.OpDecl)
1638    return ErrorOperand(Start, "unable to lookup expression");
1639
1640  unsigned CVal = 0;
1641  switch(OpKind) {
1642  default: llvm_unreachable("Unexpected operand kind!");
1643  case IOK_LENGTH: CVal = Info.Length; break;
1644  case IOK_SIZE: CVal = Info.Size; break;
1645  case IOK_TYPE: CVal = Info.Type; break;
1646  }
1647
1648  // Rewrite the type operator and the C or C++ type or variable in terms of an
1649  // immediate.  E.g. TYPE foo -> $$4
1650  unsigned Len = End.getPointer() - TypeLoc.getPointer();
1651  InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_Imm, TypeLoc, Len, CVal));
1652
1653  const MCExpr *Imm = MCConstantExpr::Create(CVal, getContext());
1654  return X86Operand::CreateImm(Imm, Start, End);
1655}
1656
1657X86Operand *X86AsmParser::ParseIntelOperand() {
1658  const AsmToken &Tok = Parser.getTok();
1659  SMLoc Start, End;
1660
1661  // Offset, length, type and size operators.
1662  if (isParsingInlineAsm()) {
1663    StringRef AsmTokStr = Tok.getString();
1664    if (AsmTokStr == "offset" || AsmTokStr == "OFFSET")
1665      return ParseIntelOffsetOfOperator();
1666    if (AsmTokStr == "length" || AsmTokStr == "LENGTH")
1667      return ParseIntelOperator(IOK_LENGTH);
1668    if (AsmTokStr == "size" || AsmTokStr == "SIZE")
1669      return ParseIntelOperator(IOK_SIZE);
1670    if (AsmTokStr == "type" || AsmTokStr == "TYPE")
1671      return ParseIntelOperator(IOK_TYPE);
1672  }
1673
1674  unsigned Size = getIntelMemOperandSize(Tok.getString());
1675  if (Size) {
1676    Parser.Lex(); // Eat operand size (e.g., byte, word).
1677    if (Tok.getString() != "PTR" && Tok.getString() != "ptr")
1678      return ErrorOperand(Start, "Expected 'PTR' or 'ptr' token!");
1679    Parser.Lex(); // Eat ptr.
1680  }
1681  Start = Tok.getLoc();
1682
1683  // Immediate.
1684  if (getLexer().is(AsmToken::Integer) || getLexer().is(AsmToken::Minus) ||
1685      getLexer().is(AsmToken::LParen)) {
1686    AsmToken StartTok = Tok;
1687    IntelExprStateMachine SM(/*Imm=*/0, /*StopOnLBrac=*/true,
1688                             /*AddImmPrefix=*/false);
1689    if (ParseIntelExpression(SM, End))
1690      return 0;
1691
1692    int64_t Imm = SM.getImm();
1693    if (isParsingInlineAsm()) {
1694      unsigned Len = Tok.getLoc().getPointer() - Start.getPointer();
1695      if (StartTok.getString().size() == Len)
1696        // Just add a prefix if this wasn't a complex immediate expression.
1697        InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_ImmPrefix, Start));
1698      else
1699        // Otherwise, rewrite the complex expression as a single immediate.
1700        InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_Imm, Start, Len, Imm));
1701    }
1702
1703    if (getLexer().isNot(AsmToken::LBrac)) {
1704      const MCExpr *ImmExpr = MCConstantExpr::Create(Imm, getContext());
1705      return X86Operand::CreateImm(ImmExpr, Start, End);
1706    }
1707
1708    // Only positive immediates are valid.
1709    if (Imm < 0)
1710      return ErrorOperand(Start, "expected a positive immediate displacement "
1711                          "before bracketed expr.");
1712
1713    // Parse ImmDisp [ BaseReg + Scale*IndexReg + Disp ].
1714    return ParseIntelMemOperand(Imm, Start, Size);
1715  }
1716
1717  // Register.
1718  unsigned RegNo = 0;
1719  if (!ParseRegister(RegNo, Start, End)) {
1720    // If this is a segment register followed by a ':', then this is the start
1721    // of a segment override, otherwise this is a normal register reference.
1722    if (getLexer().isNot(AsmToken::Colon))
1723      return X86Operand::CreateReg(RegNo, Start, End);
1724
1725    return ParseIntelSegmentOverride(/*SegReg=*/RegNo, Start, Size);
1726  }
1727
1728  // Memory operand.
1729  return ParseIntelMemOperand(/*Disp=*/0, Start, Size);
1730}
1731
1732X86Operand *X86AsmParser::ParseATTOperand() {
1733  switch (getLexer().getKind()) {
1734  default:
1735    // Parse a memory operand with no segment register.
1736    return ParseMemOperand(0, Parser.getTok().getLoc());
1737  case AsmToken::Percent: {
1738    // Read the register.
1739    unsigned RegNo;
1740    SMLoc Start, End;
1741    if (ParseRegister(RegNo, Start, End)) return 0;
1742    if (RegNo == X86::EIZ || RegNo == X86::RIZ) {
1743      Error(Start, "%eiz and %riz can only be used as index registers",
1744            SMRange(Start, End));
1745      return 0;
1746    }
1747
1748    // If this is a segment register followed by a ':', then this is the start
1749    // of a memory reference, otherwise this is a normal register reference.
1750    if (getLexer().isNot(AsmToken::Colon))
1751      return X86Operand::CreateReg(RegNo, Start, End);
1752
1753    getParser().Lex(); // Eat the colon.
1754    return ParseMemOperand(RegNo, Start);
1755  }
1756  case AsmToken::Dollar: {
1757    // $42 -> immediate.
1758    SMLoc Start = Parser.getTok().getLoc(), End;
1759    Parser.Lex();
1760    const MCExpr *Val;
1761    if (getParser().parseExpression(Val, End))
1762      return 0;
1763    return X86Operand::CreateImm(Val, Start, End);
1764  }
1765  }
1766}
1767
1768/// ParseMemOperand: segment: disp(basereg, indexreg, scale).  The '%ds:' prefix
1769/// has already been parsed if present.
1770X86Operand *X86AsmParser::ParseMemOperand(unsigned SegReg, SMLoc MemStart) {
1771
1772  // We have to disambiguate a parenthesized expression "(4+5)" from the start
1773  // of a memory operand with a missing displacement "(%ebx)" or "(,%eax)".  The
1774  // only way to do this without lookahead is to eat the '(' and see what is
1775  // after it.
1776  const MCExpr *Disp = MCConstantExpr::Create(0, getParser().getContext());
1777  if (getLexer().isNot(AsmToken::LParen)) {
1778    SMLoc ExprEnd;
1779    if (getParser().parseExpression(Disp, ExprEnd)) return 0;
1780
1781    // After parsing the base expression we could either have a parenthesized
1782    // memory address or not.  If not, return now.  If so, eat the (.
1783    if (getLexer().isNot(AsmToken::LParen)) {
1784      // Unless we have a segment register, treat this as an immediate.
1785      if (SegReg == 0)
1786        return X86Operand::CreateMem(Disp, MemStart, ExprEnd);
1787      return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, MemStart, ExprEnd);
1788    }
1789
1790    // Eat the '('.
1791    Parser.Lex();
1792  } else {
1793    // Okay, we have a '('.  We don't know if this is an expression or not, but
1794    // so we have to eat the ( to see beyond it.
1795    SMLoc LParenLoc = Parser.getTok().getLoc();
1796    Parser.Lex(); // Eat the '('.
1797
1798    if (getLexer().is(AsmToken::Percent) || getLexer().is(AsmToken::Comma)) {
1799      // Nothing to do here, fall into the code below with the '(' part of the
1800      // memory operand consumed.
1801    } else {
1802      SMLoc ExprEnd;
1803
1804      // It must be an parenthesized expression, parse it now.
1805      if (getParser().parseParenExpression(Disp, ExprEnd))
1806        return 0;
1807
1808      // After parsing the base expression we could either have a parenthesized
1809      // memory address or not.  If not, return now.  If so, eat the (.
1810      if (getLexer().isNot(AsmToken::LParen)) {
1811        // Unless we have a segment register, treat this as an immediate.
1812        if (SegReg == 0)
1813          return X86Operand::CreateMem(Disp, LParenLoc, ExprEnd);
1814        return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, MemStart, ExprEnd);
1815      }
1816
1817      // Eat the '('.
1818      Parser.Lex();
1819    }
1820  }
1821
1822  // If we reached here, then we just ate the ( of the memory operand.  Process
1823  // the rest of the memory operand.
1824  unsigned BaseReg = 0, IndexReg = 0, Scale = 1;
1825  SMLoc IndexLoc;
1826
1827  if (getLexer().is(AsmToken::Percent)) {
1828    SMLoc StartLoc, EndLoc;
1829    if (ParseRegister(BaseReg, StartLoc, EndLoc)) return 0;
1830    if (BaseReg == X86::EIZ || BaseReg == X86::RIZ) {
1831      Error(StartLoc, "eiz and riz can only be used as index registers",
1832            SMRange(StartLoc, EndLoc));
1833      return 0;
1834    }
1835  }
1836
1837  if (getLexer().is(AsmToken::Comma)) {
1838    Parser.Lex(); // Eat the comma.
1839    IndexLoc = Parser.getTok().getLoc();
1840
1841    // Following the comma we should have either an index register, or a scale
1842    // value. We don't support the later form, but we want to parse it
1843    // correctly.
1844    //
1845    // Not that even though it would be completely consistent to support syntax
1846    // like "1(%eax,,1)", the assembler doesn't. Use "eiz" or "riz" for this.
1847    if (getLexer().is(AsmToken::Percent)) {
1848      SMLoc L;
1849      if (ParseRegister(IndexReg, L, L)) return 0;
1850
1851      if (getLexer().isNot(AsmToken::RParen)) {
1852        // Parse the scale amount:
1853        //  ::= ',' [scale-expression]
1854        if (getLexer().isNot(AsmToken::Comma)) {
1855          Error(Parser.getTok().getLoc(),
1856                "expected comma in scale expression");
1857          return 0;
1858        }
1859        Parser.Lex(); // Eat the comma.
1860
1861        if (getLexer().isNot(AsmToken::RParen)) {
1862          SMLoc Loc = Parser.getTok().getLoc();
1863
1864          int64_t ScaleVal;
1865          if (getParser().parseAbsoluteExpression(ScaleVal)){
1866            Error(Loc, "expected scale expression");
1867            return 0;
1868          }
1869
1870          // Validate the scale amount.
1871          if (ScaleVal != 1 && ScaleVal != 2 && ScaleVal != 4 && ScaleVal != 8){
1872            Error(Loc, "scale factor in address must be 1, 2, 4 or 8");
1873            return 0;
1874          }
1875          Scale = (unsigned)ScaleVal;
1876        }
1877      }
1878    } else if (getLexer().isNot(AsmToken::RParen)) {
1879      // A scale amount without an index is ignored.
1880      // index.
1881      SMLoc Loc = Parser.getTok().getLoc();
1882
1883      int64_t Value;
1884      if (getParser().parseAbsoluteExpression(Value))
1885        return 0;
1886
1887      if (Value != 1)
1888        Warning(Loc, "scale factor without index register is ignored");
1889      Scale = 1;
1890    }
1891  }
1892
1893  // Ok, we've eaten the memory operand, verify we have a ')' and eat it too.
1894  if (getLexer().isNot(AsmToken::RParen)) {
1895    Error(Parser.getTok().getLoc(), "unexpected token in memory operand");
1896    return 0;
1897  }
1898  SMLoc MemEnd = Parser.getTok().getEndLoc();
1899  Parser.Lex(); // Eat the ')'.
1900
1901  // If we have both a base register and an index register make sure they are
1902  // both 64-bit or 32-bit registers.
1903  // To support VSIB, IndexReg can be 128-bit or 256-bit registers.
1904  if (BaseReg != 0 && IndexReg != 0) {
1905    if (X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg) &&
1906        (X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) ||
1907         X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg)) &&
1908        IndexReg != X86::RIZ) {
1909      Error(IndexLoc, "index register is 32-bit, but base register is 64-bit");
1910      return 0;
1911    }
1912    if (X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg) &&
1913        (X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) ||
1914         X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg)) &&
1915        IndexReg != X86::EIZ){
1916      Error(IndexLoc, "index register is 64-bit, but base register is 32-bit");
1917      return 0;
1918    }
1919  }
1920
1921  return X86Operand::CreateMem(SegReg, Disp, BaseReg, IndexReg, Scale,
1922                               MemStart, MemEnd);
1923}
1924
1925bool X86AsmParser::
1926ParseInstruction(ParseInstructionInfo &Info, StringRef Name, SMLoc NameLoc,
1927                 SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
1928  InstInfo = &Info;
1929  StringRef PatchedName = Name;
1930
1931  // FIXME: Hack to recognize setneb as setne.
1932  if (PatchedName.startswith("set") && PatchedName.endswith("b") &&
1933      PatchedName != "setb" && PatchedName != "setnb")
1934    PatchedName = PatchedName.substr(0, Name.size()-1);
1935
1936  // FIXME: Hack to recognize cmp<comparison code>{ss,sd,ps,pd}.
1937  const MCExpr *ExtraImmOp = 0;
1938  if ((PatchedName.startswith("cmp") || PatchedName.startswith("vcmp")) &&
1939      (PatchedName.endswith("ss") || PatchedName.endswith("sd") ||
1940       PatchedName.endswith("ps") || PatchedName.endswith("pd"))) {
1941    bool IsVCMP = PatchedName[0] == 'v';
1942    unsigned SSECCIdx = IsVCMP ? 4 : 3;
1943    unsigned SSEComparisonCode = StringSwitch<unsigned>(
1944      PatchedName.slice(SSECCIdx, PatchedName.size() - 2))
1945      .Case("eq",       0x00)
1946      .Case("lt",       0x01)
1947      .Case("le",       0x02)
1948      .Case("unord",    0x03)
1949      .Case("neq",      0x04)
1950      .Case("nlt",      0x05)
1951      .Case("nle",      0x06)
1952      .Case("ord",      0x07)
1953      /* AVX only from here */
1954      .Case("eq_uq",    0x08)
1955      .Case("nge",      0x09)
1956      .Case("ngt",      0x0A)
1957      .Case("false",    0x0B)
1958      .Case("neq_oq",   0x0C)
1959      .Case("ge",       0x0D)
1960      .Case("gt",       0x0E)
1961      .Case("true",     0x0F)
1962      .Case("eq_os",    0x10)
1963      .Case("lt_oq",    0x11)
1964      .Case("le_oq",    0x12)
1965      .Case("unord_s",  0x13)
1966      .Case("neq_us",   0x14)
1967      .Case("nlt_uq",   0x15)
1968      .Case("nle_uq",   0x16)
1969      .Case("ord_s",    0x17)
1970      .Case("eq_us",    0x18)
1971      .Case("nge_uq",   0x19)
1972      .Case("ngt_uq",   0x1A)
1973      .Case("false_os", 0x1B)
1974      .Case("neq_os",   0x1C)
1975      .Case("ge_oq",    0x1D)
1976      .Case("gt_oq",    0x1E)
1977      .Case("true_us",  0x1F)
1978      .Default(~0U);
1979    if (SSEComparisonCode != ~0U && (IsVCMP || SSEComparisonCode < 8)) {
1980      ExtraImmOp = MCConstantExpr::Create(SSEComparisonCode,
1981                                          getParser().getContext());
1982      if (PatchedName.endswith("ss")) {
1983        PatchedName = IsVCMP ? "vcmpss" : "cmpss";
1984      } else if (PatchedName.endswith("sd")) {
1985        PatchedName = IsVCMP ? "vcmpsd" : "cmpsd";
1986      } else if (PatchedName.endswith("ps")) {
1987        PatchedName = IsVCMP ? "vcmpps" : "cmpps";
1988      } else {
1989        assert(PatchedName.endswith("pd") && "Unexpected mnemonic!");
1990        PatchedName = IsVCMP ? "vcmppd" : "cmppd";
1991      }
1992    }
1993  }
1994
1995  Operands.push_back(X86Operand::CreateToken(PatchedName, NameLoc));
1996
1997  if (ExtraImmOp && !isParsingIntelSyntax())
1998    Operands.push_back(X86Operand::CreateImm(ExtraImmOp, NameLoc, NameLoc));
1999
2000  // Determine whether this is an instruction prefix.
2001  bool isPrefix =
2002    Name == "lock" || Name == "rep" ||
2003    Name == "repe" || Name == "repz" ||
2004    Name == "repne" || Name == "repnz" ||
2005    Name == "rex64" || Name == "data16";
2006
2007
2008  // This does the actual operand parsing.  Don't parse any more if we have a
2009  // prefix juxtaposed with an operation like "lock incl 4(%rax)", because we
2010  // just want to parse the "lock" as the first instruction and the "incl" as
2011  // the next one.
2012  if (getLexer().isNot(AsmToken::EndOfStatement) && !isPrefix) {
2013
2014    // Parse '*' modifier.
2015    if (getLexer().is(AsmToken::Star)) {
2016      SMLoc Loc = Parser.getTok().getLoc();
2017      Operands.push_back(X86Operand::CreateToken("*", Loc));
2018      Parser.Lex(); // Eat the star.
2019    }
2020
2021    // Read the first operand.
2022    if (X86Operand *Op = ParseOperand())
2023      Operands.push_back(Op);
2024    else {
2025      Parser.eatToEndOfStatement();
2026      return true;
2027    }
2028
2029    while (getLexer().is(AsmToken::Comma)) {
2030      Parser.Lex();  // Eat the comma.
2031
2032      // Parse and remember the operand.
2033      if (X86Operand *Op = ParseOperand())
2034        Operands.push_back(Op);
2035      else {
2036        Parser.eatToEndOfStatement();
2037        return true;
2038      }
2039    }
2040
2041    if (STI.getFeatureBits() & X86::FeatureAVX512) {
2042      // Parse mask register {%k1}
2043      if (getLexer().is(AsmToken::LCurly)) {
2044        SMLoc Loc = Parser.getTok().getLoc();
2045        Operands.push_back(X86Operand::CreateToken("{", Loc));
2046        Parser.Lex();  // Eat the {
2047        if (X86Operand *Op = ParseOperand()) {
2048          Operands.push_back(Op);
2049          if (!getLexer().is(AsmToken::RCurly)) {
2050            SMLoc Loc = getLexer().getLoc();
2051            Parser.eatToEndOfStatement();
2052            return Error(Loc, "Expected } at this point");
2053          }
2054          Loc = Parser.getTok().getLoc();
2055          Operands.push_back(X86Operand::CreateToken("}", Loc));
2056          Parser.Lex();  // Eat the }
2057        } else {
2058          Parser.eatToEndOfStatement();
2059          return true;
2060        }
2061      }
2062      // Parse "zeroing non-masked" semantic {z}
2063      if (getLexer().is(AsmToken::LCurly)) {
2064        SMLoc Loc = Parser.getTok().getLoc();
2065        Operands.push_back(X86Operand::CreateToken("{z}", Loc));
2066        Parser.Lex();  // Eat the {
2067        if (!getLexer().is(AsmToken::Identifier) || getLexer().getTok().getIdentifier() != "z") {
2068          SMLoc Loc = getLexer().getLoc();
2069          Parser.eatToEndOfStatement();
2070          return Error(Loc, "Expected z at this point");
2071        }
2072        Parser.Lex();  // Eat the z
2073        if (!getLexer().is(AsmToken::RCurly)) {
2074            SMLoc Loc = getLexer().getLoc();
2075            Parser.eatToEndOfStatement();
2076            return Error(Loc, "Expected } at this point");
2077        }
2078        Parser.Lex();  // Eat the }
2079      }
2080    }
2081
2082    if (getLexer().isNot(AsmToken::EndOfStatement)) {
2083      SMLoc Loc = getLexer().getLoc();
2084      Parser.eatToEndOfStatement();
2085      return Error(Loc, "unexpected token in argument list");
2086    }
2087  }
2088
2089  if (getLexer().is(AsmToken::EndOfStatement))
2090    Parser.Lex(); // Consume the EndOfStatement
2091  else if (isPrefix && getLexer().is(AsmToken::Slash))
2092    Parser.Lex(); // Consume the prefix separator Slash
2093
2094  if (ExtraImmOp && isParsingIntelSyntax())
2095    Operands.push_back(X86Operand::CreateImm(ExtraImmOp, NameLoc, NameLoc));
2096
2097  // This is a terrible hack to handle "out[bwl]? %al, (%dx)" ->
2098  // "outb %al, %dx".  Out doesn't take a memory form, but this is a widely
2099  // documented form in various unofficial manuals, so a lot of code uses it.
2100  if ((Name == "outb" || Name == "outw" || Name == "outl" || Name == "out") &&
2101      Operands.size() == 3) {
2102    X86Operand &Op = *(X86Operand*)Operands.back();
2103    if (Op.isMem() && Op.Mem.SegReg == 0 &&
2104        isa<MCConstantExpr>(Op.Mem.Disp) &&
2105        cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 &&
2106        Op.Mem.BaseReg == MatchRegisterName("dx") && Op.Mem.IndexReg == 0) {
2107      SMLoc Loc = Op.getEndLoc();
2108      Operands.back() = X86Operand::CreateReg(Op.Mem.BaseReg, Loc, Loc);
2109      delete &Op;
2110    }
2111  }
2112  // Same hack for "in[bwl]? (%dx), %al" -> "inb %dx, %al".
2113  if ((Name == "inb" || Name == "inw" || Name == "inl" || Name == "in") &&
2114      Operands.size() == 3) {
2115    X86Operand &Op = *(X86Operand*)Operands.begin()[1];
2116    if (Op.isMem() && Op.Mem.SegReg == 0 &&
2117        isa<MCConstantExpr>(Op.Mem.Disp) &&
2118        cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 &&
2119        Op.Mem.BaseReg == MatchRegisterName("dx") && Op.Mem.IndexReg == 0) {
2120      SMLoc Loc = Op.getEndLoc();
2121      Operands.begin()[1] = X86Operand::CreateReg(Op.Mem.BaseReg, Loc, Loc);
2122      delete &Op;
2123    }
2124  }
2125  // Transform "ins[bwl] %dx, %es:(%edi)" into "ins[bwl]"
2126  if (Name.startswith("ins") && Operands.size() == 3 &&
2127      (Name == "insb" || Name == "insw" || Name == "insl")) {
2128    X86Operand &Op = *(X86Operand*)Operands.begin()[1];
2129    X86Operand &Op2 = *(X86Operand*)Operands.begin()[2];
2130    if (Op.isReg() && Op.getReg() == X86::DX && isDstOp(Op2)) {
2131      Operands.pop_back();
2132      Operands.pop_back();
2133      delete &Op;
2134      delete &Op2;
2135    }
2136  }
2137
2138  // Transform "outs[bwl] %ds:(%esi), %dx" into "out[bwl]"
2139  if (Name.startswith("outs") && Operands.size() == 3 &&
2140      (Name == "outsb" || Name == "outsw" || Name == "outsl")) {
2141    X86Operand &Op = *(X86Operand*)Operands.begin()[1];
2142    X86Operand &Op2 = *(X86Operand*)Operands.begin()[2];
2143    if (isSrcOp(Op) && Op2.isReg() && Op2.getReg() == X86::DX) {
2144      Operands.pop_back();
2145      Operands.pop_back();
2146      delete &Op;
2147      delete &Op2;
2148    }
2149  }
2150
2151  // Transform "movs[bwl] %ds:(%esi), %es:(%edi)" into "movs[bwl]"
2152  if (Name.startswith("movs") && Operands.size() == 3 &&
2153      (Name == "movsb" || Name == "movsw" || Name == "movsl" ||
2154       (is64BitMode() && Name == "movsq"))) {
2155    X86Operand &Op = *(X86Operand*)Operands.begin()[1];
2156    X86Operand &Op2 = *(X86Operand*)Operands.begin()[2];
2157    if (isSrcOp(Op) && isDstOp(Op2)) {
2158      Operands.pop_back();
2159      Operands.pop_back();
2160      delete &Op;
2161      delete &Op2;
2162    }
2163  }
2164  // Transform "lods[bwl] %ds:(%esi),{%al,%ax,%eax,%rax}" into "lods[bwl]"
2165  if (Name.startswith("lods") && Operands.size() == 3 &&
2166      (Name == "lods" || Name == "lodsb" || Name == "lodsw" ||
2167       Name == "lodsl" || (is64BitMode() && Name == "lodsq"))) {
2168    X86Operand *Op1 = static_cast<X86Operand*>(Operands[1]);
2169    X86Operand *Op2 = static_cast<X86Operand*>(Operands[2]);
2170    if (isSrcOp(*Op1) && Op2->isReg()) {
2171      const char *ins;
2172      unsigned reg = Op2->getReg();
2173      bool isLods = Name == "lods";
2174      if (reg == X86::AL && (isLods || Name == "lodsb"))
2175        ins = "lodsb";
2176      else if (reg == X86::AX && (isLods || Name == "lodsw"))
2177        ins = "lodsw";
2178      else if (reg == X86::EAX && (isLods || Name == "lodsl"))
2179        ins = "lodsl";
2180      else if (reg == X86::RAX && (isLods || Name == "lodsq"))
2181        ins = "lodsq";
2182      else
2183        ins = NULL;
2184      if (ins != NULL) {
2185        Operands.pop_back();
2186        Operands.pop_back();
2187        delete Op1;
2188        delete Op2;
2189        if (Name != ins)
2190          static_cast<X86Operand*>(Operands[0])->setTokenValue(ins);
2191      }
2192    }
2193  }
2194  // Transform "stos[bwl] {%al,%ax,%eax,%rax},%es:(%edi)" into "stos[bwl]"
2195  if (Name.startswith("stos") && Operands.size() == 3 &&
2196      (Name == "stos" || Name == "stosb" || Name == "stosw" ||
2197       Name == "stosl" || (is64BitMode() && Name == "stosq"))) {
2198    X86Operand *Op1 = static_cast<X86Operand*>(Operands[1]);
2199    X86Operand *Op2 = static_cast<X86Operand*>(Operands[2]);
2200    if (isDstOp(*Op2) && Op1->isReg()) {
2201      const char *ins;
2202      unsigned reg = Op1->getReg();
2203      bool isStos = Name == "stos";
2204      if (reg == X86::AL && (isStos || Name == "stosb"))
2205        ins = "stosb";
2206      else if (reg == X86::AX && (isStos || Name == "stosw"))
2207        ins = "stosw";
2208      else if (reg == X86::EAX && (isStos || Name == "stosl"))
2209        ins = "stosl";
2210      else if (reg == X86::RAX && (isStos || Name == "stosq"))
2211        ins = "stosq";
2212      else
2213        ins = NULL;
2214      if (ins != NULL) {
2215        Operands.pop_back();
2216        Operands.pop_back();
2217        delete Op1;
2218        delete Op2;
2219        if (Name != ins)
2220          static_cast<X86Operand*>(Operands[0])->setTokenValue(ins);
2221      }
2222    }
2223  }
2224
2225  // FIXME: Hack to handle recognize s{hr,ar,hl} $1, <op>.  Canonicalize to
2226  // "shift <op>".
2227  if ((Name.startswith("shr") || Name.startswith("sar") ||
2228       Name.startswith("shl") || Name.startswith("sal") ||
2229       Name.startswith("rcl") || Name.startswith("rcr") ||
2230       Name.startswith("rol") || Name.startswith("ror")) &&
2231      Operands.size() == 3) {
2232    if (isParsingIntelSyntax()) {
2233      // Intel syntax
2234      X86Operand *Op1 = static_cast<X86Operand*>(Operands[2]);
2235      if (Op1->isImm() && isa<MCConstantExpr>(Op1->getImm()) &&
2236          cast<MCConstantExpr>(Op1->getImm())->getValue() == 1) {
2237        delete Operands[2];
2238        Operands.pop_back();
2239      }
2240    } else {
2241      X86Operand *Op1 = static_cast<X86Operand*>(Operands[1]);
2242      if (Op1->isImm() && isa<MCConstantExpr>(Op1->getImm()) &&
2243          cast<MCConstantExpr>(Op1->getImm())->getValue() == 1) {
2244        delete Operands[1];
2245        Operands.erase(Operands.begin() + 1);
2246      }
2247    }
2248  }
2249
2250  // Transforms "int $3" into "int3" as a size optimization.  We can't write an
2251  // instalias with an immediate operand yet.
2252  if (Name == "int" && Operands.size() == 2) {
2253    X86Operand *Op1 = static_cast<X86Operand*>(Operands[1]);
2254    if (Op1->isImm() && isa<MCConstantExpr>(Op1->getImm()) &&
2255        cast<MCConstantExpr>(Op1->getImm())->getValue() == 3) {
2256      delete Operands[1];
2257      Operands.erase(Operands.begin() + 1);
2258      static_cast<X86Operand*>(Operands[0])->setTokenValue("int3");
2259    }
2260  }
2261
2262  return false;
2263}
2264
2265static bool convertToSExti8(MCInst &Inst, unsigned Opcode, unsigned Reg,
2266                            bool isCmp) {
2267  MCInst TmpInst;
2268  TmpInst.setOpcode(Opcode);
2269  if (!isCmp)
2270    TmpInst.addOperand(MCOperand::CreateReg(Reg));
2271  TmpInst.addOperand(MCOperand::CreateReg(Reg));
2272  TmpInst.addOperand(Inst.getOperand(0));
2273  Inst = TmpInst;
2274  return true;
2275}
2276
2277static bool convert16i16to16ri8(MCInst &Inst, unsigned Opcode,
2278                                bool isCmp = false) {
2279  if (!Inst.getOperand(0).isImm() ||
2280      !isImmSExti16i8Value(Inst.getOperand(0).getImm()))
2281    return false;
2282
2283  return convertToSExti8(Inst, Opcode, X86::AX, isCmp);
2284}
2285
2286static bool convert32i32to32ri8(MCInst &Inst, unsigned Opcode,
2287                                bool isCmp = false) {
2288  if (!Inst.getOperand(0).isImm() ||
2289      !isImmSExti32i8Value(Inst.getOperand(0).getImm()))
2290    return false;
2291
2292  return convertToSExti8(Inst, Opcode, X86::EAX, isCmp);
2293}
2294
2295static bool convert64i32to64ri8(MCInst &Inst, unsigned Opcode,
2296                                bool isCmp = false) {
2297  if (!Inst.getOperand(0).isImm() ||
2298      !isImmSExti64i8Value(Inst.getOperand(0).getImm()))
2299    return false;
2300
2301  return convertToSExti8(Inst, Opcode, X86::RAX, isCmp);
2302}
2303
2304bool X86AsmParser::
2305processInstruction(MCInst &Inst,
2306                   const SmallVectorImpl<MCParsedAsmOperand*> &Ops) {
2307  switch (Inst.getOpcode()) {
2308  default: return false;
2309  case X86::AND16i16: return convert16i16to16ri8(Inst, X86::AND16ri8);
2310  case X86::AND32i32: return convert32i32to32ri8(Inst, X86::AND32ri8);
2311  case X86::AND64i32: return convert64i32to64ri8(Inst, X86::AND64ri8);
2312  case X86::XOR16i16: return convert16i16to16ri8(Inst, X86::XOR16ri8);
2313  case X86::XOR32i32: return convert32i32to32ri8(Inst, X86::XOR32ri8);
2314  case X86::XOR64i32: return convert64i32to64ri8(Inst, X86::XOR64ri8);
2315  case X86::OR16i16:  return convert16i16to16ri8(Inst, X86::OR16ri8);
2316  case X86::OR32i32:  return convert32i32to32ri8(Inst, X86::OR32ri8);
2317  case X86::OR64i32:  return convert64i32to64ri8(Inst, X86::OR64ri8);
2318  case X86::CMP16i16: return convert16i16to16ri8(Inst, X86::CMP16ri8, true);
2319  case X86::CMP32i32: return convert32i32to32ri8(Inst, X86::CMP32ri8, true);
2320  case X86::CMP64i32: return convert64i32to64ri8(Inst, X86::CMP64ri8, true);
2321  case X86::ADD16i16: return convert16i16to16ri8(Inst, X86::ADD16ri8);
2322  case X86::ADD32i32: return convert32i32to32ri8(Inst, X86::ADD32ri8);
2323  case X86::ADD64i32: return convert64i32to64ri8(Inst, X86::ADD64ri8);
2324  case X86::SUB16i16: return convert16i16to16ri8(Inst, X86::SUB16ri8);
2325  case X86::SUB32i32: return convert32i32to32ri8(Inst, X86::SUB32ri8);
2326  case X86::SUB64i32: return convert64i32to64ri8(Inst, X86::SUB64ri8);
2327  case X86::ADC16i16: return convert16i16to16ri8(Inst, X86::ADC16ri8);
2328  case X86::ADC32i32: return convert32i32to32ri8(Inst, X86::ADC32ri8);
2329  case X86::ADC64i32: return convert64i32to64ri8(Inst, X86::ADC64ri8);
2330  case X86::SBB16i16: return convert16i16to16ri8(Inst, X86::SBB16ri8);
2331  case X86::SBB32i32: return convert32i32to32ri8(Inst, X86::SBB32ri8);
2332  case X86::SBB64i32: return convert64i32to64ri8(Inst, X86::SBB64ri8);
2333  case X86::VMOVAPDrr:
2334  case X86::VMOVAPDYrr:
2335  case X86::VMOVAPSrr:
2336  case X86::VMOVAPSYrr:
2337  case X86::VMOVDQArr:
2338  case X86::VMOVDQAYrr:
2339  case X86::VMOVDQUrr:
2340  case X86::VMOVDQUYrr:
2341  case X86::VMOVUPDrr:
2342  case X86::VMOVUPDYrr:
2343  case X86::VMOVUPSrr:
2344  case X86::VMOVUPSYrr: {
2345    if (X86II::isX86_64ExtendedReg(Inst.getOperand(0).getReg()) ||
2346        !X86II::isX86_64ExtendedReg(Inst.getOperand(1).getReg()))
2347      return false;
2348
2349    unsigned NewOpc;
2350    switch (Inst.getOpcode()) {
2351    default: llvm_unreachable("Invalid opcode");
2352    case X86::VMOVAPDrr:  NewOpc = X86::VMOVAPDrr_REV;  break;
2353    case X86::VMOVAPDYrr: NewOpc = X86::VMOVAPDYrr_REV; break;
2354    case X86::VMOVAPSrr:  NewOpc = X86::VMOVAPSrr_REV;  break;
2355    case X86::VMOVAPSYrr: NewOpc = X86::VMOVAPSYrr_REV; break;
2356    case X86::VMOVDQArr:  NewOpc = X86::VMOVDQArr_REV;  break;
2357    case X86::VMOVDQAYrr: NewOpc = X86::VMOVDQAYrr_REV; break;
2358    case X86::VMOVDQUrr:  NewOpc = X86::VMOVDQUrr_REV;  break;
2359    case X86::VMOVDQUYrr: NewOpc = X86::VMOVDQUYrr_REV; break;
2360    case X86::VMOVUPDrr:  NewOpc = X86::VMOVUPDrr_REV;  break;
2361    case X86::VMOVUPDYrr: NewOpc = X86::VMOVUPDYrr_REV; break;
2362    case X86::VMOVUPSrr:  NewOpc = X86::VMOVUPSrr_REV;  break;
2363    case X86::VMOVUPSYrr: NewOpc = X86::VMOVUPSYrr_REV; break;
2364    }
2365    Inst.setOpcode(NewOpc);
2366    return true;
2367  }
2368  case X86::VMOVSDrr:
2369  case X86::VMOVSSrr: {
2370    if (X86II::isX86_64ExtendedReg(Inst.getOperand(0).getReg()) ||
2371        !X86II::isX86_64ExtendedReg(Inst.getOperand(2).getReg()))
2372      return false;
2373    unsigned NewOpc;
2374    switch (Inst.getOpcode()) {
2375    default: llvm_unreachable("Invalid opcode");
2376    case X86::VMOVSDrr: NewOpc = X86::VMOVSDrr_REV;   break;
2377    case X86::VMOVSSrr: NewOpc = X86::VMOVSSrr_REV;   break;
2378    }
2379    Inst.setOpcode(NewOpc);
2380    return true;
2381  }
2382  }
2383}
2384
2385static const char *getSubtargetFeatureName(unsigned Val);
2386bool X86AsmParser::
2387MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
2388                        SmallVectorImpl<MCParsedAsmOperand*> &Operands,
2389                        MCStreamer &Out, unsigned &ErrorInfo,
2390                        bool MatchingInlineAsm) {
2391  assert(!Operands.empty() && "Unexpect empty operand list!");
2392  X86Operand *Op = static_cast<X86Operand*>(Operands[0]);
2393  assert(Op->isToken() && "Leading operand should always be a mnemonic!");
2394  ArrayRef<SMRange> EmptyRanges = None;
2395
2396  // First, handle aliases that expand to multiple instructions.
2397  // FIXME: This should be replaced with a real .td file alias mechanism.
2398  // Also, MatchInstructionImpl should actually *do* the EmitInstruction
2399  // call.
2400  if (Op->getToken() == "fstsw" || Op->getToken() == "fstcw" ||
2401      Op->getToken() == "fstsww" || Op->getToken() == "fstcww" ||
2402      Op->getToken() == "finit" || Op->getToken() == "fsave" ||
2403      Op->getToken() == "fstenv" || Op->getToken() == "fclex") {
2404    MCInst Inst;
2405    Inst.setOpcode(X86::WAIT);
2406    Inst.setLoc(IDLoc);
2407    if (!MatchingInlineAsm)
2408      Out.EmitInstruction(Inst);
2409
2410    const char *Repl =
2411      StringSwitch<const char*>(Op->getToken())
2412        .Case("finit",  "fninit")
2413        .Case("fsave",  "fnsave")
2414        .Case("fstcw",  "fnstcw")
2415        .Case("fstcww",  "fnstcw")
2416        .Case("fstenv", "fnstenv")
2417        .Case("fstsw",  "fnstsw")
2418        .Case("fstsww", "fnstsw")
2419        .Case("fclex",  "fnclex")
2420        .Default(0);
2421    assert(Repl && "Unknown wait-prefixed instruction");
2422    delete Operands[0];
2423    Operands[0] = X86Operand::CreateToken(Repl, IDLoc);
2424  }
2425
2426  bool WasOriginallyInvalidOperand = false;
2427  MCInst Inst;
2428
2429  // First, try a direct match.
2430  switch (MatchInstructionImpl(Operands, Inst,
2431                               ErrorInfo, MatchingInlineAsm,
2432                               isParsingIntelSyntax())) {
2433  default: break;
2434  case Match_Success:
2435    // Some instructions need post-processing to, for example, tweak which
2436    // encoding is selected. Loop on it while changes happen so the
2437    // individual transformations can chain off each other.
2438    if (!MatchingInlineAsm)
2439      while (processInstruction(Inst, Operands))
2440        ;
2441
2442    Inst.setLoc(IDLoc);
2443    if (!MatchingInlineAsm)
2444      Out.EmitInstruction(Inst);
2445    Opcode = Inst.getOpcode();
2446    return false;
2447  case Match_MissingFeature: {
2448    assert(ErrorInfo && "Unknown missing feature!");
2449    // Special case the error message for the very common case where only
2450    // a single subtarget feature is missing.
2451    std::string Msg = "instruction requires:";
2452    unsigned Mask = 1;
2453    for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) {
2454      if (ErrorInfo & Mask) {
2455        Msg += " ";
2456        Msg += getSubtargetFeatureName(ErrorInfo & Mask);
2457      }
2458      Mask <<= 1;
2459    }
2460    return Error(IDLoc, Msg, EmptyRanges, MatchingInlineAsm);
2461  }
2462  case Match_InvalidOperand:
2463    WasOriginallyInvalidOperand = true;
2464    break;
2465  case Match_MnemonicFail:
2466    break;
2467  }
2468
2469  // FIXME: Ideally, we would only attempt suffix matches for things which are
2470  // valid prefixes, and we could just infer the right unambiguous
2471  // type. However, that requires substantially more matcher support than the
2472  // following hack.
2473
2474  // Change the operand to point to a temporary token.
2475  StringRef Base = Op->getToken();
2476  SmallString<16> Tmp;
2477  Tmp += Base;
2478  Tmp += ' ';
2479  Op->setTokenValue(Tmp.str());
2480
2481  // If this instruction starts with an 'f', then it is a floating point stack
2482  // instruction.  These come in up to three forms for 32-bit, 64-bit, and
2483  // 80-bit floating point, which use the suffixes s,l,t respectively.
2484  //
2485  // Otherwise, we assume that this may be an integer instruction, which comes
2486  // in 8/16/32/64-bit forms using the b,w,l,q suffixes respectively.
2487  const char *Suffixes = Base[0] != 'f' ? "bwlq" : "slt\0";
2488
2489  // Check for the various suffix matches.
2490  Tmp[Base.size()] = Suffixes[0];
2491  unsigned ErrorInfoIgnore;
2492  unsigned ErrorInfoMissingFeature = 0; // Init suppresses compiler warnings.
2493  unsigned Match1, Match2, Match3, Match4;
2494
2495  Match1 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore,
2496                                MatchingInlineAsm, isParsingIntelSyntax());
2497  // If this returned as a missing feature failure, remember that.
2498  if (Match1 == Match_MissingFeature)
2499    ErrorInfoMissingFeature = ErrorInfoIgnore;
2500  Tmp[Base.size()] = Suffixes[1];
2501  Match2 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore,
2502                                MatchingInlineAsm, isParsingIntelSyntax());
2503  // If this returned as a missing feature failure, remember that.
2504  if (Match2 == Match_MissingFeature)
2505    ErrorInfoMissingFeature = ErrorInfoIgnore;
2506  Tmp[Base.size()] = Suffixes[2];
2507  Match3 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore,
2508                                MatchingInlineAsm, isParsingIntelSyntax());
2509  // If this returned as a missing feature failure, remember that.
2510  if (Match3 == Match_MissingFeature)
2511    ErrorInfoMissingFeature = ErrorInfoIgnore;
2512  Tmp[Base.size()] = Suffixes[3];
2513  Match4 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore,
2514                                MatchingInlineAsm, isParsingIntelSyntax());
2515  // If this returned as a missing feature failure, remember that.
2516  if (Match4 == Match_MissingFeature)
2517    ErrorInfoMissingFeature = ErrorInfoIgnore;
2518
2519  // Restore the old token.
2520  Op->setTokenValue(Base);
2521
2522  // If exactly one matched, then we treat that as a successful match (and the
2523  // instruction will already have been filled in correctly, since the failing
2524  // matches won't have modified it).
2525  unsigned NumSuccessfulMatches =
2526    (Match1 == Match_Success) + (Match2 == Match_Success) +
2527    (Match3 == Match_Success) + (Match4 == Match_Success);
2528  if (NumSuccessfulMatches == 1) {
2529    Inst.setLoc(IDLoc);
2530    if (!MatchingInlineAsm)
2531      Out.EmitInstruction(Inst);
2532    Opcode = Inst.getOpcode();
2533    return false;
2534  }
2535
2536  // Otherwise, the match failed, try to produce a decent error message.
2537
2538  // If we had multiple suffix matches, then identify this as an ambiguous
2539  // match.
2540  if (NumSuccessfulMatches > 1) {
2541    char MatchChars[4];
2542    unsigned NumMatches = 0;
2543    if (Match1 == Match_Success) MatchChars[NumMatches++] = Suffixes[0];
2544    if (Match2 == Match_Success) MatchChars[NumMatches++] = Suffixes[1];
2545    if (Match3 == Match_Success) MatchChars[NumMatches++] = Suffixes[2];
2546    if (Match4 == Match_Success) MatchChars[NumMatches++] = Suffixes[3];
2547
2548    SmallString<126> Msg;
2549    raw_svector_ostream OS(Msg);
2550    OS << "ambiguous instructions require an explicit suffix (could be ";
2551    for (unsigned i = 0; i != NumMatches; ++i) {
2552      if (i != 0)
2553        OS << ", ";
2554      if (i + 1 == NumMatches)
2555        OS << "or ";
2556      OS << "'" << Base << MatchChars[i] << "'";
2557    }
2558    OS << ")";
2559    Error(IDLoc, OS.str(), EmptyRanges, MatchingInlineAsm);
2560    return true;
2561  }
2562
2563  // Okay, we know that none of the variants matched successfully.
2564
2565  // If all of the instructions reported an invalid mnemonic, then the original
2566  // mnemonic was invalid.
2567  if ((Match1 == Match_MnemonicFail) && (Match2 == Match_MnemonicFail) &&
2568      (Match3 == Match_MnemonicFail) && (Match4 == Match_MnemonicFail)) {
2569    if (!WasOriginallyInvalidOperand) {
2570      ArrayRef<SMRange> Ranges = MatchingInlineAsm ? EmptyRanges :
2571        Op->getLocRange();
2572      return Error(IDLoc, "invalid instruction mnemonic '" + Base + "'",
2573                   Ranges, MatchingInlineAsm);
2574    }
2575
2576    // Recover location info for the operand if we know which was the problem.
2577    if (ErrorInfo != ~0U) {
2578      if (ErrorInfo >= Operands.size())
2579        return Error(IDLoc, "too few operands for instruction",
2580                     EmptyRanges, MatchingInlineAsm);
2581
2582      X86Operand *Operand = (X86Operand*)Operands[ErrorInfo];
2583      if (Operand->getStartLoc().isValid()) {
2584        SMRange OperandRange = Operand->getLocRange();
2585        return Error(Operand->getStartLoc(), "invalid operand for instruction",
2586                     OperandRange, MatchingInlineAsm);
2587      }
2588    }
2589
2590    return Error(IDLoc, "invalid operand for instruction", EmptyRanges,
2591                 MatchingInlineAsm);
2592  }
2593
2594  // If one instruction matched with a missing feature, report this as a
2595  // missing feature.
2596  if ((Match1 == Match_MissingFeature) + (Match2 == Match_MissingFeature) +
2597      (Match3 == Match_MissingFeature) + (Match4 == Match_MissingFeature) == 1){
2598    std::string Msg = "instruction requires:";
2599    unsigned Mask = 1;
2600    for (unsigned i = 0; i < (sizeof(ErrorInfoMissingFeature)*8-1); ++i) {
2601      if (ErrorInfoMissingFeature & Mask) {
2602        Msg += " ";
2603        Msg += getSubtargetFeatureName(ErrorInfoMissingFeature & Mask);
2604      }
2605      Mask <<= 1;
2606    }
2607    return Error(IDLoc, Msg, EmptyRanges, MatchingInlineAsm);
2608  }
2609
2610  // If one instruction matched with an invalid operand, report this as an
2611  // operand failure.
2612  if ((Match1 == Match_InvalidOperand) + (Match2 == Match_InvalidOperand) +
2613      (Match3 == Match_InvalidOperand) + (Match4 == Match_InvalidOperand) == 1){
2614    Error(IDLoc, "invalid operand for instruction", EmptyRanges,
2615          MatchingInlineAsm);
2616    return true;
2617  }
2618
2619  // If all of these were an outright failure, report it in a useless way.
2620  Error(IDLoc, "unknown use of instruction mnemonic without a size suffix",
2621        EmptyRanges, MatchingInlineAsm);
2622  return true;
2623}
2624
2625
2626bool X86AsmParser::ParseDirective(AsmToken DirectiveID) {
2627  StringRef IDVal = DirectiveID.getIdentifier();
2628  if (IDVal == ".word")
2629    return ParseDirectiveWord(2, DirectiveID.getLoc());
2630  else if (IDVal.startswith(".code"))
2631    return ParseDirectiveCode(IDVal, DirectiveID.getLoc());
2632  else if (IDVal.startswith(".att_syntax")) {
2633    getParser().setAssemblerDialect(0);
2634    return false;
2635  } else if (IDVal.startswith(".intel_syntax")) {
2636    getParser().setAssemblerDialect(1);
2637    if (getLexer().isNot(AsmToken::EndOfStatement)) {
2638      if(Parser.getTok().getString() == "noprefix") {
2639        // FIXME : Handle noprefix
2640        Parser.Lex();
2641      } else
2642        return true;
2643    }
2644    return false;
2645  }
2646  return true;
2647}
2648
2649/// ParseDirectiveWord
2650///  ::= .word [ expression (, expression)* ]
2651bool X86AsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) {
2652  if (getLexer().isNot(AsmToken::EndOfStatement)) {
2653    for (;;) {
2654      const MCExpr *Value;
2655      if (getParser().parseExpression(Value))
2656        return true;
2657
2658      getParser().getStreamer().EmitValue(Value, Size);
2659
2660      if (getLexer().is(AsmToken::EndOfStatement))
2661        break;
2662
2663      // FIXME: Improve diagnostic.
2664      if (getLexer().isNot(AsmToken::Comma))
2665        return Error(L, "unexpected token in directive");
2666      Parser.Lex();
2667    }
2668  }
2669
2670  Parser.Lex();
2671  return false;
2672}
2673
2674/// ParseDirectiveCode
2675///  ::= .code32 | .code64
2676bool X86AsmParser::ParseDirectiveCode(StringRef IDVal, SMLoc L) {
2677  if (IDVal == ".code32") {
2678    Parser.Lex();
2679    if (is64BitMode()) {
2680      SwitchMode();
2681      getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
2682    }
2683  } else if (IDVal == ".code64") {
2684    Parser.Lex();
2685    if (!is64BitMode()) {
2686      SwitchMode();
2687      getParser().getStreamer().EmitAssemblerFlag(MCAF_Code64);
2688    }
2689  } else {
2690    return Error(L, "unexpected directive " + IDVal);
2691  }
2692
2693  return false;
2694}
2695
2696// Force static initialization.
2697extern "C" void LLVMInitializeX86AsmParser() {
2698  RegisterMCAsmParser<X86AsmParser> X(TheX86_32Target);
2699  RegisterMCAsmParser<X86AsmParser> Y(TheX86_64Target);
2700}
2701
2702#define GET_REGISTER_MATCHER
2703#define GET_MATCHER_IMPLEMENTATION
2704#define GET_SUBTARGET_FEATURE_NAME
2705#include "X86GenAsmMatcher.inc"
2706