PPCISelLowering.cpp revision 206274
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPerfectShuffle.h"
17#include "PPCPredicates.h"
18#include "PPCTargetMachine.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/VectorExtras.h"
21#include "llvm/CodeGen/CallingConvLower.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
29#include "llvm/CallingConv.h"
30#include "llvm/Constants.h"
31#include "llvm/Function.h"
32#include "llvm/Intrinsics.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Target/TargetOptions.h"
35#include "llvm/Support/CommandLine.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/raw_ostream.h"
38#include "llvm/DerivedTypes.h"
39using namespace llvm;
40
41static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
42                                     CCValAssign::LocInfo &LocInfo,
43                                     ISD::ArgFlagsTy &ArgFlags,
44                                     CCState &State);
45static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, EVT &ValVT,
46                                            EVT &LocVT,
47                                            CCValAssign::LocInfo &LocInfo,
48                                            ISD::ArgFlagsTy &ArgFlags,
49                                            CCState &State);
50static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, EVT &ValVT,
51                                              EVT &LocVT,
52                                              CCValAssign::LocInfo &LocInfo,
53                                              ISD::ArgFlagsTy &ArgFlags,
54                                              CCState &State);
55
56static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
57cl::desc("enable preincrement load/store generation on PPC (experimental)"),
58                                     cl::Hidden);
59
60static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) {
61  if (TM.getSubtargetImpl()->isDarwin())
62    return new TargetLoweringObjectFileMachO();
63
64  return new TargetLoweringObjectFileELF();
65}
66
67PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
68  : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) {
69
70  setPow2DivIsCheap();
71
72  // Use _setjmp/_longjmp instead of setjmp/longjmp.
73  setUseUnderscoreSetJmp(true);
74  setUseUnderscoreLongJmp(true);
75
76  // Set up the register classes.
77  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
78  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
79  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
80
81  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
82  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
83  setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
84
85  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
86
87  // PowerPC has pre-inc load and store's.
88  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
89  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
90  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
91  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
92  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
93  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
94  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
95  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
96  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
97  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
98
99  // This is used in the ppcf128->int sequence.  Note it has different semantics
100  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
101  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
102
103  // PowerPC has no SREM/UREM instructions
104  setOperationAction(ISD::SREM, MVT::i32, Expand);
105  setOperationAction(ISD::UREM, MVT::i32, Expand);
106  setOperationAction(ISD::SREM, MVT::i64, Expand);
107  setOperationAction(ISD::UREM, MVT::i64, Expand);
108
109  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
110  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
111  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
112  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
113  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
114  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
115  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
116  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
117  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
118
119  // We don't support sin/cos/sqrt/fmod/pow
120  setOperationAction(ISD::FSIN , MVT::f64, Expand);
121  setOperationAction(ISD::FCOS , MVT::f64, Expand);
122  setOperationAction(ISD::FREM , MVT::f64, Expand);
123  setOperationAction(ISD::FPOW , MVT::f64, Expand);
124  setOperationAction(ISD::FSIN , MVT::f32, Expand);
125  setOperationAction(ISD::FCOS , MVT::f32, Expand);
126  setOperationAction(ISD::FREM , MVT::f32, Expand);
127  setOperationAction(ISD::FPOW , MVT::f32, Expand);
128
129  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
130
131  // If we're enabling GP optimizations, use hardware square root
132  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
133    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
134    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
135  }
136
137  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
138  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
139
140  // PowerPC does not have BSWAP, CTPOP or CTTZ
141  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
142  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
143  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
144  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
145  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
146  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
147
148  // PowerPC does not have ROTR
149  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
150  setOperationAction(ISD::ROTR, MVT::i64   , Expand);
151
152  // PowerPC does not have Select
153  setOperationAction(ISD::SELECT, MVT::i32, Expand);
154  setOperationAction(ISD::SELECT, MVT::i64, Expand);
155  setOperationAction(ISD::SELECT, MVT::f32, Expand);
156  setOperationAction(ISD::SELECT, MVT::f64, Expand);
157
158  // PowerPC wants to turn select_cc of FP into fsel when possible.
159  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
160  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
161
162  // PowerPC wants to optimize integer setcc a bit
163  setOperationAction(ISD::SETCC, MVT::i32, Custom);
164
165  // PowerPC does not have BRCOND which requires SetCC
166  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
167
168  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
169
170  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
171  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
172
173  // PowerPC does not have [U|S]INT_TO_FP
174  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
175  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
176
177  setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
178  setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
179  setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
180  setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
181
182  // We cannot sextinreg(i1).  Expand to shifts.
183  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
184
185  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
186  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
187  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
188  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
189
190
191  // We want to legalize GlobalAddress and ConstantPool nodes into the
192  // appropriate instructions to materialize the address.
193  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
194  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
195  setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
196  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
197  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
198  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
199  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
200  setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
201  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
202  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
203
204  // TRAP is legal.
205  setOperationAction(ISD::TRAP, MVT::Other, Legal);
206
207  // TRAMPOLINE is custom lowered.
208  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
209
210  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
211  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
212
213  // VAARG is custom lowered with the 32-bit SVR4 ABI.
214  if (    TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
215      && !TM.getSubtarget<PPCSubtarget>().isPPC64())
216    setOperationAction(ISD::VAARG, MVT::Other, Custom);
217  else
218    setOperationAction(ISD::VAARG, MVT::Other, Expand);
219
220  // Use the default implementation.
221  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
222  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
223  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
224  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
225  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
226  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
227
228  // We want to custom lower some of our intrinsics.
229  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
230
231  // Comparisons that require checking two conditions.
232  setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
233  setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
234  setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
235  setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
236  setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
237  setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
238  setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
239  setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
240  setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
241  setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
242  setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
243  setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
244
245  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
246    // They also have instructions for converting between i64 and fp.
247    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
248    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
249    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
250    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
251    // This is just the low 32 bits of a (signed) fp->i64 conversion.
252    // We cannot do this with Promote because i64 is not a legal type.
253    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
254
255    // FIXME: disable this lowered code.  This generates 64-bit register values,
256    // and we don't model the fact that the top part is clobbered by calls.  We
257    // need to flag these together so that the value isn't live across a call.
258    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
259  } else {
260    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
261    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
262  }
263
264  if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
265    // 64-bit PowerPC implementations can support i64 types directly
266    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
267    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
268    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
269    // 64-bit PowerPC wants to expand i128 shifts itself.
270    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
271    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
272    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
273  } else {
274    // 32-bit PowerPC wants to expand i64 shifts itself.
275    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
276    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
277    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
278  }
279
280  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
281    // First set operation action for all vector types to expand. Then we
282    // will selectively turn on ones that can be effectively codegen'd.
283    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
284         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
285      MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
286
287      // add/sub are legal for all supported vector VT's.
288      setOperationAction(ISD::ADD , VT, Legal);
289      setOperationAction(ISD::SUB , VT, Legal);
290
291      // We promote all shuffles to v16i8.
292      setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
293      AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
294
295      // We promote all non-typed operations to v4i32.
296      setOperationAction(ISD::AND   , VT, Promote);
297      AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
298      setOperationAction(ISD::OR    , VT, Promote);
299      AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
300      setOperationAction(ISD::XOR   , VT, Promote);
301      AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
302      setOperationAction(ISD::LOAD  , VT, Promote);
303      AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
304      setOperationAction(ISD::SELECT, VT, Promote);
305      AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
306      setOperationAction(ISD::STORE, VT, Promote);
307      AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
308
309      // No other operations are legal.
310      setOperationAction(ISD::MUL , VT, Expand);
311      setOperationAction(ISD::SDIV, VT, Expand);
312      setOperationAction(ISD::SREM, VT, Expand);
313      setOperationAction(ISD::UDIV, VT, Expand);
314      setOperationAction(ISD::UREM, VT, Expand);
315      setOperationAction(ISD::FDIV, VT, Expand);
316      setOperationAction(ISD::FNEG, VT, Expand);
317      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
318      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
319      setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
320      setOperationAction(ISD::UMUL_LOHI, VT, Expand);
321      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
322      setOperationAction(ISD::UDIVREM, VT, Expand);
323      setOperationAction(ISD::SDIVREM, VT, Expand);
324      setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
325      setOperationAction(ISD::FPOW, VT, Expand);
326      setOperationAction(ISD::CTPOP, VT, Expand);
327      setOperationAction(ISD::CTLZ, VT, Expand);
328      setOperationAction(ISD::CTTZ, VT, Expand);
329    }
330
331    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
332    // with merges, splats, etc.
333    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
334
335    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
336    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
337    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
338    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
339    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
340    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
341
342    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
343    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
344    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
345    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
346
347    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
348    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
349    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
350    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
351
352    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
353    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
354
355    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
356    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
357    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
358    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
359  }
360
361  setShiftAmountType(MVT::i32);
362  setBooleanContents(ZeroOrOneBooleanContent);
363
364  if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
365    setStackPointerRegisterToSaveRestore(PPC::X1);
366    setExceptionPointerRegister(PPC::X3);
367    setExceptionSelectorRegister(PPC::X4);
368  } else {
369    setStackPointerRegisterToSaveRestore(PPC::R1);
370    setExceptionPointerRegister(PPC::R3);
371    setExceptionSelectorRegister(PPC::R4);
372  }
373
374  // We have target-specific dag combine patterns for the following nodes:
375  setTargetDAGCombine(ISD::SINT_TO_FP);
376  setTargetDAGCombine(ISD::STORE);
377  setTargetDAGCombine(ISD::BR_CC);
378  setTargetDAGCombine(ISD::BSWAP);
379
380  // Darwin long double math library functions have $LDBL128 appended.
381  if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
382    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
383    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
384    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
385    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
386    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
387    setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
388    setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
389    setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
390    setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
391    setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
392  }
393
394  computeRegisterProperties();
395}
396
397/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
398/// function arguments in the caller parameter area.
399unsigned PPCTargetLowering::getByValTypeAlignment(const Type *Ty) const {
400  TargetMachine &TM = getTargetMachine();
401  // Darwin passes everything on 4 byte boundary.
402  if (TM.getSubtarget<PPCSubtarget>().isDarwin())
403    return 4;
404  // FIXME SVR4 TBD
405  return 4;
406}
407
408const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
409  switch (Opcode) {
410  default: return 0;
411  case PPCISD::FSEL:            return "PPCISD::FSEL";
412  case PPCISD::FCFID:           return "PPCISD::FCFID";
413  case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
414  case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
415  case PPCISD::STFIWX:          return "PPCISD::STFIWX";
416  case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
417  case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
418  case PPCISD::VPERM:           return "PPCISD::VPERM";
419  case PPCISD::Hi:              return "PPCISD::Hi";
420  case PPCISD::Lo:              return "PPCISD::Lo";
421  case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
422  case PPCISD::TOC_RESTORE:     return "PPCISD::TOC_RESTORE";
423  case PPCISD::LOAD:            return "PPCISD::LOAD";
424  case PPCISD::LOAD_TOC:        return "PPCISD::LOAD_TOC";
425  case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
426  case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
427  case PPCISD::SRL:             return "PPCISD::SRL";
428  case PPCISD::SRA:             return "PPCISD::SRA";
429  case PPCISD::SHL:             return "PPCISD::SHL";
430  case PPCISD::EXTSW_32:        return "PPCISD::EXTSW_32";
431  case PPCISD::STD_32:          return "PPCISD::STD_32";
432  case PPCISD::CALL_SVR4:       return "PPCISD::CALL_SVR4";
433  case PPCISD::CALL_Darwin:     return "PPCISD::CALL_Darwin";
434  case PPCISD::NOP:             return "PPCISD::NOP";
435  case PPCISD::MTCTR:           return "PPCISD::MTCTR";
436  case PPCISD::BCTRL_Darwin:    return "PPCISD::BCTRL_Darwin";
437  case PPCISD::BCTRL_SVR4:      return "PPCISD::BCTRL_SVR4";
438  case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
439  case PPCISD::MFCR:            return "PPCISD::MFCR";
440  case PPCISD::VCMP:            return "PPCISD::VCMP";
441  case PPCISD::VCMPo:           return "PPCISD::VCMPo";
442  case PPCISD::LBRX:            return "PPCISD::LBRX";
443  case PPCISD::STBRX:           return "PPCISD::STBRX";
444  case PPCISD::LARX:            return "PPCISD::LARX";
445  case PPCISD::STCX:            return "PPCISD::STCX";
446  case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
447  case PPCISD::MFFS:            return "PPCISD::MFFS";
448  case PPCISD::MTFSB0:          return "PPCISD::MTFSB0";
449  case PPCISD::MTFSB1:          return "PPCISD::MTFSB1";
450  case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
451  case PPCISD::MTFSF:           return "PPCISD::MTFSF";
452  case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
453  }
454}
455
456MVT::SimpleValueType PPCTargetLowering::getSetCCResultType(EVT VT) const {
457  return MVT::i32;
458}
459
460/// getFunctionAlignment - Return the Log2 alignment of this function.
461unsigned PPCTargetLowering::getFunctionAlignment(const Function *F) const {
462  if (getTargetMachine().getSubtarget<PPCSubtarget>().isDarwin())
463    return F->hasFnAttr(Attribute::OptimizeForSize) ? 2 : 4;
464  else
465    return 2;
466}
467
468//===----------------------------------------------------------------------===//
469// Node matching predicates, for use by the tblgen matching code.
470//===----------------------------------------------------------------------===//
471
472/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
473static bool isFloatingPointZero(SDValue Op) {
474  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
475    return CFP->getValueAPF().isZero();
476  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
477    // Maybe this has already been legalized into the constant pool?
478    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
479      if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
480        return CFP->getValueAPF().isZero();
481  }
482  return false;
483}
484
485/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
486/// true if Op is undef or if it matches the specified value.
487static bool isConstantOrUndef(int Op, int Val) {
488  return Op < 0 || Op == Val;
489}
490
491/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
492/// VPKUHUM instruction.
493bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
494  if (!isUnary) {
495    for (unsigned i = 0; i != 16; ++i)
496      if (!isConstantOrUndef(N->getMaskElt(i),  i*2+1))
497        return false;
498  } else {
499    for (unsigned i = 0; i != 8; ++i)
500      if (!isConstantOrUndef(N->getMaskElt(i),    i*2+1) ||
501          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+1))
502        return false;
503  }
504  return true;
505}
506
507/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
508/// VPKUWUM instruction.
509bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
510  if (!isUnary) {
511    for (unsigned i = 0; i != 16; i += 2)
512      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
513          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
514        return false;
515  } else {
516    for (unsigned i = 0; i != 8; i += 2)
517      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
518          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3) ||
519          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+2) ||
520          !isConstantOrUndef(N->getMaskElt(i+9),  i*2+3))
521        return false;
522  }
523  return true;
524}
525
526/// isVMerge - Common function, used to match vmrg* shuffles.
527///
528static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
529                     unsigned LHSStart, unsigned RHSStart) {
530  assert(N->getValueType(0) == MVT::v16i8 &&
531         "PPC only supports shuffles by bytes!");
532  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
533         "Unsupported merge size!");
534
535  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
536    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
537      if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
538                             LHSStart+j+i*UnitSize) ||
539          !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
540                             RHSStart+j+i*UnitSize))
541        return false;
542    }
543  return true;
544}
545
546/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
547/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
548bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
549                             bool isUnary) {
550  if (!isUnary)
551    return isVMerge(N, UnitSize, 8, 24);
552  return isVMerge(N, UnitSize, 8, 8);
553}
554
555/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
556/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
557bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
558                             bool isUnary) {
559  if (!isUnary)
560    return isVMerge(N, UnitSize, 0, 16);
561  return isVMerge(N, UnitSize, 0, 0);
562}
563
564
565/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
566/// amount, otherwise return -1.
567int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
568  assert(N->getValueType(0) == MVT::v16i8 &&
569         "PPC only supports shuffles by bytes!");
570
571  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
572
573  // Find the first non-undef value in the shuffle mask.
574  unsigned i;
575  for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
576    /*search*/;
577
578  if (i == 16) return -1;  // all undef.
579
580  // Otherwise, check to see if the rest of the elements are consecutively
581  // numbered from this value.
582  unsigned ShiftAmt = SVOp->getMaskElt(i);
583  if (ShiftAmt < i) return -1;
584  ShiftAmt -= i;
585
586  if (!isUnary) {
587    // Check the rest of the elements to see if they are consecutive.
588    for (++i; i != 16; ++i)
589      if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
590        return -1;
591  } else {
592    // Check the rest of the elements to see if they are consecutive.
593    for (++i; i != 16; ++i)
594      if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
595        return -1;
596  }
597  return ShiftAmt;
598}
599
600/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
601/// specifies a splat of a single element that is suitable for input to
602/// VSPLTB/VSPLTH/VSPLTW.
603bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
604  assert(N->getValueType(0) == MVT::v16i8 &&
605         (EltSize == 1 || EltSize == 2 || EltSize == 4));
606
607  // This is a splat operation if each element of the permute is the same, and
608  // if the value doesn't reference the second vector.
609  unsigned ElementBase = N->getMaskElt(0);
610
611  // FIXME: Handle UNDEF elements too!
612  if (ElementBase >= 16)
613    return false;
614
615  // Check that the indices are consecutive, in the case of a multi-byte element
616  // splatted with a v16i8 mask.
617  for (unsigned i = 1; i != EltSize; ++i)
618    if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
619      return false;
620
621  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
622    if (N->getMaskElt(i) < 0) continue;
623    for (unsigned j = 0; j != EltSize; ++j)
624      if (N->getMaskElt(i+j) != N->getMaskElt(j))
625        return false;
626  }
627  return true;
628}
629
630/// isAllNegativeZeroVector - Returns true if all elements of build_vector
631/// are -0.0.
632bool PPC::isAllNegativeZeroVector(SDNode *N) {
633  BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
634
635  APInt APVal, APUndef;
636  unsigned BitSize;
637  bool HasAnyUndefs;
638
639  if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true))
640    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
641      return CFP->getValueAPF().isNegZero();
642
643  return false;
644}
645
646/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
647/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
648unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
649  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
650  assert(isSplatShuffleMask(SVOp, EltSize));
651  return SVOp->getMaskElt(0) / EltSize;
652}
653
654/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
655/// by using a vspltis[bhw] instruction of the specified element size, return
656/// the constant being splatted.  The ByteSize field indicates the number of
657/// bytes of each element [124] -> [bhw].
658SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
659  SDValue OpVal(0, 0);
660
661  // If ByteSize of the splat is bigger than the element size of the
662  // build_vector, then we have a case where we are checking for a splat where
663  // multiple elements of the buildvector are folded together into a single
664  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
665  unsigned EltSize = 16/N->getNumOperands();
666  if (EltSize < ByteSize) {
667    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
668    SDValue UniquedVals[4];
669    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
670
671    // See if all of the elements in the buildvector agree across.
672    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
673      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
674      // If the element isn't a constant, bail fully out.
675      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
676
677
678      if (UniquedVals[i&(Multiple-1)].getNode() == 0)
679        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
680      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
681        return SDValue();  // no match.
682    }
683
684    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
685    // either constant or undef values that are identical for each chunk.  See
686    // if these chunks can form into a larger vspltis*.
687
688    // Check to see if all of the leading entries are either 0 or -1.  If
689    // neither, then this won't fit into the immediate field.
690    bool LeadingZero = true;
691    bool LeadingOnes = true;
692    for (unsigned i = 0; i != Multiple-1; ++i) {
693      if (UniquedVals[i].getNode() == 0) continue;  // Must have been undefs.
694
695      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
696      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
697    }
698    // Finally, check the least significant entry.
699    if (LeadingZero) {
700      if (UniquedVals[Multiple-1].getNode() == 0)
701        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
702      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
703      if (Val < 16)
704        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
705    }
706    if (LeadingOnes) {
707      if (UniquedVals[Multiple-1].getNode() == 0)
708        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
709      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
710      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
711        return DAG.getTargetConstant(Val, MVT::i32);
712    }
713
714    return SDValue();
715  }
716
717  // Check to see if this buildvec has a single non-undef value in its elements.
718  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
719    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
720    if (OpVal.getNode() == 0)
721      OpVal = N->getOperand(i);
722    else if (OpVal != N->getOperand(i))
723      return SDValue();
724  }
725
726  if (OpVal.getNode() == 0) return SDValue();  // All UNDEF: use implicit def.
727
728  unsigned ValSizeInBytes = EltSize;
729  uint64_t Value = 0;
730  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
731    Value = CN->getZExtValue();
732  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
733    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
734    Value = FloatToBits(CN->getValueAPF().convertToFloat());
735  }
736
737  // If the splat value is larger than the element value, then we can never do
738  // this splat.  The only case that we could fit the replicated bits into our
739  // immediate field for would be zero, and we prefer to use vxor for it.
740  if (ValSizeInBytes < ByteSize) return SDValue();
741
742  // If the element value is larger than the splat value, cut it in half and
743  // check to see if the two halves are equal.  Continue doing this until we
744  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
745  while (ValSizeInBytes > ByteSize) {
746    ValSizeInBytes >>= 1;
747
748    // If the top half equals the bottom half, we're still ok.
749    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
750         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
751      return SDValue();
752  }
753
754  // Properly sign extend the value.
755  int ShAmt = (4-ByteSize)*8;
756  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
757
758  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
759  if (MaskVal == 0) return SDValue();
760
761  // Finally, if this value fits in a 5 bit sext field, return it
762  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
763    return DAG.getTargetConstant(MaskVal, MVT::i32);
764  return SDValue();
765}
766
767//===----------------------------------------------------------------------===//
768//  Addressing Mode Selection
769//===----------------------------------------------------------------------===//
770
771/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
772/// or 64-bit immediate, and if the value can be accurately represented as a
773/// sign extension from a 16-bit value.  If so, this returns true and the
774/// immediate.
775static bool isIntS16Immediate(SDNode *N, short &Imm) {
776  if (N->getOpcode() != ISD::Constant)
777    return false;
778
779  Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
780  if (N->getValueType(0) == MVT::i32)
781    return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
782  else
783    return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
784}
785static bool isIntS16Immediate(SDValue Op, short &Imm) {
786  return isIntS16Immediate(Op.getNode(), Imm);
787}
788
789
790/// SelectAddressRegReg - Given the specified addressed, check to see if it
791/// can be represented as an indexed [r+r] operation.  Returns false if it
792/// can be more efficiently represented with [r+imm].
793bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
794                                            SDValue &Index,
795                                            SelectionDAG &DAG) const {
796  short imm = 0;
797  if (N.getOpcode() == ISD::ADD) {
798    if (isIntS16Immediate(N.getOperand(1), imm))
799      return false;    // r+i
800    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
801      return false;    // r+i
802
803    Base = N.getOperand(0);
804    Index = N.getOperand(1);
805    return true;
806  } else if (N.getOpcode() == ISD::OR) {
807    if (isIntS16Immediate(N.getOperand(1), imm))
808      return false;    // r+i can fold it if we can.
809
810    // If this is an or of disjoint bitfields, we can codegen this as an add
811    // (for better address arithmetic) if the LHS and RHS of the OR are provably
812    // disjoint.
813    APInt LHSKnownZero, LHSKnownOne;
814    APInt RHSKnownZero, RHSKnownOne;
815    DAG.ComputeMaskedBits(N.getOperand(0),
816                          APInt::getAllOnesValue(N.getOperand(0)
817                            .getValueSizeInBits()),
818                          LHSKnownZero, LHSKnownOne);
819
820    if (LHSKnownZero.getBoolValue()) {
821      DAG.ComputeMaskedBits(N.getOperand(1),
822                            APInt::getAllOnesValue(N.getOperand(1)
823                              .getValueSizeInBits()),
824                            RHSKnownZero, RHSKnownOne);
825      // If all of the bits are known zero on the LHS or RHS, the add won't
826      // carry.
827      if (~(LHSKnownZero | RHSKnownZero) == 0) {
828        Base = N.getOperand(0);
829        Index = N.getOperand(1);
830        return true;
831      }
832    }
833  }
834
835  return false;
836}
837
838/// Returns true if the address N can be represented by a base register plus
839/// a signed 16-bit displacement [r+imm], and if it is not better
840/// represented as reg+reg.
841bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
842                                            SDValue &Base,
843                                            SelectionDAG &DAG) const {
844  // FIXME dl should come from parent load or store, not from address
845  DebugLoc dl = N.getDebugLoc();
846  // If this can be more profitably realized as r+r, fail.
847  if (SelectAddressRegReg(N, Disp, Base, DAG))
848    return false;
849
850  if (N.getOpcode() == ISD::ADD) {
851    short imm = 0;
852    if (isIntS16Immediate(N.getOperand(1), imm)) {
853      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
854      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
855        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
856      } else {
857        Base = N.getOperand(0);
858      }
859      return true; // [r+i]
860    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
861      // Match LOAD (ADD (X, Lo(G))).
862     assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
863             && "Cannot handle constant offsets yet!");
864      Disp = N.getOperand(1).getOperand(0);  // The global address.
865      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
866             Disp.getOpcode() == ISD::TargetConstantPool ||
867             Disp.getOpcode() == ISD::TargetJumpTable);
868      Base = N.getOperand(0);
869      return true;  // [&g+r]
870    }
871  } else if (N.getOpcode() == ISD::OR) {
872    short imm = 0;
873    if (isIntS16Immediate(N.getOperand(1), imm)) {
874      // If this is an or of disjoint bitfields, we can codegen this as an add
875      // (for better address arithmetic) if the LHS and RHS of the OR are
876      // provably disjoint.
877      APInt LHSKnownZero, LHSKnownOne;
878      DAG.ComputeMaskedBits(N.getOperand(0),
879                            APInt::getAllOnesValue(N.getOperand(0)
880                                                   .getValueSizeInBits()),
881                            LHSKnownZero, LHSKnownOne);
882
883      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
884        // If all of the bits are known zero on the LHS or RHS, the add won't
885        // carry.
886        Base = N.getOperand(0);
887        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
888        return true;
889      }
890    }
891  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
892    // Loading from a constant address.
893
894    // If this address fits entirely in a 16-bit sext immediate field, codegen
895    // this as "d, 0"
896    short Imm;
897    if (isIntS16Immediate(CN, Imm)) {
898      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
899      Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
900      return true;
901    }
902
903    // Handle 32-bit sext immediates with LIS + addr mode.
904    if (CN->getValueType(0) == MVT::i32 ||
905        (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
906      int Addr = (int)CN->getZExtValue();
907
908      // Otherwise, break this down into an LIS + disp.
909      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
910
911      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
912      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
913      Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
914      return true;
915    }
916  }
917
918  Disp = DAG.getTargetConstant(0, getPointerTy());
919  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
920    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
921  else
922    Base = N;
923  return true;      // [r+0]
924}
925
926/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
927/// represented as an indexed [r+r] operation.
928bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
929                                                SDValue &Index,
930                                                SelectionDAG &DAG) const {
931  // Check to see if we can easily represent this as an [r+r] address.  This
932  // will fail if it thinks that the address is more profitably represented as
933  // reg+imm, e.g. where imm = 0.
934  if (SelectAddressRegReg(N, Base, Index, DAG))
935    return true;
936
937  // If the operand is an addition, always emit this as [r+r], since this is
938  // better (for code size, and execution, as the memop does the add for free)
939  // than emitting an explicit add.
940  if (N.getOpcode() == ISD::ADD) {
941    Base = N.getOperand(0);
942    Index = N.getOperand(1);
943    return true;
944  }
945
946  // Otherwise, do it the hard way, using R0 as the base register.
947  Base = DAG.getRegister(PPC::R0, N.getValueType());
948  Index = N;
949  return true;
950}
951
952/// SelectAddressRegImmShift - Returns true if the address N can be
953/// represented by a base register plus a signed 14-bit displacement
954/// [r+imm*4].  Suitable for use by STD and friends.
955bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp,
956                                                 SDValue &Base,
957                                                 SelectionDAG &DAG) const {
958  // FIXME dl should come from the parent load or store, not the address
959  DebugLoc dl = N.getDebugLoc();
960  // If this can be more profitably realized as r+r, fail.
961  if (SelectAddressRegReg(N, Disp, Base, DAG))
962    return false;
963
964  if (N.getOpcode() == ISD::ADD) {
965    short imm = 0;
966    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
967      Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
968      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
969        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
970      } else {
971        Base = N.getOperand(0);
972      }
973      return true; // [r+i]
974    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
975      // Match LOAD (ADD (X, Lo(G))).
976     assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
977             && "Cannot handle constant offsets yet!");
978      Disp = N.getOperand(1).getOperand(0);  // The global address.
979      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
980             Disp.getOpcode() == ISD::TargetConstantPool ||
981             Disp.getOpcode() == ISD::TargetJumpTable);
982      Base = N.getOperand(0);
983      return true;  // [&g+r]
984    }
985  } else if (N.getOpcode() == ISD::OR) {
986    short imm = 0;
987    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
988      // If this is an or of disjoint bitfields, we can codegen this as an add
989      // (for better address arithmetic) if the LHS and RHS of the OR are
990      // provably disjoint.
991      APInt LHSKnownZero, LHSKnownOne;
992      DAG.ComputeMaskedBits(N.getOperand(0),
993                            APInt::getAllOnesValue(N.getOperand(0)
994                                                   .getValueSizeInBits()),
995                            LHSKnownZero, LHSKnownOne);
996      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
997        // If all of the bits are known zero on the LHS or RHS, the add won't
998        // carry.
999        Base = N.getOperand(0);
1000        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
1001        return true;
1002      }
1003    }
1004  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1005    // Loading from a constant address.  Verify low two bits are clear.
1006    if ((CN->getZExtValue() & 3) == 0) {
1007      // If this address fits entirely in a 14-bit sext immediate field, codegen
1008      // this as "d, 0"
1009      short Imm;
1010      if (isIntS16Immediate(CN, Imm)) {
1011        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
1012        Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
1013        return true;
1014      }
1015
1016      // Fold the low-part of 32-bit absolute addresses into addr mode.
1017      if (CN->getValueType(0) == MVT::i32 ||
1018          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
1019        int Addr = (int)CN->getZExtValue();
1020
1021        // Otherwise, break this down into an LIS + disp.
1022        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
1023        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
1024        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1025        Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base),0);
1026        return true;
1027      }
1028    }
1029  }
1030
1031  Disp = DAG.getTargetConstant(0, getPointerTy());
1032  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
1033    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1034  else
1035    Base = N;
1036  return true;      // [r+0]
1037}
1038
1039
1040/// getPreIndexedAddressParts - returns true by value, base pointer and
1041/// offset pointer and addressing mode by reference if the node's address
1042/// can be legally represented as pre-indexed load / store address.
1043bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1044                                                  SDValue &Offset,
1045                                                  ISD::MemIndexedMode &AM,
1046                                                  SelectionDAG &DAG) const {
1047  // Disabled by default for now.
1048  if (!EnablePPCPreinc) return false;
1049
1050  SDValue Ptr;
1051  EVT VT;
1052  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1053    Ptr = LD->getBasePtr();
1054    VT = LD->getMemoryVT();
1055
1056  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1057    ST = ST;
1058    Ptr = ST->getBasePtr();
1059    VT  = ST->getMemoryVT();
1060  } else
1061    return false;
1062
1063  // PowerPC doesn't have preinc load/store instructions for vectors.
1064  if (VT.isVector())
1065    return false;
1066
1067  // TODO: Check reg+reg first.
1068
1069  // LDU/STU use reg+imm*4, others use reg+imm.
1070  if (VT != MVT::i64) {
1071    // reg + imm
1072    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1073      return false;
1074  } else {
1075    // reg + imm * 4.
1076    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1077      return false;
1078  }
1079
1080  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1081    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1082    // sext i32 to i64 when addr mode is r+i.
1083    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1084        LD->getExtensionType() == ISD::SEXTLOAD &&
1085        isa<ConstantSDNode>(Offset))
1086      return false;
1087  }
1088
1089  AM = ISD::PRE_INC;
1090  return true;
1091}
1092
1093//===----------------------------------------------------------------------===//
1094//  LowerOperation implementation
1095//===----------------------------------------------------------------------===//
1096
1097SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
1098                                             SelectionDAG &DAG) {
1099  EVT PtrVT = Op.getValueType();
1100  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1101  Constant *C = CP->getConstVal();
1102  SDValue CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
1103  SDValue Zero = DAG.getConstant(0, PtrVT);
1104  // FIXME there isn't really any debug info here
1105  DebugLoc dl = Op.getDebugLoc();
1106
1107  const TargetMachine &TM = DAG.getTarget();
1108
1109  SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, CPI, Zero);
1110  SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, CPI, Zero);
1111
1112  // If this is a non-darwin platform, we don't support non-static relo models
1113  // yet.
1114  if (TM.getRelocationModel() == Reloc::Static ||
1115      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1116    // Generate non-pic code that has direct accesses to the constant pool.
1117    // The address of the global is just (hi(&g)+lo(&g)).
1118    return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1119  }
1120
1121  if (TM.getRelocationModel() == Reloc::PIC_) {
1122    // With PIC, the first instruction is actually "GR+hi(&G)".
1123    Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
1124                     DAG.getNode(PPCISD::GlobalBaseReg,
1125                                 DebugLoc(), PtrVT), Hi);
1126  }
1127
1128  Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1129  return Lo;
1130}
1131
1132SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
1133  EVT PtrVT = Op.getValueType();
1134  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1135  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1136  SDValue Zero = DAG.getConstant(0, PtrVT);
1137  // FIXME there isn't really any debug loc here
1138  DebugLoc dl = Op.getDebugLoc();
1139
1140  const TargetMachine &TM = DAG.getTarget();
1141
1142  SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, JTI, Zero);
1143  SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, JTI, Zero);
1144
1145  // If this is a non-darwin platform, we don't support non-static relo models
1146  // yet.
1147  if (TM.getRelocationModel() == Reloc::Static ||
1148      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1149    // Generate non-pic code that has direct accesses to the constant pool.
1150    // The address of the global is just (hi(&g)+lo(&g)).
1151    return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1152  }
1153
1154  if (TM.getRelocationModel() == Reloc::PIC_) {
1155    // With PIC, the first instruction is actually "GR+hi(&G)".
1156    Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
1157                     DAG.getNode(PPCISD::GlobalBaseReg,
1158                                 DebugLoc(), PtrVT), Hi);
1159  }
1160
1161  Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1162  return Lo;
1163}
1164
1165SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1166                                                   SelectionDAG &DAG) {
1167  llvm_unreachable("TLS not implemented for PPC.");
1168  return SDValue(); // Not reached
1169}
1170
1171SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) {
1172  EVT PtrVT = Op.getValueType();
1173  DebugLoc DL = Op.getDebugLoc();
1174
1175  BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1176  SDValue TgtBA = DAG.getBlockAddress(BA, PtrVT, /*isTarget=*/true);
1177  SDValue Zero = DAG.getConstant(0, PtrVT);
1178  SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, TgtBA, Zero);
1179  SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, TgtBA, Zero);
1180
1181  // If this is a non-darwin platform, we don't support non-static relo models
1182  // yet.
1183  const TargetMachine &TM = DAG.getTarget();
1184  if (TM.getRelocationModel() == Reloc::Static ||
1185      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1186    // Generate non-pic code that has direct accesses to globals.
1187    // The address of the global is just (hi(&g)+lo(&g)).
1188    return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1189  }
1190
1191  if (TM.getRelocationModel() == Reloc::PIC_) {
1192    // With PIC, the first instruction is actually "GR+hi(&G)".
1193    Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
1194                     DAG.getNode(PPCISD::GlobalBaseReg,
1195                                 DebugLoc(), PtrVT), Hi);
1196  }
1197
1198  return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1199}
1200
1201SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
1202                                              SelectionDAG &DAG) {
1203  EVT PtrVT = Op.getValueType();
1204  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1205  GlobalValue *GV = GSDN->getGlobal();
1206  SDValue GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
1207  SDValue Zero = DAG.getConstant(0, PtrVT);
1208  // FIXME there isn't really any debug info here
1209  DebugLoc dl = GSDN->getDebugLoc();
1210
1211  const TargetMachine &TM = DAG.getTarget();
1212
1213  // 64-bit SVR4 ABI code is always position-independent.
1214  // The actual address of the GlobalValue is stored in the TOC.
1215  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1216    return DAG.getNode(PPCISD::TOC_ENTRY, dl, MVT::i64, GA,
1217                       DAG.getRegister(PPC::X2, MVT::i64));
1218  }
1219
1220  SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, GA, Zero);
1221  SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, GA, Zero);
1222
1223  // If this is a non-darwin platform, we don't support non-static relo models
1224  // yet.
1225  if (TM.getRelocationModel() == Reloc::Static ||
1226      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1227    // Generate non-pic code that has direct accesses to globals.
1228    // The address of the global is just (hi(&g)+lo(&g)).
1229    return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1230  }
1231
1232  if (TM.getRelocationModel() == Reloc::PIC_) {
1233    // With PIC, the first instruction is actually "GR+hi(&G)".
1234    Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
1235                     DAG.getNode(PPCISD::GlobalBaseReg,
1236                                 DebugLoc(), PtrVT), Hi);
1237  }
1238
1239  Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1240
1241  if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM))
1242    return Lo;
1243
1244  // If the global is weak or external, we have to go through the lazy
1245  // resolution stub.
1246  return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Lo, NULL, 0,
1247                     false, false, 0);
1248}
1249
1250SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
1251  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1252  DebugLoc dl = Op.getDebugLoc();
1253
1254  // If we're comparing for equality to zero, expose the fact that this is
1255  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1256  // fold the new nodes.
1257  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1258    if (C->isNullValue() && CC == ISD::SETEQ) {
1259      EVT VT = Op.getOperand(0).getValueType();
1260      SDValue Zext = Op.getOperand(0);
1261      if (VT.bitsLT(MVT::i32)) {
1262        VT = MVT::i32;
1263        Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
1264      }
1265      unsigned Log2b = Log2_32(VT.getSizeInBits());
1266      SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
1267      SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
1268                                DAG.getConstant(Log2b, MVT::i32));
1269      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
1270    }
1271    // Leave comparisons against 0 and -1 alone for now, since they're usually
1272    // optimized.  FIXME: revisit this when we can custom lower all setcc
1273    // optimizations.
1274    if (C->isAllOnesValue() || C->isNullValue())
1275      return SDValue();
1276  }
1277
1278  // If we have an integer seteq/setne, turn it into a compare against zero
1279  // by xor'ing the rhs with the lhs, which is faster than setting a
1280  // condition register, reading it back out, and masking the correct bit.  The
1281  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1282  // the result to other bit-twiddling opportunities.
1283  EVT LHSVT = Op.getOperand(0).getValueType();
1284  if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1285    EVT VT = Op.getValueType();
1286    SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
1287                                Op.getOperand(1));
1288    return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
1289  }
1290  return SDValue();
1291}
1292
1293SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
1294                              int VarArgsFrameIndex,
1295                              int VarArgsStackOffset,
1296                              unsigned VarArgsNumGPR,
1297                              unsigned VarArgsNumFPR,
1298                              const PPCSubtarget &Subtarget) {
1299
1300  llvm_unreachable("VAARG not yet implemented for the SVR4 ABI!");
1301  return SDValue(); // Not reached
1302}
1303
1304SDValue PPCTargetLowering::LowerTRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
1305  SDValue Chain = Op.getOperand(0);
1306  SDValue Trmp = Op.getOperand(1); // trampoline
1307  SDValue FPtr = Op.getOperand(2); // nested function
1308  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
1309  DebugLoc dl = Op.getDebugLoc();
1310
1311  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1312  bool isPPC64 = (PtrVT == MVT::i64);
1313  const Type *IntPtrTy =
1314    DAG.getTargetLoweringInfo().getTargetData()->getIntPtrType(
1315                                                             *DAG.getContext());
1316
1317  TargetLowering::ArgListTy Args;
1318  TargetLowering::ArgListEntry Entry;
1319
1320  Entry.Ty = IntPtrTy;
1321  Entry.Node = Trmp; Args.push_back(Entry);
1322
1323  // TrampSize == (isPPC64 ? 48 : 40);
1324  Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
1325                               isPPC64 ? MVT::i64 : MVT::i32);
1326  Args.push_back(Entry);
1327
1328  Entry.Node = FPtr; Args.push_back(Entry);
1329  Entry.Node = Nest; Args.push_back(Entry);
1330
1331  // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
1332  std::pair<SDValue, SDValue> CallResult =
1333    LowerCallTo(Chain, Op.getValueType().getTypeForEVT(*DAG.getContext()),
1334                false, false, false, false, 0, CallingConv::C, false,
1335                /*isReturnValueUsed=*/true,
1336                DAG.getExternalSymbol("__trampoline_setup", PtrVT),
1337                Args, DAG, dl);
1338
1339  SDValue Ops[] =
1340    { CallResult.first, CallResult.second };
1341
1342  return DAG.getMergeValues(Ops, 2, dl);
1343}
1344
1345SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
1346                                        int VarArgsFrameIndex,
1347                                        int VarArgsStackOffset,
1348                                        unsigned VarArgsNumGPR,
1349                                        unsigned VarArgsNumFPR,
1350                                        const PPCSubtarget &Subtarget) {
1351  DebugLoc dl = Op.getDebugLoc();
1352
1353  if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
1354    // vastart just stores the address of the VarArgsFrameIndex slot into the
1355    // memory location argument.
1356    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1357    SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1358    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1359    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0,
1360                        false, false, 0);
1361  }
1362
1363  // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
1364  // We suppose the given va_list is already allocated.
1365  //
1366  // typedef struct {
1367  //  char gpr;     /* index into the array of 8 GPRs
1368  //                 * stored in the register save area
1369  //                 * gpr=0 corresponds to r3,
1370  //                 * gpr=1 to r4, etc.
1371  //                 */
1372  //  char fpr;     /* index into the array of 8 FPRs
1373  //                 * stored in the register save area
1374  //                 * fpr=0 corresponds to f1,
1375  //                 * fpr=1 to f2, etc.
1376  //                 */
1377  //  char *overflow_arg_area;
1378  //                /* location on stack that holds
1379  //                 * the next overflow argument
1380  //                 */
1381  //  char *reg_save_area;
1382  //               /* where r3:r10 and f1:f8 (if saved)
1383  //                * are stored
1384  //                */
1385  // } va_list[1];
1386
1387
1388  SDValue ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i32);
1389  SDValue ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i32);
1390
1391
1392  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1393
1394  SDValue StackOffsetFI = DAG.getFrameIndex(VarArgsStackOffset, PtrVT);
1395  SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1396
1397  uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
1398  SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1399
1400  uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
1401  SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1402
1403  uint64_t FPROffset = 1;
1404  SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1405
1406  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1407
1408  // Store first byte : number of int regs
1409  SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
1410                                         Op.getOperand(1), SV, 0, MVT::i8,
1411                                         false, false, 0);
1412  uint64_t nextOffset = FPROffset;
1413  SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
1414                                  ConstFPROffset);
1415
1416  // Store second byte : number of float regs
1417  SDValue secondStore =
1418    DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, SV, nextOffset, MVT::i8,
1419                      false, false, 0);
1420  nextOffset += StackOffset;
1421  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
1422
1423  // Store second word : arguments given on stack
1424  SDValue thirdStore =
1425    DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, SV, nextOffset,
1426                 false, false, 0);
1427  nextOffset += FrameOffset;
1428  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
1429
1430  // Store third word : arguments given in registers
1431  return DAG.getStore(thirdStore, dl, FR, nextPtr, SV, nextOffset,
1432                      false, false, 0);
1433
1434}
1435
1436#include "PPCGenCallingConv.inc"
1437
1438static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
1439                                     CCValAssign::LocInfo &LocInfo,
1440                                     ISD::ArgFlagsTy &ArgFlags,
1441                                     CCState &State) {
1442  return true;
1443}
1444
1445static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, EVT &ValVT,
1446                                            EVT &LocVT,
1447                                            CCValAssign::LocInfo &LocInfo,
1448                                            ISD::ArgFlagsTy &ArgFlags,
1449                                            CCState &State) {
1450  static const unsigned ArgRegs[] = {
1451    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1452    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1453  };
1454  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1455
1456  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1457
1458  // Skip one register if the first unallocated register has an even register
1459  // number and there are still argument registers available which have not been
1460  // allocated yet. RegNum is actually an index into ArgRegs, which means we
1461  // need to skip a register if RegNum is odd.
1462  if (RegNum != NumArgRegs && RegNum % 2 == 1) {
1463    State.AllocateReg(ArgRegs[RegNum]);
1464  }
1465
1466  // Always return false here, as this function only makes sure that the first
1467  // unallocated register has an odd register number and does not actually
1468  // allocate a register for the current argument.
1469  return false;
1470}
1471
1472static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, EVT &ValVT,
1473                                              EVT &LocVT,
1474                                              CCValAssign::LocInfo &LocInfo,
1475                                              ISD::ArgFlagsTy &ArgFlags,
1476                                              CCState &State) {
1477  static const unsigned ArgRegs[] = {
1478    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1479    PPC::F8
1480  };
1481
1482  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1483
1484  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1485
1486  // If there is only one Floating-point register left we need to put both f64
1487  // values of a split ppc_fp128 value on the stack.
1488  if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
1489    State.AllocateReg(ArgRegs[RegNum]);
1490  }
1491
1492  // Always return false here, as this function only makes sure that the two f64
1493  // values a ppc_fp128 value is split into are both passed in registers or both
1494  // passed on the stack and does not actually allocate a register for the
1495  // current argument.
1496  return false;
1497}
1498
1499/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1500/// on Darwin.
1501static const unsigned *GetFPR() {
1502  static const unsigned FPR[] = {
1503    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1504    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1505  };
1506
1507  return FPR;
1508}
1509
1510/// CalculateStackSlotSize - Calculates the size reserved for this argument on
1511/// the stack.
1512static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
1513                                       unsigned PtrByteSize) {
1514  unsigned ArgSize = ArgVT.getSizeInBits()/8;
1515  if (Flags.isByVal())
1516    ArgSize = Flags.getByValSize();
1517  ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1518
1519  return ArgSize;
1520}
1521
1522SDValue
1523PPCTargetLowering::LowerFormalArguments(SDValue Chain,
1524                                        CallingConv::ID CallConv, bool isVarArg,
1525                                        const SmallVectorImpl<ISD::InputArg>
1526                                          &Ins,
1527                                        DebugLoc dl, SelectionDAG &DAG,
1528                                        SmallVectorImpl<SDValue> &InVals) {
1529  if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) {
1530    return LowerFormalArguments_SVR4(Chain, CallConv, isVarArg, Ins,
1531                                     dl, DAG, InVals);
1532  } else {
1533    return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
1534                                       dl, DAG, InVals);
1535  }
1536}
1537
1538SDValue
1539PPCTargetLowering::LowerFormalArguments_SVR4(
1540                                      SDValue Chain,
1541                                      CallingConv::ID CallConv, bool isVarArg,
1542                                      const SmallVectorImpl<ISD::InputArg>
1543                                        &Ins,
1544                                      DebugLoc dl, SelectionDAG &DAG,
1545                                      SmallVectorImpl<SDValue> &InVals) {
1546
1547  // 32-bit SVR4 ABI Stack Frame Layout:
1548  //              +-----------------------------------+
1549  //        +-->  |            Back chain             |
1550  //        |     +-----------------------------------+
1551  //        |     | Floating-point register save area |
1552  //        |     +-----------------------------------+
1553  //        |     |    General register save area     |
1554  //        |     +-----------------------------------+
1555  //        |     |          CR save word             |
1556  //        |     +-----------------------------------+
1557  //        |     |         VRSAVE save word          |
1558  //        |     +-----------------------------------+
1559  //        |     |         Alignment padding         |
1560  //        |     +-----------------------------------+
1561  //        |     |     Vector register save area     |
1562  //        |     +-----------------------------------+
1563  //        |     |       Local variable space        |
1564  //        |     +-----------------------------------+
1565  //        |     |        Parameter list area        |
1566  //        |     +-----------------------------------+
1567  //        |     |           LR save word            |
1568  //        |     +-----------------------------------+
1569  // SP-->  +---  |            Back chain             |
1570  //              +-----------------------------------+
1571  //
1572  // Specifications:
1573  //   System V Application Binary Interface PowerPC Processor Supplement
1574  //   AltiVec Technology Programming Interface Manual
1575
1576  MachineFunction &MF = DAG.getMachineFunction();
1577  MachineFrameInfo *MFI = MF.getFrameInfo();
1578
1579  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1580  // Potential tail calls could cause overwriting of argument stack slots.
1581  bool isImmutable = !(GuaranteedTailCallOpt && (CallConv==CallingConv::Fast));
1582  unsigned PtrByteSize = 4;
1583
1584  // Assign locations to all of the incoming arguments.
1585  SmallVector<CCValAssign, 16> ArgLocs;
1586  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
1587                 *DAG.getContext());
1588
1589  // Reserve space for the linkage area on the stack.
1590  CCInfo.AllocateStack(PPCFrameInfo::getLinkageSize(false, false), PtrByteSize);
1591
1592  CCInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4);
1593
1594  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1595    CCValAssign &VA = ArgLocs[i];
1596
1597    // Arguments stored in registers.
1598    if (VA.isRegLoc()) {
1599      TargetRegisterClass *RC;
1600      EVT ValVT = VA.getValVT();
1601
1602      switch (ValVT.getSimpleVT().SimpleTy) {
1603        default:
1604          llvm_unreachable("ValVT not supported by formal arguments Lowering");
1605        case MVT::i32:
1606          RC = PPC::GPRCRegisterClass;
1607          break;
1608        case MVT::f32:
1609          RC = PPC::F4RCRegisterClass;
1610          break;
1611        case MVT::f64:
1612          RC = PPC::F8RCRegisterClass;
1613          break;
1614        case MVT::v16i8:
1615        case MVT::v8i16:
1616        case MVT::v4i32:
1617        case MVT::v4f32:
1618          RC = PPC::VRRCRegisterClass;
1619          break;
1620      }
1621
1622      // Transform the arguments stored in physical registers into virtual ones.
1623      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1624      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT);
1625
1626      InVals.push_back(ArgValue);
1627    } else {
1628      // Argument stored in memory.
1629      assert(VA.isMemLoc());
1630
1631      unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
1632      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
1633                                      isImmutable, false);
1634
1635      // Create load nodes to retrieve arguments from the stack.
1636      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1637      InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, NULL, 0,
1638                                   false, false, 0));
1639    }
1640  }
1641
1642  // Assign locations to all of the incoming aggregate by value arguments.
1643  // Aggregates passed by value are stored in the local variable space of the
1644  // caller's stack frame, right above the parameter list area.
1645  SmallVector<CCValAssign, 16> ByValArgLocs;
1646  CCState CCByValInfo(CallConv, isVarArg, getTargetMachine(),
1647                      ByValArgLocs, *DAG.getContext());
1648
1649  // Reserve stack space for the allocations in CCInfo.
1650  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
1651
1652  CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4_ByVal);
1653
1654  // Area that is at least reserved in the caller of this function.
1655  unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
1656
1657  // Set the size that is at least reserved in caller of this function.  Tail
1658  // call optimized function's reserved stack space needs to be aligned so that
1659  // taking the difference between two stack areas will result in an aligned
1660  // stack.
1661  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1662
1663  MinReservedArea =
1664    std::max(MinReservedArea,
1665             PPCFrameInfo::getMinCallFrameSize(false, false));
1666
1667  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
1668    getStackAlignment();
1669  unsigned AlignMask = TargetAlign-1;
1670  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
1671
1672  FI->setMinReservedArea(MinReservedArea);
1673
1674  SmallVector<SDValue, 8> MemOps;
1675
1676  // If the function takes variable number of arguments, make a frame index for
1677  // the start of the first vararg value... for expansion of llvm.va_start.
1678  if (isVarArg) {
1679    static const unsigned GPArgRegs[] = {
1680      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1681      PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1682    };
1683    const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
1684
1685    static const unsigned FPArgRegs[] = {
1686      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1687      PPC::F8
1688    };
1689    const unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
1690
1691    VarArgsNumGPR = CCInfo.getFirstUnallocated(GPArgRegs, NumGPArgRegs);
1692    VarArgsNumFPR = CCInfo.getFirstUnallocated(FPArgRegs, NumFPArgRegs);
1693
1694    // Make room for NumGPArgRegs and NumFPArgRegs.
1695    int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
1696                NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8;
1697
1698    VarArgsStackOffset = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
1699                                                CCInfo.getNextStackOffset(),
1700                                                true, false);
1701
1702    VarArgsFrameIndex = MFI->CreateStackObject(Depth, 8, false);
1703    SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1704
1705    // The fixed integer arguments of a variadic function are
1706    // stored to the VarArgsFrameIndex on the stack.
1707    unsigned GPRIndex = 0;
1708    for (; GPRIndex != VarArgsNumGPR; ++GPRIndex) {
1709      SDValue Val = DAG.getRegister(GPArgRegs[GPRIndex], PtrVT);
1710      SDValue Store = DAG.getStore(Chain, dl, Val, FIN, NULL, 0,
1711                                   false, false, 0);
1712      MemOps.push_back(Store);
1713      // Increment the address by four for the next argument to store
1714      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1715      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1716    }
1717
1718    // If this function is vararg, store any remaining integer argument regs
1719    // to their spots on the stack so that they may be loaded by deferencing the
1720    // result of va_next.
1721    for (; GPRIndex != NumGPArgRegs; ++GPRIndex) {
1722      unsigned VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
1723
1724      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1725      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0,
1726                                   false, false, 0);
1727      MemOps.push_back(Store);
1728      // Increment the address by four for the next argument to store
1729      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1730      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1731    }
1732
1733    // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
1734    // is set.
1735
1736    // The double arguments are stored to the VarArgsFrameIndex
1737    // on the stack.
1738    unsigned FPRIndex = 0;
1739    for (FPRIndex = 0; FPRIndex != VarArgsNumFPR; ++FPRIndex) {
1740      SDValue Val = DAG.getRegister(FPArgRegs[FPRIndex], MVT::f64);
1741      SDValue Store = DAG.getStore(Chain, dl, Val, FIN, NULL, 0,
1742                                   false, false, 0);
1743      MemOps.push_back(Store);
1744      // Increment the address by eight for the next argument to store
1745      SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
1746                                         PtrVT);
1747      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1748    }
1749
1750    for (; FPRIndex != NumFPArgRegs; ++FPRIndex) {
1751      unsigned VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
1752
1753      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
1754      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0,
1755                                   false, false, 0);
1756      MemOps.push_back(Store);
1757      // Increment the address by eight for the next argument to store
1758      SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
1759                                         PtrVT);
1760      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1761    }
1762  }
1763
1764  if (!MemOps.empty())
1765    Chain = DAG.getNode(ISD::TokenFactor, dl,
1766                        MVT::Other, &MemOps[0], MemOps.size());
1767
1768  return Chain;
1769}
1770
1771SDValue
1772PPCTargetLowering::LowerFormalArguments_Darwin(
1773                                      SDValue Chain,
1774                                      CallingConv::ID CallConv, bool isVarArg,
1775                                      const SmallVectorImpl<ISD::InputArg>
1776                                        &Ins,
1777                                      DebugLoc dl, SelectionDAG &DAG,
1778                                      SmallVectorImpl<SDValue> &InVals) {
1779  // TODO: add description of PPC stack frame format, or at least some docs.
1780  //
1781  MachineFunction &MF = DAG.getMachineFunction();
1782  MachineFrameInfo *MFI = MF.getFrameInfo();
1783
1784  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1785  bool isPPC64 = PtrVT == MVT::i64;
1786  // Potential tail calls could cause overwriting of argument stack slots.
1787  bool isImmutable = !(GuaranteedTailCallOpt && (CallConv==CallingConv::Fast));
1788  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1789
1790  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, true);
1791  // Area that is at least reserved in caller of this function.
1792  unsigned MinReservedArea = ArgOffset;
1793
1794  static const unsigned GPR_32[] = {           // 32-bit registers.
1795    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1796    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1797  };
1798  static const unsigned GPR_64[] = {           // 64-bit registers.
1799    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1800    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1801  };
1802
1803  static const unsigned *FPR = GetFPR();
1804
1805  static const unsigned VR[] = {
1806    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1807    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1808  };
1809
1810  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
1811  const unsigned Num_FPR_Regs = 13;
1812  const unsigned Num_VR_Regs  = array_lengthof( VR);
1813
1814  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1815
1816  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1817
1818  // In 32-bit non-varargs functions, the stack space for vectors is after the
1819  // stack space for non-vectors.  We do not use this space unless we have
1820  // too many vectors to fit in registers, something that only occurs in
1821  // constructed examples:), but we have to walk the arglist to figure
1822  // that out...for the pathological case, compute VecArgOffset as the
1823  // start of the vector parameter area.  Computing VecArgOffset is the
1824  // entire point of the following loop.
1825  unsigned VecArgOffset = ArgOffset;
1826  if (!isVarArg && !isPPC64) {
1827    for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
1828         ++ArgNo) {
1829      EVT ObjectVT = Ins[ArgNo].VT;
1830      unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1831      ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
1832
1833      if (Flags.isByVal()) {
1834        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
1835        ObjSize = Flags.getByValSize();
1836        unsigned ArgSize =
1837                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1838        VecArgOffset += ArgSize;
1839        continue;
1840      }
1841
1842      switch(ObjectVT.getSimpleVT().SimpleTy) {
1843      default: llvm_unreachable("Unhandled argument type!");
1844      case MVT::i32:
1845      case MVT::f32:
1846        VecArgOffset += isPPC64 ? 8 : 4;
1847        break;
1848      case MVT::i64:  // PPC64
1849      case MVT::f64:
1850        VecArgOffset += 8;
1851        break;
1852      case MVT::v4f32:
1853      case MVT::v4i32:
1854      case MVT::v8i16:
1855      case MVT::v16i8:
1856        // Nothing to do, we're only looking at Nonvector args here.
1857        break;
1858      }
1859    }
1860  }
1861  // We've found where the vector parameter area in memory is.  Skip the
1862  // first 12 parameters; these don't use that memory.
1863  VecArgOffset = ((VecArgOffset+15)/16)*16;
1864  VecArgOffset += 12*16;
1865
1866  // Add DAG nodes to load the arguments or copy them out of registers.  On
1867  // entry to a function on PPC, the arguments start after the linkage area,
1868  // although the first ones are often in registers.
1869
1870  SmallVector<SDValue, 8> MemOps;
1871  unsigned nAltivecParamsAtEnd = 0;
1872  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
1873    SDValue ArgVal;
1874    bool needsLoad = false;
1875    EVT ObjectVT = Ins[ArgNo].VT;
1876    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1877    unsigned ArgSize = ObjSize;
1878    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
1879
1880    unsigned CurArgOffset = ArgOffset;
1881
1882    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
1883    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
1884        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
1885      if (isVarArg || isPPC64) {
1886        MinReservedArea = ((MinReservedArea+15)/16)*16;
1887        MinReservedArea += CalculateStackSlotSize(ObjectVT,
1888                                                  Flags,
1889                                                  PtrByteSize);
1890      } else  nAltivecParamsAtEnd++;
1891    } else
1892      // Calculate min reserved area.
1893      MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
1894                                                Flags,
1895                                                PtrByteSize);
1896
1897    // FIXME the codegen can be much improved in some cases.
1898    // We do not have to keep everything in memory.
1899    if (Flags.isByVal()) {
1900      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
1901      ObjSize = Flags.getByValSize();
1902      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1903      // Objects of size 1 and 2 are right justified, everything else is
1904      // left justified.  This means the memory address is adjusted forwards.
1905      if (ObjSize==1 || ObjSize==2) {
1906        CurArgOffset = CurArgOffset + (4 - ObjSize);
1907      }
1908      // The value of the object is its address.
1909      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true, false);
1910      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1911      InVals.push_back(FIN);
1912      if (ObjSize==1 || ObjSize==2) {
1913        if (GPR_idx != Num_GPR_Regs) {
1914          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1915          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1916          SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
1917                                            NULL, 0,
1918                                            ObjSize==1 ? MVT::i8 : MVT::i16,
1919                                            false, false, 0);
1920          MemOps.push_back(Store);
1921          ++GPR_idx;
1922        }
1923
1924        ArgOffset += PtrByteSize;
1925
1926        continue;
1927      }
1928      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
1929        // Store whatever pieces of the object are in registers
1930        // to memory.  ArgVal will be address of the beginning of
1931        // the object.
1932        if (GPR_idx != Num_GPR_Regs) {
1933          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1934          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true, false);
1935          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1936          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1937          SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0,
1938                                       false, false, 0);
1939          MemOps.push_back(Store);
1940          ++GPR_idx;
1941          ArgOffset += PtrByteSize;
1942        } else {
1943          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
1944          break;
1945        }
1946      }
1947      continue;
1948    }
1949
1950    switch (ObjectVT.getSimpleVT().SimpleTy) {
1951    default: llvm_unreachable("Unhandled argument type!");
1952    case MVT::i32:
1953      if (!isPPC64) {
1954        if (GPR_idx != Num_GPR_Regs) {
1955          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1956          ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
1957          ++GPR_idx;
1958        } else {
1959          needsLoad = true;
1960          ArgSize = PtrByteSize;
1961        }
1962        // All int arguments reserve stack space in the Darwin ABI.
1963        ArgOffset += PtrByteSize;
1964        break;
1965      }
1966      // FALLTHROUGH
1967    case MVT::i64:  // PPC64
1968      if (GPR_idx != Num_GPR_Regs) {
1969        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
1970        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1971
1972        if (ObjectVT == MVT::i32) {
1973          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
1974          // value to MVT::i64 and then truncate to the correct register size.
1975          if (Flags.isSExt())
1976            ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
1977                                 DAG.getValueType(ObjectVT));
1978          else if (Flags.isZExt())
1979            ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
1980                                 DAG.getValueType(ObjectVT));
1981
1982          ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
1983        }
1984
1985        ++GPR_idx;
1986      } else {
1987        needsLoad = true;
1988        ArgSize = PtrByteSize;
1989      }
1990      // All int arguments reserve stack space in the Darwin ABI.
1991      ArgOffset += 8;
1992      break;
1993
1994    case MVT::f32:
1995    case MVT::f64:
1996      // Every 4 bytes of argument space consumes one of the GPRs available for
1997      // argument passing.
1998      if (GPR_idx != Num_GPR_Regs) {
1999        ++GPR_idx;
2000        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
2001          ++GPR_idx;
2002      }
2003      if (FPR_idx != Num_FPR_Regs) {
2004        unsigned VReg;
2005
2006        if (ObjectVT == MVT::f32)
2007          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
2008        else
2009          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
2010
2011        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2012        ++FPR_idx;
2013      } else {
2014        needsLoad = true;
2015      }
2016
2017      // All FP arguments reserve stack space in the Darwin ABI.
2018      ArgOffset += isPPC64 ? 8 : ObjSize;
2019      break;
2020    case MVT::v4f32:
2021    case MVT::v4i32:
2022    case MVT::v8i16:
2023    case MVT::v16i8:
2024      // Note that vector arguments in registers don't reserve stack space,
2025      // except in varargs functions.
2026      if (VR_idx != Num_VR_Regs) {
2027        unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
2028        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2029        if (isVarArg) {
2030          while ((ArgOffset % 16) != 0) {
2031            ArgOffset += PtrByteSize;
2032            if (GPR_idx != Num_GPR_Regs)
2033              GPR_idx++;
2034          }
2035          ArgOffset += 16;
2036          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
2037        }
2038        ++VR_idx;
2039      } else {
2040        if (!isVarArg && !isPPC64) {
2041          // Vectors go after all the nonvectors.
2042          CurArgOffset = VecArgOffset;
2043          VecArgOffset += 16;
2044        } else {
2045          // Vectors are aligned.
2046          ArgOffset = ((ArgOffset+15)/16)*16;
2047          CurArgOffset = ArgOffset;
2048          ArgOffset += 16;
2049        }
2050        needsLoad = true;
2051      }
2052      break;
2053    }
2054
2055    // We need to load the argument to a virtual register if we determined above
2056    // that we ran out of physical registers of the appropriate type.
2057    if (needsLoad) {
2058      int FI = MFI->CreateFixedObject(ObjSize,
2059                                      CurArgOffset + (ArgSize - ObjSize),
2060                                      isImmutable, false);
2061      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2062      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, NULL, 0,
2063                           false, false, 0);
2064    }
2065
2066    InVals.push_back(ArgVal);
2067  }
2068
2069  // Set the size that is at least reserved in caller of this function.  Tail
2070  // call optimized function's reserved stack space needs to be aligned so that
2071  // taking the difference between two stack areas will result in an aligned
2072  // stack.
2073  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2074  // Add the Altivec parameters at the end, if needed.
2075  if (nAltivecParamsAtEnd) {
2076    MinReservedArea = ((MinReservedArea+15)/16)*16;
2077    MinReservedArea += 16*nAltivecParamsAtEnd;
2078  }
2079  MinReservedArea =
2080    std::max(MinReservedArea,
2081             PPCFrameInfo::getMinCallFrameSize(isPPC64, true));
2082  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
2083    getStackAlignment();
2084  unsigned AlignMask = TargetAlign-1;
2085  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
2086  FI->setMinReservedArea(MinReservedArea);
2087
2088  // If the function takes variable number of arguments, make a frame index for
2089  // the start of the first vararg value... for expansion of llvm.va_start.
2090  if (isVarArg) {
2091    int Depth = ArgOffset;
2092
2093    VarArgsFrameIndex = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2094                                               Depth, true, false);
2095    SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
2096
2097    // If this function is vararg, store any remaining integer argument regs
2098    // to their spots on the stack so that they may be loaded by deferencing the
2099    // result of va_next.
2100    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
2101      unsigned VReg;
2102
2103      if (isPPC64)
2104        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2105      else
2106        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2107
2108      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2109      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0,
2110                                   false, false, 0);
2111      MemOps.push_back(Store);
2112      // Increment the address by four for the next argument to store
2113      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2114      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2115    }
2116  }
2117
2118  if (!MemOps.empty())
2119    Chain = DAG.getNode(ISD::TokenFactor, dl,
2120                        MVT::Other, &MemOps[0], MemOps.size());
2121
2122  return Chain;
2123}
2124
2125/// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus
2126/// linkage area for the Darwin ABI.
2127static unsigned
2128CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
2129                                     bool isPPC64,
2130                                     bool isVarArg,
2131                                     unsigned CC,
2132                                     const SmallVectorImpl<ISD::OutputArg>
2133                                       &Outs,
2134                                     unsigned &nAltivecParamsAtEnd) {
2135  // Count how many bytes are to be pushed on the stack, including the linkage
2136  // area, and parameter passing area.  We start with 24/48 bytes, which is
2137  // prereserved space for [SP][CR][LR][3 x unused].
2138  unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, true);
2139  unsigned NumOps = Outs.size();
2140  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2141
2142  // Add up all the space actually used.
2143  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
2144  // they all go in registers, but we must reserve stack space for them for
2145  // possible use by the caller.  In varargs or 64-bit calls, parameters are
2146  // assigned stack space in order, with padding so Altivec parameters are
2147  // 16-byte aligned.
2148  nAltivecParamsAtEnd = 0;
2149  for (unsigned i = 0; i != NumOps; ++i) {
2150    SDValue Arg = Outs[i].Val;
2151    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2152    EVT ArgVT = Arg.getValueType();
2153    // Varargs Altivec parameters are padded to a 16 byte boundary.
2154    if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
2155        ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
2156      if (!isVarArg && !isPPC64) {
2157        // Non-varargs Altivec parameters go after all the non-Altivec
2158        // parameters; handle those later so we know how much padding we need.
2159        nAltivecParamsAtEnd++;
2160        continue;
2161      }
2162      // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
2163      NumBytes = ((NumBytes+15)/16)*16;
2164    }
2165    NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
2166  }
2167
2168   // Allow for Altivec parameters at the end, if needed.
2169  if (nAltivecParamsAtEnd) {
2170    NumBytes = ((NumBytes+15)/16)*16;
2171    NumBytes += 16*nAltivecParamsAtEnd;
2172  }
2173
2174  // The prolog code of the callee may store up to 8 GPR argument registers to
2175  // the stack, allowing va_start to index over them in memory if its varargs.
2176  // Because we cannot tell if this is needed on the caller side, we have to
2177  // conservatively assume that it is needed.  As such, make sure we have at
2178  // least enough stack space for the caller to store the 8 GPRs.
2179  NumBytes = std::max(NumBytes,
2180                      PPCFrameInfo::getMinCallFrameSize(isPPC64, true));
2181
2182  // Tail call needs the stack to be aligned.
2183  if (CC==CallingConv::Fast && GuaranteedTailCallOpt) {
2184    unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
2185      getStackAlignment();
2186    unsigned AlignMask = TargetAlign-1;
2187    NumBytes = (NumBytes + AlignMask) & ~AlignMask;
2188  }
2189
2190  return NumBytes;
2191}
2192
2193/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
2194/// adjusted to accomodate the arguments for the tailcall.
2195static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
2196                                   unsigned ParamSize) {
2197
2198  if (!isTailCall) return 0;
2199
2200  PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
2201  unsigned CallerMinReservedArea = FI->getMinReservedArea();
2202  int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
2203  // Remember only if the new adjustement is bigger.
2204  if (SPDiff < FI->getTailCallSPDelta())
2205    FI->setTailCallSPDelta(SPDiff);
2206
2207  return SPDiff;
2208}
2209
2210/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2211/// for tail call optimization. Targets which want to do tail call
2212/// optimization should implement this function.
2213bool
2214PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2215                                                     CallingConv::ID CalleeCC,
2216                                                     bool isVarArg,
2217                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2218                                                     SelectionDAG& DAG) const {
2219  if (!GuaranteedTailCallOpt)
2220    return false;
2221
2222  // Variable argument functions are not supported.
2223  if (isVarArg)
2224    return false;
2225
2226  MachineFunction &MF = DAG.getMachineFunction();
2227  CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
2228  if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
2229    // Functions containing by val parameters are not supported.
2230    for (unsigned i = 0; i != Ins.size(); i++) {
2231       ISD::ArgFlagsTy Flags = Ins[i].Flags;
2232       if (Flags.isByVal()) return false;
2233    }
2234
2235    // Non PIC/GOT  tail calls are supported.
2236    if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
2237      return true;
2238
2239    // At the moment we can only do local tail calls (in same module, hidden
2240    // or protected) if we are generating PIC.
2241    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2242      return G->getGlobal()->hasHiddenVisibility()
2243          || G->getGlobal()->hasProtectedVisibility();
2244  }
2245
2246  return false;
2247}
2248
2249/// isCallCompatibleAddress - Return the immediate to use if the specified
2250/// 32-bit value is representable in the immediate field of a BxA instruction.
2251static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
2252  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2253  if (!C) return 0;
2254
2255  int Addr = C->getZExtValue();
2256  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
2257      (Addr << 6 >> 6) != Addr)
2258    return 0;  // Top 6 bits have to be sext of immediate.
2259
2260  return DAG.getConstant((int)C->getZExtValue() >> 2,
2261                         DAG.getTargetLoweringInfo().getPointerTy()).getNode();
2262}
2263
2264namespace {
2265
2266struct TailCallArgumentInfo {
2267  SDValue Arg;
2268  SDValue FrameIdxOp;
2269  int       FrameIdx;
2270
2271  TailCallArgumentInfo() : FrameIdx(0) {}
2272};
2273
2274}
2275
2276/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
2277static void
2278StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
2279                                           SDValue Chain,
2280                   const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
2281                   SmallVector<SDValue, 8> &MemOpChains,
2282                   DebugLoc dl) {
2283  for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
2284    SDValue Arg = TailCallArgs[i].Arg;
2285    SDValue FIN = TailCallArgs[i].FrameIdxOp;
2286    int FI = TailCallArgs[i].FrameIdx;
2287    // Store relative to framepointer.
2288    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
2289                                       PseudoSourceValue::getFixedStack(FI),
2290                                       0, false, false, 0));
2291  }
2292}
2293
2294/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
2295/// the appropriate stack slot for the tail call optimized function call.
2296static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
2297                                               MachineFunction &MF,
2298                                               SDValue Chain,
2299                                               SDValue OldRetAddr,
2300                                               SDValue OldFP,
2301                                               int SPDiff,
2302                                               bool isPPC64,
2303                                               bool isDarwinABI,
2304                                               DebugLoc dl) {
2305  if (SPDiff) {
2306    // Calculate the new stack slot for the return address.
2307    int SlotSize = isPPC64 ? 8 : 4;
2308    int NewRetAddrLoc = SPDiff + PPCFrameInfo::getReturnSaveOffset(isPPC64,
2309                                                                   isDarwinABI);
2310    int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
2311                                                          NewRetAddrLoc,
2312                                                          true, false);
2313    EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2314    SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
2315    Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
2316                         PseudoSourceValue::getFixedStack(NewRetAddr), 0,
2317                         false, false, 0);
2318
2319    // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
2320    // slot as the FP is never overwritten.
2321    if (isDarwinABI) {
2322      int NewFPLoc =
2323        SPDiff + PPCFrameInfo::getFramePointerSaveOffset(isPPC64, isDarwinABI);
2324      int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
2325                                                          true, false);
2326      SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
2327      Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
2328                           PseudoSourceValue::getFixedStack(NewFPIdx), 0,
2329                           false, false, 0);
2330    }
2331  }
2332  return Chain;
2333}
2334
2335/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
2336/// the position of the argument.
2337static void
2338CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
2339                         SDValue Arg, int SPDiff, unsigned ArgOffset,
2340                      SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
2341  int Offset = ArgOffset + SPDiff;
2342  uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
2343  int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true,false);
2344  EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2345  SDValue FIN = DAG.getFrameIndex(FI, VT);
2346  TailCallArgumentInfo Info;
2347  Info.Arg = Arg;
2348  Info.FrameIdxOp = FIN;
2349  Info.FrameIdx = FI;
2350  TailCallArguments.push_back(Info);
2351}
2352
2353/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
2354/// stack slot. Returns the chain as result and the loaded frame pointers in
2355/// LROpOut/FPOpout. Used when tail calling.
2356SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
2357                                                        int SPDiff,
2358                                                        SDValue Chain,
2359                                                        SDValue &LROpOut,
2360                                                        SDValue &FPOpOut,
2361                                                        bool isDarwinABI,
2362                                                        DebugLoc dl) {
2363  if (SPDiff) {
2364    // Load the LR and FP stack slot for later adjusting.
2365    EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
2366    LROpOut = getReturnAddrFrameIndex(DAG);
2367    LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, NULL, 0,
2368                          false, false, 0);
2369    Chain = SDValue(LROpOut.getNode(), 1);
2370
2371    // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
2372    // slot as the FP is never overwritten.
2373    if (isDarwinABI) {
2374      FPOpOut = getFramePointerFrameIndex(DAG);
2375      FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, NULL, 0,
2376                            false, false, 0);
2377      Chain = SDValue(FPOpOut.getNode(), 1);
2378    }
2379  }
2380  return Chain;
2381}
2382
2383/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
2384/// by "Src" to address "Dst" of size "Size".  Alignment information is
2385/// specified by the specific parameter attribute. The copy will be passed as
2386/// a byval function parameter.
2387/// Sometimes what we are copying is the end of a larger object, the part that
2388/// does not fit in registers.
2389static SDValue
2390CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
2391                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
2392                          DebugLoc dl) {
2393  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
2394  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
2395                       false, false, NULL, 0, NULL, 0);
2396}
2397
2398/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
2399/// tail calls.
2400static void
2401LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
2402                 SDValue Arg, SDValue PtrOff, int SPDiff,
2403                 unsigned ArgOffset, bool isPPC64, bool isTailCall,
2404                 bool isVector, SmallVector<SDValue, 8> &MemOpChains,
2405                 SmallVector<TailCallArgumentInfo, 8>& TailCallArguments,
2406                 DebugLoc dl) {
2407  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2408  if (!isTailCall) {
2409    if (isVector) {
2410      SDValue StackPtr;
2411      if (isPPC64)
2412        StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2413      else
2414        StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2415      PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
2416                           DAG.getConstant(ArgOffset, PtrVT));
2417    }
2418    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0,
2419                                       false, false, 0));
2420  // Calculate and remember argument location.
2421  } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
2422                                  TailCallArguments);
2423}
2424
2425static
2426void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
2427                     DebugLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
2428                     SDValue LROp, SDValue FPOp, bool isDarwinABI,
2429                     SmallVector<TailCallArgumentInfo, 8> &TailCallArguments) {
2430  MachineFunction &MF = DAG.getMachineFunction();
2431
2432  // Emit a sequence of copyto/copyfrom virtual registers for arguments that
2433  // might overwrite each other in case of tail call optimization.
2434  SmallVector<SDValue, 8> MemOpChains2;
2435  // Do not flag preceeding copytoreg stuff together with the following stuff.
2436  InFlag = SDValue();
2437  StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
2438                                    MemOpChains2, dl);
2439  if (!MemOpChains2.empty())
2440    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2441                        &MemOpChains2[0], MemOpChains2.size());
2442
2443  // Store the return address to the appropriate stack slot.
2444  Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
2445                                        isPPC64, isDarwinABI, dl);
2446
2447  // Emit callseq_end just before tailcall node.
2448  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2449                             DAG.getIntPtrConstant(0, true), InFlag);
2450  InFlag = Chain.getValue(1);
2451}
2452
2453static
2454unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
2455                     SDValue &Chain, DebugLoc dl, int SPDiff, bool isTailCall,
2456                     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
2457                     SmallVector<SDValue, 8> &Ops, std::vector<EVT> &NodeTys,
2458                     bool isPPC64, bool isSVR4ABI) {
2459  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2460  NodeTys.push_back(MVT::Other);   // Returns a chain
2461  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
2462
2463  unsigned CallOpc = isSVR4ABI ? PPCISD::CALL_SVR4 : PPCISD::CALL_Darwin;
2464
2465  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2466  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2467  // node so that legalize doesn't hack it.
2468  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2469    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
2470  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
2471    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
2472  else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
2473    // If this is an absolute destination address, use the munged value.
2474    Callee = SDValue(Dest, 0);
2475  else {
2476    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
2477    // to do the call, we can't use PPCISD::CALL.
2478    SDValue MTCTROps[] = {Chain, Callee, InFlag};
2479
2480    if (isSVR4ABI && isPPC64) {
2481      // Function pointers in the 64-bit SVR4 ABI do not point to the function
2482      // entry point, but to the function descriptor (the function entry point
2483      // address is part of the function descriptor though).
2484      // The function descriptor is a three doubleword structure with the
2485      // following fields: function entry point, TOC base address and
2486      // environment pointer.
2487      // Thus for a call through a function pointer, the following actions need
2488      // to be performed:
2489      //   1. Save the TOC of the caller in the TOC save area of its stack
2490      //      frame (this is done in LowerCall_Darwin()).
2491      //   2. Load the address of the function entry point from the function
2492      //      descriptor.
2493      //   3. Load the TOC of the callee from the function descriptor into r2.
2494      //   4. Load the environment pointer from the function descriptor into
2495      //      r11.
2496      //   5. Branch to the function entry point address.
2497      //   6. On return of the callee, the TOC of the caller needs to be
2498      //      restored (this is done in FinishCall()).
2499      //
2500      // All those operations are flagged together to ensure that no other
2501      // operations can be scheduled in between. E.g. without flagging the
2502      // operations together, a TOC access in the caller could be scheduled
2503      // between the load of the callee TOC and the branch to the callee, which
2504      // results in the TOC access going through the TOC of the callee instead
2505      // of going through the TOC of the caller, which leads to incorrect code.
2506
2507      // Load the address of the function entry point from the function
2508      // descriptor.
2509      SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Flag);
2510      SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, MTCTROps,
2511                                        InFlag.getNode() ? 3 : 2);
2512      Chain = LoadFuncPtr.getValue(1);
2513      InFlag = LoadFuncPtr.getValue(2);
2514
2515      // Load environment pointer into r11.
2516      // Offset of the environment pointer within the function descriptor.
2517      SDValue PtrOff = DAG.getIntPtrConstant(16);
2518
2519      SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
2520      SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr,
2521                                       InFlag);
2522      Chain = LoadEnvPtr.getValue(1);
2523      InFlag = LoadEnvPtr.getValue(2);
2524
2525      SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
2526                                        InFlag);
2527      Chain = EnvVal.getValue(0);
2528      InFlag = EnvVal.getValue(1);
2529
2530      // Load TOC of the callee into r2. We are using a target-specific load
2531      // with r2 hard coded, because the result of a target-independent load
2532      // would never go directly into r2, since r2 is a reserved register (which
2533      // prevents the register allocator from allocating it), resulting in an
2534      // additional register being allocated and an unnecessary move instruction
2535      // being generated.
2536      VTs = DAG.getVTList(MVT::Other, MVT::Flag);
2537      SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain,
2538                                       Callee, InFlag);
2539      Chain = LoadTOCPtr.getValue(0);
2540      InFlag = LoadTOCPtr.getValue(1);
2541
2542      MTCTROps[0] = Chain;
2543      MTCTROps[1] = LoadFuncPtr;
2544      MTCTROps[2] = InFlag;
2545    }
2546
2547    Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps,
2548                        2 + (InFlag.getNode() != 0));
2549    InFlag = Chain.getValue(1);
2550
2551    NodeTys.clear();
2552    NodeTys.push_back(MVT::Other);
2553    NodeTys.push_back(MVT::Flag);
2554    Ops.push_back(Chain);
2555    CallOpc = isSVR4ABI ? PPCISD::BCTRL_SVR4 : PPCISD::BCTRL_Darwin;
2556    Callee.setNode(0);
2557    // Add CTR register as callee so a bctr can be emitted later.
2558    if (isTailCall)
2559      Ops.push_back(DAG.getRegister(PPC::CTR, PtrVT));
2560  }
2561
2562  // If this is a direct call, pass the chain and the callee.
2563  if (Callee.getNode()) {
2564    Ops.push_back(Chain);
2565    Ops.push_back(Callee);
2566  }
2567  // If this is a tail call add stack pointer delta.
2568  if (isTailCall)
2569    Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
2570
2571  // Add argument registers to the end of the list so that they are known live
2572  // into the call.
2573  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2574    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2575                                  RegsToPass[i].second.getValueType()));
2576
2577  return CallOpc;
2578}
2579
2580SDValue
2581PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2582                                   CallingConv::ID CallConv, bool isVarArg,
2583                                   const SmallVectorImpl<ISD::InputArg> &Ins,
2584                                   DebugLoc dl, SelectionDAG &DAG,
2585                                   SmallVectorImpl<SDValue> &InVals) {
2586
2587  SmallVector<CCValAssign, 16> RVLocs;
2588  CCState CCRetInfo(CallConv, isVarArg, getTargetMachine(),
2589                    RVLocs, *DAG.getContext());
2590  CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
2591
2592  // Copy all of the result registers out of their specified physreg.
2593  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2594    CCValAssign &VA = RVLocs[i];
2595    EVT VT = VA.getValVT();
2596    assert(VA.isRegLoc() && "Can only return in registers!");
2597    Chain = DAG.getCopyFromReg(Chain, dl,
2598                               VA.getLocReg(), VT, InFlag).getValue(1);
2599    InVals.push_back(Chain.getValue(0));
2600    InFlag = Chain.getValue(2);
2601  }
2602
2603  return Chain;
2604}
2605
2606SDValue
2607PPCTargetLowering::FinishCall(CallingConv::ID CallConv, DebugLoc dl,
2608                              bool isTailCall, bool isVarArg,
2609                              SelectionDAG &DAG,
2610                              SmallVector<std::pair<unsigned, SDValue>, 8>
2611                                &RegsToPass,
2612                              SDValue InFlag, SDValue Chain,
2613                              SDValue &Callee,
2614                              int SPDiff, unsigned NumBytes,
2615                              const SmallVectorImpl<ISD::InputArg> &Ins,
2616                              SmallVectorImpl<SDValue> &InVals) {
2617  std::vector<EVT> NodeTys;
2618  SmallVector<SDValue, 8> Ops;
2619  unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
2620                                 isTailCall, RegsToPass, Ops, NodeTys,
2621                                 PPCSubTarget.isPPC64(),
2622                                 PPCSubTarget.isSVR4ABI());
2623
2624  // When performing tail call optimization the callee pops its arguments off
2625  // the stack. Account for this here so these bytes can be pushed back on in
2626  // PPCRegisterInfo::eliminateCallFramePseudoInstr.
2627  int BytesCalleePops =
2628    (CallConv==CallingConv::Fast && GuaranteedTailCallOpt) ? NumBytes : 0;
2629
2630  if (InFlag.getNode())
2631    Ops.push_back(InFlag);
2632
2633  // Emit tail call.
2634  if (isTailCall) {
2635    // If this is the first return lowered for this function, add the regs
2636    // to the liveout set for the function.
2637    if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
2638      SmallVector<CCValAssign, 16> RVLocs;
2639      CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
2640                     *DAG.getContext());
2641      CCInfo.AnalyzeCallResult(Ins, RetCC_PPC);
2642      for (unsigned i = 0; i != RVLocs.size(); ++i)
2643        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2644    }
2645
2646    assert(((Callee.getOpcode() == ISD::Register &&
2647             cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
2648            Callee.getOpcode() == ISD::TargetExternalSymbol ||
2649            Callee.getOpcode() == ISD::TargetGlobalAddress ||
2650            isa<ConstantSDNode>(Callee)) &&
2651    "Expecting an global address, external symbol, absolute value or register");
2652
2653    return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size());
2654  }
2655
2656  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
2657  InFlag = Chain.getValue(1);
2658
2659  // Add a NOP immediately after the branch instruction when using the 64-bit
2660  // SVR4 ABI. At link time, if caller and callee are in a different module and
2661  // thus have a different TOC, the call will be replaced with a call to a stub
2662  // function which saves the current TOC, loads the TOC of the callee and
2663  // branches to the callee. The NOP will be replaced with a load instruction
2664  // which restores the TOC of the caller from the TOC save slot of the current
2665  // stack frame. If caller and callee belong to the same module (and have the
2666  // same TOC), the NOP will remain unchanged.
2667  if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) {
2668    SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Flag);
2669    if (CallOpc == PPCISD::BCTRL_SVR4) {
2670      // This is a call through a function pointer.
2671      // Restore the caller TOC from the save area into R2.
2672      // See PrepareCall() for more information about calls through function
2673      // pointers in the 64-bit SVR4 ABI.
2674      // We are using a target-specific load with r2 hard coded, because the
2675      // result of a target-independent load would never go directly into r2,
2676      // since r2 is a reserved register (which prevents the register allocator
2677      // from allocating it), resulting in an additional register being
2678      // allocated and an unnecessary move instruction being generated.
2679      Chain = DAG.getNode(PPCISD::TOC_RESTORE, dl, VTs, Chain, InFlag);
2680      InFlag = Chain.getValue(1);
2681    } else {
2682      // Otherwise insert NOP.
2683      InFlag = DAG.getNode(PPCISD::NOP, dl, MVT::Flag, InFlag);
2684    }
2685  }
2686
2687  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2688                             DAG.getIntPtrConstant(BytesCalleePops, true),
2689                             InFlag);
2690  if (!Ins.empty())
2691    InFlag = Chain.getValue(1);
2692
2693  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2694                         Ins, dl, DAG, InVals);
2695}
2696
2697SDValue
2698PPCTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2699                             CallingConv::ID CallConv, bool isVarArg,
2700                             bool &isTailCall,
2701                             const SmallVectorImpl<ISD::OutputArg> &Outs,
2702                             const SmallVectorImpl<ISD::InputArg> &Ins,
2703                             DebugLoc dl, SelectionDAG &DAG,
2704                             SmallVectorImpl<SDValue> &InVals) {
2705  if (isTailCall)
2706    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
2707                                                   Ins, DAG);
2708
2709  if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) {
2710    return LowerCall_SVR4(Chain, Callee, CallConv, isVarArg,
2711                          isTailCall, Outs, Ins,
2712                          dl, DAG, InVals);
2713  } else {
2714    return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
2715                            isTailCall, Outs, Ins,
2716                            dl, DAG, InVals);
2717  }
2718}
2719
2720SDValue
2721PPCTargetLowering::LowerCall_SVR4(SDValue Chain, SDValue Callee,
2722                                  CallingConv::ID CallConv, bool isVarArg,
2723                                  bool isTailCall,
2724                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
2725                                  const SmallVectorImpl<ISD::InputArg> &Ins,
2726                                  DebugLoc dl, SelectionDAG &DAG,
2727                                  SmallVectorImpl<SDValue> &InVals) {
2728  // See PPCTargetLowering::LowerFormalArguments_SVR4() for a description
2729  // of the 32-bit SVR4 ABI stack frame layout.
2730
2731  assert((CallConv == CallingConv::C ||
2732          CallConv == CallingConv::Fast) && "Unknown calling convention!");
2733
2734  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2735  unsigned PtrByteSize = 4;
2736
2737  MachineFunction &MF = DAG.getMachineFunction();
2738
2739  // Mark this function as potentially containing a function that contains a
2740  // tail call. As a consequence the frame pointer will be used for dynamicalloc
2741  // and restoring the callers stack pointer in this functions epilog. This is
2742  // done because by tail calling the called function might overwrite the value
2743  // in this function's (MF) stack pointer stack slot 0(SP).
2744  if (GuaranteedTailCallOpt && CallConv==CallingConv::Fast)
2745    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2746
2747  // Count how many bytes are to be pushed on the stack, including the linkage
2748  // area, parameter list area and the part of the local variable space which
2749  // contains copies of aggregates which are passed by value.
2750
2751  // Assign locations to all of the outgoing arguments.
2752  SmallVector<CCValAssign, 16> ArgLocs;
2753  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
2754                 ArgLocs, *DAG.getContext());
2755
2756  // Reserve space for the linkage area on the stack.
2757  CCInfo.AllocateStack(PPCFrameInfo::getLinkageSize(false, false), PtrByteSize);
2758
2759  if (isVarArg) {
2760    // Handle fixed and variable vector arguments differently.
2761    // Fixed vector arguments go into registers as long as registers are
2762    // available. Variable vector arguments always go into memory.
2763    unsigned NumArgs = Outs.size();
2764
2765    for (unsigned i = 0; i != NumArgs; ++i) {
2766      EVT ArgVT = Outs[i].Val.getValueType();
2767      ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2768      bool Result;
2769
2770      if (Outs[i].IsFixed) {
2771        Result = CC_PPC_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
2772                             CCInfo);
2773      } else {
2774        Result = CC_PPC_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
2775                                    ArgFlags, CCInfo);
2776      }
2777
2778      if (Result) {
2779#ifndef NDEBUG
2780        errs() << "Call operand #" << i << " has unhandled type "
2781             << ArgVT.getEVTString() << "\n";
2782#endif
2783        llvm_unreachable(0);
2784      }
2785    }
2786  } else {
2787    // All arguments are treated the same.
2788    CCInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4);
2789  }
2790
2791  // Assign locations to all of the outgoing aggregate by value arguments.
2792  SmallVector<CCValAssign, 16> ByValArgLocs;
2793  CCState CCByValInfo(CallConv, isVarArg, getTargetMachine(), ByValArgLocs,
2794                      *DAG.getContext());
2795
2796  // Reserve stack space for the allocations in CCInfo.
2797  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
2798
2799  CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4_ByVal);
2800
2801  // Size of the linkage area, parameter list area and the part of the local
2802  // space variable where copies of aggregates which are passed by value are
2803  // stored.
2804  unsigned NumBytes = CCByValInfo.getNextStackOffset();
2805
2806  // Calculate by how many bytes the stack has to be adjusted in case of tail
2807  // call optimization.
2808  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2809
2810  // Adjust the stack pointer for the new arguments...
2811  // These operations are automatically eliminated by the prolog/epilog pass
2812  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2813  SDValue CallSeqStart = Chain;
2814
2815  // Load the return address and frame pointer so it can be moved somewhere else
2816  // later.
2817  SDValue LROp, FPOp;
2818  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
2819                                       dl);
2820
2821  // Set up a copy of the stack pointer for use loading and storing any
2822  // arguments that may not fit in the registers available for argument
2823  // passing.
2824  SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2825
2826  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2827  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
2828  SmallVector<SDValue, 8> MemOpChains;
2829
2830  // Walk the register/memloc assignments, inserting copies/loads.
2831  for (unsigned i = 0, j = 0, e = ArgLocs.size();
2832       i != e;
2833       ++i) {
2834    CCValAssign &VA = ArgLocs[i];
2835    SDValue Arg = Outs[i].Val;
2836    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2837
2838    if (Flags.isByVal()) {
2839      // Argument is an aggregate which is passed by value, thus we need to
2840      // create a copy of it in the local variable space of the current stack
2841      // frame (which is the stack frame of the caller) and pass the address of
2842      // this copy to the callee.
2843      assert((j < ByValArgLocs.size()) && "Index out of bounds!");
2844      CCValAssign &ByValVA = ByValArgLocs[j++];
2845      assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
2846
2847      // Memory reserved in the local variable space of the callers stack frame.
2848      unsigned LocMemOffset = ByValVA.getLocMemOffset();
2849
2850      SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2851      PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2852
2853      // Create a copy of the argument in the local area of the current
2854      // stack frame.
2855      SDValue MemcpyCall =
2856        CreateCopyOfByValArgument(Arg, PtrOff,
2857                                  CallSeqStart.getNode()->getOperand(0),
2858                                  Flags, DAG, dl);
2859
2860      // This must go outside the CALLSEQ_START..END.
2861      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2862                           CallSeqStart.getNode()->getOperand(1));
2863      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
2864                             NewCallSeqStart.getNode());
2865      Chain = CallSeqStart = NewCallSeqStart;
2866
2867      // Pass the address of the aggregate copy on the stack either in a
2868      // physical register or in the parameter list area of the current stack
2869      // frame to the callee.
2870      Arg = PtrOff;
2871    }
2872
2873    if (VA.isRegLoc()) {
2874      // Put argument in a physical register.
2875      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2876    } else {
2877      // Put argument in the parameter list area of the current stack frame.
2878      assert(VA.isMemLoc());
2879      unsigned LocMemOffset = VA.getLocMemOffset();
2880
2881      if (!isTailCall) {
2882        SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2883        PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2884
2885        MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
2886                                           PseudoSourceValue::getStack(), LocMemOffset,
2887                                           false, false, 0));
2888      } else {
2889        // Calculate and remember argument location.
2890        CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
2891                                 TailCallArguments);
2892      }
2893    }
2894  }
2895
2896  if (!MemOpChains.empty())
2897    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2898                        &MemOpChains[0], MemOpChains.size());
2899
2900  // Build a sequence of copy-to-reg nodes chained together with token chain
2901  // and flag operands which copy the outgoing args into the appropriate regs.
2902  SDValue InFlag;
2903  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2904    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2905                             RegsToPass[i].second, InFlag);
2906    InFlag = Chain.getValue(1);
2907  }
2908
2909  // Set CR6 to true if this is a vararg call.
2910  if (isVarArg) {
2911    SDValue SetCR(DAG.getMachineNode(PPC::CRSET, dl, MVT::i32), 0);
2912    Chain = DAG.getCopyToReg(Chain, dl, PPC::CR1EQ, SetCR, InFlag);
2913    InFlag = Chain.getValue(1);
2914  }
2915
2916  if (isTailCall) {
2917    PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
2918                    false, TailCallArguments);
2919  }
2920
2921  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
2922                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
2923                    Ins, InVals);
2924}
2925
2926SDValue
2927PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
2928                                    CallingConv::ID CallConv, bool isVarArg,
2929                                    bool isTailCall,
2930                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2931                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2932                                    DebugLoc dl, SelectionDAG &DAG,
2933                                    SmallVectorImpl<SDValue> &InVals) {
2934
2935  unsigned NumOps  = Outs.size();
2936
2937  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2938  bool isPPC64 = PtrVT == MVT::i64;
2939  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2940
2941  MachineFunction &MF = DAG.getMachineFunction();
2942
2943  // Mark this function as potentially containing a function that contains a
2944  // tail call. As a consequence the frame pointer will be used for dynamicalloc
2945  // and restoring the callers stack pointer in this functions epilog. This is
2946  // done because by tail calling the called function might overwrite the value
2947  // in this function's (MF) stack pointer stack slot 0(SP).
2948  if (GuaranteedTailCallOpt && CallConv==CallingConv::Fast)
2949    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2950
2951  unsigned nAltivecParamsAtEnd = 0;
2952
2953  // Count how many bytes are to be pushed on the stack, including the linkage
2954  // area, and parameter passing area.  We start with 24/48 bytes, which is
2955  // prereserved space for [SP][CR][LR][3 x unused].
2956  unsigned NumBytes =
2957    CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv,
2958                                         Outs,
2959                                         nAltivecParamsAtEnd);
2960
2961  // Calculate by how many bytes the stack has to be adjusted in case of tail
2962  // call optimization.
2963  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2964
2965  // To protect arguments on the stack from being clobbered in a tail call,
2966  // force all the loads to happen before doing any other lowering.
2967  if (isTailCall)
2968    Chain = DAG.getStackArgumentTokenFactor(Chain);
2969
2970  // Adjust the stack pointer for the new arguments...
2971  // These operations are automatically eliminated by the prolog/epilog pass
2972  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2973  SDValue CallSeqStart = Chain;
2974
2975  // Load the return address and frame pointer so it can be move somewhere else
2976  // later.
2977  SDValue LROp, FPOp;
2978  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
2979                                       dl);
2980
2981  // Set up a copy of the stack pointer for use loading and storing any
2982  // arguments that may not fit in the registers available for argument
2983  // passing.
2984  SDValue StackPtr;
2985  if (isPPC64)
2986    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2987  else
2988    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2989
2990  // Figure out which arguments are going to go in registers, and which in
2991  // memory.  Also, if this is a vararg function, floating point operations
2992  // must be stored to our stack, and loaded into integer regs as well, if
2993  // any integer regs are available for argument passing.
2994  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, true);
2995  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
2996
2997  static const unsigned GPR_32[] = {           // 32-bit registers.
2998    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2999    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3000  };
3001  static const unsigned GPR_64[] = {           // 64-bit registers.
3002    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3003    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3004  };
3005  static const unsigned *FPR = GetFPR();
3006
3007  static const unsigned VR[] = {
3008    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3009    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3010  };
3011  const unsigned NumGPRs = array_lengthof(GPR_32);
3012  const unsigned NumFPRs = 13;
3013  const unsigned NumVRs  = array_lengthof(VR);
3014
3015  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
3016
3017  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3018  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
3019
3020  SmallVector<SDValue, 8> MemOpChains;
3021  for (unsigned i = 0; i != NumOps; ++i) {
3022    SDValue Arg = Outs[i].Val;
3023    ISD::ArgFlagsTy Flags = Outs[i].Flags;
3024
3025    // PtrOff will be used to store the current argument to the stack if a
3026    // register cannot be found for it.
3027    SDValue PtrOff;
3028
3029    PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
3030
3031    PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
3032
3033    // On PPC64, promote integers to 64-bit values.
3034    if (isPPC64 && Arg.getValueType() == MVT::i32) {
3035      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
3036      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3037      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
3038    }
3039
3040    // FIXME memcpy is used way more than necessary.  Correctness first.
3041    if (Flags.isByVal()) {
3042      unsigned Size = Flags.getByValSize();
3043      if (Size==1 || Size==2) {
3044        // Very small objects are passed right-justified.
3045        // Everything else is passed left-justified.
3046        EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
3047        if (GPR_idx != NumGPRs) {
3048          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
3049                                        NULL, 0, VT, false, false, 0);
3050          MemOpChains.push_back(Load.getValue(1));
3051          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3052
3053          ArgOffset += PtrByteSize;
3054        } else {
3055          SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
3056          SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
3057          SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
3058                                CallSeqStart.getNode()->getOperand(0),
3059                                Flags, DAG, dl);
3060          // This must go outside the CALLSEQ_START..END.
3061          SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3062                               CallSeqStart.getNode()->getOperand(1));
3063          DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3064                                 NewCallSeqStart.getNode());
3065          Chain = CallSeqStart = NewCallSeqStart;
3066          ArgOffset += PtrByteSize;
3067        }
3068        continue;
3069      }
3070      // Copy entire object into memory.  There are cases where gcc-generated
3071      // code assumes it is there, even if it could be put entirely into
3072      // registers.  (This is not what the doc says.)
3073      SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
3074                            CallSeqStart.getNode()->getOperand(0),
3075                            Flags, DAG, dl);
3076      // This must go outside the CALLSEQ_START..END.
3077      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3078                           CallSeqStart.getNode()->getOperand(1));
3079      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode());
3080      Chain = CallSeqStart = NewCallSeqStart;
3081      // And copy the pieces of it that fit into registers.
3082      for (unsigned j=0; j<Size; j+=PtrByteSize) {
3083        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
3084        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
3085        if (GPR_idx != NumGPRs) {
3086          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, NULL, 0,
3087                                     false, false, 0);
3088          MemOpChains.push_back(Load.getValue(1));
3089          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3090          ArgOffset += PtrByteSize;
3091        } else {
3092          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
3093          break;
3094        }
3095      }
3096      continue;
3097    }
3098
3099    switch (Arg.getValueType().getSimpleVT().SimpleTy) {
3100    default: llvm_unreachable("Unexpected ValueType for argument!");
3101    case MVT::i32:
3102    case MVT::i64:
3103      if (GPR_idx != NumGPRs) {
3104        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
3105      } else {
3106        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3107                         isPPC64, isTailCall, false, MemOpChains,
3108                         TailCallArguments, dl);
3109      }
3110      ArgOffset += PtrByteSize;
3111      break;
3112    case MVT::f32:
3113    case MVT::f64:
3114      if (FPR_idx != NumFPRs) {
3115        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
3116
3117        if (isVarArg) {
3118          SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0,
3119                                       false, false, 0);
3120          MemOpChains.push_back(Store);
3121
3122          // Float varargs are always shadowed in available integer registers
3123          if (GPR_idx != NumGPRs) {
3124            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, NULL, 0,
3125                                       false, false, 0);
3126            MemOpChains.push_back(Load.getValue(1));
3127            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3128          }
3129          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
3130            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
3131            PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
3132            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, NULL, 0,
3133                                       false, false, 0);
3134            MemOpChains.push_back(Load.getValue(1));
3135            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3136          }
3137        } else {
3138          // If we have any FPRs remaining, we may also have GPRs remaining.
3139          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
3140          // GPRs.
3141          if (GPR_idx != NumGPRs)
3142            ++GPR_idx;
3143          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
3144              !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
3145            ++GPR_idx;
3146        }
3147      } else {
3148        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3149                         isPPC64, isTailCall, false, MemOpChains,
3150                         TailCallArguments, dl);
3151      }
3152      if (isPPC64)
3153        ArgOffset += 8;
3154      else
3155        ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
3156      break;
3157    case MVT::v4f32:
3158    case MVT::v4i32:
3159    case MVT::v8i16:
3160    case MVT::v16i8:
3161      if (isVarArg) {
3162        // These go aligned on the stack, or in the corresponding R registers
3163        // when within range.  The Darwin PPC ABI doc claims they also go in
3164        // V registers; in fact gcc does this only for arguments that are
3165        // prototyped, not for those that match the ...  We do it for all
3166        // arguments, seems to work.
3167        while (ArgOffset % 16 !=0) {
3168          ArgOffset += PtrByteSize;
3169          if (GPR_idx != NumGPRs)
3170            GPR_idx++;
3171        }
3172        // We could elide this store in the case where the object fits
3173        // entirely in R registers.  Maybe later.
3174        PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
3175                            DAG.getConstant(ArgOffset, PtrVT));
3176        SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0,
3177                                     false, false, 0);
3178        MemOpChains.push_back(Store);
3179        if (VR_idx != NumVRs) {
3180          SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, NULL, 0,
3181                                     false, false, 0);
3182          MemOpChains.push_back(Load.getValue(1));
3183          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
3184        }
3185        ArgOffset += 16;
3186        for (unsigned i=0; i<16; i+=PtrByteSize) {
3187          if (GPR_idx == NumGPRs)
3188            break;
3189          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
3190                                  DAG.getConstant(i, PtrVT));
3191          SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, NULL, 0,
3192                                     false, false, 0);
3193          MemOpChains.push_back(Load.getValue(1));
3194          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3195        }
3196        break;
3197      }
3198
3199      // Non-varargs Altivec params generally go in registers, but have
3200      // stack space allocated at the end.
3201      if (VR_idx != NumVRs) {
3202        // Doesn't have GPR space allocated.
3203        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
3204      } else if (nAltivecParamsAtEnd==0) {
3205        // We are emitting Altivec params in order.
3206        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3207                         isPPC64, isTailCall, true, MemOpChains,
3208                         TailCallArguments, dl);
3209        ArgOffset += 16;
3210      }
3211      break;
3212    }
3213  }
3214  // If all Altivec parameters fit in registers, as they usually do,
3215  // they get stack space following the non-Altivec parameters.  We
3216  // don't track this here because nobody below needs it.
3217  // If there are more Altivec parameters than fit in registers emit
3218  // the stores here.
3219  if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
3220    unsigned j = 0;
3221    // Offset is aligned; skip 1st 12 params which go in V registers.
3222    ArgOffset = ((ArgOffset+15)/16)*16;
3223    ArgOffset += 12*16;
3224    for (unsigned i = 0; i != NumOps; ++i) {
3225      SDValue Arg = Outs[i].Val;
3226      EVT ArgType = Arg.getValueType();
3227      if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
3228          ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
3229        if (++j > NumVRs) {
3230          SDValue PtrOff;
3231          // We are emitting Altivec params in order.
3232          LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3233                           isPPC64, isTailCall, true, MemOpChains,
3234                           TailCallArguments, dl);
3235          ArgOffset += 16;
3236        }
3237      }
3238    }
3239  }
3240
3241  if (!MemOpChains.empty())
3242    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3243                        &MemOpChains[0], MemOpChains.size());
3244
3245  // Check if this is an indirect call (MTCTR/BCTRL).
3246  // See PrepareCall() for more information about calls through function
3247  // pointers in the 64-bit SVR4 ABI.
3248  if (!isTailCall && isPPC64 && PPCSubTarget.isSVR4ABI() &&
3249      !dyn_cast<GlobalAddressSDNode>(Callee) &&
3250      !dyn_cast<ExternalSymbolSDNode>(Callee) &&
3251      !isBLACompatibleAddress(Callee, DAG)) {
3252    // Load r2 into a virtual register and store it to the TOC save area.
3253    SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
3254    // TOC save area offset.
3255    SDValue PtrOff = DAG.getIntPtrConstant(40);
3256    SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
3257    Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, NULL, 0,
3258                         false, false, 0);
3259  }
3260
3261  // On Darwin, R12 must contain the address of an indirect callee.  This does
3262  // not mean the MTCTR instruction must use R12; it's easier to model this as
3263  // an extra parameter, so do that.
3264  if (!isTailCall &&
3265      !dyn_cast<GlobalAddressSDNode>(Callee) &&
3266      !dyn_cast<ExternalSymbolSDNode>(Callee) &&
3267      !isBLACompatibleAddress(Callee, DAG))
3268    RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
3269                                                   PPC::R12), Callee));
3270
3271  // Build a sequence of copy-to-reg nodes chained together with token chain
3272  // and flag operands which copy the outgoing args into the appropriate regs.
3273  SDValue InFlag;
3274  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3275    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3276                             RegsToPass[i].second, InFlag);
3277    InFlag = Chain.getValue(1);
3278  }
3279
3280  if (isTailCall) {
3281    PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
3282                    FPOp, true, TailCallArguments);
3283  }
3284
3285  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
3286                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
3287                    Ins, InVals);
3288}
3289
3290SDValue
3291PPCTargetLowering::LowerReturn(SDValue Chain,
3292                               CallingConv::ID CallConv, bool isVarArg,
3293                               const SmallVectorImpl<ISD::OutputArg> &Outs,
3294                               DebugLoc dl, SelectionDAG &DAG) {
3295
3296  SmallVector<CCValAssign, 16> RVLocs;
3297  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
3298                 RVLocs, *DAG.getContext());
3299  CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
3300
3301  // If this is the first return lowered for this function, add the regs to the
3302  // liveout set for the function.
3303  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
3304    for (unsigned i = 0; i != RVLocs.size(); ++i)
3305      DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
3306  }
3307
3308  SDValue Flag;
3309
3310  // Copy the result values into the output registers.
3311  for (unsigned i = 0; i != RVLocs.size(); ++i) {
3312    CCValAssign &VA = RVLocs[i];
3313    assert(VA.isRegLoc() && "Can only return in registers!");
3314    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3315                             Outs[i].Val, Flag);
3316    Flag = Chain.getValue(1);
3317  }
3318
3319  if (Flag.getNode())
3320    return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
3321  else
3322    return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain);
3323}
3324
3325SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
3326                                   const PPCSubtarget &Subtarget) {
3327  // When we pop the dynamic allocation we need to restore the SP link.
3328  DebugLoc dl = Op.getDebugLoc();
3329
3330  // Get the corect type for pointers.
3331  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3332
3333  // Construct the stack pointer operand.
3334  bool isPPC64 = Subtarget.isPPC64();
3335  unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
3336  SDValue StackPtr = DAG.getRegister(SP, PtrVT);
3337
3338  // Get the operands for the STACKRESTORE.
3339  SDValue Chain = Op.getOperand(0);
3340  SDValue SaveSP = Op.getOperand(1);
3341
3342  // Load the old link SP.
3343  SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr, NULL, 0,
3344                                   false, false, 0);
3345
3346  // Restore the stack pointer.
3347  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
3348
3349  // Store the old link SP.
3350  return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, NULL, 0,
3351                      false, false, 0);
3352}
3353
3354
3355
3356SDValue
3357PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
3358  MachineFunction &MF = DAG.getMachineFunction();
3359  bool isPPC64 = PPCSubTarget.isPPC64();
3360  bool isDarwinABI = PPCSubTarget.isDarwinABI();
3361  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3362
3363  // Get current frame pointer save index.  The users of this index will be
3364  // primarily DYNALLOC instructions.
3365  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
3366  int RASI = FI->getReturnAddrSaveIndex();
3367
3368  // If the frame pointer save index hasn't been defined yet.
3369  if (!RASI) {
3370    // Find out what the fix offset of the frame pointer save area.
3371    int LROffset = PPCFrameInfo::getReturnSaveOffset(isPPC64, isDarwinABI);
3372    // Allocate the frame index for frame pointer save area.
3373    RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset,
3374                                                true, false);
3375    // Save the result.
3376    FI->setReturnAddrSaveIndex(RASI);
3377  }
3378  return DAG.getFrameIndex(RASI, PtrVT);
3379}
3380
3381SDValue
3382PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
3383  MachineFunction &MF = DAG.getMachineFunction();
3384  bool isPPC64 = PPCSubTarget.isPPC64();
3385  bool isDarwinABI = PPCSubTarget.isDarwinABI();
3386  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3387
3388  // Get current frame pointer save index.  The users of this index will be
3389  // primarily DYNALLOC instructions.
3390  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
3391  int FPSI = FI->getFramePointerSaveIndex();
3392
3393  // If the frame pointer save index hasn't been defined yet.
3394  if (!FPSI) {
3395    // Find out what the fix offset of the frame pointer save area.
3396    int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(isPPC64,
3397                                                           isDarwinABI);
3398
3399    // Allocate the frame index for frame pointer save area.
3400    FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset,
3401                                                true, false);
3402    // Save the result.
3403    FI->setFramePointerSaveIndex(FPSI);
3404  }
3405  return DAG.getFrameIndex(FPSI, PtrVT);
3406}
3407
3408SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
3409                                         SelectionDAG &DAG,
3410                                         const PPCSubtarget &Subtarget) {
3411  // Get the inputs.
3412  SDValue Chain = Op.getOperand(0);
3413  SDValue Size  = Op.getOperand(1);
3414  DebugLoc dl = Op.getDebugLoc();
3415
3416  // Get the corect type for pointers.
3417  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3418  // Negate the size.
3419  SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
3420                                  DAG.getConstant(0, PtrVT), Size);
3421  // Construct a node for the frame pointer save index.
3422  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
3423  // Build a DYNALLOC node.
3424  SDValue Ops[3] = { Chain, NegSize, FPSIdx };
3425  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
3426  return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3);
3427}
3428
3429/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
3430/// possible.
3431SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) {
3432  // Not FP? Not a fsel.
3433  if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
3434      !Op.getOperand(2).getValueType().isFloatingPoint())
3435    return Op;
3436
3437  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3438
3439  // Cannot handle SETEQ/SETNE.
3440  if (CC == ISD::SETEQ || CC == ISD::SETNE) return Op;
3441
3442  EVT ResVT = Op.getValueType();
3443  EVT CmpVT = Op.getOperand(0).getValueType();
3444  SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3445  SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
3446  DebugLoc dl = Op.getDebugLoc();
3447
3448  // If the RHS of the comparison is a 0.0, we don't need to do the
3449  // subtraction at all.
3450  if (isFloatingPointZero(RHS))
3451    switch (CC) {
3452    default: break;       // SETUO etc aren't handled by fsel.
3453    case ISD::SETULT:
3454    case ISD::SETLT:
3455      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
3456    case ISD::SETOGE:
3457    case ISD::SETGE:
3458      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
3459        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
3460      return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
3461    case ISD::SETUGT:
3462    case ISD::SETGT:
3463      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
3464    case ISD::SETOLE:
3465    case ISD::SETLE:
3466      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
3467        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
3468      return DAG.getNode(PPCISD::FSEL, dl, ResVT,
3469                         DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
3470    }
3471
3472  SDValue Cmp;
3473  switch (CC) {
3474  default: break;       // SETUO etc aren't handled by fsel.
3475  case ISD::SETULT:
3476  case ISD::SETLT:
3477    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
3478    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3479      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3480      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
3481  case ISD::SETOGE:
3482  case ISD::SETGE:
3483    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
3484    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3485      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3486      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
3487  case ISD::SETUGT:
3488  case ISD::SETGT:
3489    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
3490    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3491      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3492      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
3493  case ISD::SETOLE:
3494  case ISD::SETLE:
3495    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
3496    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3497      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3498      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
3499  }
3500  return Op;
3501}
3502
3503// FIXME: Split this code up when LegalizeDAGTypes lands.
3504SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
3505                                           DebugLoc dl) {
3506  assert(Op.getOperand(0).getValueType().isFloatingPoint());
3507  SDValue Src = Op.getOperand(0);
3508  if (Src.getValueType() == MVT::f32)
3509    Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
3510
3511  SDValue Tmp;
3512  switch (Op.getValueType().getSimpleVT().SimpleTy) {
3513  default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
3514  case MVT::i32:
3515    Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
3516                                                         PPCISD::FCTIDZ,
3517                      dl, MVT::f64, Src);
3518    break;
3519  case MVT::i64:
3520    Tmp = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Src);
3521    break;
3522  }
3523
3524  // Convert the FP value to an int value through memory.
3525  SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64);
3526
3527  // Emit a store to the stack slot.
3528  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, NULL, 0,
3529                               false, false, 0);
3530
3531  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
3532  // add in a bias.
3533  if (Op.getValueType() == MVT::i32)
3534    FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
3535                        DAG.getConstant(4, FIPtr.getValueType()));
3536  return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, NULL, 0,
3537                     false, false, 0);
3538}
3539
3540SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3541  DebugLoc dl = Op.getDebugLoc();
3542  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
3543  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
3544    return SDValue();
3545
3546  if (Op.getOperand(0).getValueType() == MVT::i64) {
3547    SDValue Bits = DAG.getNode(ISD::BIT_CONVERT, dl,
3548                               MVT::f64, Op.getOperand(0));
3549    SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits);
3550    if (Op.getValueType() == MVT::f32)
3551      FP = DAG.getNode(ISD::FP_ROUND, dl,
3552                       MVT::f32, FP, DAG.getIntPtrConstant(0));
3553    return FP;
3554  }
3555
3556  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
3557         "Unhandled SINT_TO_FP type in custom expander!");
3558  // Since we only generate this in 64-bit mode, we can take advantage of
3559  // 64-bit registers.  In particular, sign extend the input value into the
3560  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
3561  // then lfd it and fcfid it.
3562  MachineFunction &MF = DAG.getMachineFunction();
3563  MachineFrameInfo *FrameInfo = MF.getFrameInfo();
3564  int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
3565  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3566  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
3567
3568  SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32,
3569                                Op.getOperand(0));
3570
3571  // STD the extended value into the stack slot.
3572  MachineMemOperand *MMO =
3573    MF.getMachineMemOperand(PseudoSourceValue::getFixedStack(FrameIdx),
3574                            MachineMemOperand::MOStore, 0, 8, 8);
3575  SDValue Ops[] = { DAG.getEntryNode(), Ext64, FIdx };
3576  SDValue Store =
3577    DAG.getMemIntrinsicNode(PPCISD::STD_32, dl, DAG.getVTList(MVT::Other),
3578                            Ops, 4, MVT::i64, MMO);
3579  // Load the value as a double.
3580  SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, NULL, 0, false, false, 0);
3581
3582  // FCFID it and return it.
3583  SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld);
3584  if (Op.getValueType() == MVT::f32)
3585    FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
3586  return FP;
3587}
3588
3589SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
3590  DebugLoc dl = Op.getDebugLoc();
3591  /*
3592   The rounding mode is in bits 30:31 of FPSR, and has the following
3593   settings:
3594     00 Round to nearest
3595     01 Round to 0
3596     10 Round to +inf
3597     11 Round to -inf
3598
3599  FLT_ROUNDS, on the other hand, expects the following:
3600    -1 Undefined
3601     0 Round to 0
3602     1 Round to nearest
3603     2 Round to +inf
3604     3 Round to -inf
3605
3606  To perform the conversion, we do:
3607    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
3608  */
3609
3610  MachineFunction &MF = DAG.getMachineFunction();
3611  EVT VT = Op.getValueType();
3612  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3613  std::vector<EVT> NodeTys;
3614  SDValue MFFSreg, InFlag;
3615
3616  // Save FP Control Word to register
3617  NodeTys.push_back(MVT::f64);    // return register
3618  NodeTys.push_back(MVT::Flag);   // unused in this context
3619  SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
3620
3621  // Save FP register to stack slot
3622  int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
3623  SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
3624  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
3625                               StackSlot, NULL, 0, false, false, 0);
3626
3627  // Load FP Control Word from low 32 bits of stack slot.
3628  SDValue Four = DAG.getConstant(4, PtrVT);
3629  SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
3630  SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, NULL, 0,
3631                            false, false, 0);
3632
3633  // Transform as necessary
3634  SDValue CWD1 =
3635    DAG.getNode(ISD::AND, dl, MVT::i32,
3636                CWD, DAG.getConstant(3, MVT::i32));
3637  SDValue CWD2 =
3638    DAG.getNode(ISD::SRL, dl, MVT::i32,
3639                DAG.getNode(ISD::AND, dl, MVT::i32,
3640                            DAG.getNode(ISD::XOR, dl, MVT::i32,
3641                                        CWD, DAG.getConstant(3, MVT::i32)),
3642                            DAG.getConstant(3, MVT::i32)),
3643                DAG.getConstant(1, MVT::i32));
3644
3645  SDValue RetVal =
3646    DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
3647
3648  return DAG.getNode((VT.getSizeInBits() < 16 ?
3649                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
3650}
3651
3652SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) {
3653  EVT VT = Op.getValueType();
3654  unsigned BitWidth = VT.getSizeInBits();
3655  DebugLoc dl = Op.getDebugLoc();
3656  assert(Op.getNumOperands() == 3 &&
3657         VT == Op.getOperand(1).getValueType() &&
3658         "Unexpected SHL!");
3659
3660  // Expand into a bunch of logical ops.  Note that these ops
3661  // depend on the PPC behavior for oversized shift amounts.
3662  SDValue Lo = Op.getOperand(0);
3663  SDValue Hi = Op.getOperand(1);
3664  SDValue Amt = Op.getOperand(2);
3665  EVT AmtVT = Amt.getValueType();
3666
3667  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3668                             DAG.getConstant(BitWidth, AmtVT), Amt);
3669  SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
3670  SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
3671  SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
3672  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3673                             DAG.getConstant(-BitWidth, AmtVT));
3674  SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
3675  SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3676  SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
3677  SDValue OutOps[] = { OutLo, OutHi };
3678  return DAG.getMergeValues(OutOps, 2, dl);
3679}
3680
3681SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) {
3682  EVT VT = Op.getValueType();
3683  DebugLoc dl = Op.getDebugLoc();
3684  unsigned BitWidth = VT.getSizeInBits();
3685  assert(Op.getNumOperands() == 3 &&
3686         VT == Op.getOperand(1).getValueType() &&
3687         "Unexpected SRL!");
3688
3689  // Expand into a bunch of logical ops.  Note that these ops
3690  // depend on the PPC behavior for oversized shift amounts.
3691  SDValue Lo = Op.getOperand(0);
3692  SDValue Hi = Op.getOperand(1);
3693  SDValue Amt = Op.getOperand(2);
3694  EVT AmtVT = Amt.getValueType();
3695
3696  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3697                             DAG.getConstant(BitWidth, AmtVT), Amt);
3698  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3699  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3700  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3701  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3702                             DAG.getConstant(-BitWidth, AmtVT));
3703  SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
3704  SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3705  SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
3706  SDValue OutOps[] = { OutLo, OutHi };
3707  return DAG.getMergeValues(OutOps, 2, dl);
3708}
3709
3710SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) {
3711  DebugLoc dl = Op.getDebugLoc();
3712  EVT VT = Op.getValueType();
3713  unsigned BitWidth = VT.getSizeInBits();
3714  assert(Op.getNumOperands() == 3 &&
3715         VT == Op.getOperand(1).getValueType() &&
3716         "Unexpected SRA!");
3717
3718  // Expand into a bunch of logical ops, followed by a select_cc.
3719  SDValue Lo = Op.getOperand(0);
3720  SDValue Hi = Op.getOperand(1);
3721  SDValue Amt = Op.getOperand(2);
3722  EVT AmtVT = Amt.getValueType();
3723
3724  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3725                             DAG.getConstant(BitWidth, AmtVT), Amt);
3726  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3727  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3728  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3729  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3730                             DAG.getConstant(-BitWidth, AmtVT));
3731  SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
3732  SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
3733  SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
3734                                  Tmp4, Tmp6, ISD::SETLE);
3735  SDValue OutOps[] = { OutLo, OutHi };
3736  return DAG.getMergeValues(OutOps, 2, dl);
3737}
3738
3739//===----------------------------------------------------------------------===//
3740// Vector related lowering.
3741//
3742
3743/// BuildSplatI - Build a canonical splati of Val with an element size of
3744/// SplatSize.  Cast the result to VT.
3745static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
3746                             SelectionDAG &DAG, DebugLoc dl) {
3747  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
3748
3749  static const EVT VTys[] = { // canonical VT to use for each size.
3750    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
3751  };
3752
3753  EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
3754
3755  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
3756  if (Val == -1)
3757    SplatSize = 1;
3758
3759  EVT CanonicalVT = VTys[SplatSize-1];
3760
3761  // Build a canonical splat for this value.
3762  SDValue Elt = DAG.getConstant(Val, MVT::i32);
3763  SmallVector<SDValue, 8> Ops;
3764  Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
3765  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT,
3766                              &Ops[0], Ops.size());
3767  return DAG.getNode(ISD::BIT_CONVERT, dl, ReqVT, Res);
3768}
3769
3770/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
3771/// specified intrinsic ID.
3772static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
3773                                SelectionDAG &DAG, DebugLoc dl,
3774                                EVT DestVT = MVT::Other) {
3775  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
3776  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3777                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
3778}
3779
3780/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
3781/// specified intrinsic ID.
3782static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
3783                                SDValue Op2, SelectionDAG &DAG,
3784                                DebugLoc dl, EVT DestVT = MVT::Other) {
3785  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
3786  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3787                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
3788}
3789
3790
3791/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
3792/// amount.  The result has the specified value type.
3793static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
3794                             EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3795  // Force LHS/RHS to be the right type.
3796  LHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, LHS);
3797  RHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, RHS);
3798
3799  int Ops[16];
3800  for (unsigned i = 0; i != 16; ++i)
3801    Ops[i] = i + Amt;
3802  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
3803  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, T);
3804}
3805
3806// If this is a case we can't handle, return null and let the default
3807// expansion code take care of it.  If we CAN select this case, and if it
3808// selects to a single instruction, return Op.  Otherwise, if we can codegen
3809// this case more efficiently than a constant pool load, lower it to the
3810// sequence of ops that should be used.
3811SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
3812  DebugLoc dl = Op.getDebugLoc();
3813  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
3814  assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
3815
3816  // Check if this is a splat of a constant value.
3817  APInt APSplatBits, APSplatUndef;
3818  unsigned SplatBitSize;
3819  bool HasAnyUndefs;
3820  if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
3821                             HasAnyUndefs, 0, true) || SplatBitSize > 32)
3822    return SDValue();
3823
3824  unsigned SplatBits = APSplatBits.getZExtValue();
3825  unsigned SplatUndef = APSplatUndef.getZExtValue();
3826  unsigned SplatSize = SplatBitSize / 8;
3827
3828  // First, handle single instruction cases.
3829
3830  // All zeros?
3831  if (SplatBits == 0) {
3832    // Canonicalize all zero vectors to be v4i32.
3833    if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
3834      SDValue Z = DAG.getConstant(0, MVT::i32);
3835      Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
3836      Op = DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Z);
3837    }
3838    return Op;
3839  }
3840
3841  // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
3842  int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
3843                    (32-SplatBitSize));
3844  if (SextVal >= -16 && SextVal <= 15)
3845    return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
3846
3847
3848  // Two instruction sequences.
3849
3850  // If this value is in the range [-32,30] and is even, use:
3851  //    tmp = VSPLTI[bhw], result = add tmp, tmp
3852  if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
3853    SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG, dl);
3854    Res = DAG.getNode(ISD::ADD, dl, Res.getValueType(), Res, Res);
3855    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3856  }
3857
3858  // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
3859  // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
3860  // for fneg/fabs.
3861  if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
3862    // Make -1 and vspltisw -1:
3863    SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
3864
3865    // Make the VSLW intrinsic, computing 0x8000_0000.
3866    SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
3867                                   OnesV, DAG, dl);
3868
3869    // xor by OnesV to invert it.
3870    Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
3871    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3872  }
3873
3874  // Check to see if this is a wide variety of vsplti*, binop self cases.
3875  static const signed char SplatCsts[] = {
3876    -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
3877    -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
3878  };
3879
3880  for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
3881    // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
3882    // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
3883    int i = SplatCsts[idx];
3884
3885    // Figure out what shift amount will be used by altivec if shifted by i in
3886    // this splat size.
3887    unsigned TypeShiftAmt = i & (SplatBitSize-1);
3888
3889    // vsplti + shl self.
3890    if (SextVal == (i << (int)TypeShiftAmt)) {
3891      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3892      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3893        Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
3894        Intrinsic::ppc_altivec_vslw
3895      };
3896      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3897      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3898    }
3899
3900    // vsplti + srl self.
3901    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3902      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3903      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3904        Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
3905        Intrinsic::ppc_altivec_vsrw
3906      };
3907      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3908      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3909    }
3910
3911    // vsplti + sra self.
3912    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3913      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3914      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3915        Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
3916        Intrinsic::ppc_altivec_vsraw
3917      };
3918      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3919      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3920    }
3921
3922    // vsplti + rol self.
3923    if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
3924                         ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
3925      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3926      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3927        Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
3928        Intrinsic::ppc_altivec_vrlw
3929      };
3930      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3931      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3932    }
3933
3934    // t = vsplti c, result = vsldoi t, t, 1
3935    if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
3936      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3937      return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
3938    }
3939    // t = vsplti c, result = vsldoi t, t, 2
3940    if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
3941      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3942      return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
3943    }
3944    // t = vsplti c, result = vsldoi t, t, 3
3945    if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
3946      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3947      return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
3948    }
3949  }
3950
3951  // Three instruction sequences.
3952
3953  // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
3954  if (SextVal >= 0 && SextVal <= 31) {
3955    SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG, dl);
3956    SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
3957    LHS = DAG.getNode(ISD::SUB, dl, LHS.getValueType(), LHS, RHS);
3958    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), LHS);
3959  }
3960  // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
3961  if (SextVal >= -31 && SextVal <= 0) {
3962    SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG, dl);
3963    SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
3964    LHS = DAG.getNode(ISD::ADD, dl, LHS.getValueType(), LHS, RHS);
3965    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), LHS);
3966  }
3967
3968  return SDValue();
3969}
3970
3971/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
3972/// the specified operations to build the shuffle.
3973static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
3974                                      SDValue RHS, SelectionDAG &DAG,
3975                                      DebugLoc dl) {
3976  unsigned OpNum = (PFEntry >> 26) & 0x0F;
3977  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
3978  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
3979
3980  enum {
3981    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
3982    OP_VMRGHW,
3983    OP_VMRGLW,
3984    OP_VSPLTISW0,
3985    OP_VSPLTISW1,
3986    OP_VSPLTISW2,
3987    OP_VSPLTISW3,
3988    OP_VSLDOI4,
3989    OP_VSLDOI8,
3990    OP_VSLDOI12
3991  };
3992
3993  if (OpNum == OP_COPY) {
3994    if (LHSID == (1*9+2)*9+3) return LHS;
3995    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
3996    return RHS;
3997  }
3998
3999  SDValue OpLHS, OpRHS;
4000  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
4001  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
4002
4003  int ShufIdxs[16];
4004  switch (OpNum) {
4005  default: llvm_unreachable("Unknown i32 permute!");
4006  case OP_VMRGHW:
4007    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
4008    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
4009    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
4010    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
4011    break;
4012  case OP_VMRGLW:
4013    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
4014    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
4015    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
4016    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
4017    break;
4018  case OP_VSPLTISW0:
4019    for (unsigned i = 0; i != 16; ++i)
4020      ShufIdxs[i] = (i&3)+0;
4021    break;
4022  case OP_VSPLTISW1:
4023    for (unsigned i = 0; i != 16; ++i)
4024      ShufIdxs[i] = (i&3)+4;
4025    break;
4026  case OP_VSPLTISW2:
4027    for (unsigned i = 0; i != 16; ++i)
4028      ShufIdxs[i] = (i&3)+8;
4029    break;
4030  case OP_VSPLTISW3:
4031    for (unsigned i = 0; i != 16; ++i)
4032      ShufIdxs[i] = (i&3)+12;
4033    break;
4034  case OP_VSLDOI4:
4035    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
4036  case OP_VSLDOI8:
4037    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
4038  case OP_VSLDOI12:
4039    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
4040  }
4041  EVT VT = OpLHS.getValueType();
4042  OpLHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OpLHS);
4043  OpRHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OpRHS);
4044  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
4045  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, T);
4046}
4047
4048/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
4049/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
4050/// return the code it can be lowered into.  Worst case, it can always be
4051/// lowered into a vperm.
4052SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
4053                                               SelectionDAG &DAG) {
4054  DebugLoc dl = Op.getDebugLoc();
4055  SDValue V1 = Op.getOperand(0);
4056  SDValue V2 = Op.getOperand(1);
4057  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4058  EVT VT = Op.getValueType();
4059
4060  // Cases that are handled by instructions that take permute immediates
4061  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
4062  // selected by the instruction selector.
4063  if (V2.getOpcode() == ISD::UNDEF) {
4064    if (PPC::isSplatShuffleMask(SVOp, 1) ||
4065        PPC::isSplatShuffleMask(SVOp, 2) ||
4066        PPC::isSplatShuffleMask(SVOp, 4) ||
4067        PPC::isVPKUWUMShuffleMask(SVOp, true) ||
4068        PPC::isVPKUHUMShuffleMask(SVOp, true) ||
4069        PPC::isVSLDOIShuffleMask(SVOp, true) != -1 ||
4070        PPC::isVMRGLShuffleMask(SVOp, 1, true) ||
4071        PPC::isVMRGLShuffleMask(SVOp, 2, true) ||
4072        PPC::isVMRGLShuffleMask(SVOp, 4, true) ||
4073        PPC::isVMRGHShuffleMask(SVOp, 1, true) ||
4074        PPC::isVMRGHShuffleMask(SVOp, 2, true) ||
4075        PPC::isVMRGHShuffleMask(SVOp, 4, true)) {
4076      return Op;
4077    }
4078  }
4079
4080  // Altivec has a variety of "shuffle immediates" that take two vector inputs
4081  // and produce a fixed permutation.  If any of these match, do not lower to
4082  // VPERM.
4083  if (PPC::isVPKUWUMShuffleMask(SVOp, false) ||
4084      PPC::isVPKUHUMShuffleMask(SVOp, false) ||
4085      PPC::isVSLDOIShuffleMask(SVOp, false) != -1 ||
4086      PPC::isVMRGLShuffleMask(SVOp, 1, false) ||
4087      PPC::isVMRGLShuffleMask(SVOp, 2, false) ||
4088      PPC::isVMRGLShuffleMask(SVOp, 4, false) ||
4089      PPC::isVMRGHShuffleMask(SVOp, 1, false) ||
4090      PPC::isVMRGHShuffleMask(SVOp, 2, false) ||
4091      PPC::isVMRGHShuffleMask(SVOp, 4, false))
4092    return Op;
4093
4094  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
4095  // perfect shuffle table to emit an optimal matching sequence.
4096  SmallVector<int, 16> PermMask;
4097  SVOp->getMask(PermMask);
4098
4099  unsigned PFIndexes[4];
4100  bool isFourElementShuffle = true;
4101  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
4102    unsigned EltNo = 8;   // Start out undef.
4103    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
4104      if (PermMask[i*4+j] < 0)
4105        continue;   // Undef, ignore it.
4106
4107      unsigned ByteSource = PermMask[i*4+j];
4108      if ((ByteSource & 3) != j) {
4109        isFourElementShuffle = false;
4110        break;
4111      }
4112
4113      if (EltNo == 8) {
4114        EltNo = ByteSource/4;
4115      } else if (EltNo != ByteSource/4) {
4116        isFourElementShuffle = false;
4117        break;
4118      }
4119    }
4120    PFIndexes[i] = EltNo;
4121  }
4122
4123  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
4124  // perfect shuffle vector to determine if it is cost effective to do this as
4125  // discrete instructions, or whether we should use a vperm.
4126  if (isFourElementShuffle) {
4127    // Compute the index in the perfect shuffle table.
4128    unsigned PFTableIndex =
4129      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4130
4131    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4132    unsigned Cost  = (PFEntry >> 30);
4133
4134    // Determining when to avoid vperm is tricky.  Many things affect the cost
4135    // of vperm, particularly how many times the perm mask needs to be computed.
4136    // For example, if the perm mask can be hoisted out of a loop or is already
4137    // used (perhaps because there are multiple permutes with the same shuffle
4138    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
4139    // the loop requires an extra register.
4140    //
4141    // As a compromise, we only emit discrete instructions if the shuffle can be
4142    // generated in 3 or fewer operations.  When we have loop information
4143    // available, if this block is within a loop, we should avoid using vperm
4144    // for 3-operation perms and use a constant pool load instead.
4145    if (Cost < 3)
4146      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
4147  }
4148
4149  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
4150  // vector that will get spilled to the constant pool.
4151  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
4152
4153  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
4154  // that it is in input element units, not in bytes.  Convert now.
4155  EVT EltVT = V1.getValueType().getVectorElementType();
4156  unsigned BytesPerElement = EltVT.getSizeInBits()/8;
4157
4158  SmallVector<SDValue, 16> ResultMask;
4159  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
4160    unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
4161
4162    for (unsigned j = 0; j != BytesPerElement; ++j)
4163      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
4164                                           MVT::i32));
4165  }
4166
4167  SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
4168                                    &ResultMask[0], ResultMask.size());
4169  return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask);
4170}
4171
4172/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
4173/// altivec comparison.  If it is, return true and fill in Opc/isDot with
4174/// information about the intrinsic.
4175static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
4176                                  bool &isDot) {
4177  unsigned IntrinsicID =
4178    cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
4179  CompareOpc = -1;
4180  isDot = false;
4181  switch (IntrinsicID) {
4182  default: return false;
4183    // Comparison predicates.
4184  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
4185  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
4186  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
4187  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
4188  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
4189  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
4190  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
4191  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
4192  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
4193  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
4194  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
4195  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
4196  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
4197
4198    // Normal Comparisons.
4199  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
4200  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
4201  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
4202  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
4203  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
4204  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
4205  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
4206  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
4207  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
4208  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
4209  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
4210  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
4211  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
4212  }
4213  return true;
4214}
4215
4216/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
4217/// lower, do it, otherwise return null.
4218SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4219                                                   SelectionDAG &DAG) {
4220  // If this is a lowered altivec predicate compare, CompareOpc is set to the
4221  // opcode number of the comparison.
4222  DebugLoc dl = Op.getDebugLoc();
4223  int CompareOpc;
4224  bool isDot;
4225  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
4226    return SDValue();    // Don't custom lower most intrinsics.
4227
4228  // If this is a non-dot comparison, make the VCMP node and we are done.
4229  if (!isDot) {
4230    SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
4231                              Op.getOperand(1), Op.getOperand(2),
4232                              DAG.getConstant(CompareOpc, MVT::i32));
4233    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Tmp);
4234  }
4235
4236  // Create the PPCISD altivec 'dot' comparison node.
4237  SDValue Ops[] = {
4238    Op.getOperand(2),  // LHS
4239    Op.getOperand(3),  // RHS
4240    DAG.getConstant(CompareOpc, MVT::i32)
4241  };
4242  std::vector<EVT> VTs;
4243  VTs.push_back(Op.getOperand(2).getValueType());
4244  VTs.push_back(MVT::Flag);
4245  SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
4246
4247  // Now that we have the comparison, emit a copy from the CR to a GPR.
4248  // This is flagged to the above dot comparison.
4249  SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32,
4250                                DAG.getRegister(PPC::CR6, MVT::i32),
4251                                CompNode.getValue(1));
4252
4253  // Unpack the result based on how the target uses it.
4254  unsigned BitNo;   // Bit # of CR6.
4255  bool InvertBit;   // Invert result?
4256  switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
4257  default:  // Can't happen, don't crash on invalid number though.
4258  case 0:   // Return the value of the EQ bit of CR6.
4259    BitNo = 0; InvertBit = false;
4260    break;
4261  case 1:   // Return the inverted value of the EQ bit of CR6.
4262    BitNo = 0; InvertBit = true;
4263    break;
4264  case 2:   // Return the value of the LT bit of CR6.
4265    BitNo = 2; InvertBit = false;
4266    break;
4267  case 3:   // Return the inverted value of the LT bit of CR6.
4268    BitNo = 2; InvertBit = true;
4269    break;
4270  }
4271
4272  // Shift the bit into the low position.
4273  Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
4274                      DAG.getConstant(8-(3-BitNo), MVT::i32));
4275  // Isolate the bit.
4276  Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
4277                      DAG.getConstant(1, MVT::i32));
4278
4279  // If we are supposed to, toggle the bit.
4280  if (InvertBit)
4281    Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
4282                        DAG.getConstant(1, MVT::i32));
4283  return Flags;
4284}
4285
4286SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
4287                                                   SelectionDAG &DAG) {
4288  DebugLoc dl = Op.getDebugLoc();
4289  // Create a stack slot that is 16-byte aligned.
4290  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
4291  int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
4292  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4293  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
4294
4295  // Store the input value into Value#0 of the stack slot.
4296  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
4297                               Op.getOperand(0), FIdx, NULL, 0,
4298                               false, false, 0);
4299  // Load it out.
4300  return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, NULL, 0,
4301                     false, false, 0);
4302}
4303
4304SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) {
4305  DebugLoc dl = Op.getDebugLoc();
4306  if (Op.getValueType() == MVT::v4i32) {
4307    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4308
4309    SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
4310    SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
4311
4312    SDValue RHSSwap =   // = vrlw RHS, 16
4313      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
4314
4315    // Shrinkify inputs to v8i16.
4316    LHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, LHS);
4317    RHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, RHS);
4318    RHSSwap = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, RHSSwap);
4319
4320    // Low parts multiplied together, generating 32-bit results (we ignore the
4321    // top parts).
4322    SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
4323                                        LHS, RHS, DAG, dl, MVT::v4i32);
4324
4325    SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
4326                                      LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
4327    // Shift the high parts up 16 bits.
4328    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
4329                              Neg16, DAG, dl);
4330    return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
4331  } else if (Op.getValueType() == MVT::v8i16) {
4332    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4333
4334    SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
4335
4336    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
4337                            LHS, RHS, Zero, DAG, dl);
4338  } else if (Op.getValueType() == MVT::v16i8) {
4339    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4340
4341    // Multiply the even 8-bit parts, producing 16-bit sums.
4342    SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
4343                                           LHS, RHS, DAG, dl, MVT::v8i16);
4344    EvenParts = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, EvenParts);
4345
4346    // Multiply the odd 8-bit parts, producing 16-bit sums.
4347    SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
4348                                          LHS, RHS, DAG, dl, MVT::v8i16);
4349    OddParts = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OddParts);
4350
4351    // Merge the results together.
4352    int Ops[16];
4353    for (unsigned i = 0; i != 8; ++i) {
4354      Ops[i*2  ] = 2*i+1;
4355      Ops[i*2+1] = 2*i+1+16;
4356    }
4357    return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
4358  } else {
4359    llvm_unreachable("Unknown mul to lower!");
4360  }
4361}
4362
4363/// LowerOperation - Provide custom lowering hooks for some operations.
4364///
4365SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
4366  switch (Op.getOpcode()) {
4367  default: llvm_unreachable("Wasn't expecting to be able to lower this!");
4368  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
4369  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
4370  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
4371  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
4372  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
4373  case ISD::SETCC:              return LowerSETCC(Op, DAG);
4374  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
4375  case ISD::VASTART:
4376    return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
4377                        VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
4378
4379  case ISD::VAARG:
4380    return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
4381                      VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
4382
4383  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
4384  case ISD::DYNAMIC_STACKALLOC:
4385    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
4386
4387  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
4388  case ISD::FP_TO_UINT:
4389  case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
4390                                                       Op.getDebugLoc());
4391  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
4392  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
4393
4394  // Lower 64-bit shifts.
4395  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
4396  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
4397  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
4398
4399  // Vector-related lowering.
4400  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
4401  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
4402  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4403  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
4404  case ISD::MUL:                return LowerMUL(Op, DAG);
4405
4406  // Frame & Return address.
4407  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
4408  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
4409  }
4410  return SDValue();
4411}
4412
4413void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
4414                                           SmallVectorImpl<SDValue>&Results,
4415                                           SelectionDAG &DAG) {
4416  DebugLoc dl = N->getDebugLoc();
4417  switch (N->getOpcode()) {
4418  default:
4419    assert(false && "Do not know how to custom type legalize this operation!");
4420    return;
4421  case ISD::FP_ROUND_INREG: {
4422    assert(N->getValueType(0) == MVT::ppcf128);
4423    assert(N->getOperand(0).getValueType() == MVT::ppcf128);
4424    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
4425                             MVT::f64, N->getOperand(0),
4426                             DAG.getIntPtrConstant(0));
4427    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
4428                             MVT::f64, N->getOperand(0),
4429                             DAG.getIntPtrConstant(1));
4430
4431    // This sequence changes FPSCR to do round-to-zero, adds the two halves
4432    // of the long double, and puts FPSCR back the way it was.  We do not
4433    // actually model FPSCR.
4434    std::vector<EVT> NodeTys;
4435    SDValue Ops[4], Result, MFFSreg, InFlag, FPreg;
4436
4437    NodeTys.push_back(MVT::f64);   // Return register
4438    NodeTys.push_back(MVT::Flag);    // Returns a flag for later insns
4439    Result = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
4440    MFFSreg = Result.getValue(0);
4441    InFlag = Result.getValue(1);
4442
4443    NodeTys.clear();
4444    NodeTys.push_back(MVT::Flag);   // Returns a flag
4445    Ops[0] = DAG.getConstant(31, MVT::i32);
4446    Ops[1] = InFlag;
4447    Result = DAG.getNode(PPCISD::MTFSB1, dl, NodeTys, Ops, 2);
4448    InFlag = Result.getValue(0);
4449
4450    NodeTys.clear();
4451    NodeTys.push_back(MVT::Flag);   // Returns a flag
4452    Ops[0] = DAG.getConstant(30, MVT::i32);
4453    Ops[1] = InFlag;
4454    Result = DAG.getNode(PPCISD::MTFSB0, dl, NodeTys, Ops, 2);
4455    InFlag = Result.getValue(0);
4456
4457    NodeTys.clear();
4458    NodeTys.push_back(MVT::f64);    // result of add
4459    NodeTys.push_back(MVT::Flag);   // Returns a flag
4460    Ops[0] = Lo;
4461    Ops[1] = Hi;
4462    Ops[2] = InFlag;
4463    Result = DAG.getNode(PPCISD::FADDRTZ, dl, NodeTys, Ops, 3);
4464    FPreg = Result.getValue(0);
4465    InFlag = Result.getValue(1);
4466
4467    NodeTys.clear();
4468    NodeTys.push_back(MVT::f64);
4469    Ops[0] = DAG.getConstant(1, MVT::i32);
4470    Ops[1] = MFFSreg;
4471    Ops[2] = FPreg;
4472    Ops[3] = InFlag;
4473    Result = DAG.getNode(PPCISD::MTFSF, dl, NodeTys, Ops, 4);
4474    FPreg = Result.getValue(0);
4475
4476    // We know the low half is about to be thrown away, so just use something
4477    // convenient.
4478    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
4479                                FPreg, FPreg));
4480    return;
4481  }
4482  case ISD::FP_TO_SINT:
4483    Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
4484    return;
4485  }
4486}
4487
4488
4489//===----------------------------------------------------------------------===//
4490//  Other Lowering Code
4491//===----------------------------------------------------------------------===//
4492
4493MachineBasicBlock *
4494PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
4495                                    bool is64bit, unsigned BinOpcode) const {
4496  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4497  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4498
4499  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4500  MachineFunction *F = BB->getParent();
4501  MachineFunction::iterator It = BB;
4502  ++It;
4503
4504  unsigned dest = MI->getOperand(0).getReg();
4505  unsigned ptrA = MI->getOperand(1).getReg();
4506  unsigned ptrB = MI->getOperand(2).getReg();
4507  unsigned incr = MI->getOperand(3).getReg();
4508  DebugLoc dl = MI->getDebugLoc();
4509
4510  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4511  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4512  F->insert(It, loopMBB);
4513  F->insert(It, exitMBB);
4514  exitMBB->transferSuccessors(BB);
4515
4516  MachineRegisterInfo &RegInfo = F->getRegInfo();
4517  unsigned TmpReg = (!BinOpcode) ? incr :
4518    RegInfo.createVirtualRegister(
4519       is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4520                 (const TargetRegisterClass *) &PPC::GPRCRegClass);
4521
4522  //  thisMBB:
4523  //   ...
4524  //   fallthrough --> loopMBB
4525  BB->addSuccessor(loopMBB);
4526
4527  //  loopMBB:
4528  //   l[wd]arx dest, ptr
4529  //   add r0, dest, incr
4530  //   st[wd]cx. r0, ptr
4531  //   bne- loopMBB
4532  //   fallthrough --> exitMBB
4533  BB = loopMBB;
4534  BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4535    .addReg(ptrA).addReg(ptrB);
4536  if (BinOpcode)
4537    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
4538  BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4539    .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
4540  BuildMI(BB, dl, TII->get(PPC::BCC))
4541    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4542  BB->addSuccessor(loopMBB);
4543  BB->addSuccessor(exitMBB);
4544
4545  //  exitMBB:
4546  //   ...
4547  BB = exitMBB;
4548  return BB;
4549}
4550
4551MachineBasicBlock *
4552PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
4553                                            MachineBasicBlock *BB,
4554                                            bool is8bit,    // operation
4555                                            unsigned BinOpcode) const {
4556  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4557  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4558  // In 64 bit mode we have to use 64 bits for addresses, even though the
4559  // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
4560  // registers without caring whether they're 32 or 64, but here we're
4561  // doing actual arithmetic on the addresses.
4562  bool is64bit = PPCSubTarget.isPPC64();
4563
4564  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4565  MachineFunction *F = BB->getParent();
4566  MachineFunction::iterator It = BB;
4567  ++It;
4568
4569  unsigned dest = MI->getOperand(0).getReg();
4570  unsigned ptrA = MI->getOperand(1).getReg();
4571  unsigned ptrB = MI->getOperand(2).getReg();
4572  unsigned incr = MI->getOperand(3).getReg();
4573  DebugLoc dl = MI->getDebugLoc();
4574
4575  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4576  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4577  F->insert(It, loopMBB);
4578  F->insert(It, exitMBB);
4579  exitMBB->transferSuccessors(BB);
4580
4581  MachineRegisterInfo &RegInfo = F->getRegInfo();
4582  const TargetRegisterClass *RC =
4583    is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4584              (const TargetRegisterClass *) &PPC::GPRCRegClass;
4585  unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4586  unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4587  unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4588  unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
4589  unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4590  unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4591  unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4592  unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4593  unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
4594  unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4595  unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4596  unsigned Ptr1Reg;
4597  unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
4598
4599  //  thisMBB:
4600  //   ...
4601  //   fallthrough --> loopMBB
4602  BB->addSuccessor(loopMBB);
4603
4604  // The 4-byte load must be aligned, while a char or short may be
4605  // anywhere in the word.  Hence all this nasty bookkeeping code.
4606  //   add ptr1, ptrA, ptrB [copy if ptrA==0]
4607  //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4608  //   xori shift, shift1, 24 [16]
4609  //   rlwinm ptr, ptr1, 0, 0, 29
4610  //   slw incr2, incr, shift
4611  //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4612  //   slw mask, mask2, shift
4613  //  loopMBB:
4614  //   lwarx tmpDest, ptr
4615  //   add tmp, tmpDest, incr2
4616  //   andc tmp2, tmpDest, mask
4617  //   and tmp3, tmp, mask
4618  //   or tmp4, tmp3, tmp2
4619  //   stwcx. tmp4, ptr
4620  //   bne- loopMBB
4621  //   fallthrough --> exitMBB
4622  //   srw dest, tmpDest, shift
4623
4624  if (ptrA!=PPC::R0) {
4625    Ptr1Reg = RegInfo.createVirtualRegister(RC);
4626    BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4627      .addReg(ptrA).addReg(ptrB);
4628  } else {
4629    Ptr1Reg = ptrB;
4630  }
4631  BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4632      .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4633  BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4634      .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4635  if (is64bit)
4636    BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
4637      .addReg(Ptr1Reg).addImm(0).addImm(61);
4638  else
4639    BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
4640      .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4641  BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
4642      .addReg(incr).addReg(ShiftReg);
4643  if (is8bit)
4644    BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
4645  else {
4646    BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
4647    BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
4648  }
4649  BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
4650      .addReg(Mask2Reg).addReg(ShiftReg);
4651
4652  BB = loopMBB;
4653  BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
4654    .addReg(PPC::R0).addReg(PtrReg);
4655  if (BinOpcode)
4656    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
4657      .addReg(Incr2Reg).addReg(TmpDestReg);
4658  BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
4659    .addReg(TmpDestReg).addReg(MaskReg);
4660  BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
4661    .addReg(TmpReg).addReg(MaskReg);
4662  BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
4663    .addReg(Tmp3Reg).addReg(Tmp2Reg);
4664  BuildMI(BB, dl, TII->get(PPC::STWCX))
4665    .addReg(Tmp4Reg).addReg(PPC::R0).addReg(PtrReg);
4666  BuildMI(BB, dl, TII->get(PPC::BCC))
4667    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4668  BB->addSuccessor(loopMBB);
4669  BB->addSuccessor(exitMBB);
4670
4671  //  exitMBB:
4672  //   ...
4673  BB = exitMBB;
4674  BuildMI(BB, dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg).addReg(ShiftReg);
4675  return BB;
4676}
4677
4678MachineBasicBlock *
4679PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4680                                               MachineBasicBlock *BB,
4681                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
4682  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4683
4684  // To "insert" these instructions we actually have to insert their
4685  // control-flow patterns.
4686  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4687  MachineFunction::iterator It = BB;
4688  ++It;
4689
4690  MachineFunction *F = BB->getParent();
4691
4692  if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
4693      MI->getOpcode() == PPC::SELECT_CC_I8 ||
4694      MI->getOpcode() == PPC::SELECT_CC_F4 ||
4695      MI->getOpcode() == PPC::SELECT_CC_F8 ||
4696      MI->getOpcode() == PPC::SELECT_CC_VRRC) {
4697
4698    // The incoming instruction knows the destination vreg to set, the
4699    // condition code register to branch on, the true/false values to
4700    // select between, and a branch opcode to use.
4701
4702    //  thisMBB:
4703    //  ...
4704    //   TrueVal = ...
4705    //   cmpTY ccX, r1, r2
4706    //   bCC copy1MBB
4707    //   fallthrough --> copy0MBB
4708    MachineBasicBlock *thisMBB = BB;
4709    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4710    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
4711    unsigned SelectPred = MI->getOperand(4).getImm();
4712    DebugLoc dl = MI->getDebugLoc();
4713    BuildMI(BB, dl, TII->get(PPC::BCC))
4714      .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
4715    F->insert(It, copy0MBB);
4716    F->insert(It, sinkMBB);
4717    // Update machine-CFG edges by first adding all successors of the current
4718    // block to the new block which will contain the Phi node for the select.
4719    // Also inform sdisel of the edge changes.
4720    for (MachineBasicBlock::succ_iterator I = BB->succ_begin(),
4721           E = BB->succ_end(); I != E; ++I) {
4722      EM->insert(std::make_pair(*I, sinkMBB));
4723      sinkMBB->addSuccessor(*I);
4724    }
4725    // Next, remove all successors of the current block, and add the true
4726    // and fallthrough blocks as its successors.
4727    while (!BB->succ_empty())
4728      BB->removeSuccessor(BB->succ_begin());
4729    // Next, add the true and fallthrough blocks as its successors.
4730    BB->addSuccessor(copy0MBB);
4731    BB->addSuccessor(sinkMBB);
4732
4733    //  copy0MBB:
4734    //   %FalseValue = ...
4735    //   # fallthrough to sinkMBB
4736    BB = copy0MBB;
4737
4738    // Update machine-CFG edges
4739    BB->addSuccessor(sinkMBB);
4740
4741    //  sinkMBB:
4742    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4743    //  ...
4744    BB = sinkMBB;
4745    BuildMI(BB, dl, TII->get(PPC::PHI), MI->getOperand(0).getReg())
4746      .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
4747      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4748  }
4749  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
4750    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
4751  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
4752    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
4753  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
4754    BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
4755  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
4756    BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
4757
4758  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
4759    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
4760  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
4761    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
4762  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
4763    BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
4764  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
4765    BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
4766
4767  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
4768    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
4769  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
4770    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
4771  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
4772    BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
4773  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
4774    BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
4775
4776  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
4777    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
4778  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
4779    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
4780  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
4781    BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
4782  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
4783    BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
4784
4785  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
4786    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
4787  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
4788    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
4789  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
4790    BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
4791  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
4792    BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
4793
4794  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
4795    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
4796  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
4797    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
4798  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
4799    BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
4800  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
4801    BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
4802
4803  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
4804    BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
4805  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
4806    BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
4807  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
4808    BB = EmitAtomicBinary(MI, BB, false, 0);
4809  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
4810    BB = EmitAtomicBinary(MI, BB, true, 0);
4811
4812  else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
4813           MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
4814    bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
4815
4816    unsigned dest   = MI->getOperand(0).getReg();
4817    unsigned ptrA   = MI->getOperand(1).getReg();
4818    unsigned ptrB   = MI->getOperand(2).getReg();
4819    unsigned oldval = MI->getOperand(3).getReg();
4820    unsigned newval = MI->getOperand(4).getReg();
4821    DebugLoc dl     = MI->getDebugLoc();
4822
4823    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4824    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4825    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4826    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4827    F->insert(It, loop1MBB);
4828    F->insert(It, loop2MBB);
4829    F->insert(It, midMBB);
4830    F->insert(It, exitMBB);
4831    exitMBB->transferSuccessors(BB);
4832
4833    //  thisMBB:
4834    //   ...
4835    //   fallthrough --> loopMBB
4836    BB->addSuccessor(loop1MBB);
4837
4838    // loop1MBB:
4839    //   l[wd]arx dest, ptr
4840    //   cmp[wd] dest, oldval
4841    //   bne- midMBB
4842    // loop2MBB:
4843    //   st[wd]cx. newval, ptr
4844    //   bne- loopMBB
4845    //   b exitBB
4846    // midMBB:
4847    //   st[wd]cx. dest, ptr
4848    // exitBB:
4849    BB = loop1MBB;
4850    BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4851      .addReg(ptrA).addReg(ptrB);
4852    BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
4853      .addReg(oldval).addReg(dest);
4854    BuildMI(BB, dl, TII->get(PPC::BCC))
4855      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
4856    BB->addSuccessor(loop2MBB);
4857    BB->addSuccessor(midMBB);
4858
4859    BB = loop2MBB;
4860    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4861      .addReg(newval).addReg(ptrA).addReg(ptrB);
4862    BuildMI(BB, dl, TII->get(PPC::BCC))
4863      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
4864    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
4865    BB->addSuccessor(loop1MBB);
4866    BB->addSuccessor(exitMBB);
4867
4868    BB = midMBB;
4869    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4870      .addReg(dest).addReg(ptrA).addReg(ptrB);
4871    BB->addSuccessor(exitMBB);
4872
4873    //  exitMBB:
4874    //   ...
4875    BB = exitMBB;
4876  } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
4877             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
4878    // We must use 64-bit registers for addresses when targeting 64-bit,
4879    // since we're actually doing arithmetic on them.  Other registers
4880    // can be 32-bit.
4881    bool is64bit = PPCSubTarget.isPPC64();
4882    bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
4883
4884    unsigned dest   = MI->getOperand(0).getReg();
4885    unsigned ptrA   = MI->getOperand(1).getReg();
4886    unsigned ptrB   = MI->getOperand(2).getReg();
4887    unsigned oldval = MI->getOperand(3).getReg();
4888    unsigned newval = MI->getOperand(4).getReg();
4889    DebugLoc dl     = MI->getDebugLoc();
4890
4891    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4892    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4893    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4894    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4895    F->insert(It, loop1MBB);
4896    F->insert(It, loop2MBB);
4897    F->insert(It, midMBB);
4898    F->insert(It, exitMBB);
4899    exitMBB->transferSuccessors(BB);
4900
4901    MachineRegisterInfo &RegInfo = F->getRegInfo();
4902    const TargetRegisterClass *RC =
4903      is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4904                (const TargetRegisterClass *) &PPC::GPRCRegClass;
4905    unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4906    unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4907    unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4908    unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
4909    unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
4910    unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
4911    unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
4912    unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4913    unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4914    unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4915    unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4916    unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4917    unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4918    unsigned Ptr1Reg;
4919    unsigned TmpReg = RegInfo.createVirtualRegister(RC);
4920    //  thisMBB:
4921    //   ...
4922    //   fallthrough --> loopMBB
4923    BB->addSuccessor(loop1MBB);
4924
4925    // The 4-byte load must be aligned, while a char or short may be
4926    // anywhere in the word.  Hence all this nasty bookkeeping code.
4927    //   add ptr1, ptrA, ptrB [copy if ptrA==0]
4928    //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4929    //   xori shift, shift1, 24 [16]
4930    //   rlwinm ptr, ptr1, 0, 0, 29
4931    //   slw newval2, newval, shift
4932    //   slw oldval2, oldval,shift
4933    //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4934    //   slw mask, mask2, shift
4935    //   and newval3, newval2, mask
4936    //   and oldval3, oldval2, mask
4937    // loop1MBB:
4938    //   lwarx tmpDest, ptr
4939    //   and tmp, tmpDest, mask
4940    //   cmpw tmp, oldval3
4941    //   bne- midMBB
4942    // loop2MBB:
4943    //   andc tmp2, tmpDest, mask
4944    //   or tmp4, tmp2, newval3
4945    //   stwcx. tmp4, ptr
4946    //   bne- loop1MBB
4947    //   b exitBB
4948    // midMBB:
4949    //   stwcx. tmpDest, ptr
4950    // exitBB:
4951    //   srw dest, tmpDest, shift
4952    if (ptrA!=PPC::R0) {
4953      Ptr1Reg = RegInfo.createVirtualRegister(RC);
4954      BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4955        .addReg(ptrA).addReg(ptrB);
4956    } else {
4957      Ptr1Reg = ptrB;
4958    }
4959    BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4960        .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4961    BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4962        .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4963    if (is64bit)
4964      BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
4965        .addReg(Ptr1Reg).addImm(0).addImm(61);
4966    else
4967      BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
4968        .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4969    BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
4970        .addReg(newval).addReg(ShiftReg);
4971    BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
4972        .addReg(oldval).addReg(ShiftReg);
4973    if (is8bit)
4974      BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
4975    else {
4976      BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
4977      BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
4978        .addReg(Mask3Reg).addImm(65535);
4979    }
4980    BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
4981        .addReg(Mask2Reg).addReg(ShiftReg);
4982    BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
4983        .addReg(NewVal2Reg).addReg(MaskReg);
4984    BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
4985        .addReg(OldVal2Reg).addReg(MaskReg);
4986
4987    BB = loop1MBB;
4988    BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
4989        .addReg(PPC::R0).addReg(PtrReg);
4990    BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
4991        .addReg(TmpDestReg).addReg(MaskReg);
4992    BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
4993        .addReg(TmpReg).addReg(OldVal3Reg);
4994    BuildMI(BB, dl, TII->get(PPC::BCC))
4995        .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
4996    BB->addSuccessor(loop2MBB);
4997    BB->addSuccessor(midMBB);
4998
4999    BB = loop2MBB;
5000    BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
5001        .addReg(TmpDestReg).addReg(MaskReg);
5002    BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
5003        .addReg(Tmp2Reg).addReg(NewVal3Reg);
5004    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
5005        .addReg(PPC::R0).addReg(PtrReg);
5006    BuildMI(BB, dl, TII->get(PPC::BCC))
5007      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
5008    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
5009    BB->addSuccessor(loop1MBB);
5010    BB->addSuccessor(exitMBB);
5011
5012    BB = midMBB;
5013    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
5014      .addReg(PPC::R0).addReg(PtrReg);
5015    BB->addSuccessor(exitMBB);
5016
5017    //  exitMBB:
5018    //   ...
5019    BB = exitMBB;
5020    BuildMI(BB, dl, TII->get(PPC::SRW),dest).addReg(TmpReg).addReg(ShiftReg);
5021  } else {
5022    llvm_unreachable("Unexpected instr type to insert");
5023  }
5024
5025  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
5026  return BB;
5027}
5028
5029//===----------------------------------------------------------------------===//
5030// Target Optimization Hooks
5031//===----------------------------------------------------------------------===//
5032
5033SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
5034                                             DAGCombinerInfo &DCI) const {
5035  TargetMachine &TM = getTargetMachine();
5036  SelectionDAG &DAG = DCI.DAG;
5037  DebugLoc dl = N->getDebugLoc();
5038  switch (N->getOpcode()) {
5039  default: break;
5040  case PPCISD::SHL:
5041    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5042      if (C->getZExtValue() == 0)   // 0 << V -> 0.
5043        return N->getOperand(0);
5044    }
5045    break;
5046  case PPCISD::SRL:
5047    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5048      if (C->getZExtValue() == 0)   // 0 >>u V -> 0.
5049        return N->getOperand(0);
5050    }
5051    break;
5052  case PPCISD::SRA:
5053    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5054      if (C->getZExtValue() == 0 ||   //  0 >>s V -> 0.
5055          C->isAllOnesValue())    // -1 >>s V -> -1.
5056        return N->getOperand(0);
5057    }
5058    break;
5059
5060  case ISD::SINT_TO_FP:
5061    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
5062      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
5063        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
5064        // We allow the src/dst to be either f32/f64, but the intermediate
5065        // type must be i64.
5066        if (N->getOperand(0).getValueType() == MVT::i64 &&
5067            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
5068          SDValue Val = N->getOperand(0).getOperand(0);
5069          if (Val.getValueType() == MVT::f32) {
5070            Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
5071            DCI.AddToWorklist(Val.getNode());
5072          }
5073
5074          Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
5075          DCI.AddToWorklist(Val.getNode());
5076          Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
5077          DCI.AddToWorklist(Val.getNode());
5078          if (N->getValueType(0) == MVT::f32) {
5079            Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
5080                              DAG.getIntPtrConstant(0));
5081            DCI.AddToWorklist(Val.getNode());
5082          }
5083          return Val;
5084        } else if (N->getOperand(0).getValueType() == MVT::i32) {
5085          // If the intermediate type is i32, we can avoid the load/store here
5086          // too.
5087        }
5088      }
5089    }
5090    break;
5091  case ISD::STORE:
5092    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
5093    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
5094        !cast<StoreSDNode>(N)->isTruncatingStore() &&
5095        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
5096        N->getOperand(1).getValueType() == MVT::i32 &&
5097        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
5098      SDValue Val = N->getOperand(1).getOperand(0);
5099      if (Val.getValueType() == MVT::f32) {
5100        Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
5101        DCI.AddToWorklist(Val.getNode());
5102      }
5103      Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
5104      DCI.AddToWorklist(Val.getNode());
5105
5106      Val = DAG.getNode(PPCISD::STFIWX, dl, MVT::Other, N->getOperand(0), Val,
5107                        N->getOperand(2), N->getOperand(3));
5108      DCI.AddToWorklist(Val.getNode());
5109      return Val;
5110    }
5111
5112    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
5113    if (cast<StoreSDNode>(N)->isUnindexed() &&
5114        N->getOperand(1).getOpcode() == ISD::BSWAP &&
5115        N->getOperand(1).getNode()->hasOneUse() &&
5116        (N->getOperand(1).getValueType() == MVT::i32 ||
5117         N->getOperand(1).getValueType() == MVT::i16)) {
5118      SDValue BSwapOp = N->getOperand(1).getOperand(0);
5119      // Do an any-extend to 32-bits if this is a half-word input.
5120      if (BSwapOp.getValueType() == MVT::i16)
5121        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
5122
5123      SDValue Ops[] = {
5124        N->getOperand(0), BSwapOp, N->getOperand(2),
5125        DAG.getValueType(N->getOperand(1).getValueType())
5126      };
5127      return
5128        DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
5129                                Ops, array_lengthof(Ops),
5130                                cast<StoreSDNode>(N)->getMemoryVT(),
5131                                cast<StoreSDNode>(N)->getMemOperand());
5132    }
5133    break;
5134  case ISD::BSWAP:
5135    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
5136    if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
5137        N->getOperand(0).hasOneUse() &&
5138        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
5139      SDValue Load = N->getOperand(0);
5140      LoadSDNode *LD = cast<LoadSDNode>(Load);
5141      // Create the byte-swapping load.
5142      SDValue Ops[] = {
5143        LD->getChain(),    // Chain
5144        LD->getBasePtr(),  // Ptr
5145        DAG.getValueType(N->getValueType(0)) // VT
5146      };
5147      SDValue BSLoad =
5148        DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
5149                                DAG.getVTList(MVT::i32, MVT::Other), Ops, 3,
5150                                LD->getMemoryVT(), LD->getMemOperand());
5151
5152      // If this is an i16 load, insert the truncate.
5153      SDValue ResVal = BSLoad;
5154      if (N->getValueType(0) == MVT::i16)
5155        ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
5156
5157      // First, combine the bswap away.  This makes the value produced by the
5158      // load dead.
5159      DCI.CombineTo(N, ResVal);
5160
5161      // Next, combine the load away, we give it a bogus result value but a real
5162      // chain result.  The result value is dead because the bswap is dead.
5163      DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
5164
5165      // Return N so it doesn't get rechecked!
5166      return SDValue(N, 0);
5167    }
5168
5169    break;
5170  case PPCISD::VCMP: {
5171    // If a VCMPo node already exists with exactly the same operands as this
5172    // node, use its result instead of this node (VCMPo computes both a CR6 and
5173    // a normal output).
5174    //
5175    if (!N->getOperand(0).hasOneUse() &&
5176        !N->getOperand(1).hasOneUse() &&
5177        !N->getOperand(2).hasOneUse()) {
5178
5179      // Scan all of the users of the LHS, looking for VCMPo's that match.
5180      SDNode *VCMPoNode = 0;
5181
5182      SDNode *LHSN = N->getOperand(0).getNode();
5183      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
5184           UI != E; ++UI)
5185        if (UI->getOpcode() == PPCISD::VCMPo &&
5186            UI->getOperand(1) == N->getOperand(1) &&
5187            UI->getOperand(2) == N->getOperand(2) &&
5188            UI->getOperand(0) == N->getOperand(0)) {
5189          VCMPoNode = *UI;
5190          break;
5191        }
5192
5193      // If there is no VCMPo node, or if the flag value has a single use, don't
5194      // transform this.
5195      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
5196        break;
5197
5198      // Look at the (necessarily single) use of the flag value.  If it has a
5199      // chain, this transformation is more complex.  Note that multiple things
5200      // could use the value result, which we should ignore.
5201      SDNode *FlagUser = 0;
5202      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
5203           FlagUser == 0; ++UI) {
5204        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
5205        SDNode *User = *UI;
5206        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
5207          if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
5208            FlagUser = User;
5209            break;
5210          }
5211        }
5212      }
5213
5214      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
5215      // give up for right now.
5216      if (FlagUser->getOpcode() == PPCISD::MFCR)
5217        return SDValue(VCMPoNode, 0);
5218    }
5219    break;
5220  }
5221  case ISD::BR_CC: {
5222    // If this is a branch on an altivec predicate comparison, lower this so
5223    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
5224    // lowering is done pre-legalize, because the legalizer lowers the predicate
5225    // compare down to code that is difficult to reassemble.
5226    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
5227    SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
5228    int CompareOpc;
5229    bool isDot;
5230
5231    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
5232        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
5233        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
5234      assert(isDot && "Can't compare against a vector result!");
5235
5236      // If this is a comparison against something other than 0/1, then we know
5237      // that the condition is never/always true.
5238      unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
5239      if (Val != 0 && Val != 1) {
5240        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
5241          return N->getOperand(0);
5242        // Always !=, turn it into an unconditional branch.
5243        return DAG.getNode(ISD::BR, dl, MVT::Other,
5244                           N->getOperand(0), N->getOperand(4));
5245      }
5246
5247      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
5248
5249      // Create the PPCISD altivec 'dot' comparison node.
5250      std::vector<EVT> VTs;
5251      SDValue Ops[] = {
5252        LHS.getOperand(2),  // LHS of compare
5253        LHS.getOperand(3),  // RHS of compare
5254        DAG.getConstant(CompareOpc, MVT::i32)
5255      };
5256      VTs.push_back(LHS.getOperand(2).getValueType());
5257      VTs.push_back(MVT::Flag);
5258      SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
5259
5260      // Unpack the result based on how the target uses it.
5261      PPC::Predicate CompOpc;
5262      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
5263      default:  // Can't happen, don't crash on invalid number though.
5264      case 0:   // Branch on the value of the EQ bit of CR6.
5265        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
5266        break;
5267      case 1:   // Branch on the inverted value of the EQ bit of CR6.
5268        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
5269        break;
5270      case 2:   // Branch on the value of the LT bit of CR6.
5271        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
5272        break;
5273      case 3:   // Branch on the inverted value of the LT bit of CR6.
5274        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
5275        break;
5276      }
5277
5278      return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
5279                         DAG.getConstant(CompOpc, MVT::i32),
5280                         DAG.getRegister(PPC::CR6, MVT::i32),
5281                         N->getOperand(4), CompNode.getValue(1));
5282    }
5283    break;
5284  }
5285  }
5286
5287  return SDValue();
5288}
5289
5290//===----------------------------------------------------------------------===//
5291// Inline Assembly Support
5292//===----------------------------------------------------------------------===//
5293
5294void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
5295                                                       const APInt &Mask,
5296                                                       APInt &KnownZero,
5297                                                       APInt &KnownOne,
5298                                                       const SelectionDAG &DAG,
5299                                                       unsigned Depth) const {
5300  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
5301  switch (Op.getOpcode()) {
5302  default: break;
5303  case PPCISD::LBRX: {
5304    // lhbrx is known to have the top bits cleared out.
5305    if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
5306      KnownZero = 0xFFFF0000;
5307    break;
5308  }
5309  case ISD::INTRINSIC_WO_CHAIN: {
5310    switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
5311    default: break;
5312    case Intrinsic::ppc_altivec_vcmpbfp_p:
5313    case Intrinsic::ppc_altivec_vcmpeqfp_p:
5314    case Intrinsic::ppc_altivec_vcmpequb_p:
5315    case Intrinsic::ppc_altivec_vcmpequh_p:
5316    case Intrinsic::ppc_altivec_vcmpequw_p:
5317    case Intrinsic::ppc_altivec_vcmpgefp_p:
5318    case Intrinsic::ppc_altivec_vcmpgtfp_p:
5319    case Intrinsic::ppc_altivec_vcmpgtsb_p:
5320    case Intrinsic::ppc_altivec_vcmpgtsh_p:
5321    case Intrinsic::ppc_altivec_vcmpgtsw_p:
5322    case Intrinsic::ppc_altivec_vcmpgtub_p:
5323    case Intrinsic::ppc_altivec_vcmpgtuh_p:
5324    case Intrinsic::ppc_altivec_vcmpgtuw_p:
5325      KnownZero = ~1U;  // All bits but the low one are known to be zero.
5326      break;
5327    }
5328  }
5329  }
5330}
5331
5332
5333/// getConstraintType - Given a constraint, return the type of
5334/// constraint it is for this target.
5335PPCTargetLowering::ConstraintType
5336PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
5337  if (Constraint.size() == 1) {
5338    switch (Constraint[0]) {
5339    default: break;
5340    case 'b':
5341    case 'r':
5342    case 'f':
5343    case 'v':
5344    case 'y':
5345      return C_RegisterClass;
5346    }
5347  }
5348  return TargetLowering::getConstraintType(Constraint);
5349}
5350
5351std::pair<unsigned, const TargetRegisterClass*>
5352PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5353                                                EVT VT) const {
5354  if (Constraint.size() == 1) {
5355    // GCC RS6000 Constraint Letters
5356    switch (Constraint[0]) {
5357    case 'b':   // R1-R31
5358    case 'r':   // R0-R31
5359      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
5360        return std::make_pair(0U, PPC::G8RCRegisterClass);
5361      return std::make_pair(0U, PPC::GPRCRegisterClass);
5362    case 'f':
5363      if (VT == MVT::f32)
5364        return std::make_pair(0U, PPC::F4RCRegisterClass);
5365      else if (VT == MVT::f64)
5366        return std::make_pair(0U, PPC::F8RCRegisterClass);
5367      break;
5368    case 'v':
5369      return std::make_pair(0U, PPC::VRRCRegisterClass);
5370    case 'y':   // crrc
5371      return std::make_pair(0U, PPC::CRRCRegisterClass);
5372    }
5373  }
5374
5375  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5376}
5377
5378
5379/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5380/// vector.  If it is invalid, don't add anything to Ops. If hasMemory is true
5381/// it means one of the asm constraint of the inline asm instruction being
5382/// processed is 'm'.
5383void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, char Letter,
5384                                                     bool hasMemory,
5385                                                     std::vector<SDValue>&Ops,
5386                                                     SelectionDAG &DAG) const {
5387  SDValue Result(0,0);
5388  switch (Letter) {
5389  default: break;
5390  case 'I':
5391  case 'J':
5392  case 'K':
5393  case 'L':
5394  case 'M':
5395  case 'N':
5396  case 'O':
5397  case 'P': {
5398    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
5399    if (!CST) return; // Must be an immediate to match.
5400    unsigned Value = CST->getZExtValue();
5401    switch (Letter) {
5402    default: llvm_unreachable("Unknown constraint letter!");
5403    case 'I':  // "I" is a signed 16-bit constant.
5404      if ((short)Value == (int)Value)
5405        Result = DAG.getTargetConstant(Value, Op.getValueType());
5406      break;
5407    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
5408    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
5409      if ((short)Value == 0)
5410        Result = DAG.getTargetConstant(Value, Op.getValueType());
5411      break;
5412    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
5413      if ((Value >> 16) == 0)
5414        Result = DAG.getTargetConstant(Value, Op.getValueType());
5415      break;
5416    case 'M':  // "M" is a constant that is greater than 31.
5417      if (Value > 31)
5418        Result = DAG.getTargetConstant(Value, Op.getValueType());
5419      break;
5420    case 'N':  // "N" is a positive constant that is an exact power of two.
5421      if ((int)Value > 0 && isPowerOf2_32(Value))
5422        Result = DAG.getTargetConstant(Value, Op.getValueType());
5423      break;
5424    case 'O':  // "O" is the constant zero.
5425      if (Value == 0)
5426        Result = DAG.getTargetConstant(Value, Op.getValueType());
5427      break;
5428    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
5429      if ((short)-Value == (int)-Value)
5430        Result = DAG.getTargetConstant(Value, Op.getValueType());
5431      break;
5432    }
5433    break;
5434  }
5435  }
5436
5437  if (Result.getNode()) {
5438    Ops.push_back(Result);
5439    return;
5440  }
5441
5442  // Handle standard constraint letters.
5443  TargetLowering::LowerAsmOperandForConstraint(Op, Letter, hasMemory, Ops, DAG);
5444}
5445
5446// isLegalAddressingMode - Return true if the addressing mode represented
5447// by AM is legal for this target, for a load/store of the specified type.
5448bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
5449                                              const Type *Ty) const {
5450  // FIXME: PPC does not allow r+i addressing modes for vectors!
5451
5452  // PPC allows a sign-extended 16-bit immediate field.
5453  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
5454    return false;
5455
5456  // No global is ever allowed as a base.
5457  if (AM.BaseGV)
5458    return false;
5459
5460  // PPC only support r+r,
5461  switch (AM.Scale) {
5462  case 0:  // "r+i" or just "i", depending on HasBaseReg.
5463    break;
5464  case 1:
5465    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
5466      return false;
5467    // Otherwise we have r+r or r+i.
5468    break;
5469  case 2:
5470    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
5471      return false;
5472    // Allow 2*r as r+r.
5473    break;
5474  default:
5475    // No other scales are supported.
5476    return false;
5477  }
5478
5479  return true;
5480}
5481
5482/// isLegalAddressImmediate - Return true if the integer value can be used
5483/// as the offset of the target addressing mode for load / store of the
5484/// given type.
5485bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
5486  // PPC allows a sign-extended 16-bit immediate field.
5487  return (V > -(1 << 16) && V < (1 << 16)-1);
5488}
5489
5490bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
5491  return false;
5492}
5493
5494SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
5495  DebugLoc dl = Op.getDebugLoc();
5496  // Depths > 0 not supported yet!
5497  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
5498    return SDValue();
5499
5500  MachineFunction &MF = DAG.getMachineFunction();
5501  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
5502
5503  // Just load the return address off the stack.
5504  SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
5505
5506  // Make sure the function really does not optimize away the store of the RA
5507  // to the stack.
5508  FuncInfo->setLRStoreRequired();
5509  return DAG.getLoad(getPointerTy(), dl,
5510                     DAG.getEntryNode(), RetAddrFI, NULL, 0,
5511                     false, false, 0);
5512}
5513
5514SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
5515  DebugLoc dl = Op.getDebugLoc();
5516  // Depths > 0 not supported yet!
5517  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
5518    return SDValue();
5519
5520  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
5521  bool isPPC64 = PtrVT == MVT::i64;
5522
5523  MachineFunction &MF = DAG.getMachineFunction();
5524  MachineFrameInfo *MFI = MF.getFrameInfo();
5525  bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects())
5526                  && MFI->getStackSize();
5527
5528  if (isPPC64)
5529    return DAG.getCopyFromReg(DAG.getEntryNode(), dl, is31 ? PPC::X31 : PPC::X1,
5530      MVT::i64);
5531  else
5532    return DAG.getCopyFromReg(DAG.getEntryNode(), dl, is31 ? PPC::R31 : PPC::R1,
5533      MVT::i32);
5534}
5535
5536bool
5537PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5538  // The PowerPC target isn't yet aware of offsets.
5539  return false;
5540}
5541
5542/// getOptimalMemOpType - Returns the target specific optimal type for load
5543/// and store operations as a result of memset, memcpy, and memmove
5544/// lowering. If DstAlign is zero that means it's safe to destination
5545/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
5546/// means there isn't a need to check it against alignment requirement,
5547/// probably because the source does not need to be loaded. If
5548/// 'NonScalarIntSafe' is true, that means it's safe to return a
5549/// non-scalar-integer type, e.g. empty string source, constant, or loaded
5550/// from memory. It returns EVT::Other if SelectionDAG should be responsible
5551/// for determining it.
5552EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
5553                                           unsigned DstAlign, unsigned SrcAlign,
5554                                           bool NonScalarIntSafe,
5555                                           SelectionDAG &DAG) const {
5556  if (this->PPCSubTarget.isPPC64()) {
5557    return MVT::i64;
5558  } else {
5559    return MVT::i32;
5560  }
5561}
5562