PPCISelLowering.h revision 252723
1//===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that PPC uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
16#define LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
17
18#include "PPC.h"
19#include "PPCInstrInfo.h"
20#include "PPCRegisterInfo.h"
21#include "PPCSubtarget.h"
22#include "llvm/CodeGen/SelectionDAG.h"
23#include "llvm/Target/TargetLowering.h"
24
25namespace llvm {
26  namespace PPCISD {
27    enum NodeType {
28      // Start the numbering where the builtin ops and target ops leave off.
29      FIRST_NUMBER = ISD::BUILTIN_OP_END,
30
31      /// FSEL - Traditional three-operand fsel node.
32      ///
33      FSEL,
34
35      /// FCFID - The FCFID instruction, taking an f64 operand and producing
36      /// and f64 value containing the FP representation of the integer that
37      /// was temporarily in the f64 operand.
38      FCFID,
39
40      /// Newer FCFID[US] integer-to-floating-point conversion instructions for
41      /// unsigned integers and single-precision outputs.
42      FCFIDU, FCFIDS, FCFIDUS,
43
44      /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
45      /// operand, producing an f64 value containing the integer representation
46      /// of that FP value.
47      FCTIDZ, FCTIWZ,
48
49      /// Newer FCTI[D,W]UZ floating-point-to-integer conversion instructions for
50      /// unsigned integers.
51      FCTIDUZ, FCTIWUZ,
52
53      /// Reciprocal estimate instructions (unary FP ops).
54      FRE, FRSQRTE,
55
56      // VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking
57      // three v4f32 operands and producing a v4f32 result.
58      VMADDFP, VNMSUBFP,
59
60      /// VPERM - The PPC VPERM Instruction.
61      ///
62      VPERM,
63
64      /// Hi/Lo - These represent the high and low 16-bit parts of a global
65      /// address respectively.  These nodes have two operands, the first of
66      /// which must be a TargetGlobalAddress, and the second of which must be a
67      /// Constant.  Selected naively, these turn into 'lis G+C' and 'li G+C',
68      /// though these are usually folded into other nodes.
69      Hi, Lo,
70
71      TOC_ENTRY,
72
73      /// The following three target-specific nodes are used for calls through
74      /// function pointers in the 64-bit SVR4 ABI.
75
76      /// Restore the TOC from the TOC save area of the current stack frame.
77      /// This is basically a hard coded load instruction which additionally
78      /// takes/produces a flag.
79      TOC_RESTORE,
80
81      /// Like a regular LOAD but additionally taking/producing a flag.
82      LOAD,
83
84      /// LOAD into r2 (also taking/producing a flag). Like TOC_RESTORE, this is
85      /// a hard coded load instruction.
86      LOAD_TOC,
87
88      /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
89      /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
90      /// compute an allocation on the stack.
91      DYNALLOC,
92
93      /// GlobalBaseReg - On Darwin, this node represents the result of the mflr
94      /// at function entry, used for PIC code.
95      GlobalBaseReg,
96
97      /// These nodes represent the 32-bit PPC shifts that operate on 6-bit
98      /// shift amounts.  These nodes are generated by the multi-precision shift
99      /// code.
100      SRL, SRA, SHL,
101
102      /// CALL - A direct function call.
103      /// CALL_NOP is a call with the special NOP which follows 64-bit
104      /// SVR4 calls.
105      CALL, CALL_NOP,
106
107      /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
108      /// MTCTR instruction.
109      MTCTR,
110
111      /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
112      /// BCTRL instruction.
113      BCTRL,
114
115      /// Return with a flag operand, matched by 'blr'
116      RET_FLAG,
117
118      /// R32 = MFCR(CRREG, INFLAG) - Represents the MFCRpseud/MFOCRF
119      /// instructions.  This copies the bits corresponding to the specified
120      /// CRREG into the resultant GPR.  Bits corresponding to other CR regs
121      /// are undefined.
122      MFCR,
123
124      // EH_SJLJ_SETJMP - SjLj exception handling setjmp.
125      EH_SJLJ_SETJMP,
126
127      // EH_SJLJ_LONGJMP - SjLj exception handling longjmp.
128      EH_SJLJ_LONGJMP,
129
130      /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
131      /// instructions.  For lack of better number, we use the opcode number
132      /// encoding for the OPC field to identify the compare.  For example, 838
133      /// is VCMPGTSH.
134      VCMP,
135
136      /// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the
137      /// altivec VCMP*o instructions.  For lack of better number, we use the
138      /// opcode number encoding for the OPC field to identify the compare.  For
139      /// example, 838 is VCMPGTSH.
140      VCMPo,
141
142      /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
143      /// corresponds to the COND_BRANCH pseudo instruction.  CRRC is the
144      /// condition register to branch on, OPC is the branch opcode to use (e.g.
145      /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
146      /// an optional input flag argument.
147      COND_BRANCH,
148
149      /// F8RC = FADDRTZ F8RC, F8RC - This is an FADD done with rounding
150      /// towards zero.  Used only as part of the long double-to-int
151      /// conversion sequence.
152      FADDRTZ,
153
154      /// F8RC = MFFS - This moves the FPSCR (not modeled) into the register.
155      MFFS,
156
157      /// LARX = This corresponds to PPC l{w|d}arx instrcution: load and
158      /// reserve indexed. This is used to implement atomic operations.
159      LARX,
160
161      /// STCX = This corresponds to PPC stcx. instrcution: store conditional
162      /// indexed. This is used to implement atomic operations.
163      STCX,
164
165      /// TC_RETURN - A tail call return.
166      ///   operand #0 chain
167      ///   operand #1 callee (register or absolute)
168      ///   operand #2 stack adjustment
169      ///   operand #3 optional in flag
170      TC_RETURN,
171
172      /// ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls
173      CR6SET,
174      CR6UNSET,
175
176      /// G8RC = ADDIS_GOT_TPREL_HA %X2, Symbol - Used by the initial-exec
177      /// TLS model, produces an ADDIS8 instruction that adds the GOT
178      /// base to sym@got@tprel@ha.
179      ADDIS_GOT_TPREL_HA,
180
181      /// G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec
182      /// TLS model, produces a LD instruction with base register G8RReg
183      /// and offset sym@got@tprel@l.  This completes the addition that
184      /// finds the offset of "sym" relative to the thread pointer.
185      LD_GOT_TPREL_L,
186
187      /// G8RC = ADD_TLS G8RReg, Symbol - Used by the initial-exec TLS
188      /// model, produces an ADD instruction that adds the contents of
189      /// G8RReg to the thread pointer.  Symbol contains a relocation
190      /// sym@tls which is to be replaced by the thread pointer and
191      /// identifies to the linker that the instruction is part of a
192      /// TLS sequence.
193      ADD_TLS,
194
195      /// G8RC = ADDIS_TLSGD_HA %X2, Symbol - For the general-dynamic TLS
196      /// model, produces an ADDIS8 instruction that adds the GOT base
197      /// register to sym@got@tlsgd@ha.
198      ADDIS_TLSGD_HA,
199
200      /// G8RC = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS
201      /// model, produces an ADDI8 instruction that adds G8RReg to
202      /// sym@got@tlsgd@l.
203      ADDI_TLSGD_L,
204
205      /// G8RC = GET_TLS_ADDR %X3, Symbol - For the general-dynamic TLS
206      /// model, produces a call to __tls_get_addr(sym@tlsgd).
207      GET_TLS_ADDR,
208
209      /// G8RC = ADDIS_TLSLD_HA %X2, Symbol - For the local-dynamic TLS
210      /// model, produces an ADDIS8 instruction that adds the GOT base
211      /// register to sym@got@tlsld@ha.
212      ADDIS_TLSLD_HA,
213
214      /// G8RC = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS
215      /// model, produces an ADDI8 instruction that adds G8RReg to
216      /// sym@got@tlsld@l.
217      ADDI_TLSLD_L,
218
219      /// G8RC = GET_TLSLD_ADDR %X3, Symbol - For the local-dynamic TLS
220      /// model, produces a call to __tls_get_addr(sym@tlsld).
221      GET_TLSLD_ADDR,
222
223      /// G8RC = ADDIS_DTPREL_HA %X3, Symbol, Chain - For the
224      /// local-dynamic TLS model, produces an ADDIS8 instruction
225      /// that adds X3 to sym@dtprel@ha.  The Chain operand is needed
226      /// to tie this in place following a copy to %X3 from the result
227      /// of a GET_TLSLD_ADDR.
228      ADDIS_DTPREL_HA,
229
230      /// G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS
231      /// model, produces an ADDI8 instruction that adds G8RReg to
232      /// sym@got@dtprel@l.
233      ADDI_DTPREL_L,
234
235      /// VRRC = VADD_SPLAT Elt, EltSize - Temporary node to be expanded
236      /// during instruction selection to optimize a BUILD_VECTOR into
237      /// operations on splats.  This is necessary to avoid losing these
238      /// optimizations due to constant folding.
239      VADD_SPLAT,
240
241      /// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a
242      /// byte-swapping store instruction.  It byte-swaps the low "Type" bits of
243      /// the GPRC input, then stores it through Ptr.  Type can be either i16 or
244      /// i32.
245      STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE,
246
247      /// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a
248      /// byte-swapping load instruction.  It loads "Type" bits, byte swaps it,
249      /// then puts it in the bottom bits of the GPRC.  TYPE can be either i16
250      /// or i32.
251      LBRX,
252
253      /// STFIWX - The STFIWX instruction.  The first operand is an input token
254      /// chain, then an f64 value to store, then an address to store it to.
255      STFIWX,
256
257      /// GPRC, CHAIN = LFIWAX CHAIN, Ptr - This is a floating-point
258      /// load which sign-extends from a 32-bit integer value into the
259      /// destination 64-bit register.
260      LFIWAX,
261
262      /// GPRC, CHAIN = LFIWZX CHAIN, Ptr - This is a floating-point
263      /// load which zero-extends from a 32-bit integer value into the
264      /// destination 64-bit register.
265      LFIWZX,
266
267      /// G8RC = ADDIS_TOC_HA %X2, Symbol - For medium and large code model,
268      /// produces an ADDIS8 instruction that adds the TOC base register to
269      /// sym@toc@ha.
270      ADDIS_TOC_HA,
271
272      /// G8RC = LD_TOC_L Symbol, G8RReg - For medium and large code model,
273      /// produces a LD instruction with base register G8RReg and offset
274      /// sym@toc@l.  Preceded by an ADDIS_TOC_HA to form a full 32-bit offset.
275      LD_TOC_L,
276
277      /// G8RC = ADDI_TOC_L G8RReg, Symbol - For medium code model, produces
278      /// an ADDI8 instruction that adds G8RReg to sym@toc@l.
279      /// Preceded by an ADDIS_TOC_HA to form a full 32-bit offset.
280      ADDI_TOC_L
281    };
282  }
283
284  /// Define some predicates that are used for node matching.
285  namespace PPC {
286    /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
287    /// VPKUHUM instruction.
288    bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary);
289
290    /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
291    /// VPKUWUM instruction.
292    bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary);
293
294    /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
295    /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
296    bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
297                            bool isUnary);
298
299    /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
300    /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
301    bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
302                            bool isUnary);
303
304    /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
305    /// amount, otherwise return -1.
306    int isVSLDOIShuffleMask(SDNode *N, bool isUnary);
307
308    /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
309    /// specifies a splat of a single element that is suitable for input to
310    /// VSPLTB/VSPLTH/VSPLTW.
311    bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize);
312
313    /// isAllNegativeZeroVector - Returns true if all elements of build_vector
314    /// are -0.0.
315    bool isAllNegativeZeroVector(SDNode *N);
316
317    /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
318    /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
319    unsigned getVSPLTImmediate(SDNode *N, unsigned EltSize);
320
321    /// get_VSPLTI_elt - If this is a build_vector of constants which can be
322    /// formed by using a vspltis[bhw] instruction of the specified element
323    /// size, return the constant being splatted.  The ByteSize field indicates
324    /// the number of bytes of each element [124] -> [bhw].
325    SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG);
326  }
327
328  class PPCTargetLowering : public TargetLowering {
329    const PPCSubtarget &PPCSubTarget;
330    const PPCRegisterInfo *PPCRegInfo;
331    const PPCInstrInfo *PPCII;
332
333  public:
334    explicit PPCTargetLowering(PPCTargetMachine &TM);
335
336    /// getTargetNodeName() - This method returns the name of a target specific
337    /// DAG node.
338    virtual const char *getTargetNodeName(unsigned Opcode) const;
339
340    virtual MVT getScalarShiftAmountTy(EVT LHSTy) const { return MVT::i32; }
341
342    /// getSetCCResultType - Return the ISD::SETCC ValueType
343    virtual EVT getSetCCResultType(EVT VT) const;
344
345    /// getPreIndexedAddressParts - returns true by value, base pointer and
346    /// offset pointer and addressing mode by reference if the node's address
347    /// can be legally represented as pre-indexed load / store address.
348    virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
349                                           SDValue &Offset,
350                                           ISD::MemIndexedMode &AM,
351                                           SelectionDAG &DAG) const;
352
353    /// SelectAddressRegReg - Given the specified addressed, check to see if it
354    /// can be represented as an indexed [r+r] operation.  Returns false if it
355    /// can be more efficiently represented with [r+imm].
356    bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index,
357                             SelectionDAG &DAG) const;
358
359    /// SelectAddressRegImm - Returns true if the address N can be represented
360    /// by a base register plus a signed 16-bit displacement [r+imm], and if it
361    /// is not better represented as reg+reg.
362    bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base,
363                             SelectionDAG &DAG) const;
364
365    /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
366    /// represented as an indexed [r+r] operation.
367    bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index,
368                                 SelectionDAG &DAG) const;
369
370    /// SelectAddressRegImmShift - Returns true if the address N can be
371    /// represented by a base register plus a signed 14-bit displacement
372    /// [r+imm*4].  Suitable for use by STD and friends.
373    bool SelectAddressRegImmShift(SDValue N, SDValue &Disp, SDValue &Base,
374                                  SelectionDAG &DAG) const;
375
376    Sched::Preference getSchedulingPreference(SDNode *N) const;
377
378    /// LowerOperation - Provide custom lowering hooks for some operations.
379    ///
380    virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
381
382    /// ReplaceNodeResults - Replace the results of node with an illegal result
383    /// type with new values built out of custom code.
384    ///
385    virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
386                                    SelectionDAG &DAG) const;
387
388    virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
389
390    virtual void computeMaskedBitsForTargetNode(const SDValue Op,
391                                                APInt &KnownZero,
392                                                APInt &KnownOne,
393                                                const SelectionDAG &DAG,
394                                                unsigned Depth = 0) const;
395
396    virtual MachineBasicBlock *
397      EmitInstrWithCustomInserter(MachineInstr *MI,
398                                  MachineBasicBlock *MBB) const;
399    MachineBasicBlock *EmitAtomicBinary(MachineInstr *MI,
400                                        MachineBasicBlock *MBB, bool is64Bit,
401                                        unsigned BinOpcode) const;
402    MachineBasicBlock *EmitPartwordAtomicBinary(MachineInstr *MI,
403                                                MachineBasicBlock *MBB,
404                                            bool is8bit, unsigned Opcode) const;
405
406    MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr *MI,
407                                        MachineBasicBlock *MBB) const;
408
409    MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr *MI,
410                                         MachineBasicBlock *MBB) const;
411
412    ConstraintType getConstraintType(const std::string &Constraint) const;
413
414    /// Examine constraint string and operand type and determine a weight value.
415    /// The operand object must already have been set up with the operand type.
416    ConstraintWeight getSingleConstraintMatchWeight(
417      AsmOperandInfo &info, const char *constraint) const;
418
419    std::pair<unsigned, const TargetRegisterClass*>
420      getRegForInlineAsmConstraint(const std::string &Constraint,
421                                   EVT VT) const;
422
423    /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
424    /// function arguments in the caller parameter area.  This is the actual
425    /// alignment, not its logarithm.
426    unsigned getByValTypeAlignment(Type *Ty) const;
427
428    /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
429    /// vector.  If it is invalid, don't add anything to Ops.
430    virtual void LowerAsmOperandForConstraint(SDValue Op,
431                                              std::string &Constraint,
432                                              std::vector<SDValue> &Ops,
433                                              SelectionDAG &DAG) const;
434
435    /// isLegalAddressingMode - Return true if the addressing mode represented
436    /// by AM is legal for this target, for a load/store of the specified type.
437    virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty)const;
438
439    /// isLegalAddressImmediate - Return true if the integer value can be used
440    /// as the offset of the target addressing mode for load / store of the
441    /// given type.
442    virtual bool isLegalAddressImmediate(int64_t V, Type *Ty) const;
443
444    /// isLegalAddressImmediate - Return true if the GlobalValue can be used as
445    /// the offset of the target addressing mode.
446    virtual bool isLegalAddressImmediate(GlobalValue *GV) const;
447
448    virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
449
450    /// getOptimalMemOpType - Returns the target specific optimal type for load
451    /// and store operations as a result of memset, memcpy, and memmove
452    /// lowering. If DstAlign is zero that means it's safe to destination
453    /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
454    /// means there isn't a need to check it against alignment requirement,
455    /// probably because the source does not need to be loaded. If 'IsMemset' is
456    /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
457    /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
458    /// source is constant so it does not need to be loaded.
459    /// It returns EVT::Other if the type should be determined using generic
460    /// target-independent logic.
461    virtual EVT
462    getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
463                        bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
464                        MachineFunction &MF) const;
465
466    /// Is unaligned memory access allowed for the given type, and is it fast
467    /// relative to software emulation.
468    virtual bool allowsUnalignedMemoryAccesses(EVT VT, bool *Fast = 0) const;
469
470    /// isFMAFasterThanMulAndAdd - Return true if an FMA operation is faster than
471    /// a pair of mul and add instructions. fmuladd intrinsics will be expanded to
472    /// FMAs when this method returns true (and FMAs are legal), otherwise fmuladd
473    /// is expanded to mul + add.
474    virtual bool isFMAFasterThanMulAndAdd(EVT VT) const;
475
476  private:
477    SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const;
478    SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const;
479
480    bool
481    IsEligibleForTailCallOptimization(SDValue Callee,
482                                      CallingConv::ID CalleeCC,
483                                      bool isVarArg,
484                                      const SmallVectorImpl<ISD::InputArg> &Ins,
485                                      SelectionDAG& DAG) const;
486
487    SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
488                                         int SPDiff,
489                                         SDValue Chain,
490                                         SDValue &LROpOut,
491                                         SDValue &FPOpOut,
492                                         bool isDarwinABI,
493                                         DebugLoc dl) const;
494
495    SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
496    SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
497    SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
498    SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
499    SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
500    SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
501    SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
502    SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
503    SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
504    SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
505    SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
506                         const PPCSubtarget &Subtarget) const;
507    SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG,
508                       const PPCSubtarget &Subtarget) const;
509    SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
510                                const PPCSubtarget &Subtarget) const;
511    SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG,
512                                      const PPCSubtarget &Subtarget) const;
513    SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
514    SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, DebugLoc dl) const;
515    SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
516    SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
517    SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const;
518    SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const;
519    SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const;
520    SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
521    SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
522    SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
523    SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
524    SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const;
525
526    SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
527                            CallingConv::ID CallConv, bool isVarArg,
528                            const SmallVectorImpl<ISD::InputArg> &Ins,
529                            DebugLoc dl, SelectionDAG &DAG,
530                            SmallVectorImpl<SDValue> &InVals) const;
531    SDValue FinishCall(CallingConv::ID CallConv, DebugLoc dl, bool isTailCall,
532                       bool isVarArg,
533                       SelectionDAG &DAG,
534                       SmallVector<std::pair<unsigned, SDValue>, 8>
535                         &RegsToPass,
536                       SDValue InFlag, SDValue Chain,
537                       SDValue &Callee,
538                       int SPDiff, unsigned NumBytes,
539                       const SmallVectorImpl<ISD::InputArg> &Ins,
540                       SmallVectorImpl<SDValue> &InVals) const;
541
542    virtual SDValue
543      LowerFormalArguments(SDValue Chain,
544                           CallingConv::ID CallConv, bool isVarArg,
545                           const SmallVectorImpl<ISD::InputArg> &Ins,
546                           DebugLoc dl, SelectionDAG &DAG,
547                           SmallVectorImpl<SDValue> &InVals) const;
548
549    virtual SDValue
550      LowerCall(TargetLowering::CallLoweringInfo &CLI,
551                SmallVectorImpl<SDValue> &InVals) const;
552
553    virtual bool
554      CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
555                   bool isVarArg,
556                   const SmallVectorImpl<ISD::OutputArg> &Outs,
557                   LLVMContext &Context) const;
558
559    virtual SDValue
560      LowerReturn(SDValue Chain,
561                  CallingConv::ID CallConv, bool isVarArg,
562                  const SmallVectorImpl<ISD::OutputArg> &Outs,
563                  const SmallVectorImpl<SDValue> &OutVals,
564                  DebugLoc dl, SelectionDAG &DAG) const;
565
566    SDValue
567      extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT, SelectionDAG &DAG,
568                        SDValue ArgVal, DebugLoc dl) const;
569
570    void
571      setMinReservedArea(MachineFunction &MF, SelectionDAG &DAG,
572                         unsigned nAltivecParamsAtEnd,
573                         unsigned MinReservedArea, bool isPPC64) const;
574
575    SDValue
576      LowerFormalArguments_Darwin(SDValue Chain,
577                                  CallingConv::ID CallConv, bool isVarArg,
578                                  const SmallVectorImpl<ISD::InputArg> &Ins,
579                                  DebugLoc dl, SelectionDAG &DAG,
580                                  SmallVectorImpl<SDValue> &InVals) const;
581    SDValue
582      LowerFormalArguments_64SVR4(SDValue Chain,
583                                  CallingConv::ID CallConv, bool isVarArg,
584                                  const SmallVectorImpl<ISD::InputArg> &Ins,
585                                  DebugLoc dl, SelectionDAG &DAG,
586                                  SmallVectorImpl<SDValue> &InVals) const;
587    SDValue
588      LowerFormalArguments_32SVR4(SDValue Chain,
589                                  CallingConv::ID CallConv, bool isVarArg,
590                                  const SmallVectorImpl<ISD::InputArg> &Ins,
591                                  DebugLoc dl, SelectionDAG &DAG,
592                                  SmallVectorImpl<SDValue> &InVals) const;
593
594    SDValue
595      createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
596                                 SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
597                                 SelectionDAG &DAG, DebugLoc dl) const;
598
599    SDValue
600      LowerCall_Darwin(SDValue Chain, SDValue Callee,
601                       CallingConv::ID CallConv,
602                       bool isVarArg, bool isTailCall,
603                       const SmallVectorImpl<ISD::OutputArg> &Outs,
604                       const SmallVectorImpl<SDValue> &OutVals,
605                       const SmallVectorImpl<ISD::InputArg> &Ins,
606                       DebugLoc dl, SelectionDAG &DAG,
607                       SmallVectorImpl<SDValue> &InVals) const;
608    SDValue
609      LowerCall_64SVR4(SDValue Chain, SDValue Callee,
610                       CallingConv::ID CallConv,
611                       bool isVarArg, bool isTailCall,
612                       const SmallVectorImpl<ISD::OutputArg> &Outs,
613                       const SmallVectorImpl<SDValue> &OutVals,
614                       const SmallVectorImpl<ISD::InputArg> &Ins,
615                       DebugLoc dl, SelectionDAG &DAG,
616                       SmallVectorImpl<SDValue> &InVals) const;
617    SDValue
618    LowerCall_32SVR4(SDValue Chain, SDValue Callee, CallingConv::ID CallConv,
619                     bool isVarArg, bool isTailCall,
620                     const SmallVectorImpl<ISD::OutputArg> &Outs,
621                     const SmallVectorImpl<SDValue> &OutVals,
622                     const SmallVectorImpl<ISD::InputArg> &Ins,
623                     DebugLoc dl, SelectionDAG &DAG,
624                     SmallVectorImpl<SDValue> &InVals) const;
625
626    SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
627    SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
628
629    SDValue DAGCombineFastRecip(SDValue Op, DAGCombinerInfo &DCI) const;
630    SDValue DAGCombineFastRecipFSQRT(SDValue Op, DAGCombinerInfo &DCI) const;
631  };
632}
633
634#endif   // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
635