PPCISelLowering.cpp revision 198953
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPredicates.h"
17#include "PPCTargetMachine.h"
18#include "PPCPerfectShuffle.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/VectorExtras.h"
21#include "llvm/CodeGen/CallingConvLower.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/CallingConv.h"
29#include "llvm/Constants.h"
30#include "llvm/Function.h"
31#include "llvm/Intrinsics.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Target/TargetOptions.h"
34#include "llvm/Target/TargetLoweringObjectFile.h"
35#include "llvm/Support/CommandLine.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/raw_ostream.h"
38#include "llvm/DerivedTypes.h"
39using namespace llvm;
40
41static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
42                                     CCValAssign::LocInfo &LocInfo,
43                                     ISD::ArgFlagsTy &ArgFlags,
44                                     CCState &State);
45static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, EVT &ValVT,
46                                            EVT &LocVT,
47                                            CCValAssign::LocInfo &LocInfo,
48                                            ISD::ArgFlagsTy &ArgFlags,
49                                            CCState &State);
50static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, EVT &ValVT,
51                                              EVT &LocVT,
52                                              CCValAssign::LocInfo &LocInfo,
53                                              ISD::ArgFlagsTy &ArgFlags,
54                                              CCState &State);
55
56static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
57cl::desc("enable preincrement load/store generation on PPC (experimental)"),
58                                     cl::Hidden);
59
60static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) {
61  if (TM.getSubtargetImpl()->isDarwin())
62    return new TargetLoweringObjectFileMachO();
63  return new TargetLoweringObjectFileELF();
64}
65
66
67PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
68  : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) {
69
70  setPow2DivIsCheap();
71
72  // Use _setjmp/_longjmp instead of setjmp/longjmp.
73  setUseUnderscoreSetJmp(true);
74  setUseUnderscoreLongJmp(true);
75
76  // Set up the register classes.
77  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
78  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
79  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
80
81  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
82  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
83  setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
84
85  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
86
87  // PowerPC has pre-inc load and store's.
88  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
89  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
90  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
91  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
92  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
93  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
94  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
95  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
96  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
97  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
98
99  // This is used in the ppcf128->int sequence.  Note it has different semantics
100  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
101  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
102
103  // PowerPC has no SREM/UREM instructions
104  setOperationAction(ISD::SREM, MVT::i32, Expand);
105  setOperationAction(ISD::UREM, MVT::i32, Expand);
106  setOperationAction(ISD::SREM, MVT::i64, Expand);
107  setOperationAction(ISD::UREM, MVT::i64, Expand);
108
109  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
110  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
111  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
112  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
113  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
114  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
115  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
116  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
117  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
118
119  // We don't support sin/cos/sqrt/fmod/pow
120  setOperationAction(ISD::FSIN , MVT::f64, Expand);
121  setOperationAction(ISD::FCOS , MVT::f64, Expand);
122  setOperationAction(ISD::FREM , MVT::f64, Expand);
123  setOperationAction(ISD::FPOW , MVT::f64, Expand);
124  setOperationAction(ISD::FSIN , MVT::f32, Expand);
125  setOperationAction(ISD::FCOS , MVT::f32, Expand);
126  setOperationAction(ISD::FREM , MVT::f32, Expand);
127  setOperationAction(ISD::FPOW , MVT::f32, Expand);
128
129  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
130
131  // If we're enabling GP optimizations, use hardware square root
132  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
133    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
134    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
135  }
136
137  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
138  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
139
140  // PowerPC does not have BSWAP, CTPOP or CTTZ
141  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
142  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
143  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
144  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
145  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
146  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
147
148  // PowerPC does not have ROTR
149  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
150  setOperationAction(ISD::ROTR, MVT::i64   , Expand);
151
152  // PowerPC does not have Select
153  setOperationAction(ISD::SELECT, MVT::i32, Expand);
154  setOperationAction(ISD::SELECT, MVT::i64, Expand);
155  setOperationAction(ISD::SELECT, MVT::f32, Expand);
156  setOperationAction(ISD::SELECT, MVT::f64, Expand);
157
158  // PowerPC wants to turn select_cc of FP into fsel when possible.
159  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
160  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
161
162  // PowerPC wants to optimize integer setcc a bit
163  setOperationAction(ISD::SETCC, MVT::i32, Custom);
164
165  // PowerPC does not have BRCOND which requires SetCC
166  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
167
168  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
169
170  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
171  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
172
173  // PowerPC does not have [U|S]INT_TO_FP
174  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
175  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
176
177  setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
178  setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
179  setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
180  setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
181
182  // We cannot sextinreg(i1).  Expand to shifts.
183  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
184
185  // Support label based line numbers.
186  setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
187  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
188
189  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
190  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
191  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
192  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
193
194
195  // We want to legalize GlobalAddress and ConstantPool nodes into the
196  // appropriate instructions to materialize the address.
197  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
198  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
199  setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
200  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
201  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
202  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
203  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
204  setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
205  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
206  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
207
208  // TRAP is legal.
209  setOperationAction(ISD::TRAP, MVT::Other, Legal);
210
211  // TRAMPOLINE is custom lowered.
212  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
213
214  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
215  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
216
217  // VAARG is custom lowered with the 32-bit SVR4 ABI.
218  if (    TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
219      && !TM.getSubtarget<PPCSubtarget>().isPPC64())
220    setOperationAction(ISD::VAARG, MVT::Other, Custom);
221  else
222    setOperationAction(ISD::VAARG, MVT::Other, Expand);
223
224  // Use the default implementation.
225  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
226  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
227  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
228  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
229  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
230  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
231
232  // We want to custom lower some of our intrinsics.
233  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
234
235  // Comparisons that require checking two conditions.
236  setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
237  setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
238  setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
239  setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
240  setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
241  setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
242  setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
243  setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
244  setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
245  setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
246  setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
247  setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
248
249  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
250    // They also have instructions for converting between i64 and fp.
251    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
252    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
253    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
254    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
255    // This is just the low 32 bits of a (signed) fp->i64 conversion.
256    // We cannot do this with Promote because i64 is not a legal type.
257    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
258
259    // FIXME: disable this lowered code.  This generates 64-bit register values,
260    // and we don't model the fact that the top part is clobbered by calls.  We
261    // need to flag these together so that the value isn't live across a call.
262    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
263  } else {
264    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
265    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
266  }
267
268  if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
269    // 64-bit PowerPC implementations can support i64 types directly
270    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
271    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
272    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
273    // 64-bit PowerPC wants to expand i128 shifts itself.
274    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
275    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
276    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
277  } else {
278    // 32-bit PowerPC wants to expand i64 shifts itself.
279    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
280    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
281    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
282  }
283
284  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
285    // First set operation action for all vector types to expand. Then we
286    // will selectively turn on ones that can be effectively codegen'd.
287    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
288         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
289      MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
290
291      // add/sub are legal for all supported vector VT's.
292      setOperationAction(ISD::ADD , VT, Legal);
293      setOperationAction(ISD::SUB , VT, Legal);
294
295      // We promote all shuffles to v16i8.
296      setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
297      AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
298
299      // We promote all non-typed operations to v4i32.
300      setOperationAction(ISD::AND   , VT, Promote);
301      AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
302      setOperationAction(ISD::OR    , VT, Promote);
303      AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
304      setOperationAction(ISD::XOR   , VT, Promote);
305      AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
306      setOperationAction(ISD::LOAD  , VT, Promote);
307      AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
308      setOperationAction(ISD::SELECT, VT, Promote);
309      AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
310      setOperationAction(ISD::STORE, VT, Promote);
311      AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
312
313      // No other operations are legal.
314      setOperationAction(ISD::MUL , VT, Expand);
315      setOperationAction(ISD::SDIV, VT, Expand);
316      setOperationAction(ISD::SREM, VT, Expand);
317      setOperationAction(ISD::UDIV, VT, Expand);
318      setOperationAction(ISD::UREM, VT, Expand);
319      setOperationAction(ISD::FDIV, VT, Expand);
320      setOperationAction(ISD::FNEG, VT, Expand);
321      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
322      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
323      setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
324      setOperationAction(ISD::UMUL_LOHI, VT, Expand);
325      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
326      setOperationAction(ISD::UDIVREM, VT, Expand);
327      setOperationAction(ISD::SDIVREM, VT, Expand);
328      setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
329      setOperationAction(ISD::FPOW, VT, Expand);
330      setOperationAction(ISD::CTPOP, VT, Expand);
331      setOperationAction(ISD::CTLZ, VT, Expand);
332      setOperationAction(ISD::CTTZ, VT, Expand);
333    }
334
335    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
336    // with merges, splats, etc.
337    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
338
339    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
340    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
341    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
342    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
343    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
344    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
345
346    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
347    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
348    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
349    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
350
351    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
352    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
353    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
354    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
355
356    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
357    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
358
359    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
360    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
361    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
362    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
363  }
364
365  setShiftAmountType(MVT::i32);
366  setBooleanContents(ZeroOrOneBooleanContent);
367
368  if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
369    setStackPointerRegisterToSaveRestore(PPC::X1);
370    setExceptionPointerRegister(PPC::X3);
371    setExceptionSelectorRegister(PPC::X4);
372  } else {
373    setStackPointerRegisterToSaveRestore(PPC::R1);
374    setExceptionPointerRegister(PPC::R3);
375    setExceptionSelectorRegister(PPC::R4);
376  }
377
378  // We have target-specific dag combine patterns for the following nodes:
379  setTargetDAGCombine(ISD::SINT_TO_FP);
380  setTargetDAGCombine(ISD::STORE);
381  setTargetDAGCombine(ISD::BR_CC);
382  setTargetDAGCombine(ISD::BSWAP);
383
384  // Darwin long double math library functions have $LDBL128 appended.
385  if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
386    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
387    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
388    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
389    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
390    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
391    setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
392    setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
393    setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
394    setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
395    setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
396  }
397
398  computeRegisterProperties();
399}
400
401/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
402/// function arguments in the caller parameter area.
403unsigned PPCTargetLowering::getByValTypeAlignment(const Type *Ty) const {
404  TargetMachine &TM = getTargetMachine();
405  // Darwin passes everything on 4 byte boundary.
406  if (TM.getSubtarget<PPCSubtarget>().isDarwin())
407    return 4;
408  // FIXME SVR4 TBD
409  return 4;
410}
411
412const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
413  switch (Opcode) {
414  default: return 0;
415  case PPCISD::FSEL:            return "PPCISD::FSEL";
416  case PPCISD::FCFID:           return "PPCISD::FCFID";
417  case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
418  case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
419  case PPCISD::STFIWX:          return "PPCISD::STFIWX";
420  case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
421  case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
422  case PPCISD::VPERM:           return "PPCISD::VPERM";
423  case PPCISD::Hi:              return "PPCISD::Hi";
424  case PPCISD::Lo:              return "PPCISD::Lo";
425  case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
426  case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
427  case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
428  case PPCISD::SRL:             return "PPCISD::SRL";
429  case PPCISD::SRA:             return "PPCISD::SRA";
430  case PPCISD::SHL:             return "PPCISD::SHL";
431  case PPCISD::EXTSW_32:        return "PPCISD::EXTSW_32";
432  case PPCISD::STD_32:          return "PPCISD::STD_32";
433  case PPCISD::CALL_SVR4:       return "PPCISD::CALL_SVR4";
434  case PPCISD::CALL_Darwin:     return "PPCISD::CALL_Darwin";
435  case PPCISD::NOP:             return "PPCISD::NOP";
436  case PPCISD::MTCTR:           return "PPCISD::MTCTR";
437  case PPCISD::BCTRL_Darwin:    return "PPCISD::BCTRL_Darwin";
438  case PPCISD::BCTRL_SVR4:      return "PPCISD::BCTRL_SVR4";
439  case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
440  case PPCISD::MFCR:            return "PPCISD::MFCR";
441  case PPCISD::VCMP:            return "PPCISD::VCMP";
442  case PPCISD::VCMPo:           return "PPCISD::VCMPo";
443  case PPCISD::LBRX:            return "PPCISD::LBRX";
444  case PPCISD::STBRX:           return "PPCISD::STBRX";
445  case PPCISD::LARX:            return "PPCISD::LARX";
446  case PPCISD::STCX:            return "PPCISD::STCX";
447  case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
448  case PPCISD::MFFS:            return "PPCISD::MFFS";
449  case PPCISD::MTFSB0:          return "PPCISD::MTFSB0";
450  case PPCISD::MTFSB1:          return "PPCISD::MTFSB1";
451  case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
452  case PPCISD::MTFSF:           return "PPCISD::MTFSF";
453  case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
454  }
455}
456
457MVT::SimpleValueType PPCTargetLowering::getSetCCResultType(EVT VT) const {
458  return MVT::i32;
459}
460
461/// getFunctionAlignment - Return the Log2 alignment of this function.
462unsigned PPCTargetLowering::getFunctionAlignment(const Function *F) const {
463  if (getTargetMachine().getSubtarget<PPCSubtarget>().isDarwin())
464    return F->hasFnAttr(Attribute::OptimizeForSize) ? 2 : 4;
465  else
466    return 2;
467}
468
469//===----------------------------------------------------------------------===//
470// Node matching predicates, for use by the tblgen matching code.
471//===----------------------------------------------------------------------===//
472
473/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
474static bool isFloatingPointZero(SDValue Op) {
475  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
476    return CFP->getValueAPF().isZero();
477  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
478    // Maybe this has already been legalized into the constant pool?
479    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
480      if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
481        return CFP->getValueAPF().isZero();
482  }
483  return false;
484}
485
486/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
487/// true if Op is undef or if it matches the specified value.
488static bool isConstantOrUndef(int Op, int Val) {
489  return Op < 0 || Op == Val;
490}
491
492/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
493/// VPKUHUM instruction.
494bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
495  if (!isUnary) {
496    for (unsigned i = 0; i != 16; ++i)
497      if (!isConstantOrUndef(N->getMaskElt(i),  i*2+1))
498        return false;
499  } else {
500    for (unsigned i = 0; i != 8; ++i)
501      if (!isConstantOrUndef(N->getMaskElt(i),    i*2+1) ||
502          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+1))
503        return false;
504  }
505  return true;
506}
507
508/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
509/// VPKUWUM instruction.
510bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
511  if (!isUnary) {
512    for (unsigned i = 0; i != 16; i += 2)
513      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
514          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
515        return false;
516  } else {
517    for (unsigned i = 0; i != 8; i += 2)
518      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
519          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3) ||
520          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+2) ||
521          !isConstantOrUndef(N->getMaskElt(i+9),  i*2+3))
522        return false;
523  }
524  return true;
525}
526
527/// isVMerge - Common function, used to match vmrg* shuffles.
528///
529static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
530                     unsigned LHSStart, unsigned RHSStart) {
531  assert(N->getValueType(0) == MVT::v16i8 &&
532         "PPC only supports shuffles by bytes!");
533  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
534         "Unsupported merge size!");
535
536  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
537    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
538      if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
539                             LHSStart+j+i*UnitSize) ||
540          !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
541                             RHSStart+j+i*UnitSize))
542        return false;
543    }
544  return true;
545}
546
547/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
548/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
549bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
550                             bool isUnary) {
551  if (!isUnary)
552    return isVMerge(N, UnitSize, 8, 24);
553  return isVMerge(N, UnitSize, 8, 8);
554}
555
556/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
557/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
558bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
559                             bool isUnary) {
560  if (!isUnary)
561    return isVMerge(N, UnitSize, 0, 16);
562  return isVMerge(N, UnitSize, 0, 0);
563}
564
565
566/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
567/// amount, otherwise return -1.
568int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
569  assert(N->getValueType(0) == MVT::v16i8 &&
570         "PPC only supports shuffles by bytes!");
571
572  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
573
574  // Find the first non-undef value in the shuffle mask.
575  unsigned i;
576  for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
577    /*search*/;
578
579  if (i == 16) return -1;  // all undef.
580
581  // Otherwise, check to see if the rest of the elements are consecutively
582  // numbered from this value.
583  unsigned ShiftAmt = SVOp->getMaskElt(i);
584  if (ShiftAmt < i) return -1;
585  ShiftAmt -= i;
586
587  if (!isUnary) {
588    // Check the rest of the elements to see if they are consecutive.
589    for (++i; i != 16; ++i)
590      if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
591        return -1;
592  } else {
593    // Check the rest of the elements to see if they are consecutive.
594    for (++i; i != 16; ++i)
595      if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
596        return -1;
597  }
598  return ShiftAmt;
599}
600
601/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
602/// specifies a splat of a single element that is suitable for input to
603/// VSPLTB/VSPLTH/VSPLTW.
604bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
605  assert(N->getValueType(0) == MVT::v16i8 &&
606         (EltSize == 1 || EltSize == 2 || EltSize == 4));
607
608  // This is a splat operation if each element of the permute is the same, and
609  // if the value doesn't reference the second vector.
610  unsigned ElementBase = N->getMaskElt(0);
611
612  // FIXME: Handle UNDEF elements too!
613  if (ElementBase >= 16)
614    return false;
615
616  // Check that the indices are consecutive, in the case of a multi-byte element
617  // splatted with a v16i8 mask.
618  for (unsigned i = 1; i != EltSize; ++i)
619    if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
620      return false;
621
622  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
623    if (N->getMaskElt(i) < 0) continue;
624    for (unsigned j = 0; j != EltSize; ++j)
625      if (N->getMaskElt(i+j) != N->getMaskElt(j))
626        return false;
627  }
628  return true;
629}
630
631/// isAllNegativeZeroVector - Returns true if all elements of build_vector
632/// are -0.0.
633bool PPC::isAllNegativeZeroVector(SDNode *N) {
634  BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
635
636  APInt APVal, APUndef;
637  unsigned BitSize;
638  bool HasAnyUndefs;
639
640  if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32))
641    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
642      return CFP->getValueAPF().isNegZero();
643
644  return false;
645}
646
647/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
648/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
649unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
650  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
651  assert(isSplatShuffleMask(SVOp, EltSize));
652  return SVOp->getMaskElt(0) / EltSize;
653}
654
655/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
656/// by using a vspltis[bhw] instruction of the specified element size, return
657/// the constant being splatted.  The ByteSize field indicates the number of
658/// bytes of each element [124] -> [bhw].
659SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
660  SDValue OpVal(0, 0);
661
662  // If ByteSize of the splat is bigger than the element size of the
663  // build_vector, then we have a case where we are checking for a splat where
664  // multiple elements of the buildvector are folded together into a single
665  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
666  unsigned EltSize = 16/N->getNumOperands();
667  if (EltSize < ByteSize) {
668    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
669    SDValue UniquedVals[4];
670    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
671
672    // See if all of the elements in the buildvector agree across.
673    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
674      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
675      // If the element isn't a constant, bail fully out.
676      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
677
678
679      if (UniquedVals[i&(Multiple-1)].getNode() == 0)
680        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
681      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
682        return SDValue();  // no match.
683    }
684
685    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
686    // either constant or undef values that are identical for each chunk.  See
687    // if these chunks can form into a larger vspltis*.
688
689    // Check to see if all of the leading entries are either 0 or -1.  If
690    // neither, then this won't fit into the immediate field.
691    bool LeadingZero = true;
692    bool LeadingOnes = true;
693    for (unsigned i = 0; i != Multiple-1; ++i) {
694      if (UniquedVals[i].getNode() == 0) continue;  // Must have been undefs.
695
696      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
697      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
698    }
699    // Finally, check the least significant entry.
700    if (LeadingZero) {
701      if (UniquedVals[Multiple-1].getNode() == 0)
702        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
703      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
704      if (Val < 16)
705        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
706    }
707    if (LeadingOnes) {
708      if (UniquedVals[Multiple-1].getNode() == 0)
709        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
710      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
711      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
712        return DAG.getTargetConstant(Val, MVT::i32);
713    }
714
715    return SDValue();
716  }
717
718  // Check to see if this buildvec has a single non-undef value in its elements.
719  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
720    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
721    if (OpVal.getNode() == 0)
722      OpVal = N->getOperand(i);
723    else if (OpVal != N->getOperand(i))
724      return SDValue();
725  }
726
727  if (OpVal.getNode() == 0) return SDValue();  // All UNDEF: use implicit def.
728
729  unsigned ValSizeInBytes = EltSize;
730  uint64_t Value = 0;
731  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
732    Value = CN->getZExtValue();
733  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
734    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
735    Value = FloatToBits(CN->getValueAPF().convertToFloat());
736  }
737
738  // If the splat value is larger than the element value, then we can never do
739  // this splat.  The only case that we could fit the replicated bits into our
740  // immediate field for would be zero, and we prefer to use vxor for it.
741  if (ValSizeInBytes < ByteSize) return SDValue();
742
743  // If the element value is larger than the splat value, cut it in half and
744  // check to see if the two halves are equal.  Continue doing this until we
745  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
746  while (ValSizeInBytes > ByteSize) {
747    ValSizeInBytes >>= 1;
748
749    // If the top half equals the bottom half, we're still ok.
750    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
751         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
752      return SDValue();
753  }
754
755  // Properly sign extend the value.
756  int ShAmt = (4-ByteSize)*8;
757  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
758
759  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
760  if (MaskVal == 0) return SDValue();
761
762  // Finally, if this value fits in a 5 bit sext field, return it
763  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
764    return DAG.getTargetConstant(MaskVal, MVT::i32);
765  return SDValue();
766}
767
768//===----------------------------------------------------------------------===//
769//  Addressing Mode Selection
770//===----------------------------------------------------------------------===//
771
772/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
773/// or 64-bit immediate, and if the value can be accurately represented as a
774/// sign extension from a 16-bit value.  If so, this returns true and the
775/// immediate.
776static bool isIntS16Immediate(SDNode *N, short &Imm) {
777  if (N->getOpcode() != ISD::Constant)
778    return false;
779
780  Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
781  if (N->getValueType(0) == MVT::i32)
782    return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
783  else
784    return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
785}
786static bool isIntS16Immediate(SDValue Op, short &Imm) {
787  return isIntS16Immediate(Op.getNode(), Imm);
788}
789
790
791/// SelectAddressRegReg - Given the specified addressed, check to see if it
792/// can be represented as an indexed [r+r] operation.  Returns false if it
793/// can be more efficiently represented with [r+imm].
794bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
795                                            SDValue &Index,
796                                            SelectionDAG &DAG) const {
797  short imm = 0;
798  if (N.getOpcode() == ISD::ADD) {
799    if (isIntS16Immediate(N.getOperand(1), imm))
800      return false;    // r+i
801    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
802      return false;    // r+i
803
804    Base = N.getOperand(0);
805    Index = N.getOperand(1);
806    return true;
807  } else if (N.getOpcode() == ISD::OR) {
808    if (isIntS16Immediate(N.getOperand(1), imm))
809      return false;    // r+i can fold it if we can.
810
811    // If this is an or of disjoint bitfields, we can codegen this as an add
812    // (for better address arithmetic) if the LHS and RHS of the OR are provably
813    // disjoint.
814    APInt LHSKnownZero, LHSKnownOne;
815    APInt RHSKnownZero, RHSKnownOne;
816    DAG.ComputeMaskedBits(N.getOperand(0),
817                          APInt::getAllOnesValue(N.getOperand(0)
818                            .getValueSizeInBits()),
819                          LHSKnownZero, LHSKnownOne);
820
821    if (LHSKnownZero.getBoolValue()) {
822      DAG.ComputeMaskedBits(N.getOperand(1),
823                            APInt::getAllOnesValue(N.getOperand(1)
824                              .getValueSizeInBits()),
825                            RHSKnownZero, RHSKnownOne);
826      // If all of the bits are known zero on the LHS or RHS, the add won't
827      // carry.
828      if (~(LHSKnownZero | RHSKnownZero) == 0) {
829        Base = N.getOperand(0);
830        Index = N.getOperand(1);
831        return true;
832      }
833    }
834  }
835
836  return false;
837}
838
839/// Returns true if the address N can be represented by a base register plus
840/// a signed 16-bit displacement [r+imm], and if it is not better
841/// represented as reg+reg.
842bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
843                                            SDValue &Base,
844                                            SelectionDAG &DAG) const {
845  // FIXME dl should come from parent load or store, not from address
846  DebugLoc dl = N.getDebugLoc();
847  // If this can be more profitably realized as r+r, fail.
848  if (SelectAddressRegReg(N, Disp, Base, DAG))
849    return false;
850
851  if (N.getOpcode() == ISD::ADD) {
852    short imm = 0;
853    if (isIntS16Immediate(N.getOperand(1), imm)) {
854      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
855      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
856        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
857      } else {
858        Base = N.getOperand(0);
859      }
860      return true; // [r+i]
861    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
862      // Match LOAD (ADD (X, Lo(G))).
863     assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
864             && "Cannot handle constant offsets yet!");
865      Disp = N.getOperand(1).getOperand(0);  // The global address.
866      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
867             Disp.getOpcode() == ISD::TargetConstantPool ||
868             Disp.getOpcode() == ISD::TargetJumpTable);
869      Base = N.getOperand(0);
870      return true;  // [&g+r]
871    }
872  } else if (N.getOpcode() == ISD::OR) {
873    short imm = 0;
874    if (isIntS16Immediate(N.getOperand(1), imm)) {
875      // If this is an or of disjoint bitfields, we can codegen this as an add
876      // (for better address arithmetic) if the LHS and RHS of the OR are
877      // provably disjoint.
878      APInt LHSKnownZero, LHSKnownOne;
879      DAG.ComputeMaskedBits(N.getOperand(0),
880                            APInt::getAllOnesValue(N.getOperand(0)
881                                                   .getValueSizeInBits()),
882                            LHSKnownZero, LHSKnownOne);
883
884      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
885        // If all of the bits are known zero on the LHS or RHS, the add won't
886        // carry.
887        Base = N.getOperand(0);
888        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
889        return true;
890      }
891    }
892  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
893    // Loading from a constant address.
894
895    // If this address fits entirely in a 16-bit sext immediate field, codegen
896    // this as "d, 0"
897    short Imm;
898    if (isIntS16Immediate(CN, Imm)) {
899      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
900      Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
901      return true;
902    }
903
904    // Handle 32-bit sext immediates with LIS + addr mode.
905    if (CN->getValueType(0) == MVT::i32 ||
906        (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
907      int Addr = (int)CN->getZExtValue();
908
909      // Otherwise, break this down into an LIS + disp.
910      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
911
912      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
913      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
914      Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
915      return true;
916    }
917  }
918
919  Disp = DAG.getTargetConstant(0, getPointerTy());
920  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
921    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
922  else
923    Base = N;
924  return true;      // [r+0]
925}
926
927/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
928/// represented as an indexed [r+r] operation.
929bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
930                                                SDValue &Index,
931                                                SelectionDAG &DAG) const {
932  // Check to see if we can easily represent this as an [r+r] address.  This
933  // will fail if it thinks that the address is more profitably represented as
934  // reg+imm, e.g. where imm = 0.
935  if (SelectAddressRegReg(N, Base, Index, DAG))
936    return true;
937
938  // If the operand is an addition, always emit this as [r+r], since this is
939  // better (for code size, and execution, as the memop does the add for free)
940  // than emitting an explicit add.
941  if (N.getOpcode() == ISD::ADD) {
942    Base = N.getOperand(0);
943    Index = N.getOperand(1);
944    return true;
945  }
946
947  // Otherwise, do it the hard way, using R0 as the base register.
948  Base = DAG.getRegister(PPC::R0, N.getValueType());
949  Index = N;
950  return true;
951}
952
953/// SelectAddressRegImmShift - Returns true if the address N can be
954/// represented by a base register plus a signed 14-bit displacement
955/// [r+imm*4].  Suitable for use by STD and friends.
956bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp,
957                                                 SDValue &Base,
958                                                 SelectionDAG &DAG) const {
959  // FIXME dl should come from the parent load or store, not the address
960  DebugLoc dl = N.getDebugLoc();
961  // If this can be more profitably realized as r+r, fail.
962  if (SelectAddressRegReg(N, Disp, Base, DAG))
963    return false;
964
965  if (N.getOpcode() == ISD::ADD) {
966    short imm = 0;
967    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
968      Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
969      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
970        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
971      } else {
972        Base = N.getOperand(0);
973      }
974      return true; // [r+i]
975    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
976      // Match LOAD (ADD (X, Lo(G))).
977     assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
978             && "Cannot handle constant offsets yet!");
979      Disp = N.getOperand(1).getOperand(0);  // The global address.
980      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
981             Disp.getOpcode() == ISD::TargetConstantPool ||
982             Disp.getOpcode() == ISD::TargetJumpTable);
983      Base = N.getOperand(0);
984      return true;  // [&g+r]
985    }
986  } else if (N.getOpcode() == ISD::OR) {
987    short imm = 0;
988    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
989      // If this is an or of disjoint bitfields, we can codegen this as an add
990      // (for better address arithmetic) if the LHS and RHS of the OR are
991      // provably disjoint.
992      APInt LHSKnownZero, LHSKnownOne;
993      DAG.ComputeMaskedBits(N.getOperand(0),
994                            APInt::getAllOnesValue(N.getOperand(0)
995                                                   .getValueSizeInBits()),
996                            LHSKnownZero, LHSKnownOne);
997      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
998        // If all of the bits are known zero on the LHS or RHS, the add won't
999        // carry.
1000        Base = N.getOperand(0);
1001        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
1002        return true;
1003      }
1004    }
1005  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1006    // Loading from a constant address.  Verify low two bits are clear.
1007    if ((CN->getZExtValue() & 3) == 0) {
1008      // If this address fits entirely in a 14-bit sext immediate field, codegen
1009      // this as "d, 0"
1010      short Imm;
1011      if (isIntS16Immediate(CN, Imm)) {
1012        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
1013        Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
1014        return true;
1015      }
1016
1017      // Fold the low-part of 32-bit absolute addresses into addr mode.
1018      if (CN->getValueType(0) == MVT::i32 ||
1019          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
1020        int Addr = (int)CN->getZExtValue();
1021
1022        // Otherwise, break this down into an LIS + disp.
1023        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
1024        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
1025        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1026        Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base),0);
1027        return true;
1028      }
1029    }
1030  }
1031
1032  Disp = DAG.getTargetConstant(0, getPointerTy());
1033  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
1034    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1035  else
1036    Base = N;
1037  return true;      // [r+0]
1038}
1039
1040
1041/// getPreIndexedAddressParts - returns true by value, base pointer and
1042/// offset pointer and addressing mode by reference if the node's address
1043/// can be legally represented as pre-indexed load / store address.
1044bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1045                                                  SDValue &Offset,
1046                                                  ISD::MemIndexedMode &AM,
1047                                                  SelectionDAG &DAG) const {
1048  // Disabled by default for now.
1049  if (!EnablePPCPreinc) return false;
1050
1051  SDValue Ptr;
1052  EVT VT;
1053  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1054    Ptr = LD->getBasePtr();
1055    VT = LD->getMemoryVT();
1056
1057  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1058    ST = ST;
1059    Ptr = ST->getBasePtr();
1060    VT  = ST->getMemoryVT();
1061  } else
1062    return false;
1063
1064  // PowerPC doesn't have preinc load/store instructions for vectors.
1065  if (VT.isVector())
1066    return false;
1067
1068  // TODO: Check reg+reg first.
1069
1070  // LDU/STU use reg+imm*4, others use reg+imm.
1071  if (VT != MVT::i64) {
1072    // reg + imm
1073    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1074      return false;
1075  } else {
1076    // reg + imm * 4.
1077    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1078      return false;
1079  }
1080
1081  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1082    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1083    // sext i32 to i64 when addr mode is r+i.
1084    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1085        LD->getExtensionType() == ISD::SEXTLOAD &&
1086        isa<ConstantSDNode>(Offset))
1087      return false;
1088  }
1089
1090  AM = ISD::PRE_INC;
1091  return true;
1092}
1093
1094//===----------------------------------------------------------------------===//
1095//  LowerOperation implementation
1096//===----------------------------------------------------------------------===//
1097
1098SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
1099                                             SelectionDAG &DAG) {
1100  EVT PtrVT = Op.getValueType();
1101  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1102  Constant *C = CP->getConstVal();
1103  SDValue CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
1104  SDValue Zero = DAG.getConstant(0, PtrVT);
1105  // FIXME there isn't really any debug info here
1106  DebugLoc dl = Op.getDebugLoc();
1107
1108  const TargetMachine &TM = DAG.getTarget();
1109
1110  SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, CPI, Zero);
1111  SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, CPI, Zero);
1112
1113  // If this is a non-darwin platform, we don't support non-static relo models
1114  // yet.
1115  if (TM.getRelocationModel() == Reloc::Static ||
1116      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1117    // Generate non-pic code that has direct accesses to the constant pool.
1118    // The address of the global is just (hi(&g)+lo(&g)).
1119    return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1120  }
1121
1122  if (TM.getRelocationModel() == Reloc::PIC_) {
1123    // With PIC, the first instruction is actually "GR+hi(&G)".
1124    Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
1125                     DAG.getNode(PPCISD::GlobalBaseReg,
1126                                 DebugLoc::getUnknownLoc(), PtrVT), Hi);
1127  }
1128
1129  Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1130  return Lo;
1131}
1132
1133SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
1134  EVT PtrVT = Op.getValueType();
1135  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1136  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1137  SDValue Zero = DAG.getConstant(0, PtrVT);
1138  // FIXME there isn't really any debug loc here
1139  DebugLoc dl = Op.getDebugLoc();
1140
1141  const TargetMachine &TM = DAG.getTarget();
1142
1143  SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, JTI, Zero);
1144  SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, JTI, Zero);
1145
1146  // If this is a non-darwin platform, we don't support non-static relo models
1147  // yet.
1148  if (TM.getRelocationModel() == Reloc::Static ||
1149      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1150    // Generate non-pic code that has direct accesses to the constant pool.
1151    // The address of the global is just (hi(&g)+lo(&g)).
1152    return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1153  }
1154
1155  if (TM.getRelocationModel() == Reloc::PIC_) {
1156    // With PIC, the first instruction is actually "GR+hi(&G)".
1157    Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
1158                     DAG.getNode(PPCISD::GlobalBaseReg,
1159                                 DebugLoc::getUnknownLoc(), PtrVT), Hi);
1160  }
1161
1162  Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1163  return Lo;
1164}
1165
1166SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1167                                                   SelectionDAG &DAG) {
1168  llvm_unreachable("TLS not implemented for PPC.");
1169  return SDValue(); // Not reached
1170}
1171
1172SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) {
1173  EVT PtrVT = Op.getValueType();
1174  DebugLoc DL = Op.getDebugLoc();
1175
1176  BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1177  SDValue TgtBA = DAG.getBlockAddress(BA, DL, /*isTarget=*/true);
1178  SDValue Zero = DAG.getConstant(0, PtrVT);
1179  SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, TgtBA, Zero);
1180  SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, TgtBA, Zero);
1181
1182  // If this is a non-darwin platform, we don't support non-static relo models
1183  // yet.
1184  const TargetMachine &TM = DAG.getTarget();
1185  if (TM.getRelocationModel() == Reloc::Static ||
1186      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1187    // Generate non-pic code that has direct accesses to globals.
1188    // The address of the global is just (hi(&g)+lo(&g)).
1189    return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1190  }
1191
1192  if (TM.getRelocationModel() == Reloc::PIC_) {
1193    // With PIC, the first instruction is actually "GR+hi(&G)".
1194    Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
1195                     DAG.getNode(PPCISD::GlobalBaseReg,
1196                                 DebugLoc::getUnknownLoc(), PtrVT), Hi);
1197  }
1198
1199  return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1200}
1201
1202SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
1203                                              SelectionDAG &DAG) {
1204  EVT PtrVT = Op.getValueType();
1205  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1206  GlobalValue *GV = GSDN->getGlobal();
1207  SDValue GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
1208  SDValue Zero = DAG.getConstant(0, PtrVT);
1209  // FIXME there isn't really any debug info here
1210  DebugLoc dl = GSDN->getDebugLoc();
1211
1212  const TargetMachine &TM = DAG.getTarget();
1213
1214  // 64-bit SVR4 ABI code is always position-independent.
1215  // The actual address of the GlobalValue is stored in the TOC.
1216  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1217    return DAG.getNode(PPCISD::TOC_ENTRY, dl, MVT::i64, GA,
1218                       DAG.getRegister(PPC::X2, MVT::i64));
1219  }
1220
1221  SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, GA, Zero);
1222  SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, GA, Zero);
1223
1224  // If this is a non-darwin platform, we don't support non-static relo models
1225  // yet.
1226  if (TM.getRelocationModel() == Reloc::Static ||
1227      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1228    // Generate non-pic code that has direct accesses to globals.
1229    // The address of the global is just (hi(&g)+lo(&g)).
1230    return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1231  }
1232
1233  if (TM.getRelocationModel() == Reloc::PIC_) {
1234    // With PIC, the first instruction is actually "GR+hi(&G)".
1235    Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
1236                     DAG.getNode(PPCISD::GlobalBaseReg,
1237                                 DebugLoc::getUnknownLoc(), PtrVT), Hi);
1238  }
1239
1240  Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1241
1242  if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM))
1243    return Lo;
1244
1245  // If the global is weak or external, we have to go through the lazy
1246  // resolution stub.
1247  return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Lo, NULL, 0);
1248}
1249
1250SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
1251  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1252  DebugLoc dl = Op.getDebugLoc();
1253
1254  // If we're comparing for equality to zero, expose the fact that this is
1255  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1256  // fold the new nodes.
1257  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1258    if (C->isNullValue() && CC == ISD::SETEQ) {
1259      EVT VT = Op.getOperand(0).getValueType();
1260      SDValue Zext = Op.getOperand(0);
1261      if (VT.bitsLT(MVT::i32)) {
1262        VT = MVT::i32;
1263        Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
1264      }
1265      unsigned Log2b = Log2_32(VT.getSizeInBits());
1266      SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
1267      SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
1268                                DAG.getConstant(Log2b, MVT::i32));
1269      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
1270    }
1271    // Leave comparisons against 0 and -1 alone for now, since they're usually
1272    // optimized.  FIXME: revisit this when we can custom lower all setcc
1273    // optimizations.
1274    if (C->isAllOnesValue() || C->isNullValue())
1275      return SDValue();
1276  }
1277
1278  // If we have an integer seteq/setne, turn it into a compare against zero
1279  // by xor'ing the rhs with the lhs, which is faster than setting a
1280  // condition register, reading it back out, and masking the correct bit.  The
1281  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1282  // the result to other bit-twiddling opportunities.
1283  EVT LHSVT = Op.getOperand(0).getValueType();
1284  if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1285    EVT VT = Op.getValueType();
1286    SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
1287                                Op.getOperand(1));
1288    return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
1289  }
1290  return SDValue();
1291}
1292
1293SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
1294                              int VarArgsFrameIndex,
1295                              int VarArgsStackOffset,
1296                              unsigned VarArgsNumGPR,
1297                              unsigned VarArgsNumFPR,
1298                              const PPCSubtarget &Subtarget) {
1299
1300  llvm_unreachable("VAARG not yet implemented for the SVR4 ABI!");
1301  return SDValue(); // Not reached
1302}
1303
1304SDValue PPCTargetLowering::LowerTRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
1305  SDValue Chain = Op.getOperand(0);
1306  SDValue Trmp = Op.getOperand(1); // trampoline
1307  SDValue FPtr = Op.getOperand(2); // nested function
1308  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
1309  DebugLoc dl = Op.getDebugLoc();
1310
1311  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1312  bool isPPC64 = (PtrVT == MVT::i64);
1313  const Type *IntPtrTy =
1314    DAG.getTargetLoweringInfo().getTargetData()->getIntPtrType(
1315                                                             *DAG.getContext());
1316
1317  TargetLowering::ArgListTy Args;
1318  TargetLowering::ArgListEntry Entry;
1319
1320  Entry.Ty = IntPtrTy;
1321  Entry.Node = Trmp; Args.push_back(Entry);
1322
1323  // TrampSize == (isPPC64 ? 48 : 40);
1324  Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
1325                               isPPC64 ? MVT::i64 : MVT::i32);
1326  Args.push_back(Entry);
1327
1328  Entry.Node = FPtr; Args.push_back(Entry);
1329  Entry.Node = Nest; Args.push_back(Entry);
1330
1331  // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
1332  std::pair<SDValue, SDValue> CallResult =
1333    LowerCallTo(Chain, Op.getValueType().getTypeForEVT(*DAG.getContext()),
1334                false, false, false, false, 0, CallingConv::C, false,
1335                /*isReturnValueUsed=*/true,
1336                DAG.getExternalSymbol("__trampoline_setup", PtrVT),
1337                Args, DAG, dl);
1338
1339  SDValue Ops[] =
1340    { CallResult.first, CallResult.second };
1341
1342  return DAG.getMergeValues(Ops, 2, dl);
1343}
1344
1345SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
1346                                        int VarArgsFrameIndex,
1347                                        int VarArgsStackOffset,
1348                                        unsigned VarArgsNumGPR,
1349                                        unsigned VarArgsNumFPR,
1350                                        const PPCSubtarget &Subtarget) {
1351  DebugLoc dl = Op.getDebugLoc();
1352
1353  if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
1354    // vastart just stores the address of the VarArgsFrameIndex slot into the
1355    // memory location argument.
1356    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1357    SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1358    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1359    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0);
1360  }
1361
1362  // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
1363  // We suppose the given va_list is already allocated.
1364  //
1365  // typedef struct {
1366  //  char gpr;     /* index into the array of 8 GPRs
1367  //                 * stored in the register save area
1368  //                 * gpr=0 corresponds to r3,
1369  //                 * gpr=1 to r4, etc.
1370  //                 */
1371  //  char fpr;     /* index into the array of 8 FPRs
1372  //                 * stored in the register save area
1373  //                 * fpr=0 corresponds to f1,
1374  //                 * fpr=1 to f2, etc.
1375  //                 */
1376  //  char *overflow_arg_area;
1377  //                /* location on stack that holds
1378  //                 * the next overflow argument
1379  //                 */
1380  //  char *reg_save_area;
1381  //               /* where r3:r10 and f1:f8 (if saved)
1382  //                * are stored
1383  //                */
1384  // } va_list[1];
1385
1386
1387  SDValue ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i32);
1388  SDValue ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i32);
1389
1390
1391  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1392
1393  SDValue StackOffsetFI = DAG.getFrameIndex(VarArgsStackOffset, PtrVT);
1394  SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1395
1396  uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
1397  SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1398
1399  uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
1400  SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1401
1402  uint64_t FPROffset = 1;
1403  SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1404
1405  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1406
1407  // Store first byte : number of int regs
1408  SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
1409                                         Op.getOperand(1), SV, 0, MVT::i8);
1410  uint64_t nextOffset = FPROffset;
1411  SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
1412                                  ConstFPROffset);
1413
1414  // Store second byte : number of float regs
1415  SDValue secondStore =
1416    DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, SV, nextOffset, MVT::i8);
1417  nextOffset += StackOffset;
1418  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
1419
1420  // Store second word : arguments given on stack
1421  SDValue thirdStore =
1422    DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, SV, nextOffset);
1423  nextOffset += FrameOffset;
1424  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
1425
1426  // Store third word : arguments given in registers
1427  return DAG.getStore(thirdStore, dl, FR, nextPtr, SV, nextOffset);
1428
1429}
1430
1431#include "PPCGenCallingConv.inc"
1432
1433static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
1434                                     CCValAssign::LocInfo &LocInfo,
1435                                     ISD::ArgFlagsTy &ArgFlags,
1436                                     CCState &State) {
1437  return true;
1438}
1439
1440static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, EVT &ValVT,
1441                                            EVT &LocVT,
1442                                            CCValAssign::LocInfo &LocInfo,
1443                                            ISD::ArgFlagsTy &ArgFlags,
1444                                            CCState &State) {
1445  static const unsigned ArgRegs[] = {
1446    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1447    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1448  };
1449  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1450
1451  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1452
1453  // Skip one register if the first unallocated register has an even register
1454  // number and there are still argument registers available which have not been
1455  // allocated yet. RegNum is actually an index into ArgRegs, which means we
1456  // need to skip a register if RegNum is odd.
1457  if (RegNum != NumArgRegs && RegNum % 2 == 1) {
1458    State.AllocateReg(ArgRegs[RegNum]);
1459  }
1460
1461  // Always return false here, as this function only makes sure that the first
1462  // unallocated register has an odd register number and does not actually
1463  // allocate a register for the current argument.
1464  return false;
1465}
1466
1467static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, EVT &ValVT,
1468                                              EVT &LocVT,
1469                                              CCValAssign::LocInfo &LocInfo,
1470                                              ISD::ArgFlagsTy &ArgFlags,
1471                                              CCState &State) {
1472  static const unsigned ArgRegs[] = {
1473    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1474    PPC::F8
1475  };
1476
1477  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1478
1479  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1480
1481  // If there is only one Floating-point register left we need to put both f64
1482  // values of a split ppc_fp128 value on the stack.
1483  if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
1484    State.AllocateReg(ArgRegs[RegNum]);
1485  }
1486
1487  // Always return false here, as this function only makes sure that the two f64
1488  // values a ppc_fp128 value is split into are both passed in registers or both
1489  // passed on the stack and does not actually allocate a register for the
1490  // current argument.
1491  return false;
1492}
1493
1494/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1495/// on Darwin.
1496static const unsigned *GetFPR() {
1497  static const unsigned FPR[] = {
1498    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1499    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1500  };
1501
1502  return FPR;
1503}
1504
1505/// CalculateStackSlotSize - Calculates the size reserved for this argument on
1506/// the stack.
1507static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
1508                                       unsigned PtrByteSize) {
1509  unsigned ArgSize = ArgVT.getSizeInBits()/8;
1510  if (Flags.isByVal())
1511    ArgSize = Flags.getByValSize();
1512  ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1513
1514  return ArgSize;
1515}
1516
1517SDValue
1518PPCTargetLowering::LowerFormalArguments(SDValue Chain,
1519                                        CallingConv::ID CallConv, bool isVarArg,
1520                                        const SmallVectorImpl<ISD::InputArg>
1521                                          &Ins,
1522                                        DebugLoc dl, SelectionDAG &DAG,
1523                                        SmallVectorImpl<SDValue> &InVals) {
1524  if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) {
1525    return LowerFormalArguments_SVR4(Chain, CallConv, isVarArg, Ins,
1526                                     dl, DAG, InVals);
1527  } else {
1528    return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
1529                                       dl, DAG, InVals);
1530  }
1531}
1532
1533SDValue
1534PPCTargetLowering::LowerFormalArguments_SVR4(
1535                                      SDValue Chain,
1536                                      CallingConv::ID CallConv, bool isVarArg,
1537                                      const SmallVectorImpl<ISD::InputArg>
1538                                        &Ins,
1539                                      DebugLoc dl, SelectionDAG &DAG,
1540                                      SmallVectorImpl<SDValue> &InVals) {
1541
1542  // 32-bit SVR4 ABI Stack Frame Layout:
1543  //              +-----------------------------------+
1544  //        +-->  |            Back chain             |
1545  //        |     +-----------------------------------+
1546  //        |     | Floating-point register save area |
1547  //        |     +-----------------------------------+
1548  //        |     |    General register save area     |
1549  //        |     +-----------------------------------+
1550  //        |     |          CR save word             |
1551  //        |     +-----------------------------------+
1552  //        |     |         VRSAVE save word          |
1553  //        |     +-----------------------------------+
1554  //        |     |         Alignment padding         |
1555  //        |     +-----------------------------------+
1556  //        |     |     Vector register save area     |
1557  //        |     +-----------------------------------+
1558  //        |     |       Local variable space        |
1559  //        |     +-----------------------------------+
1560  //        |     |        Parameter list area        |
1561  //        |     +-----------------------------------+
1562  //        |     |           LR save word            |
1563  //        |     +-----------------------------------+
1564  // SP-->  +---  |            Back chain             |
1565  //              +-----------------------------------+
1566  //
1567  // Specifications:
1568  //   System V Application Binary Interface PowerPC Processor Supplement
1569  //   AltiVec Technology Programming Interface Manual
1570
1571  MachineFunction &MF = DAG.getMachineFunction();
1572  MachineFrameInfo *MFI = MF.getFrameInfo();
1573
1574  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1575  // Potential tail calls could cause overwriting of argument stack slots.
1576  bool isImmutable = !(PerformTailCallOpt && (CallConv==CallingConv::Fast));
1577  unsigned PtrByteSize = 4;
1578
1579  // Assign locations to all of the incoming arguments.
1580  SmallVector<CCValAssign, 16> ArgLocs;
1581  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
1582                 *DAG.getContext());
1583
1584  // Reserve space for the linkage area on the stack.
1585  CCInfo.AllocateStack(PPCFrameInfo::getLinkageSize(false, false), PtrByteSize);
1586
1587  CCInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4);
1588
1589  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1590    CCValAssign &VA = ArgLocs[i];
1591
1592    // Arguments stored in registers.
1593    if (VA.isRegLoc()) {
1594      TargetRegisterClass *RC;
1595      EVT ValVT = VA.getValVT();
1596
1597      switch (ValVT.getSimpleVT().SimpleTy) {
1598        default:
1599          llvm_unreachable("ValVT not supported by formal arguments Lowering");
1600        case MVT::i32:
1601          RC = PPC::GPRCRegisterClass;
1602          break;
1603        case MVT::f32:
1604          RC = PPC::F4RCRegisterClass;
1605          break;
1606        case MVT::f64:
1607          RC = PPC::F8RCRegisterClass;
1608          break;
1609        case MVT::v16i8:
1610        case MVT::v8i16:
1611        case MVT::v4i32:
1612        case MVT::v4f32:
1613          RC = PPC::VRRCRegisterClass;
1614          break;
1615      }
1616
1617      // Transform the arguments stored in physical registers into virtual ones.
1618      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1619      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT);
1620
1621      InVals.push_back(ArgValue);
1622    } else {
1623      // Argument stored in memory.
1624      assert(VA.isMemLoc());
1625
1626      unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
1627      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
1628                                      isImmutable);
1629
1630      // Create load nodes to retrieve arguments from the stack.
1631      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1632      InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, NULL, 0));
1633    }
1634  }
1635
1636  // Assign locations to all of the incoming aggregate by value arguments.
1637  // Aggregates passed by value are stored in the local variable space of the
1638  // caller's stack frame, right above the parameter list area.
1639  SmallVector<CCValAssign, 16> ByValArgLocs;
1640  CCState CCByValInfo(CallConv, isVarArg, getTargetMachine(),
1641                      ByValArgLocs, *DAG.getContext());
1642
1643  // Reserve stack space for the allocations in CCInfo.
1644  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
1645
1646  CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4_ByVal);
1647
1648  // Area that is at least reserved in the caller of this function.
1649  unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
1650
1651  // Set the size that is at least reserved in caller of this function.  Tail
1652  // call optimized function's reserved stack space needs to be aligned so that
1653  // taking the difference between two stack areas will result in an aligned
1654  // stack.
1655  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1656
1657  MinReservedArea =
1658    std::max(MinReservedArea,
1659             PPCFrameInfo::getMinCallFrameSize(false, false));
1660
1661  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
1662    getStackAlignment();
1663  unsigned AlignMask = TargetAlign-1;
1664  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
1665
1666  FI->setMinReservedArea(MinReservedArea);
1667
1668  SmallVector<SDValue, 8> MemOps;
1669
1670  // If the function takes variable number of arguments, make a frame index for
1671  // the start of the first vararg value... for expansion of llvm.va_start.
1672  if (isVarArg) {
1673    static const unsigned GPArgRegs[] = {
1674      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1675      PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1676    };
1677    const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
1678
1679    static const unsigned FPArgRegs[] = {
1680      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1681      PPC::F8
1682    };
1683    const unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
1684
1685    VarArgsNumGPR = CCInfo.getFirstUnallocated(GPArgRegs, NumGPArgRegs);
1686    VarArgsNumFPR = CCInfo.getFirstUnallocated(FPArgRegs, NumFPArgRegs);
1687
1688    // Make room for NumGPArgRegs and NumFPArgRegs.
1689    int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
1690                NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8;
1691
1692    VarArgsStackOffset = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
1693                                                CCInfo.getNextStackOffset());
1694
1695    VarArgsFrameIndex = MFI->CreateStackObject(Depth, 8);
1696    SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1697
1698    // The fixed integer arguments of a variadic function are
1699    // stored to the VarArgsFrameIndex on the stack.
1700    unsigned GPRIndex = 0;
1701    for (; GPRIndex != VarArgsNumGPR; ++GPRIndex) {
1702      SDValue Val = DAG.getRegister(GPArgRegs[GPRIndex], PtrVT);
1703      SDValue Store = DAG.getStore(Chain, dl, Val, FIN, NULL, 0);
1704      MemOps.push_back(Store);
1705      // Increment the address by four for the next argument to store
1706      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1707      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1708    }
1709
1710    // If this function is vararg, store any remaining integer argument regs
1711    // to their spots on the stack so that they may be loaded by deferencing the
1712    // result of va_next.
1713    for (; GPRIndex != NumGPArgRegs; ++GPRIndex) {
1714      unsigned VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
1715
1716      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1717      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
1718      MemOps.push_back(Store);
1719      // Increment the address by four for the next argument to store
1720      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1721      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1722    }
1723
1724    // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
1725    // is set.
1726
1727    // The double arguments are stored to the VarArgsFrameIndex
1728    // on the stack.
1729    unsigned FPRIndex = 0;
1730    for (FPRIndex = 0; FPRIndex != VarArgsNumFPR; ++FPRIndex) {
1731      SDValue Val = DAG.getRegister(FPArgRegs[FPRIndex], MVT::f64);
1732      SDValue Store = DAG.getStore(Chain, dl, Val, FIN, NULL, 0);
1733      MemOps.push_back(Store);
1734      // Increment the address by eight for the next argument to store
1735      SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
1736                                         PtrVT);
1737      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1738    }
1739
1740    for (; FPRIndex != NumFPArgRegs; ++FPRIndex) {
1741      unsigned VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
1742
1743      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
1744      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
1745      MemOps.push_back(Store);
1746      // Increment the address by eight for the next argument to store
1747      SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
1748                                         PtrVT);
1749      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1750    }
1751  }
1752
1753  if (!MemOps.empty())
1754    Chain = DAG.getNode(ISD::TokenFactor, dl,
1755                        MVT::Other, &MemOps[0], MemOps.size());
1756
1757  return Chain;
1758}
1759
1760SDValue
1761PPCTargetLowering::LowerFormalArguments_Darwin(
1762                                      SDValue Chain,
1763                                      CallingConv::ID CallConv, bool isVarArg,
1764                                      const SmallVectorImpl<ISD::InputArg>
1765                                        &Ins,
1766                                      DebugLoc dl, SelectionDAG &DAG,
1767                                      SmallVectorImpl<SDValue> &InVals) {
1768  // TODO: add description of PPC stack frame format, or at least some docs.
1769  //
1770  MachineFunction &MF = DAG.getMachineFunction();
1771  MachineFrameInfo *MFI = MF.getFrameInfo();
1772
1773  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1774  bool isPPC64 = PtrVT == MVT::i64;
1775  // Potential tail calls could cause overwriting of argument stack slots.
1776  bool isImmutable = !(PerformTailCallOpt && (CallConv==CallingConv::Fast));
1777  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1778
1779  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, true);
1780  // Area that is at least reserved in caller of this function.
1781  unsigned MinReservedArea = ArgOffset;
1782
1783  static const unsigned GPR_32[] = {           // 32-bit registers.
1784    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1785    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1786  };
1787  static const unsigned GPR_64[] = {           // 64-bit registers.
1788    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1789    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1790  };
1791
1792  static const unsigned *FPR = GetFPR();
1793
1794  static const unsigned VR[] = {
1795    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1796    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1797  };
1798
1799  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
1800  const unsigned Num_FPR_Regs = 13;
1801  const unsigned Num_VR_Regs  = array_lengthof( VR);
1802
1803  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1804
1805  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1806
1807  // In 32-bit non-varargs functions, the stack space for vectors is after the
1808  // stack space for non-vectors.  We do not use this space unless we have
1809  // too many vectors to fit in registers, something that only occurs in
1810  // constructed examples:), but we have to walk the arglist to figure
1811  // that out...for the pathological case, compute VecArgOffset as the
1812  // start of the vector parameter area.  Computing VecArgOffset is the
1813  // entire point of the following loop.
1814  unsigned VecArgOffset = ArgOffset;
1815  if (!isVarArg && !isPPC64) {
1816    for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
1817         ++ArgNo) {
1818      EVT ObjectVT = Ins[ArgNo].VT;
1819      unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1820      ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
1821
1822      if (Flags.isByVal()) {
1823        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
1824        ObjSize = Flags.getByValSize();
1825        unsigned ArgSize =
1826                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1827        VecArgOffset += ArgSize;
1828        continue;
1829      }
1830
1831      switch(ObjectVT.getSimpleVT().SimpleTy) {
1832      default: llvm_unreachable("Unhandled argument type!");
1833      case MVT::i32:
1834      case MVT::f32:
1835        VecArgOffset += isPPC64 ? 8 : 4;
1836        break;
1837      case MVT::i64:  // PPC64
1838      case MVT::f64:
1839        VecArgOffset += 8;
1840        break;
1841      case MVT::v4f32:
1842      case MVT::v4i32:
1843      case MVT::v8i16:
1844      case MVT::v16i8:
1845        // Nothing to do, we're only looking at Nonvector args here.
1846        break;
1847      }
1848    }
1849  }
1850  // We've found where the vector parameter area in memory is.  Skip the
1851  // first 12 parameters; these don't use that memory.
1852  VecArgOffset = ((VecArgOffset+15)/16)*16;
1853  VecArgOffset += 12*16;
1854
1855  // Add DAG nodes to load the arguments or copy them out of registers.  On
1856  // entry to a function on PPC, the arguments start after the linkage area,
1857  // although the first ones are often in registers.
1858
1859  SmallVector<SDValue, 8> MemOps;
1860  unsigned nAltivecParamsAtEnd = 0;
1861  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
1862    SDValue ArgVal;
1863    bool needsLoad = false;
1864    EVT ObjectVT = Ins[ArgNo].VT;
1865    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1866    unsigned ArgSize = ObjSize;
1867    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
1868
1869    unsigned CurArgOffset = ArgOffset;
1870
1871    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
1872    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
1873        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
1874      if (isVarArg || isPPC64) {
1875        MinReservedArea = ((MinReservedArea+15)/16)*16;
1876        MinReservedArea += CalculateStackSlotSize(ObjectVT,
1877                                                  Flags,
1878                                                  PtrByteSize);
1879      } else  nAltivecParamsAtEnd++;
1880    } else
1881      // Calculate min reserved area.
1882      MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
1883                                                Flags,
1884                                                PtrByteSize);
1885
1886    // FIXME the codegen can be much improved in some cases.
1887    // We do not have to keep everything in memory.
1888    if (Flags.isByVal()) {
1889      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
1890      ObjSize = Flags.getByValSize();
1891      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1892      // Objects of size 1 and 2 are right justified, everything else is
1893      // left justified.  This means the memory address is adjusted forwards.
1894      if (ObjSize==1 || ObjSize==2) {
1895        CurArgOffset = CurArgOffset + (4 - ObjSize);
1896      }
1897      // The value of the object is its address.
1898      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset);
1899      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1900      InVals.push_back(FIN);
1901      if (ObjSize==1 || ObjSize==2) {
1902        if (GPR_idx != Num_GPR_Regs) {
1903          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1904          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1905          SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
1906                               NULL, 0, ObjSize==1 ? MVT::i8 : MVT::i16 );
1907          MemOps.push_back(Store);
1908          ++GPR_idx;
1909        }
1910
1911        ArgOffset += PtrByteSize;
1912
1913        continue;
1914      }
1915      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
1916        // Store whatever pieces of the object are in registers
1917        // to memory.  ArgVal will be address of the beginning of
1918        // the object.
1919        if (GPR_idx != Num_GPR_Regs) {
1920          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1921          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset);
1922          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1923          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1924          SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
1925          MemOps.push_back(Store);
1926          ++GPR_idx;
1927          ArgOffset += PtrByteSize;
1928        } else {
1929          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
1930          break;
1931        }
1932      }
1933      continue;
1934    }
1935
1936    switch (ObjectVT.getSimpleVT().SimpleTy) {
1937    default: llvm_unreachable("Unhandled argument type!");
1938    case MVT::i32:
1939      if (!isPPC64) {
1940        if (GPR_idx != Num_GPR_Regs) {
1941          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1942          ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
1943          ++GPR_idx;
1944        } else {
1945          needsLoad = true;
1946          ArgSize = PtrByteSize;
1947        }
1948        // All int arguments reserve stack space in the Darwin ABI.
1949        ArgOffset += PtrByteSize;
1950        break;
1951      }
1952      // FALLTHROUGH
1953    case MVT::i64:  // PPC64
1954      if (GPR_idx != Num_GPR_Regs) {
1955        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
1956        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1957
1958        if (ObjectVT == MVT::i32) {
1959          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
1960          // value to MVT::i64 and then truncate to the correct register size.
1961          if (Flags.isSExt())
1962            ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
1963                                 DAG.getValueType(ObjectVT));
1964          else if (Flags.isZExt())
1965            ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
1966                                 DAG.getValueType(ObjectVT));
1967
1968          ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
1969        }
1970
1971        ++GPR_idx;
1972      } else {
1973        needsLoad = true;
1974        ArgSize = PtrByteSize;
1975      }
1976      // All int arguments reserve stack space in the Darwin ABI.
1977      ArgOffset += 8;
1978      break;
1979
1980    case MVT::f32:
1981    case MVT::f64:
1982      // Every 4 bytes of argument space consumes one of the GPRs available for
1983      // argument passing.
1984      if (GPR_idx != Num_GPR_Regs) {
1985        ++GPR_idx;
1986        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1987          ++GPR_idx;
1988      }
1989      if (FPR_idx != Num_FPR_Regs) {
1990        unsigned VReg;
1991
1992        if (ObjectVT == MVT::f32)
1993          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
1994        else
1995          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
1996
1997        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
1998        ++FPR_idx;
1999      } else {
2000        needsLoad = true;
2001      }
2002
2003      // All FP arguments reserve stack space in the Darwin ABI.
2004      ArgOffset += isPPC64 ? 8 : ObjSize;
2005      break;
2006    case MVT::v4f32:
2007    case MVT::v4i32:
2008    case MVT::v8i16:
2009    case MVT::v16i8:
2010      // Note that vector arguments in registers don't reserve stack space,
2011      // except in varargs functions.
2012      if (VR_idx != Num_VR_Regs) {
2013        unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
2014        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2015        if (isVarArg) {
2016          while ((ArgOffset % 16) != 0) {
2017            ArgOffset += PtrByteSize;
2018            if (GPR_idx != Num_GPR_Regs)
2019              GPR_idx++;
2020          }
2021          ArgOffset += 16;
2022          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
2023        }
2024        ++VR_idx;
2025      } else {
2026        if (!isVarArg && !isPPC64) {
2027          // Vectors go after all the nonvectors.
2028          CurArgOffset = VecArgOffset;
2029          VecArgOffset += 16;
2030        } else {
2031          // Vectors are aligned.
2032          ArgOffset = ((ArgOffset+15)/16)*16;
2033          CurArgOffset = ArgOffset;
2034          ArgOffset += 16;
2035        }
2036        needsLoad = true;
2037      }
2038      break;
2039    }
2040
2041    // We need to load the argument to a virtual register if we determined above
2042    // that we ran out of physical registers of the appropriate type.
2043    if (needsLoad) {
2044      int FI = MFI->CreateFixedObject(ObjSize,
2045                                      CurArgOffset + (ArgSize - ObjSize),
2046                                      isImmutable);
2047      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2048      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, NULL, 0);
2049    }
2050
2051    InVals.push_back(ArgVal);
2052  }
2053
2054  // Set the size that is at least reserved in caller of this function.  Tail
2055  // call optimized function's reserved stack space needs to be aligned so that
2056  // taking the difference between two stack areas will result in an aligned
2057  // stack.
2058  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2059  // Add the Altivec parameters at the end, if needed.
2060  if (nAltivecParamsAtEnd) {
2061    MinReservedArea = ((MinReservedArea+15)/16)*16;
2062    MinReservedArea += 16*nAltivecParamsAtEnd;
2063  }
2064  MinReservedArea =
2065    std::max(MinReservedArea,
2066             PPCFrameInfo::getMinCallFrameSize(isPPC64, true));
2067  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
2068    getStackAlignment();
2069  unsigned AlignMask = TargetAlign-1;
2070  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
2071  FI->setMinReservedArea(MinReservedArea);
2072
2073  // If the function takes variable number of arguments, make a frame index for
2074  // the start of the first vararg value... for expansion of llvm.va_start.
2075  if (isVarArg) {
2076    int Depth = ArgOffset;
2077
2078    VarArgsFrameIndex = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2079                                               Depth);
2080    SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
2081
2082    // If this function is vararg, store any remaining integer argument regs
2083    // to their spots on the stack so that they may be loaded by deferencing the
2084    // result of va_next.
2085    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
2086      unsigned VReg;
2087
2088      if (isPPC64)
2089        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2090      else
2091        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2092
2093      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2094      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
2095      MemOps.push_back(Store);
2096      // Increment the address by four for the next argument to store
2097      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2098      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2099    }
2100  }
2101
2102  if (!MemOps.empty())
2103    Chain = DAG.getNode(ISD::TokenFactor, dl,
2104                        MVT::Other, &MemOps[0], MemOps.size());
2105
2106  return Chain;
2107}
2108
2109/// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus
2110/// linkage area for the Darwin ABI.
2111static unsigned
2112CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
2113                                     bool isPPC64,
2114                                     bool isVarArg,
2115                                     unsigned CC,
2116                                     const SmallVectorImpl<ISD::OutputArg>
2117                                       &Outs,
2118                                     unsigned &nAltivecParamsAtEnd) {
2119  // Count how many bytes are to be pushed on the stack, including the linkage
2120  // area, and parameter passing area.  We start with 24/48 bytes, which is
2121  // prereserved space for [SP][CR][LR][3 x unused].
2122  unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, true);
2123  unsigned NumOps = Outs.size();
2124  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2125
2126  // Add up all the space actually used.
2127  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
2128  // they all go in registers, but we must reserve stack space for them for
2129  // possible use by the caller.  In varargs or 64-bit calls, parameters are
2130  // assigned stack space in order, with padding so Altivec parameters are
2131  // 16-byte aligned.
2132  nAltivecParamsAtEnd = 0;
2133  for (unsigned i = 0; i != NumOps; ++i) {
2134    SDValue Arg = Outs[i].Val;
2135    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2136    EVT ArgVT = Arg.getValueType();
2137    // Varargs Altivec parameters are padded to a 16 byte boundary.
2138    if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
2139        ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
2140      if (!isVarArg && !isPPC64) {
2141        // Non-varargs Altivec parameters go after all the non-Altivec
2142        // parameters; handle those later so we know how much padding we need.
2143        nAltivecParamsAtEnd++;
2144        continue;
2145      }
2146      // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
2147      NumBytes = ((NumBytes+15)/16)*16;
2148    }
2149    NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
2150  }
2151
2152   // Allow for Altivec parameters at the end, if needed.
2153  if (nAltivecParamsAtEnd) {
2154    NumBytes = ((NumBytes+15)/16)*16;
2155    NumBytes += 16*nAltivecParamsAtEnd;
2156  }
2157
2158  // The prolog code of the callee may store up to 8 GPR argument registers to
2159  // the stack, allowing va_start to index over them in memory if its varargs.
2160  // Because we cannot tell if this is needed on the caller side, we have to
2161  // conservatively assume that it is needed.  As such, make sure we have at
2162  // least enough stack space for the caller to store the 8 GPRs.
2163  NumBytes = std::max(NumBytes,
2164                      PPCFrameInfo::getMinCallFrameSize(isPPC64, true));
2165
2166  // Tail call needs the stack to be aligned.
2167  if (CC==CallingConv::Fast && PerformTailCallOpt) {
2168    unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
2169      getStackAlignment();
2170    unsigned AlignMask = TargetAlign-1;
2171    NumBytes = (NumBytes + AlignMask) & ~AlignMask;
2172  }
2173
2174  return NumBytes;
2175}
2176
2177/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
2178/// adjusted to accomodate the arguments for the tailcall.
2179static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool IsTailCall,
2180                                   unsigned ParamSize) {
2181
2182  if (!IsTailCall) return 0;
2183
2184  PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
2185  unsigned CallerMinReservedArea = FI->getMinReservedArea();
2186  int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
2187  // Remember only if the new adjustement is bigger.
2188  if (SPDiff < FI->getTailCallSPDelta())
2189    FI->setTailCallSPDelta(SPDiff);
2190
2191  return SPDiff;
2192}
2193
2194/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2195/// for tail call optimization. Targets which want to do tail call
2196/// optimization should implement this function.
2197bool
2198PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2199                                                     CallingConv::ID CalleeCC,
2200                                                     bool isVarArg,
2201                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2202                                                     SelectionDAG& DAG) const {
2203  // Variable argument functions are not supported.
2204  if (isVarArg)
2205    return false;
2206
2207  MachineFunction &MF = DAG.getMachineFunction();
2208  CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
2209  if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
2210    // Functions containing by val parameters are not supported.
2211    for (unsigned i = 0; i != Ins.size(); i++) {
2212       ISD::ArgFlagsTy Flags = Ins[i].Flags;
2213       if (Flags.isByVal()) return false;
2214    }
2215
2216    // Non PIC/GOT  tail calls are supported.
2217    if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
2218      return true;
2219
2220    // At the moment we can only do local tail calls (in same module, hidden
2221    // or protected) if we are generating PIC.
2222    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2223      return G->getGlobal()->hasHiddenVisibility()
2224          || G->getGlobal()->hasProtectedVisibility();
2225  }
2226
2227  return false;
2228}
2229
2230/// isCallCompatibleAddress - Return the immediate to use if the specified
2231/// 32-bit value is representable in the immediate field of a BxA instruction.
2232static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
2233  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2234  if (!C) return 0;
2235
2236  int Addr = C->getZExtValue();
2237  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
2238      (Addr << 6 >> 6) != Addr)
2239    return 0;  // Top 6 bits have to be sext of immediate.
2240
2241  return DAG.getConstant((int)C->getZExtValue() >> 2,
2242                         DAG.getTargetLoweringInfo().getPointerTy()).getNode();
2243}
2244
2245namespace {
2246
2247struct TailCallArgumentInfo {
2248  SDValue Arg;
2249  SDValue FrameIdxOp;
2250  int       FrameIdx;
2251
2252  TailCallArgumentInfo() : FrameIdx(0) {}
2253};
2254
2255}
2256
2257/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
2258static void
2259StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
2260                                           SDValue Chain,
2261                   const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
2262                   SmallVector<SDValue, 8> &MemOpChains,
2263                   DebugLoc dl) {
2264  for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
2265    SDValue Arg = TailCallArgs[i].Arg;
2266    SDValue FIN = TailCallArgs[i].FrameIdxOp;
2267    int FI = TailCallArgs[i].FrameIdx;
2268    // Store relative to framepointer.
2269    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
2270                                       PseudoSourceValue::getFixedStack(FI),
2271                                       0));
2272  }
2273}
2274
2275/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
2276/// the appropriate stack slot for the tail call optimized function call.
2277static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
2278                                               MachineFunction &MF,
2279                                               SDValue Chain,
2280                                               SDValue OldRetAddr,
2281                                               SDValue OldFP,
2282                                               int SPDiff,
2283                                               bool isPPC64,
2284                                               bool isDarwinABI,
2285                                               DebugLoc dl) {
2286  if (SPDiff) {
2287    // Calculate the new stack slot for the return address.
2288    int SlotSize = isPPC64 ? 8 : 4;
2289    int NewRetAddrLoc = SPDiff + PPCFrameInfo::getReturnSaveOffset(isPPC64,
2290                                                                   isDarwinABI);
2291    int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
2292                                                          NewRetAddrLoc);
2293    EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2294    SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
2295    Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
2296                         PseudoSourceValue::getFixedStack(NewRetAddr), 0);
2297
2298    // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
2299    // slot as the FP is never overwritten.
2300    if (isDarwinABI) {
2301      int NewFPLoc =
2302        SPDiff + PPCFrameInfo::getFramePointerSaveOffset(isPPC64, isDarwinABI);
2303      int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc);
2304      SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
2305      Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
2306                           PseudoSourceValue::getFixedStack(NewFPIdx), 0);
2307    }
2308  }
2309  return Chain;
2310}
2311
2312/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
2313/// the position of the argument.
2314static void
2315CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
2316                         SDValue Arg, int SPDiff, unsigned ArgOffset,
2317                      SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
2318  int Offset = ArgOffset + SPDiff;
2319  uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
2320  int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
2321  EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2322  SDValue FIN = DAG.getFrameIndex(FI, VT);
2323  TailCallArgumentInfo Info;
2324  Info.Arg = Arg;
2325  Info.FrameIdxOp = FIN;
2326  Info.FrameIdx = FI;
2327  TailCallArguments.push_back(Info);
2328}
2329
2330/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
2331/// stack slot. Returns the chain as result and the loaded frame pointers in
2332/// LROpOut/FPOpout. Used when tail calling.
2333SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
2334                                                        int SPDiff,
2335                                                        SDValue Chain,
2336                                                        SDValue &LROpOut,
2337                                                        SDValue &FPOpOut,
2338                                                        bool isDarwinABI,
2339                                                        DebugLoc dl) {
2340  if (SPDiff) {
2341    // Load the LR and FP stack slot for later adjusting.
2342    EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
2343    LROpOut = getReturnAddrFrameIndex(DAG);
2344    LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, NULL, 0);
2345    Chain = SDValue(LROpOut.getNode(), 1);
2346
2347    // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
2348    // slot as the FP is never overwritten.
2349    if (isDarwinABI) {
2350      FPOpOut = getFramePointerFrameIndex(DAG);
2351      FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, NULL, 0);
2352      Chain = SDValue(FPOpOut.getNode(), 1);
2353    }
2354  }
2355  return Chain;
2356}
2357
2358/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
2359/// by "Src" to address "Dst" of size "Size".  Alignment information is
2360/// specified by the specific parameter attribute. The copy will be passed as
2361/// a byval function parameter.
2362/// Sometimes what we are copying is the end of a larger object, the part that
2363/// does not fit in registers.
2364static SDValue
2365CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
2366                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
2367                          DebugLoc dl) {
2368  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
2369  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
2370                       false, NULL, 0, NULL, 0);
2371}
2372
2373/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
2374/// tail calls.
2375static void
2376LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
2377                 SDValue Arg, SDValue PtrOff, int SPDiff,
2378                 unsigned ArgOffset, bool isPPC64, bool isTailCall,
2379                 bool isVector, SmallVector<SDValue, 8> &MemOpChains,
2380                 SmallVector<TailCallArgumentInfo, 8>& TailCallArguments,
2381                 DebugLoc dl) {
2382  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2383  if (!isTailCall) {
2384    if (isVector) {
2385      SDValue StackPtr;
2386      if (isPPC64)
2387        StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2388      else
2389        StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2390      PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
2391                           DAG.getConstant(ArgOffset, PtrVT));
2392    }
2393    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0));
2394  // Calculate and remember argument location.
2395  } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
2396                                  TailCallArguments);
2397}
2398
2399static
2400void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
2401                     DebugLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
2402                     SDValue LROp, SDValue FPOp, bool isDarwinABI,
2403                     SmallVector<TailCallArgumentInfo, 8> &TailCallArguments) {
2404  MachineFunction &MF = DAG.getMachineFunction();
2405
2406  // Emit a sequence of copyto/copyfrom virtual registers for arguments that
2407  // might overwrite each other in case of tail call optimization.
2408  SmallVector<SDValue, 8> MemOpChains2;
2409  // Do not flag preceeding copytoreg stuff together with the following stuff.
2410  InFlag = SDValue();
2411  StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
2412                                    MemOpChains2, dl);
2413  if (!MemOpChains2.empty())
2414    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2415                        &MemOpChains2[0], MemOpChains2.size());
2416
2417  // Store the return address to the appropriate stack slot.
2418  Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
2419                                        isPPC64, isDarwinABI, dl);
2420
2421  // Emit callseq_end just before tailcall node.
2422  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2423                             DAG.getIntPtrConstant(0, true), InFlag);
2424  InFlag = Chain.getValue(1);
2425}
2426
2427static
2428unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
2429                     SDValue &Chain, DebugLoc dl, int SPDiff, bool isTailCall,
2430                     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
2431                     SmallVector<SDValue, 8> &Ops, std::vector<EVT> &NodeTys,
2432                     bool isSVR4ABI) {
2433  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2434  NodeTys.push_back(MVT::Other);   // Returns a chain
2435  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
2436
2437  unsigned CallOpc = isSVR4ABI ? PPCISD::CALL_SVR4 : PPCISD::CALL_Darwin;
2438
2439  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2440  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2441  // node so that legalize doesn't hack it.
2442  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2443    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
2444  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
2445    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
2446  else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
2447    // If this is an absolute destination address, use the munged value.
2448    Callee = SDValue(Dest, 0);
2449  else {
2450    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
2451    // to do the call, we can't use PPCISD::CALL.
2452    SDValue MTCTROps[] = {Chain, Callee, InFlag};
2453    Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps,
2454                        2 + (InFlag.getNode() != 0));
2455    InFlag = Chain.getValue(1);
2456
2457    NodeTys.clear();
2458    NodeTys.push_back(MVT::Other);
2459    NodeTys.push_back(MVT::Flag);
2460    Ops.push_back(Chain);
2461    CallOpc = isSVR4ABI ? PPCISD::BCTRL_SVR4 : PPCISD::BCTRL_Darwin;
2462    Callee.setNode(0);
2463    // Add CTR register as callee so a bctr can be emitted later.
2464    if (isTailCall)
2465      Ops.push_back(DAG.getRegister(PPC::CTR, PtrVT));
2466  }
2467
2468  // If this is a direct call, pass the chain and the callee.
2469  if (Callee.getNode()) {
2470    Ops.push_back(Chain);
2471    Ops.push_back(Callee);
2472  }
2473  // If this is a tail call add stack pointer delta.
2474  if (isTailCall)
2475    Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
2476
2477  // Add argument registers to the end of the list so that they are known live
2478  // into the call.
2479  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2480    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2481                                  RegsToPass[i].second.getValueType()));
2482
2483  return CallOpc;
2484}
2485
2486SDValue
2487PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2488                                   CallingConv::ID CallConv, bool isVarArg,
2489                                   const SmallVectorImpl<ISD::InputArg> &Ins,
2490                                   DebugLoc dl, SelectionDAG &DAG,
2491                                   SmallVectorImpl<SDValue> &InVals) {
2492
2493  SmallVector<CCValAssign, 16> RVLocs;
2494  CCState CCRetInfo(CallConv, isVarArg, getTargetMachine(),
2495                    RVLocs, *DAG.getContext());
2496  CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
2497
2498  // Copy all of the result registers out of their specified physreg.
2499  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2500    CCValAssign &VA = RVLocs[i];
2501    EVT VT = VA.getValVT();
2502    assert(VA.isRegLoc() && "Can only return in registers!");
2503    Chain = DAG.getCopyFromReg(Chain, dl,
2504                               VA.getLocReg(), VT, InFlag).getValue(1);
2505    InVals.push_back(Chain.getValue(0));
2506    InFlag = Chain.getValue(2);
2507  }
2508
2509  return Chain;
2510}
2511
2512SDValue
2513PPCTargetLowering::FinishCall(CallingConv::ID CallConv, DebugLoc dl,
2514                              bool isTailCall, bool isVarArg,
2515                              SelectionDAG &DAG,
2516                              SmallVector<std::pair<unsigned, SDValue>, 8>
2517                                &RegsToPass,
2518                              SDValue InFlag, SDValue Chain,
2519                              SDValue &Callee,
2520                              int SPDiff, unsigned NumBytes,
2521                              const SmallVectorImpl<ISD::InputArg> &Ins,
2522                              SmallVectorImpl<SDValue> &InVals) {
2523  std::vector<EVT> NodeTys;
2524  SmallVector<SDValue, 8> Ops;
2525  unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
2526                                 isTailCall, RegsToPass, Ops, NodeTys,
2527                                 PPCSubTarget.isSVR4ABI());
2528
2529  // When performing tail call optimization the callee pops its arguments off
2530  // the stack. Account for this here so these bytes can be pushed back on in
2531  // PPCRegisterInfo::eliminateCallFramePseudoInstr.
2532  int BytesCalleePops =
2533    (CallConv==CallingConv::Fast && PerformTailCallOpt) ? NumBytes : 0;
2534
2535  if (InFlag.getNode())
2536    Ops.push_back(InFlag);
2537
2538  // Emit tail call.
2539  if (isTailCall) {
2540    // If this is the first return lowered for this function, add the regs
2541    // to the liveout set for the function.
2542    if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
2543      SmallVector<CCValAssign, 16> RVLocs;
2544      CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
2545                     *DAG.getContext());
2546      CCInfo.AnalyzeCallResult(Ins, RetCC_PPC);
2547      for (unsigned i = 0; i != RVLocs.size(); ++i)
2548        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2549    }
2550
2551    assert(((Callee.getOpcode() == ISD::Register &&
2552             cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
2553            Callee.getOpcode() == ISD::TargetExternalSymbol ||
2554            Callee.getOpcode() == ISD::TargetGlobalAddress ||
2555            isa<ConstantSDNode>(Callee)) &&
2556    "Expecting an global address, external symbol, absolute value or register");
2557
2558    return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size());
2559  }
2560
2561  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
2562  InFlag = Chain.getValue(1);
2563
2564  // Add a NOP immediately after the branch instruction when using the 64-bit
2565  // SVR4 ABI. At link time, if caller and callee are in a different module and
2566  // thus have a different TOC, the call will be replaced with a call to a stub
2567  // function which saves the current TOC, loads the TOC of the callee and
2568  // branches to the callee. The NOP will be replaced with a load instruction
2569  // which restores the TOC of the caller from the TOC save slot of the current
2570  // stack frame. If caller and callee belong to the same module (and have the
2571  // same TOC), the NOP will remain unchanged.
2572  if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) {
2573    // Insert NOP.
2574    InFlag = DAG.getNode(PPCISD::NOP, dl, MVT::Flag, InFlag);
2575  }
2576
2577  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2578                             DAG.getIntPtrConstant(BytesCalleePops, true),
2579                             InFlag);
2580  if (!Ins.empty())
2581    InFlag = Chain.getValue(1);
2582
2583  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2584                         Ins, dl, DAG, InVals);
2585}
2586
2587SDValue
2588PPCTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2589                             CallingConv::ID CallConv, bool isVarArg,
2590                             bool isTailCall,
2591                             const SmallVectorImpl<ISD::OutputArg> &Outs,
2592                             const SmallVectorImpl<ISD::InputArg> &Ins,
2593                             DebugLoc dl, SelectionDAG &DAG,
2594                             SmallVectorImpl<SDValue> &InVals) {
2595  if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) {
2596    return LowerCall_SVR4(Chain, Callee, CallConv, isVarArg,
2597                          isTailCall, Outs, Ins,
2598                          dl, DAG, InVals);
2599  } else {
2600    return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
2601                            isTailCall, Outs, Ins,
2602                            dl, DAG, InVals);
2603  }
2604}
2605
2606SDValue
2607PPCTargetLowering::LowerCall_SVR4(SDValue Chain, SDValue Callee,
2608                                  CallingConv::ID CallConv, bool isVarArg,
2609                                  bool isTailCall,
2610                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
2611                                  const SmallVectorImpl<ISD::InputArg> &Ins,
2612                                  DebugLoc dl, SelectionDAG &DAG,
2613                                  SmallVectorImpl<SDValue> &InVals) {
2614  // See PPCTargetLowering::LowerFormalArguments_SVR4() for a description
2615  // of the 32-bit SVR4 ABI stack frame layout.
2616
2617  assert((!isTailCall ||
2618          (CallConv == CallingConv::Fast && PerformTailCallOpt)) &&
2619         "IsEligibleForTailCallOptimization missed a case!");
2620
2621  assert((CallConv == CallingConv::C ||
2622          CallConv == CallingConv::Fast) && "Unknown calling convention!");
2623
2624  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2625  unsigned PtrByteSize = 4;
2626
2627  MachineFunction &MF = DAG.getMachineFunction();
2628
2629  // Mark this function as potentially containing a function that contains a
2630  // tail call. As a consequence the frame pointer will be used for dynamicalloc
2631  // and restoring the callers stack pointer in this functions epilog. This is
2632  // done because by tail calling the called function might overwrite the value
2633  // in this function's (MF) stack pointer stack slot 0(SP).
2634  if (PerformTailCallOpt && CallConv==CallingConv::Fast)
2635    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2636
2637  // Count how many bytes are to be pushed on the stack, including the linkage
2638  // area, parameter list area and the part of the local variable space which
2639  // contains copies of aggregates which are passed by value.
2640
2641  // Assign locations to all of the outgoing arguments.
2642  SmallVector<CCValAssign, 16> ArgLocs;
2643  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
2644                 ArgLocs, *DAG.getContext());
2645
2646  // Reserve space for the linkage area on the stack.
2647  CCInfo.AllocateStack(PPCFrameInfo::getLinkageSize(false, false), PtrByteSize);
2648
2649  if (isVarArg) {
2650    // Handle fixed and variable vector arguments differently.
2651    // Fixed vector arguments go into registers as long as registers are
2652    // available. Variable vector arguments always go into memory.
2653    unsigned NumArgs = Outs.size();
2654
2655    for (unsigned i = 0; i != NumArgs; ++i) {
2656      EVT ArgVT = Outs[i].Val.getValueType();
2657      ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2658      bool Result;
2659
2660      if (Outs[i].IsFixed) {
2661        Result = CC_PPC_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
2662                             CCInfo);
2663      } else {
2664        Result = CC_PPC_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
2665                                    ArgFlags, CCInfo);
2666      }
2667
2668      if (Result) {
2669#ifndef NDEBUG
2670        errs() << "Call operand #" << i << " has unhandled type "
2671             << ArgVT.getEVTString() << "\n";
2672#endif
2673        llvm_unreachable(0);
2674      }
2675    }
2676  } else {
2677    // All arguments are treated the same.
2678    CCInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4);
2679  }
2680
2681  // Assign locations to all of the outgoing aggregate by value arguments.
2682  SmallVector<CCValAssign, 16> ByValArgLocs;
2683  CCState CCByValInfo(CallConv, isVarArg, getTargetMachine(), ByValArgLocs,
2684                      *DAG.getContext());
2685
2686  // Reserve stack space for the allocations in CCInfo.
2687  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
2688
2689  CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4_ByVal);
2690
2691  // Size of the linkage area, parameter list area and the part of the local
2692  // space variable where copies of aggregates which are passed by value are
2693  // stored.
2694  unsigned NumBytes = CCByValInfo.getNextStackOffset();
2695
2696  // Calculate by how many bytes the stack has to be adjusted in case of tail
2697  // call optimization.
2698  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2699
2700  // Adjust the stack pointer for the new arguments...
2701  // These operations are automatically eliminated by the prolog/epilog pass
2702  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2703  SDValue CallSeqStart = Chain;
2704
2705  // Load the return address and frame pointer so it can be moved somewhere else
2706  // later.
2707  SDValue LROp, FPOp;
2708  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
2709                                       dl);
2710
2711  // Set up a copy of the stack pointer for use loading and storing any
2712  // arguments that may not fit in the registers available for argument
2713  // passing.
2714  SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2715
2716  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2717  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
2718  SmallVector<SDValue, 8> MemOpChains;
2719
2720  // Walk the register/memloc assignments, inserting copies/loads.
2721  for (unsigned i = 0, j = 0, e = ArgLocs.size();
2722       i != e;
2723       ++i) {
2724    CCValAssign &VA = ArgLocs[i];
2725    SDValue Arg = Outs[i].Val;
2726    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2727
2728    if (Flags.isByVal()) {
2729      // Argument is an aggregate which is passed by value, thus we need to
2730      // create a copy of it in the local variable space of the current stack
2731      // frame (which is the stack frame of the caller) and pass the address of
2732      // this copy to the callee.
2733      assert((j < ByValArgLocs.size()) && "Index out of bounds!");
2734      CCValAssign &ByValVA = ByValArgLocs[j++];
2735      assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
2736
2737      // Memory reserved in the local variable space of the callers stack frame.
2738      unsigned LocMemOffset = ByValVA.getLocMemOffset();
2739
2740      SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2741      PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2742
2743      // Create a copy of the argument in the local area of the current
2744      // stack frame.
2745      SDValue MemcpyCall =
2746        CreateCopyOfByValArgument(Arg, PtrOff,
2747                                  CallSeqStart.getNode()->getOperand(0),
2748                                  Flags, DAG, dl);
2749
2750      // This must go outside the CALLSEQ_START..END.
2751      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2752                           CallSeqStart.getNode()->getOperand(1));
2753      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
2754                             NewCallSeqStart.getNode());
2755      Chain = CallSeqStart = NewCallSeqStart;
2756
2757      // Pass the address of the aggregate copy on the stack either in a
2758      // physical register or in the parameter list area of the current stack
2759      // frame to the callee.
2760      Arg = PtrOff;
2761    }
2762
2763    if (VA.isRegLoc()) {
2764      // Put argument in a physical register.
2765      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2766    } else {
2767      // Put argument in the parameter list area of the current stack frame.
2768      assert(VA.isMemLoc());
2769      unsigned LocMemOffset = VA.getLocMemOffset();
2770
2771      if (!isTailCall) {
2772        SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2773        PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2774
2775        MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
2776                              PseudoSourceValue::getStack(), LocMemOffset));
2777      } else {
2778        // Calculate and remember argument location.
2779        CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
2780                                 TailCallArguments);
2781      }
2782    }
2783  }
2784
2785  if (!MemOpChains.empty())
2786    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2787                        &MemOpChains[0], MemOpChains.size());
2788
2789  // Build a sequence of copy-to-reg nodes chained together with token chain
2790  // and flag operands which copy the outgoing args into the appropriate regs.
2791  SDValue InFlag;
2792  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2793    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2794                             RegsToPass[i].second, InFlag);
2795    InFlag = Chain.getValue(1);
2796  }
2797
2798  // Set CR6 to true if this is a vararg call.
2799  if (isVarArg) {
2800    SDValue SetCR(DAG.getMachineNode(PPC::CRSET, dl, MVT::i32), 0);
2801    Chain = DAG.getCopyToReg(Chain, dl, PPC::CR1EQ, SetCR, InFlag);
2802    InFlag = Chain.getValue(1);
2803  }
2804
2805  if (isTailCall) {
2806    PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
2807                    false, TailCallArguments);
2808  }
2809
2810  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
2811                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
2812                    Ins, InVals);
2813}
2814
2815SDValue
2816PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
2817                                    CallingConv::ID CallConv, bool isVarArg,
2818                                    bool isTailCall,
2819                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2820                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2821                                    DebugLoc dl, SelectionDAG &DAG,
2822                                    SmallVectorImpl<SDValue> &InVals) {
2823
2824  unsigned NumOps  = Outs.size();
2825
2826  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2827  bool isPPC64 = PtrVT == MVT::i64;
2828  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2829
2830  MachineFunction &MF = DAG.getMachineFunction();
2831
2832  // Mark this function as potentially containing a function that contains a
2833  // tail call. As a consequence the frame pointer will be used for dynamicalloc
2834  // and restoring the callers stack pointer in this functions epilog. This is
2835  // done because by tail calling the called function might overwrite the value
2836  // in this function's (MF) stack pointer stack slot 0(SP).
2837  if (PerformTailCallOpt && CallConv==CallingConv::Fast)
2838    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2839
2840  unsigned nAltivecParamsAtEnd = 0;
2841
2842  // Count how many bytes are to be pushed on the stack, including the linkage
2843  // area, and parameter passing area.  We start with 24/48 bytes, which is
2844  // prereserved space for [SP][CR][LR][3 x unused].
2845  unsigned NumBytes =
2846    CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv,
2847                                         Outs,
2848                                         nAltivecParamsAtEnd);
2849
2850  // Calculate by how many bytes the stack has to be adjusted in case of tail
2851  // call optimization.
2852  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2853
2854  // To protect arguments on the stack from being clobbered in a tail call,
2855  // force all the loads to happen before doing any other lowering.
2856  if (isTailCall)
2857    Chain = DAG.getStackArgumentTokenFactor(Chain);
2858
2859  // Adjust the stack pointer for the new arguments...
2860  // These operations are automatically eliminated by the prolog/epilog pass
2861  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2862  SDValue CallSeqStart = Chain;
2863
2864  // Load the return address and frame pointer so it can be move somewhere else
2865  // later.
2866  SDValue LROp, FPOp;
2867  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
2868                                       dl);
2869
2870  // Set up a copy of the stack pointer for use loading and storing any
2871  // arguments that may not fit in the registers available for argument
2872  // passing.
2873  SDValue StackPtr;
2874  if (isPPC64)
2875    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2876  else
2877    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2878
2879  // Figure out which arguments are going to go in registers, and which in
2880  // memory.  Also, if this is a vararg function, floating point operations
2881  // must be stored to our stack, and loaded into integer regs as well, if
2882  // any integer regs are available for argument passing.
2883  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, true);
2884  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
2885
2886  static const unsigned GPR_32[] = {           // 32-bit registers.
2887    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2888    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2889  };
2890  static const unsigned GPR_64[] = {           // 64-bit registers.
2891    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
2892    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
2893  };
2894  static const unsigned *FPR = GetFPR();
2895
2896  static const unsigned VR[] = {
2897    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
2898    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
2899  };
2900  const unsigned NumGPRs = array_lengthof(GPR_32);
2901  const unsigned NumFPRs = 13;
2902  const unsigned NumVRs  = array_lengthof(VR);
2903
2904  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
2905
2906  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2907  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
2908
2909  SmallVector<SDValue, 8> MemOpChains;
2910  for (unsigned i = 0; i != NumOps; ++i) {
2911    SDValue Arg = Outs[i].Val;
2912    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2913
2914    // PtrOff will be used to store the current argument to the stack if a
2915    // register cannot be found for it.
2916    SDValue PtrOff;
2917
2918    PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
2919
2920    PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
2921
2922    // On PPC64, promote integers to 64-bit values.
2923    if (isPPC64 && Arg.getValueType() == MVT::i32) {
2924      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
2925      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
2926      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
2927    }
2928
2929    // FIXME memcpy is used way more than necessary.  Correctness first.
2930    if (Flags.isByVal()) {
2931      unsigned Size = Flags.getByValSize();
2932      if (Size==1 || Size==2) {
2933        // Very small objects are passed right-justified.
2934        // Everything else is passed left-justified.
2935        EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
2936        if (GPR_idx != NumGPRs) {
2937          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
2938                                          NULL, 0, VT);
2939          MemOpChains.push_back(Load.getValue(1));
2940          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2941
2942          ArgOffset += PtrByteSize;
2943        } else {
2944          SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
2945          SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
2946          SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
2947                                CallSeqStart.getNode()->getOperand(0),
2948                                Flags, DAG, dl);
2949          // This must go outside the CALLSEQ_START..END.
2950          SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2951                               CallSeqStart.getNode()->getOperand(1));
2952          DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
2953                                 NewCallSeqStart.getNode());
2954          Chain = CallSeqStart = NewCallSeqStart;
2955          ArgOffset += PtrByteSize;
2956        }
2957        continue;
2958      }
2959      // Copy entire object into memory.  There are cases where gcc-generated
2960      // code assumes it is there, even if it could be put entirely into
2961      // registers.  (This is not what the doc says.)
2962      SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
2963                            CallSeqStart.getNode()->getOperand(0),
2964                            Flags, DAG, dl);
2965      // This must go outside the CALLSEQ_START..END.
2966      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2967                           CallSeqStart.getNode()->getOperand(1));
2968      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode());
2969      Chain = CallSeqStart = NewCallSeqStart;
2970      // And copy the pieces of it that fit into registers.
2971      for (unsigned j=0; j<Size; j+=PtrByteSize) {
2972        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
2973        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
2974        if (GPR_idx != NumGPRs) {
2975          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, NULL, 0);
2976          MemOpChains.push_back(Load.getValue(1));
2977          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2978          ArgOffset += PtrByteSize;
2979        } else {
2980          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
2981          break;
2982        }
2983      }
2984      continue;
2985    }
2986
2987    switch (Arg.getValueType().getSimpleVT().SimpleTy) {
2988    default: llvm_unreachable("Unexpected ValueType for argument!");
2989    case MVT::i32:
2990    case MVT::i64:
2991      if (GPR_idx != NumGPRs) {
2992        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
2993      } else {
2994        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2995                         isPPC64, isTailCall, false, MemOpChains,
2996                         TailCallArguments, dl);
2997      }
2998      ArgOffset += PtrByteSize;
2999      break;
3000    case MVT::f32:
3001    case MVT::f64:
3002      if (FPR_idx != NumFPRs) {
3003        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
3004
3005        if (isVarArg) {
3006          SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0);
3007          MemOpChains.push_back(Store);
3008
3009          // Float varargs are always shadowed in available integer registers
3010          if (GPR_idx != NumGPRs) {
3011            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, NULL, 0);
3012            MemOpChains.push_back(Load.getValue(1));
3013            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3014          }
3015          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
3016            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
3017            PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
3018            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, NULL, 0);
3019            MemOpChains.push_back(Load.getValue(1));
3020            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3021          }
3022        } else {
3023          // If we have any FPRs remaining, we may also have GPRs remaining.
3024          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
3025          // GPRs.
3026          if (GPR_idx != NumGPRs)
3027            ++GPR_idx;
3028          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
3029              !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
3030            ++GPR_idx;
3031        }
3032      } else {
3033        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3034                         isPPC64, isTailCall, false, MemOpChains,
3035                         TailCallArguments, dl);
3036      }
3037      if (isPPC64)
3038        ArgOffset += 8;
3039      else
3040        ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
3041      break;
3042    case MVT::v4f32:
3043    case MVT::v4i32:
3044    case MVT::v8i16:
3045    case MVT::v16i8:
3046      if (isVarArg) {
3047        // These go aligned on the stack, or in the corresponding R registers
3048        // when within range.  The Darwin PPC ABI doc claims they also go in
3049        // V registers; in fact gcc does this only for arguments that are
3050        // prototyped, not for those that match the ...  We do it for all
3051        // arguments, seems to work.
3052        while (ArgOffset % 16 !=0) {
3053          ArgOffset += PtrByteSize;
3054          if (GPR_idx != NumGPRs)
3055            GPR_idx++;
3056        }
3057        // We could elide this store in the case where the object fits
3058        // entirely in R registers.  Maybe later.
3059        PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
3060                            DAG.getConstant(ArgOffset, PtrVT));
3061        SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0);
3062        MemOpChains.push_back(Store);
3063        if (VR_idx != NumVRs) {
3064          SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, NULL, 0);
3065          MemOpChains.push_back(Load.getValue(1));
3066          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
3067        }
3068        ArgOffset += 16;
3069        for (unsigned i=0; i<16; i+=PtrByteSize) {
3070          if (GPR_idx == NumGPRs)
3071            break;
3072          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
3073                                  DAG.getConstant(i, PtrVT));
3074          SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, NULL, 0);
3075          MemOpChains.push_back(Load.getValue(1));
3076          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3077        }
3078        break;
3079      }
3080
3081      // Non-varargs Altivec params generally go in registers, but have
3082      // stack space allocated at the end.
3083      if (VR_idx != NumVRs) {
3084        // Doesn't have GPR space allocated.
3085        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
3086      } else if (nAltivecParamsAtEnd==0) {
3087        // We are emitting Altivec params in order.
3088        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3089                         isPPC64, isTailCall, true, MemOpChains,
3090                         TailCallArguments, dl);
3091        ArgOffset += 16;
3092      }
3093      break;
3094    }
3095  }
3096  // If all Altivec parameters fit in registers, as they usually do,
3097  // they get stack space following the non-Altivec parameters.  We
3098  // don't track this here because nobody below needs it.
3099  // If there are more Altivec parameters than fit in registers emit
3100  // the stores here.
3101  if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
3102    unsigned j = 0;
3103    // Offset is aligned; skip 1st 12 params which go in V registers.
3104    ArgOffset = ((ArgOffset+15)/16)*16;
3105    ArgOffset += 12*16;
3106    for (unsigned i = 0; i != NumOps; ++i) {
3107      SDValue Arg = Outs[i].Val;
3108      EVT ArgType = Arg.getValueType();
3109      if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
3110          ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
3111        if (++j > NumVRs) {
3112          SDValue PtrOff;
3113          // We are emitting Altivec params in order.
3114          LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3115                           isPPC64, isTailCall, true, MemOpChains,
3116                           TailCallArguments, dl);
3117          ArgOffset += 16;
3118        }
3119      }
3120    }
3121  }
3122
3123  if (!MemOpChains.empty())
3124    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3125                        &MemOpChains[0], MemOpChains.size());
3126
3127  // Build a sequence of copy-to-reg nodes chained together with token chain
3128  // and flag operands which copy the outgoing args into the appropriate regs.
3129  SDValue InFlag;
3130  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3131    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3132                             RegsToPass[i].second, InFlag);
3133    InFlag = Chain.getValue(1);
3134  }
3135
3136  if (isTailCall) {
3137    PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
3138                    FPOp, true, TailCallArguments);
3139  }
3140
3141  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
3142                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
3143                    Ins, InVals);
3144}
3145
3146SDValue
3147PPCTargetLowering::LowerReturn(SDValue Chain,
3148                               CallingConv::ID CallConv, bool isVarArg,
3149                               const SmallVectorImpl<ISD::OutputArg> &Outs,
3150                               DebugLoc dl, SelectionDAG &DAG) {
3151
3152  SmallVector<CCValAssign, 16> RVLocs;
3153  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
3154                 RVLocs, *DAG.getContext());
3155  CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
3156
3157  // If this is the first return lowered for this function, add the regs to the
3158  // liveout set for the function.
3159  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
3160    for (unsigned i = 0; i != RVLocs.size(); ++i)
3161      DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
3162  }
3163
3164  SDValue Flag;
3165
3166  // Copy the result values into the output registers.
3167  for (unsigned i = 0; i != RVLocs.size(); ++i) {
3168    CCValAssign &VA = RVLocs[i];
3169    assert(VA.isRegLoc() && "Can only return in registers!");
3170    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3171                             Outs[i].Val, Flag);
3172    Flag = Chain.getValue(1);
3173  }
3174
3175  if (Flag.getNode())
3176    return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
3177  else
3178    return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain);
3179}
3180
3181SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
3182                                   const PPCSubtarget &Subtarget) {
3183  // When we pop the dynamic allocation we need to restore the SP link.
3184  DebugLoc dl = Op.getDebugLoc();
3185
3186  // Get the corect type for pointers.
3187  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3188
3189  // Construct the stack pointer operand.
3190  bool IsPPC64 = Subtarget.isPPC64();
3191  unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1;
3192  SDValue StackPtr = DAG.getRegister(SP, PtrVT);
3193
3194  // Get the operands for the STACKRESTORE.
3195  SDValue Chain = Op.getOperand(0);
3196  SDValue SaveSP = Op.getOperand(1);
3197
3198  // Load the old link SP.
3199  SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr, NULL, 0);
3200
3201  // Restore the stack pointer.
3202  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
3203
3204  // Store the old link SP.
3205  return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, NULL, 0);
3206}
3207
3208
3209
3210SDValue
3211PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
3212  MachineFunction &MF = DAG.getMachineFunction();
3213  bool IsPPC64 = PPCSubTarget.isPPC64();
3214  bool isDarwinABI = PPCSubTarget.isDarwinABI();
3215  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3216
3217  // Get current frame pointer save index.  The users of this index will be
3218  // primarily DYNALLOC instructions.
3219  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
3220  int RASI = FI->getReturnAddrSaveIndex();
3221
3222  // If the frame pointer save index hasn't been defined yet.
3223  if (!RASI) {
3224    // Find out what the fix offset of the frame pointer save area.
3225    int LROffset = PPCFrameInfo::getReturnSaveOffset(IsPPC64, isDarwinABI);
3226    // Allocate the frame index for frame pointer save area.
3227    RASI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, LROffset);
3228    // Save the result.
3229    FI->setReturnAddrSaveIndex(RASI);
3230  }
3231  return DAG.getFrameIndex(RASI, PtrVT);
3232}
3233
3234SDValue
3235PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
3236  MachineFunction &MF = DAG.getMachineFunction();
3237  bool IsPPC64 = PPCSubTarget.isPPC64();
3238  bool isDarwinABI = PPCSubTarget.isDarwinABI();
3239  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3240
3241  // Get current frame pointer save index.  The users of this index will be
3242  // primarily DYNALLOC instructions.
3243  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
3244  int FPSI = FI->getFramePointerSaveIndex();
3245
3246  // If the frame pointer save index hasn't been defined yet.
3247  if (!FPSI) {
3248    // Find out what the fix offset of the frame pointer save area.
3249    int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64,
3250                                                           isDarwinABI);
3251
3252    // Allocate the frame index for frame pointer save area.
3253    FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset);
3254    // Save the result.
3255    FI->setFramePointerSaveIndex(FPSI);
3256  }
3257  return DAG.getFrameIndex(FPSI, PtrVT);
3258}
3259
3260SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
3261                                         SelectionDAG &DAG,
3262                                         const PPCSubtarget &Subtarget) {
3263  // Get the inputs.
3264  SDValue Chain = Op.getOperand(0);
3265  SDValue Size  = Op.getOperand(1);
3266  DebugLoc dl = Op.getDebugLoc();
3267
3268  // Get the corect type for pointers.
3269  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3270  // Negate the size.
3271  SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
3272                                  DAG.getConstant(0, PtrVT), Size);
3273  // Construct a node for the frame pointer save index.
3274  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
3275  // Build a DYNALLOC node.
3276  SDValue Ops[3] = { Chain, NegSize, FPSIdx };
3277  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
3278  return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3);
3279}
3280
3281/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
3282/// possible.
3283SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) {
3284  // Not FP? Not a fsel.
3285  if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
3286      !Op.getOperand(2).getValueType().isFloatingPoint())
3287    return Op;
3288
3289  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3290
3291  // Cannot handle SETEQ/SETNE.
3292  if (CC == ISD::SETEQ || CC == ISD::SETNE) return Op;
3293
3294  EVT ResVT = Op.getValueType();
3295  EVT CmpVT = Op.getOperand(0).getValueType();
3296  SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3297  SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
3298  DebugLoc dl = Op.getDebugLoc();
3299
3300  // If the RHS of the comparison is a 0.0, we don't need to do the
3301  // subtraction at all.
3302  if (isFloatingPointZero(RHS))
3303    switch (CC) {
3304    default: break;       // SETUO etc aren't handled by fsel.
3305    case ISD::SETULT:
3306    case ISD::SETLT:
3307      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
3308    case ISD::SETOGE:
3309    case ISD::SETGE:
3310      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
3311        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
3312      return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
3313    case ISD::SETUGT:
3314    case ISD::SETGT:
3315      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
3316    case ISD::SETOLE:
3317    case ISD::SETLE:
3318      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
3319        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
3320      return DAG.getNode(PPCISD::FSEL, dl, ResVT,
3321                         DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
3322    }
3323
3324  SDValue Cmp;
3325  switch (CC) {
3326  default: break;       // SETUO etc aren't handled by fsel.
3327  case ISD::SETULT:
3328  case ISD::SETLT:
3329    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
3330    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3331      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3332      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
3333  case ISD::SETOGE:
3334  case ISD::SETGE:
3335    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
3336    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3337      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3338      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
3339  case ISD::SETUGT:
3340  case ISD::SETGT:
3341    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
3342    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3343      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3344      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
3345  case ISD::SETOLE:
3346  case ISD::SETLE:
3347    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
3348    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3349      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3350      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
3351  }
3352  return Op;
3353}
3354
3355// FIXME: Split this code up when LegalizeDAGTypes lands.
3356SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
3357                                           DebugLoc dl) {
3358  assert(Op.getOperand(0).getValueType().isFloatingPoint());
3359  SDValue Src = Op.getOperand(0);
3360  if (Src.getValueType() == MVT::f32)
3361    Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
3362
3363  SDValue Tmp;
3364  switch (Op.getValueType().getSimpleVT().SimpleTy) {
3365  default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
3366  case MVT::i32:
3367    Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
3368                                                         PPCISD::FCTIDZ,
3369                      dl, MVT::f64, Src);
3370    break;
3371  case MVT::i64:
3372    Tmp = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Src);
3373    break;
3374  }
3375
3376  // Convert the FP value to an int value through memory.
3377  SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64);
3378
3379  // Emit a store to the stack slot.
3380  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, NULL, 0);
3381
3382  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
3383  // add in a bias.
3384  if (Op.getValueType() == MVT::i32)
3385    FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
3386                        DAG.getConstant(4, FIPtr.getValueType()));
3387  return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, NULL, 0);
3388}
3389
3390SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3391  DebugLoc dl = Op.getDebugLoc();
3392  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
3393  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
3394    return SDValue();
3395
3396  if (Op.getOperand(0).getValueType() == MVT::i64) {
3397    SDValue Bits = DAG.getNode(ISD::BIT_CONVERT, dl,
3398                               MVT::f64, Op.getOperand(0));
3399    SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits);
3400    if (Op.getValueType() == MVT::f32)
3401      FP = DAG.getNode(ISD::FP_ROUND, dl,
3402                       MVT::f32, FP, DAG.getIntPtrConstant(0));
3403    return FP;
3404  }
3405
3406  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
3407         "Unhandled SINT_TO_FP type in custom expander!");
3408  // Since we only generate this in 64-bit mode, we can take advantage of
3409  // 64-bit registers.  In particular, sign extend the input value into the
3410  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
3411  // then lfd it and fcfid it.
3412  MachineFunction &MF = DAG.getMachineFunction();
3413  MachineFrameInfo *FrameInfo = MF.getFrameInfo();
3414  int FrameIdx = FrameInfo->CreateStackObject(8, 8);
3415  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3416  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
3417
3418  SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32,
3419                                Op.getOperand(0));
3420
3421  // STD the extended value into the stack slot.
3422  MachineMemOperand *MMO =
3423    MF.getMachineMemOperand(PseudoSourceValue::getFixedStack(FrameIdx),
3424                            MachineMemOperand::MOStore, 0, 8, 8);
3425  SDValue Ops[] = { DAG.getEntryNode(), Ext64, FIdx };
3426  SDValue Store =
3427    DAG.getMemIntrinsicNode(PPCISD::STD_32, dl, DAG.getVTList(MVT::Other),
3428                            Ops, 4, MVT::i64, MMO);
3429  // Load the value as a double.
3430  SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, NULL, 0);
3431
3432  // FCFID it and return it.
3433  SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld);
3434  if (Op.getValueType() == MVT::f32)
3435    FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
3436  return FP;
3437}
3438
3439SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
3440  DebugLoc dl = Op.getDebugLoc();
3441  /*
3442   The rounding mode is in bits 30:31 of FPSR, and has the following
3443   settings:
3444     00 Round to nearest
3445     01 Round to 0
3446     10 Round to +inf
3447     11 Round to -inf
3448
3449  FLT_ROUNDS, on the other hand, expects the following:
3450    -1 Undefined
3451     0 Round to 0
3452     1 Round to nearest
3453     2 Round to +inf
3454     3 Round to -inf
3455
3456  To perform the conversion, we do:
3457    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
3458  */
3459
3460  MachineFunction &MF = DAG.getMachineFunction();
3461  EVT VT = Op.getValueType();
3462  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3463  std::vector<EVT> NodeTys;
3464  SDValue MFFSreg, InFlag;
3465
3466  // Save FP Control Word to register
3467  NodeTys.push_back(MVT::f64);    // return register
3468  NodeTys.push_back(MVT::Flag);   // unused in this context
3469  SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
3470
3471  // Save FP register to stack slot
3472  int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
3473  SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
3474  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
3475                                 StackSlot, NULL, 0);
3476
3477  // Load FP Control Word from low 32 bits of stack slot.
3478  SDValue Four = DAG.getConstant(4, PtrVT);
3479  SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
3480  SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, NULL, 0);
3481
3482  // Transform as necessary
3483  SDValue CWD1 =
3484    DAG.getNode(ISD::AND, dl, MVT::i32,
3485                CWD, DAG.getConstant(3, MVT::i32));
3486  SDValue CWD2 =
3487    DAG.getNode(ISD::SRL, dl, MVT::i32,
3488                DAG.getNode(ISD::AND, dl, MVT::i32,
3489                            DAG.getNode(ISD::XOR, dl, MVT::i32,
3490                                        CWD, DAG.getConstant(3, MVT::i32)),
3491                            DAG.getConstant(3, MVT::i32)),
3492                DAG.getConstant(1, MVT::i32));
3493
3494  SDValue RetVal =
3495    DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
3496
3497  return DAG.getNode((VT.getSizeInBits() < 16 ?
3498                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
3499}
3500
3501SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) {
3502  EVT VT = Op.getValueType();
3503  unsigned BitWidth = VT.getSizeInBits();
3504  DebugLoc dl = Op.getDebugLoc();
3505  assert(Op.getNumOperands() == 3 &&
3506         VT == Op.getOperand(1).getValueType() &&
3507         "Unexpected SHL!");
3508
3509  // Expand into a bunch of logical ops.  Note that these ops
3510  // depend on the PPC behavior for oversized shift amounts.
3511  SDValue Lo = Op.getOperand(0);
3512  SDValue Hi = Op.getOperand(1);
3513  SDValue Amt = Op.getOperand(2);
3514  EVT AmtVT = Amt.getValueType();
3515
3516  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3517                             DAG.getConstant(BitWidth, AmtVT), Amt);
3518  SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
3519  SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
3520  SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
3521  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3522                             DAG.getConstant(-BitWidth, AmtVT));
3523  SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
3524  SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3525  SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
3526  SDValue OutOps[] = { OutLo, OutHi };
3527  return DAG.getMergeValues(OutOps, 2, dl);
3528}
3529
3530SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) {
3531  EVT VT = Op.getValueType();
3532  DebugLoc dl = Op.getDebugLoc();
3533  unsigned BitWidth = VT.getSizeInBits();
3534  assert(Op.getNumOperands() == 3 &&
3535         VT == Op.getOperand(1).getValueType() &&
3536         "Unexpected SRL!");
3537
3538  // Expand into a bunch of logical ops.  Note that these ops
3539  // depend on the PPC behavior for oversized shift amounts.
3540  SDValue Lo = Op.getOperand(0);
3541  SDValue Hi = Op.getOperand(1);
3542  SDValue Amt = Op.getOperand(2);
3543  EVT AmtVT = Amt.getValueType();
3544
3545  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3546                             DAG.getConstant(BitWidth, AmtVT), Amt);
3547  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3548  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3549  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3550  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3551                             DAG.getConstant(-BitWidth, AmtVT));
3552  SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
3553  SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3554  SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
3555  SDValue OutOps[] = { OutLo, OutHi };
3556  return DAG.getMergeValues(OutOps, 2, dl);
3557}
3558
3559SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) {
3560  DebugLoc dl = Op.getDebugLoc();
3561  EVT VT = Op.getValueType();
3562  unsigned BitWidth = VT.getSizeInBits();
3563  assert(Op.getNumOperands() == 3 &&
3564         VT == Op.getOperand(1).getValueType() &&
3565         "Unexpected SRA!");
3566
3567  // Expand into a bunch of logical ops, followed by a select_cc.
3568  SDValue Lo = Op.getOperand(0);
3569  SDValue Hi = Op.getOperand(1);
3570  SDValue Amt = Op.getOperand(2);
3571  EVT AmtVT = Amt.getValueType();
3572
3573  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3574                             DAG.getConstant(BitWidth, AmtVT), Amt);
3575  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3576  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3577  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3578  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3579                             DAG.getConstant(-BitWidth, AmtVT));
3580  SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
3581  SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
3582  SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
3583                                  Tmp4, Tmp6, ISD::SETLE);
3584  SDValue OutOps[] = { OutLo, OutHi };
3585  return DAG.getMergeValues(OutOps, 2, dl);
3586}
3587
3588//===----------------------------------------------------------------------===//
3589// Vector related lowering.
3590//
3591
3592/// BuildSplatI - Build a canonical splati of Val with an element size of
3593/// SplatSize.  Cast the result to VT.
3594static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
3595                             SelectionDAG &DAG, DebugLoc dl) {
3596  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
3597
3598  static const EVT VTys[] = { // canonical VT to use for each size.
3599    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
3600  };
3601
3602  EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
3603
3604  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
3605  if (Val == -1)
3606    SplatSize = 1;
3607
3608  EVT CanonicalVT = VTys[SplatSize-1];
3609
3610  // Build a canonical splat for this value.
3611  SDValue Elt = DAG.getConstant(Val, MVT::i32);
3612  SmallVector<SDValue, 8> Ops;
3613  Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
3614  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT,
3615                              &Ops[0], Ops.size());
3616  return DAG.getNode(ISD::BIT_CONVERT, dl, ReqVT, Res);
3617}
3618
3619/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
3620/// specified intrinsic ID.
3621static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
3622                                SelectionDAG &DAG, DebugLoc dl,
3623                                EVT DestVT = MVT::Other) {
3624  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
3625  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3626                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
3627}
3628
3629/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
3630/// specified intrinsic ID.
3631static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
3632                                SDValue Op2, SelectionDAG &DAG,
3633                                DebugLoc dl, EVT DestVT = MVT::Other) {
3634  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
3635  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3636                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
3637}
3638
3639
3640/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
3641/// amount.  The result has the specified value type.
3642static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
3643                             EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3644  // Force LHS/RHS to be the right type.
3645  LHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, LHS);
3646  RHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, RHS);
3647
3648  int Ops[16];
3649  for (unsigned i = 0; i != 16; ++i)
3650    Ops[i] = i + Amt;
3651  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
3652  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, T);
3653}
3654
3655// If this is a case we can't handle, return null and let the default
3656// expansion code take care of it.  If we CAN select this case, and if it
3657// selects to a single instruction, return Op.  Otherwise, if we can codegen
3658// this case more efficiently than a constant pool load, lower it to the
3659// sequence of ops that should be used.
3660SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
3661  DebugLoc dl = Op.getDebugLoc();
3662  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
3663  assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
3664
3665  // Check if this is a splat of a constant value.
3666  APInt APSplatBits, APSplatUndef;
3667  unsigned SplatBitSize;
3668  bool HasAnyUndefs;
3669  if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
3670                             HasAnyUndefs) || SplatBitSize > 32)
3671    return SDValue();
3672
3673  unsigned SplatBits = APSplatBits.getZExtValue();
3674  unsigned SplatUndef = APSplatUndef.getZExtValue();
3675  unsigned SplatSize = SplatBitSize / 8;
3676
3677  // First, handle single instruction cases.
3678
3679  // All zeros?
3680  if (SplatBits == 0) {
3681    // Canonicalize all zero vectors to be v4i32.
3682    if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
3683      SDValue Z = DAG.getConstant(0, MVT::i32);
3684      Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
3685      Op = DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Z);
3686    }
3687    return Op;
3688  }
3689
3690  // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
3691  int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
3692                    (32-SplatBitSize));
3693  if (SextVal >= -16 && SextVal <= 15)
3694    return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
3695
3696
3697  // Two instruction sequences.
3698
3699  // If this value is in the range [-32,30] and is even, use:
3700  //    tmp = VSPLTI[bhw], result = add tmp, tmp
3701  if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
3702    SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG, dl);
3703    Res = DAG.getNode(ISD::ADD, dl, Res.getValueType(), Res, Res);
3704    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3705  }
3706
3707  // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
3708  // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
3709  // for fneg/fabs.
3710  if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
3711    // Make -1 and vspltisw -1:
3712    SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
3713
3714    // Make the VSLW intrinsic, computing 0x8000_0000.
3715    SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
3716                                   OnesV, DAG, dl);
3717
3718    // xor by OnesV to invert it.
3719    Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
3720    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3721  }
3722
3723  // Check to see if this is a wide variety of vsplti*, binop self cases.
3724  static const signed char SplatCsts[] = {
3725    -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
3726    -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
3727  };
3728
3729  for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
3730    // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
3731    // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
3732    int i = SplatCsts[idx];
3733
3734    // Figure out what shift amount will be used by altivec if shifted by i in
3735    // this splat size.
3736    unsigned TypeShiftAmt = i & (SplatBitSize-1);
3737
3738    // vsplti + shl self.
3739    if (SextVal == (i << (int)TypeShiftAmt)) {
3740      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3741      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3742        Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
3743        Intrinsic::ppc_altivec_vslw
3744      };
3745      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3746      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3747    }
3748
3749    // vsplti + srl self.
3750    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3751      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3752      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3753        Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
3754        Intrinsic::ppc_altivec_vsrw
3755      };
3756      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3757      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3758    }
3759
3760    // vsplti + sra self.
3761    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3762      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3763      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3764        Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
3765        Intrinsic::ppc_altivec_vsraw
3766      };
3767      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3768      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3769    }
3770
3771    // vsplti + rol self.
3772    if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
3773                         ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
3774      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3775      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3776        Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
3777        Intrinsic::ppc_altivec_vrlw
3778      };
3779      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3780      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3781    }
3782
3783    // t = vsplti c, result = vsldoi t, t, 1
3784    if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
3785      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3786      return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
3787    }
3788    // t = vsplti c, result = vsldoi t, t, 2
3789    if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
3790      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3791      return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
3792    }
3793    // t = vsplti c, result = vsldoi t, t, 3
3794    if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
3795      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3796      return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
3797    }
3798  }
3799
3800  // Three instruction sequences.
3801
3802  // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
3803  if (SextVal >= 0 && SextVal <= 31) {
3804    SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG, dl);
3805    SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
3806    LHS = DAG.getNode(ISD::SUB, dl, LHS.getValueType(), LHS, RHS);
3807    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), LHS);
3808  }
3809  // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
3810  if (SextVal >= -31 && SextVal <= 0) {
3811    SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG, dl);
3812    SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
3813    LHS = DAG.getNode(ISD::ADD, dl, LHS.getValueType(), LHS, RHS);
3814    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), LHS);
3815  }
3816
3817  return SDValue();
3818}
3819
3820/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
3821/// the specified operations to build the shuffle.
3822static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
3823                                      SDValue RHS, SelectionDAG &DAG,
3824                                      DebugLoc dl) {
3825  unsigned OpNum = (PFEntry >> 26) & 0x0F;
3826  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
3827  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
3828
3829  enum {
3830    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
3831    OP_VMRGHW,
3832    OP_VMRGLW,
3833    OP_VSPLTISW0,
3834    OP_VSPLTISW1,
3835    OP_VSPLTISW2,
3836    OP_VSPLTISW3,
3837    OP_VSLDOI4,
3838    OP_VSLDOI8,
3839    OP_VSLDOI12
3840  };
3841
3842  if (OpNum == OP_COPY) {
3843    if (LHSID == (1*9+2)*9+3) return LHS;
3844    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
3845    return RHS;
3846  }
3847
3848  SDValue OpLHS, OpRHS;
3849  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
3850  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
3851
3852  int ShufIdxs[16];
3853  switch (OpNum) {
3854  default: llvm_unreachable("Unknown i32 permute!");
3855  case OP_VMRGHW:
3856    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
3857    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
3858    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
3859    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
3860    break;
3861  case OP_VMRGLW:
3862    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
3863    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
3864    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
3865    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
3866    break;
3867  case OP_VSPLTISW0:
3868    for (unsigned i = 0; i != 16; ++i)
3869      ShufIdxs[i] = (i&3)+0;
3870    break;
3871  case OP_VSPLTISW1:
3872    for (unsigned i = 0; i != 16; ++i)
3873      ShufIdxs[i] = (i&3)+4;
3874    break;
3875  case OP_VSPLTISW2:
3876    for (unsigned i = 0; i != 16; ++i)
3877      ShufIdxs[i] = (i&3)+8;
3878    break;
3879  case OP_VSPLTISW3:
3880    for (unsigned i = 0; i != 16; ++i)
3881      ShufIdxs[i] = (i&3)+12;
3882    break;
3883  case OP_VSLDOI4:
3884    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
3885  case OP_VSLDOI8:
3886    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
3887  case OP_VSLDOI12:
3888    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
3889  }
3890  EVT VT = OpLHS.getValueType();
3891  OpLHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OpLHS);
3892  OpRHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OpRHS);
3893  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
3894  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, T);
3895}
3896
3897/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
3898/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
3899/// return the code it can be lowered into.  Worst case, it can always be
3900/// lowered into a vperm.
3901SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
3902                                               SelectionDAG &DAG) {
3903  DebugLoc dl = Op.getDebugLoc();
3904  SDValue V1 = Op.getOperand(0);
3905  SDValue V2 = Op.getOperand(1);
3906  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
3907  EVT VT = Op.getValueType();
3908
3909  // Cases that are handled by instructions that take permute immediates
3910  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
3911  // selected by the instruction selector.
3912  if (V2.getOpcode() == ISD::UNDEF) {
3913    if (PPC::isSplatShuffleMask(SVOp, 1) ||
3914        PPC::isSplatShuffleMask(SVOp, 2) ||
3915        PPC::isSplatShuffleMask(SVOp, 4) ||
3916        PPC::isVPKUWUMShuffleMask(SVOp, true) ||
3917        PPC::isVPKUHUMShuffleMask(SVOp, true) ||
3918        PPC::isVSLDOIShuffleMask(SVOp, true) != -1 ||
3919        PPC::isVMRGLShuffleMask(SVOp, 1, true) ||
3920        PPC::isVMRGLShuffleMask(SVOp, 2, true) ||
3921        PPC::isVMRGLShuffleMask(SVOp, 4, true) ||
3922        PPC::isVMRGHShuffleMask(SVOp, 1, true) ||
3923        PPC::isVMRGHShuffleMask(SVOp, 2, true) ||
3924        PPC::isVMRGHShuffleMask(SVOp, 4, true)) {
3925      return Op;
3926    }
3927  }
3928
3929  // Altivec has a variety of "shuffle immediates" that take two vector inputs
3930  // and produce a fixed permutation.  If any of these match, do not lower to
3931  // VPERM.
3932  if (PPC::isVPKUWUMShuffleMask(SVOp, false) ||
3933      PPC::isVPKUHUMShuffleMask(SVOp, false) ||
3934      PPC::isVSLDOIShuffleMask(SVOp, false) != -1 ||
3935      PPC::isVMRGLShuffleMask(SVOp, 1, false) ||
3936      PPC::isVMRGLShuffleMask(SVOp, 2, false) ||
3937      PPC::isVMRGLShuffleMask(SVOp, 4, false) ||
3938      PPC::isVMRGHShuffleMask(SVOp, 1, false) ||
3939      PPC::isVMRGHShuffleMask(SVOp, 2, false) ||
3940      PPC::isVMRGHShuffleMask(SVOp, 4, false))
3941    return Op;
3942
3943  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
3944  // perfect shuffle table to emit an optimal matching sequence.
3945  SmallVector<int, 16> PermMask;
3946  SVOp->getMask(PermMask);
3947
3948  unsigned PFIndexes[4];
3949  bool isFourElementShuffle = true;
3950  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
3951    unsigned EltNo = 8;   // Start out undef.
3952    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
3953      if (PermMask[i*4+j] < 0)
3954        continue;   // Undef, ignore it.
3955
3956      unsigned ByteSource = PermMask[i*4+j];
3957      if ((ByteSource & 3) != j) {
3958        isFourElementShuffle = false;
3959        break;
3960      }
3961
3962      if (EltNo == 8) {
3963        EltNo = ByteSource/4;
3964      } else if (EltNo != ByteSource/4) {
3965        isFourElementShuffle = false;
3966        break;
3967      }
3968    }
3969    PFIndexes[i] = EltNo;
3970  }
3971
3972  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
3973  // perfect shuffle vector to determine if it is cost effective to do this as
3974  // discrete instructions, or whether we should use a vperm.
3975  if (isFourElementShuffle) {
3976    // Compute the index in the perfect shuffle table.
3977    unsigned PFTableIndex =
3978      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
3979
3980    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
3981    unsigned Cost  = (PFEntry >> 30);
3982
3983    // Determining when to avoid vperm is tricky.  Many things affect the cost
3984    // of vperm, particularly how many times the perm mask needs to be computed.
3985    // For example, if the perm mask can be hoisted out of a loop or is already
3986    // used (perhaps because there are multiple permutes with the same shuffle
3987    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
3988    // the loop requires an extra register.
3989    //
3990    // As a compromise, we only emit discrete instructions if the shuffle can be
3991    // generated in 3 or fewer operations.  When we have loop information
3992    // available, if this block is within a loop, we should avoid using vperm
3993    // for 3-operation perms and use a constant pool load instead.
3994    if (Cost < 3)
3995      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
3996  }
3997
3998  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
3999  // vector that will get spilled to the constant pool.
4000  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
4001
4002  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
4003  // that it is in input element units, not in bytes.  Convert now.
4004  EVT EltVT = V1.getValueType().getVectorElementType();
4005  unsigned BytesPerElement = EltVT.getSizeInBits()/8;
4006
4007  SmallVector<SDValue, 16> ResultMask;
4008  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
4009    unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
4010
4011    for (unsigned j = 0; j != BytesPerElement; ++j)
4012      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
4013                                           MVT::i32));
4014  }
4015
4016  SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
4017                                    &ResultMask[0], ResultMask.size());
4018  return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask);
4019}
4020
4021/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
4022/// altivec comparison.  If it is, return true and fill in Opc/isDot with
4023/// information about the intrinsic.
4024static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
4025                                  bool &isDot) {
4026  unsigned IntrinsicID =
4027    cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
4028  CompareOpc = -1;
4029  isDot = false;
4030  switch (IntrinsicID) {
4031  default: return false;
4032    // Comparison predicates.
4033  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
4034  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
4035  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
4036  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
4037  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
4038  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
4039  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
4040  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
4041  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
4042  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
4043  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
4044  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
4045  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
4046
4047    // Normal Comparisons.
4048  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
4049  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
4050  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
4051  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
4052  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
4053  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
4054  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
4055  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
4056  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
4057  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
4058  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
4059  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
4060  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
4061  }
4062  return true;
4063}
4064
4065/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
4066/// lower, do it, otherwise return null.
4067SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4068                                                     SelectionDAG &DAG) {
4069  // If this is a lowered altivec predicate compare, CompareOpc is set to the
4070  // opcode number of the comparison.
4071  DebugLoc dl = Op.getDebugLoc();
4072  int CompareOpc;
4073  bool isDot;
4074  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
4075    return SDValue();    // Don't custom lower most intrinsics.
4076
4077  // If this is a non-dot comparison, make the VCMP node and we are done.
4078  if (!isDot) {
4079    SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
4080                                Op.getOperand(1), Op.getOperand(2),
4081                                DAG.getConstant(CompareOpc, MVT::i32));
4082    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Tmp);
4083  }
4084
4085  // Create the PPCISD altivec 'dot' comparison node.
4086  SDValue Ops[] = {
4087    Op.getOperand(2),  // LHS
4088    Op.getOperand(3),  // RHS
4089    DAG.getConstant(CompareOpc, MVT::i32)
4090  };
4091  std::vector<EVT> VTs;
4092  VTs.push_back(Op.getOperand(2).getValueType());
4093  VTs.push_back(MVT::Flag);
4094  SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
4095
4096  // Now that we have the comparison, emit a copy from the CR to a GPR.
4097  // This is flagged to the above dot comparison.
4098  SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32,
4099                                DAG.getRegister(PPC::CR6, MVT::i32),
4100                                CompNode.getValue(1));
4101
4102  // Unpack the result based on how the target uses it.
4103  unsigned BitNo;   // Bit # of CR6.
4104  bool InvertBit;   // Invert result?
4105  switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
4106  default:  // Can't happen, don't crash on invalid number though.
4107  case 0:   // Return the value of the EQ bit of CR6.
4108    BitNo = 0; InvertBit = false;
4109    break;
4110  case 1:   // Return the inverted value of the EQ bit of CR6.
4111    BitNo = 0; InvertBit = true;
4112    break;
4113  case 2:   // Return the value of the LT bit of CR6.
4114    BitNo = 2; InvertBit = false;
4115    break;
4116  case 3:   // Return the inverted value of the LT bit of CR6.
4117    BitNo = 2; InvertBit = true;
4118    break;
4119  }
4120
4121  // Shift the bit into the low position.
4122  Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
4123                      DAG.getConstant(8-(3-BitNo), MVT::i32));
4124  // Isolate the bit.
4125  Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
4126                      DAG.getConstant(1, MVT::i32));
4127
4128  // If we are supposed to, toggle the bit.
4129  if (InvertBit)
4130    Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
4131                        DAG.getConstant(1, MVT::i32));
4132  return Flags;
4133}
4134
4135SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
4136                                                   SelectionDAG &DAG) {
4137  DebugLoc dl = Op.getDebugLoc();
4138  // Create a stack slot that is 16-byte aligned.
4139  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
4140  int FrameIdx = FrameInfo->CreateStackObject(16, 16);
4141  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4142  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
4143
4144  // Store the input value into Value#0 of the stack slot.
4145  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
4146                                 Op.getOperand(0), FIdx, NULL, 0);
4147  // Load it out.
4148  return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, NULL, 0);
4149}
4150
4151SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) {
4152  DebugLoc dl = Op.getDebugLoc();
4153  if (Op.getValueType() == MVT::v4i32) {
4154    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4155
4156    SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
4157    SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
4158
4159    SDValue RHSSwap =   // = vrlw RHS, 16
4160      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
4161
4162    // Shrinkify inputs to v8i16.
4163    LHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, LHS);
4164    RHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, RHS);
4165    RHSSwap = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, RHSSwap);
4166
4167    // Low parts multiplied together, generating 32-bit results (we ignore the
4168    // top parts).
4169    SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
4170                                        LHS, RHS, DAG, dl, MVT::v4i32);
4171
4172    SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
4173                                      LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
4174    // Shift the high parts up 16 bits.
4175    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
4176                              Neg16, DAG, dl);
4177    return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
4178  } else if (Op.getValueType() == MVT::v8i16) {
4179    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4180
4181    SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
4182
4183    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
4184                            LHS, RHS, Zero, DAG, dl);
4185  } else if (Op.getValueType() == MVT::v16i8) {
4186    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4187
4188    // Multiply the even 8-bit parts, producing 16-bit sums.
4189    SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
4190                                           LHS, RHS, DAG, dl, MVT::v8i16);
4191    EvenParts = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, EvenParts);
4192
4193    // Multiply the odd 8-bit parts, producing 16-bit sums.
4194    SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
4195                                          LHS, RHS, DAG, dl, MVT::v8i16);
4196    OddParts = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OddParts);
4197
4198    // Merge the results together.
4199    int Ops[16];
4200    for (unsigned i = 0; i != 8; ++i) {
4201      Ops[i*2  ] = 2*i+1;
4202      Ops[i*2+1] = 2*i+1+16;
4203    }
4204    return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
4205  } else {
4206    llvm_unreachable("Unknown mul to lower!");
4207  }
4208}
4209
4210/// LowerOperation - Provide custom lowering hooks for some operations.
4211///
4212SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
4213  switch (Op.getOpcode()) {
4214  default: llvm_unreachable("Wasn't expecting to be able to lower this!");
4215  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
4216  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
4217  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
4218  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
4219  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
4220  case ISD::SETCC:              return LowerSETCC(Op, DAG);
4221  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
4222  case ISD::VASTART:
4223    return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
4224                        VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
4225
4226  case ISD::VAARG:
4227    return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
4228                      VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
4229
4230  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
4231  case ISD::DYNAMIC_STACKALLOC:
4232    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
4233
4234  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
4235  case ISD::FP_TO_UINT:
4236  case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
4237                                                       Op.getDebugLoc());
4238  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
4239  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
4240
4241  // Lower 64-bit shifts.
4242  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
4243  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
4244  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
4245
4246  // Vector-related lowering.
4247  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
4248  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
4249  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4250  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
4251  case ISD::MUL:                return LowerMUL(Op, DAG);
4252
4253  // Frame & Return address.
4254  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
4255  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
4256  }
4257  return SDValue();
4258}
4259
4260void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
4261                                           SmallVectorImpl<SDValue>&Results,
4262                                           SelectionDAG &DAG) {
4263  DebugLoc dl = N->getDebugLoc();
4264  switch (N->getOpcode()) {
4265  default:
4266    assert(false && "Do not know how to custom type legalize this operation!");
4267    return;
4268  case ISD::FP_ROUND_INREG: {
4269    assert(N->getValueType(0) == MVT::ppcf128);
4270    assert(N->getOperand(0).getValueType() == MVT::ppcf128);
4271    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
4272                             MVT::f64, N->getOperand(0),
4273                             DAG.getIntPtrConstant(0));
4274    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
4275                             MVT::f64, N->getOperand(0),
4276                             DAG.getIntPtrConstant(1));
4277
4278    // This sequence changes FPSCR to do round-to-zero, adds the two halves
4279    // of the long double, and puts FPSCR back the way it was.  We do not
4280    // actually model FPSCR.
4281    std::vector<EVT> NodeTys;
4282    SDValue Ops[4], Result, MFFSreg, InFlag, FPreg;
4283
4284    NodeTys.push_back(MVT::f64);   // Return register
4285    NodeTys.push_back(MVT::Flag);    // Returns a flag for later insns
4286    Result = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
4287    MFFSreg = Result.getValue(0);
4288    InFlag = Result.getValue(1);
4289
4290    NodeTys.clear();
4291    NodeTys.push_back(MVT::Flag);   // Returns a flag
4292    Ops[0] = DAG.getConstant(31, MVT::i32);
4293    Ops[1] = InFlag;
4294    Result = DAG.getNode(PPCISD::MTFSB1, dl, NodeTys, Ops, 2);
4295    InFlag = Result.getValue(0);
4296
4297    NodeTys.clear();
4298    NodeTys.push_back(MVT::Flag);   // Returns a flag
4299    Ops[0] = DAG.getConstant(30, MVT::i32);
4300    Ops[1] = InFlag;
4301    Result = DAG.getNode(PPCISD::MTFSB0, dl, NodeTys, Ops, 2);
4302    InFlag = Result.getValue(0);
4303
4304    NodeTys.clear();
4305    NodeTys.push_back(MVT::f64);    // result of add
4306    NodeTys.push_back(MVT::Flag);   // Returns a flag
4307    Ops[0] = Lo;
4308    Ops[1] = Hi;
4309    Ops[2] = InFlag;
4310    Result = DAG.getNode(PPCISD::FADDRTZ, dl, NodeTys, Ops, 3);
4311    FPreg = Result.getValue(0);
4312    InFlag = Result.getValue(1);
4313
4314    NodeTys.clear();
4315    NodeTys.push_back(MVT::f64);
4316    Ops[0] = DAG.getConstant(1, MVT::i32);
4317    Ops[1] = MFFSreg;
4318    Ops[2] = FPreg;
4319    Ops[3] = InFlag;
4320    Result = DAG.getNode(PPCISD::MTFSF, dl, NodeTys, Ops, 4);
4321    FPreg = Result.getValue(0);
4322
4323    // We know the low half is about to be thrown away, so just use something
4324    // convenient.
4325    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
4326                                FPreg, FPreg));
4327    return;
4328  }
4329  case ISD::FP_TO_SINT:
4330    Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
4331    return;
4332  }
4333}
4334
4335
4336//===----------------------------------------------------------------------===//
4337//  Other Lowering Code
4338//===----------------------------------------------------------------------===//
4339
4340MachineBasicBlock *
4341PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
4342                                    bool is64bit, unsigned BinOpcode) const {
4343  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4344  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4345
4346  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4347  MachineFunction *F = BB->getParent();
4348  MachineFunction::iterator It = BB;
4349  ++It;
4350
4351  unsigned dest = MI->getOperand(0).getReg();
4352  unsigned ptrA = MI->getOperand(1).getReg();
4353  unsigned ptrB = MI->getOperand(2).getReg();
4354  unsigned incr = MI->getOperand(3).getReg();
4355  DebugLoc dl = MI->getDebugLoc();
4356
4357  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4358  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4359  F->insert(It, loopMBB);
4360  F->insert(It, exitMBB);
4361  exitMBB->transferSuccessors(BB);
4362
4363  MachineRegisterInfo &RegInfo = F->getRegInfo();
4364  unsigned TmpReg = (!BinOpcode) ? incr :
4365    RegInfo.createVirtualRegister(
4366       is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4367                 (const TargetRegisterClass *) &PPC::GPRCRegClass);
4368
4369  //  thisMBB:
4370  //   ...
4371  //   fallthrough --> loopMBB
4372  BB->addSuccessor(loopMBB);
4373
4374  //  loopMBB:
4375  //   l[wd]arx dest, ptr
4376  //   add r0, dest, incr
4377  //   st[wd]cx. r0, ptr
4378  //   bne- loopMBB
4379  //   fallthrough --> exitMBB
4380  BB = loopMBB;
4381  BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4382    .addReg(ptrA).addReg(ptrB);
4383  if (BinOpcode)
4384    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
4385  BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4386    .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
4387  BuildMI(BB, dl, TII->get(PPC::BCC))
4388    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4389  BB->addSuccessor(loopMBB);
4390  BB->addSuccessor(exitMBB);
4391
4392  //  exitMBB:
4393  //   ...
4394  BB = exitMBB;
4395  return BB;
4396}
4397
4398MachineBasicBlock *
4399PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
4400                                            MachineBasicBlock *BB,
4401                                            bool is8bit,    // operation
4402                                            unsigned BinOpcode) const {
4403  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4404  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4405  // In 64 bit mode we have to use 64 bits for addresses, even though the
4406  // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
4407  // registers without caring whether they're 32 or 64, but here we're
4408  // doing actual arithmetic on the addresses.
4409  bool is64bit = PPCSubTarget.isPPC64();
4410
4411  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4412  MachineFunction *F = BB->getParent();
4413  MachineFunction::iterator It = BB;
4414  ++It;
4415
4416  unsigned dest = MI->getOperand(0).getReg();
4417  unsigned ptrA = MI->getOperand(1).getReg();
4418  unsigned ptrB = MI->getOperand(2).getReg();
4419  unsigned incr = MI->getOperand(3).getReg();
4420  DebugLoc dl = MI->getDebugLoc();
4421
4422  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4423  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4424  F->insert(It, loopMBB);
4425  F->insert(It, exitMBB);
4426  exitMBB->transferSuccessors(BB);
4427
4428  MachineRegisterInfo &RegInfo = F->getRegInfo();
4429  const TargetRegisterClass *RC =
4430    is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4431              (const TargetRegisterClass *) &PPC::GPRCRegClass;
4432  unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4433  unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4434  unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4435  unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
4436  unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4437  unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4438  unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4439  unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4440  unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
4441  unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4442  unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4443  unsigned Ptr1Reg;
4444  unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
4445
4446  //  thisMBB:
4447  //   ...
4448  //   fallthrough --> loopMBB
4449  BB->addSuccessor(loopMBB);
4450
4451  // The 4-byte load must be aligned, while a char or short may be
4452  // anywhere in the word.  Hence all this nasty bookkeeping code.
4453  //   add ptr1, ptrA, ptrB [copy if ptrA==0]
4454  //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4455  //   xori shift, shift1, 24 [16]
4456  //   rlwinm ptr, ptr1, 0, 0, 29
4457  //   slw incr2, incr, shift
4458  //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4459  //   slw mask, mask2, shift
4460  //  loopMBB:
4461  //   lwarx tmpDest, ptr
4462  //   add tmp, tmpDest, incr2
4463  //   andc tmp2, tmpDest, mask
4464  //   and tmp3, tmp, mask
4465  //   or tmp4, tmp3, tmp2
4466  //   stwcx. tmp4, ptr
4467  //   bne- loopMBB
4468  //   fallthrough --> exitMBB
4469  //   srw dest, tmpDest, shift
4470
4471  if (ptrA!=PPC::R0) {
4472    Ptr1Reg = RegInfo.createVirtualRegister(RC);
4473    BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4474      .addReg(ptrA).addReg(ptrB);
4475  } else {
4476    Ptr1Reg = ptrB;
4477  }
4478  BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4479      .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4480  BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4481      .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4482  if (is64bit)
4483    BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
4484      .addReg(Ptr1Reg).addImm(0).addImm(61);
4485  else
4486    BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
4487      .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4488  BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
4489      .addReg(incr).addReg(ShiftReg);
4490  if (is8bit)
4491    BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
4492  else {
4493    BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
4494    BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
4495  }
4496  BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
4497      .addReg(Mask2Reg).addReg(ShiftReg);
4498
4499  BB = loopMBB;
4500  BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
4501    .addReg(PPC::R0).addReg(PtrReg);
4502  if (BinOpcode)
4503    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
4504      .addReg(Incr2Reg).addReg(TmpDestReg);
4505  BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
4506    .addReg(TmpDestReg).addReg(MaskReg);
4507  BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
4508    .addReg(TmpReg).addReg(MaskReg);
4509  BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
4510    .addReg(Tmp3Reg).addReg(Tmp2Reg);
4511  BuildMI(BB, dl, TII->get(PPC::STWCX))
4512    .addReg(Tmp4Reg).addReg(PPC::R0).addReg(PtrReg);
4513  BuildMI(BB, dl, TII->get(PPC::BCC))
4514    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4515  BB->addSuccessor(loopMBB);
4516  BB->addSuccessor(exitMBB);
4517
4518  //  exitMBB:
4519  //   ...
4520  BB = exitMBB;
4521  BuildMI(BB, dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg).addReg(ShiftReg);
4522  return BB;
4523}
4524
4525MachineBasicBlock *
4526PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4527                                               MachineBasicBlock *BB,
4528                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
4529  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4530
4531  // To "insert" these instructions we actually have to insert their
4532  // control-flow patterns.
4533  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4534  MachineFunction::iterator It = BB;
4535  ++It;
4536
4537  MachineFunction *F = BB->getParent();
4538
4539  if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
4540      MI->getOpcode() == PPC::SELECT_CC_I8 ||
4541      MI->getOpcode() == PPC::SELECT_CC_F4 ||
4542      MI->getOpcode() == PPC::SELECT_CC_F8 ||
4543      MI->getOpcode() == PPC::SELECT_CC_VRRC) {
4544
4545    // The incoming instruction knows the destination vreg to set, the
4546    // condition code register to branch on, the true/false values to
4547    // select between, and a branch opcode to use.
4548
4549    //  thisMBB:
4550    //  ...
4551    //   TrueVal = ...
4552    //   cmpTY ccX, r1, r2
4553    //   bCC copy1MBB
4554    //   fallthrough --> copy0MBB
4555    MachineBasicBlock *thisMBB = BB;
4556    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4557    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
4558    unsigned SelectPred = MI->getOperand(4).getImm();
4559    DebugLoc dl = MI->getDebugLoc();
4560    BuildMI(BB, dl, TII->get(PPC::BCC))
4561      .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
4562    F->insert(It, copy0MBB);
4563    F->insert(It, sinkMBB);
4564    // Update machine-CFG edges by first adding all successors of the current
4565    // block to the new block which will contain the Phi node for the select.
4566    // Also inform sdisel of the edge changes.
4567    for (MachineBasicBlock::succ_iterator I = BB->succ_begin(),
4568           E = BB->succ_end(); I != E; ++I) {
4569      EM->insert(std::make_pair(*I, sinkMBB));
4570      sinkMBB->addSuccessor(*I);
4571    }
4572    // Next, remove all successors of the current block, and add the true
4573    // and fallthrough blocks as its successors.
4574    while (!BB->succ_empty())
4575      BB->removeSuccessor(BB->succ_begin());
4576    // Next, add the true and fallthrough blocks as its successors.
4577    BB->addSuccessor(copy0MBB);
4578    BB->addSuccessor(sinkMBB);
4579
4580    //  copy0MBB:
4581    //   %FalseValue = ...
4582    //   # fallthrough to sinkMBB
4583    BB = copy0MBB;
4584
4585    // Update machine-CFG edges
4586    BB->addSuccessor(sinkMBB);
4587
4588    //  sinkMBB:
4589    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4590    //  ...
4591    BB = sinkMBB;
4592    BuildMI(BB, dl, TII->get(PPC::PHI), MI->getOperand(0).getReg())
4593      .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
4594      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4595  }
4596  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
4597    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
4598  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
4599    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
4600  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
4601    BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
4602  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
4603    BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
4604
4605  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
4606    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
4607  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
4608    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
4609  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
4610    BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
4611  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
4612    BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
4613
4614  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
4615    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
4616  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
4617    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
4618  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
4619    BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
4620  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
4621    BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
4622
4623  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
4624    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
4625  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
4626    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
4627  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
4628    BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
4629  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
4630    BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
4631
4632  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
4633    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
4634  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
4635    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
4636  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
4637    BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
4638  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
4639    BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
4640
4641  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
4642    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
4643  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
4644    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
4645  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
4646    BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
4647  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
4648    BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
4649
4650  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
4651    BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
4652  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
4653    BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
4654  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
4655    BB = EmitAtomicBinary(MI, BB, false, 0);
4656  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
4657    BB = EmitAtomicBinary(MI, BB, true, 0);
4658
4659  else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
4660           MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
4661    bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
4662
4663    unsigned dest   = MI->getOperand(0).getReg();
4664    unsigned ptrA   = MI->getOperand(1).getReg();
4665    unsigned ptrB   = MI->getOperand(2).getReg();
4666    unsigned oldval = MI->getOperand(3).getReg();
4667    unsigned newval = MI->getOperand(4).getReg();
4668    DebugLoc dl     = MI->getDebugLoc();
4669
4670    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4671    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4672    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4673    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4674    F->insert(It, loop1MBB);
4675    F->insert(It, loop2MBB);
4676    F->insert(It, midMBB);
4677    F->insert(It, exitMBB);
4678    exitMBB->transferSuccessors(BB);
4679
4680    //  thisMBB:
4681    //   ...
4682    //   fallthrough --> loopMBB
4683    BB->addSuccessor(loop1MBB);
4684
4685    // loop1MBB:
4686    //   l[wd]arx dest, ptr
4687    //   cmp[wd] dest, oldval
4688    //   bne- midMBB
4689    // loop2MBB:
4690    //   st[wd]cx. newval, ptr
4691    //   bne- loopMBB
4692    //   b exitBB
4693    // midMBB:
4694    //   st[wd]cx. dest, ptr
4695    // exitBB:
4696    BB = loop1MBB;
4697    BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4698      .addReg(ptrA).addReg(ptrB);
4699    BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
4700      .addReg(oldval).addReg(dest);
4701    BuildMI(BB, dl, TII->get(PPC::BCC))
4702      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
4703    BB->addSuccessor(loop2MBB);
4704    BB->addSuccessor(midMBB);
4705
4706    BB = loop2MBB;
4707    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4708      .addReg(newval).addReg(ptrA).addReg(ptrB);
4709    BuildMI(BB, dl, TII->get(PPC::BCC))
4710      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
4711    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
4712    BB->addSuccessor(loop1MBB);
4713    BB->addSuccessor(exitMBB);
4714
4715    BB = midMBB;
4716    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4717      .addReg(dest).addReg(ptrA).addReg(ptrB);
4718    BB->addSuccessor(exitMBB);
4719
4720    //  exitMBB:
4721    //   ...
4722    BB = exitMBB;
4723  } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
4724             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
4725    // We must use 64-bit registers for addresses when targeting 64-bit,
4726    // since we're actually doing arithmetic on them.  Other registers
4727    // can be 32-bit.
4728    bool is64bit = PPCSubTarget.isPPC64();
4729    bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
4730
4731    unsigned dest   = MI->getOperand(0).getReg();
4732    unsigned ptrA   = MI->getOperand(1).getReg();
4733    unsigned ptrB   = MI->getOperand(2).getReg();
4734    unsigned oldval = MI->getOperand(3).getReg();
4735    unsigned newval = MI->getOperand(4).getReg();
4736    DebugLoc dl     = MI->getDebugLoc();
4737
4738    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4739    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4740    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4741    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4742    F->insert(It, loop1MBB);
4743    F->insert(It, loop2MBB);
4744    F->insert(It, midMBB);
4745    F->insert(It, exitMBB);
4746    exitMBB->transferSuccessors(BB);
4747
4748    MachineRegisterInfo &RegInfo = F->getRegInfo();
4749    const TargetRegisterClass *RC =
4750      is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4751                (const TargetRegisterClass *) &PPC::GPRCRegClass;
4752    unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4753    unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4754    unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4755    unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
4756    unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
4757    unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
4758    unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
4759    unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4760    unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4761    unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4762    unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4763    unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4764    unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4765    unsigned Ptr1Reg;
4766    unsigned TmpReg = RegInfo.createVirtualRegister(RC);
4767    //  thisMBB:
4768    //   ...
4769    //   fallthrough --> loopMBB
4770    BB->addSuccessor(loop1MBB);
4771
4772    // The 4-byte load must be aligned, while a char or short may be
4773    // anywhere in the word.  Hence all this nasty bookkeeping code.
4774    //   add ptr1, ptrA, ptrB [copy if ptrA==0]
4775    //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4776    //   xori shift, shift1, 24 [16]
4777    //   rlwinm ptr, ptr1, 0, 0, 29
4778    //   slw newval2, newval, shift
4779    //   slw oldval2, oldval,shift
4780    //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4781    //   slw mask, mask2, shift
4782    //   and newval3, newval2, mask
4783    //   and oldval3, oldval2, mask
4784    // loop1MBB:
4785    //   lwarx tmpDest, ptr
4786    //   and tmp, tmpDest, mask
4787    //   cmpw tmp, oldval3
4788    //   bne- midMBB
4789    // loop2MBB:
4790    //   andc tmp2, tmpDest, mask
4791    //   or tmp4, tmp2, newval3
4792    //   stwcx. tmp4, ptr
4793    //   bne- loop1MBB
4794    //   b exitBB
4795    // midMBB:
4796    //   stwcx. tmpDest, ptr
4797    // exitBB:
4798    //   srw dest, tmpDest, shift
4799    if (ptrA!=PPC::R0) {
4800      Ptr1Reg = RegInfo.createVirtualRegister(RC);
4801      BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4802        .addReg(ptrA).addReg(ptrB);
4803    } else {
4804      Ptr1Reg = ptrB;
4805    }
4806    BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4807        .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4808    BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4809        .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4810    if (is64bit)
4811      BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
4812        .addReg(Ptr1Reg).addImm(0).addImm(61);
4813    else
4814      BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
4815        .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4816    BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
4817        .addReg(newval).addReg(ShiftReg);
4818    BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
4819        .addReg(oldval).addReg(ShiftReg);
4820    if (is8bit)
4821      BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
4822    else {
4823      BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
4824      BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
4825        .addReg(Mask3Reg).addImm(65535);
4826    }
4827    BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
4828        .addReg(Mask2Reg).addReg(ShiftReg);
4829    BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
4830        .addReg(NewVal2Reg).addReg(MaskReg);
4831    BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
4832        .addReg(OldVal2Reg).addReg(MaskReg);
4833
4834    BB = loop1MBB;
4835    BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
4836        .addReg(PPC::R0).addReg(PtrReg);
4837    BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
4838        .addReg(TmpDestReg).addReg(MaskReg);
4839    BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
4840        .addReg(TmpReg).addReg(OldVal3Reg);
4841    BuildMI(BB, dl, TII->get(PPC::BCC))
4842        .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
4843    BB->addSuccessor(loop2MBB);
4844    BB->addSuccessor(midMBB);
4845
4846    BB = loop2MBB;
4847    BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
4848        .addReg(TmpDestReg).addReg(MaskReg);
4849    BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
4850        .addReg(Tmp2Reg).addReg(NewVal3Reg);
4851    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
4852        .addReg(PPC::R0).addReg(PtrReg);
4853    BuildMI(BB, dl, TII->get(PPC::BCC))
4854      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
4855    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
4856    BB->addSuccessor(loop1MBB);
4857    BB->addSuccessor(exitMBB);
4858
4859    BB = midMBB;
4860    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
4861      .addReg(PPC::R0).addReg(PtrReg);
4862    BB->addSuccessor(exitMBB);
4863
4864    //  exitMBB:
4865    //   ...
4866    BB = exitMBB;
4867    BuildMI(BB, dl, TII->get(PPC::SRW),dest).addReg(TmpReg).addReg(ShiftReg);
4868  } else {
4869    llvm_unreachable("Unexpected instr type to insert");
4870  }
4871
4872  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
4873  return BB;
4874}
4875
4876//===----------------------------------------------------------------------===//
4877// Target Optimization Hooks
4878//===----------------------------------------------------------------------===//
4879
4880SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
4881                                             DAGCombinerInfo &DCI) const {
4882  TargetMachine &TM = getTargetMachine();
4883  SelectionDAG &DAG = DCI.DAG;
4884  DebugLoc dl = N->getDebugLoc();
4885  switch (N->getOpcode()) {
4886  default: break;
4887  case PPCISD::SHL:
4888    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4889      if (C->getZExtValue() == 0)   // 0 << V -> 0.
4890        return N->getOperand(0);
4891    }
4892    break;
4893  case PPCISD::SRL:
4894    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4895      if (C->getZExtValue() == 0)   // 0 >>u V -> 0.
4896        return N->getOperand(0);
4897    }
4898    break;
4899  case PPCISD::SRA:
4900    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4901      if (C->getZExtValue() == 0 ||   //  0 >>s V -> 0.
4902          C->isAllOnesValue())    // -1 >>s V -> -1.
4903        return N->getOperand(0);
4904    }
4905    break;
4906
4907  case ISD::SINT_TO_FP:
4908    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
4909      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
4910        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
4911        // We allow the src/dst to be either f32/f64, but the intermediate
4912        // type must be i64.
4913        if (N->getOperand(0).getValueType() == MVT::i64 &&
4914            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
4915          SDValue Val = N->getOperand(0).getOperand(0);
4916          if (Val.getValueType() == MVT::f32) {
4917            Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
4918            DCI.AddToWorklist(Val.getNode());
4919          }
4920
4921          Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
4922          DCI.AddToWorklist(Val.getNode());
4923          Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
4924          DCI.AddToWorklist(Val.getNode());
4925          if (N->getValueType(0) == MVT::f32) {
4926            Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
4927                              DAG.getIntPtrConstant(0));
4928            DCI.AddToWorklist(Val.getNode());
4929          }
4930          return Val;
4931        } else if (N->getOperand(0).getValueType() == MVT::i32) {
4932          // If the intermediate type is i32, we can avoid the load/store here
4933          // too.
4934        }
4935      }
4936    }
4937    break;
4938  case ISD::STORE:
4939    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
4940    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
4941        !cast<StoreSDNode>(N)->isTruncatingStore() &&
4942        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
4943        N->getOperand(1).getValueType() == MVT::i32 &&
4944        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
4945      SDValue Val = N->getOperand(1).getOperand(0);
4946      if (Val.getValueType() == MVT::f32) {
4947        Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
4948        DCI.AddToWorklist(Val.getNode());
4949      }
4950      Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
4951      DCI.AddToWorklist(Val.getNode());
4952
4953      Val = DAG.getNode(PPCISD::STFIWX, dl, MVT::Other, N->getOperand(0), Val,
4954                        N->getOperand(2), N->getOperand(3));
4955      DCI.AddToWorklist(Val.getNode());
4956      return Val;
4957    }
4958
4959    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
4960    if (cast<StoreSDNode>(N)->isUnindexed() &&
4961        N->getOperand(1).getOpcode() == ISD::BSWAP &&
4962        N->getOperand(1).getNode()->hasOneUse() &&
4963        (N->getOperand(1).getValueType() == MVT::i32 ||
4964         N->getOperand(1).getValueType() == MVT::i16)) {
4965      SDValue BSwapOp = N->getOperand(1).getOperand(0);
4966      // Do an any-extend to 32-bits if this is a half-word input.
4967      if (BSwapOp.getValueType() == MVT::i16)
4968        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
4969
4970      SDValue Ops[] = {
4971        N->getOperand(0), BSwapOp, N->getOperand(2),
4972        DAG.getValueType(N->getOperand(1).getValueType())
4973      };
4974      return
4975        DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
4976                                Ops, array_lengthof(Ops),
4977                                cast<StoreSDNode>(N)->getMemoryVT(),
4978                                cast<StoreSDNode>(N)->getMemOperand());
4979    }
4980    break;
4981  case ISD::BSWAP:
4982    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
4983    if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
4984        N->getOperand(0).hasOneUse() &&
4985        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
4986      SDValue Load = N->getOperand(0);
4987      LoadSDNode *LD = cast<LoadSDNode>(Load);
4988      // Create the byte-swapping load.
4989      SDValue Ops[] = {
4990        LD->getChain(),    // Chain
4991        LD->getBasePtr(),  // Ptr
4992        DAG.getValueType(N->getValueType(0)) // VT
4993      };
4994      SDValue BSLoad =
4995        DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
4996                                DAG.getVTList(MVT::i32, MVT::Other), Ops, 3,
4997                                LD->getMemoryVT(), LD->getMemOperand());
4998
4999      // If this is an i16 load, insert the truncate.
5000      SDValue ResVal = BSLoad;
5001      if (N->getValueType(0) == MVT::i16)
5002        ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
5003
5004      // First, combine the bswap away.  This makes the value produced by the
5005      // load dead.
5006      DCI.CombineTo(N, ResVal);
5007
5008      // Next, combine the load away, we give it a bogus result value but a real
5009      // chain result.  The result value is dead because the bswap is dead.
5010      DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
5011
5012      // Return N so it doesn't get rechecked!
5013      return SDValue(N, 0);
5014    }
5015
5016    break;
5017  case PPCISD::VCMP: {
5018    // If a VCMPo node already exists with exactly the same operands as this
5019    // node, use its result instead of this node (VCMPo computes both a CR6 and
5020    // a normal output).
5021    //
5022    if (!N->getOperand(0).hasOneUse() &&
5023        !N->getOperand(1).hasOneUse() &&
5024        !N->getOperand(2).hasOneUse()) {
5025
5026      // Scan all of the users of the LHS, looking for VCMPo's that match.
5027      SDNode *VCMPoNode = 0;
5028
5029      SDNode *LHSN = N->getOperand(0).getNode();
5030      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
5031           UI != E; ++UI)
5032        if (UI->getOpcode() == PPCISD::VCMPo &&
5033            UI->getOperand(1) == N->getOperand(1) &&
5034            UI->getOperand(2) == N->getOperand(2) &&
5035            UI->getOperand(0) == N->getOperand(0)) {
5036          VCMPoNode = *UI;
5037          break;
5038        }
5039
5040      // If there is no VCMPo node, or if the flag value has a single use, don't
5041      // transform this.
5042      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
5043        break;
5044
5045      // Look at the (necessarily single) use of the flag value.  If it has a
5046      // chain, this transformation is more complex.  Note that multiple things
5047      // could use the value result, which we should ignore.
5048      SDNode *FlagUser = 0;
5049      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
5050           FlagUser == 0; ++UI) {
5051        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
5052        SDNode *User = *UI;
5053        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
5054          if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
5055            FlagUser = User;
5056            break;
5057          }
5058        }
5059      }
5060
5061      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
5062      // give up for right now.
5063      if (FlagUser->getOpcode() == PPCISD::MFCR)
5064        return SDValue(VCMPoNode, 0);
5065    }
5066    break;
5067  }
5068  case ISD::BR_CC: {
5069    // If this is a branch on an altivec predicate comparison, lower this so
5070    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
5071    // lowering is done pre-legalize, because the legalizer lowers the predicate
5072    // compare down to code that is difficult to reassemble.
5073    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
5074    SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
5075    int CompareOpc;
5076    bool isDot;
5077
5078    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
5079        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
5080        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
5081      assert(isDot && "Can't compare against a vector result!");
5082
5083      // If this is a comparison against something other than 0/1, then we know
5084      // that the condition is never/always true.
5085      unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
5086      if (Val != 0 && Val != 1) {
5087        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
5088          return N->getOperand(0);
5089        // Always !=, turn it into an unconditional branch.
5090        return DAG.getNode(ISD::BR, dl, MVT::Other,
5091                           N->getOperand(0), N->getOperand(4));
5092      }
5093
5094      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
5095
5096      // Create the PPCISD altivec 'dot' comparison node.
5097      std::vector<EVT> VTs;
5098      SDValue Ops[] = {
5099        LHS.getOperand(2),  // LHS of compare
5100        LHS.getOperand(3),  // RHS of compare
5101        DAG.getConstant(CompareOpc, MVT::i32)
5102      };
5103      VTs.push_back(LHS.getOperand(2).getValueType());
5104      VTs.push_back(MVT::Flag);
5105      SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
5106
5107      // Unpack the result based on how the target uses it.
5108      PPC::Predicate CompOpc;
5109      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
5110      default:  // Can't happen, don't crash on invalid number though.
5111      case 0:   // Branch on the value of the EQ bit of CR6.
5112        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
5113        break;
5114      case 1:   // Branch on the inverted value of the EQ bit of CR6.
5115        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
5116        break;
5117      case 2:   // Branch on the value of the LT bit of CR6.
5118        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
5119        break;
5120      case 3:   // Branch on the inverted value of the LT bit of CR6.
5121        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
5122        break;
5123      }
5124
5125      return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
5126                         DAG.getConstant(CompOpc, MVT::i32),
5127                         DAG.getRegister(PPC::CR6, MVT::i32),
5128                         N->getOperand(4), CompNode.getValue(1));
5129    }
5130    break;
5131  }
5132  }
5133
5134  return SDValue();
5135}
5136
5137//===----------------------------------------------------------------------===//
5138// Inline Assembly Support
5139//===----------------------------------------------------------------------===//
5140
5141void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
5142                                                       const APInt &Mask,
5143                                                       APInt &KnownZero,
5144                                                       APInt &KnownOne,
5145                                                       const SelectionDAG &DAG,
5146                                                       unsigned Depth) const {
5147  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
5148  switch (Op.getOpcode()) {
5149  default: break;
5150  case PPCISD::LBRX: {
5151    // lhbrx is known to have the top bits cleared out.
5152    if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
5153      KnownZero = 0xFFFF0000;
5154    break;
5155  }
5156  case ISD::INTRINSIC_WO_CHAIN: {
5157    switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
5158    default: break;
5159    case Intrinsic::ppc_altivec_vcmpbfp_p:
5160    case Intrinsic::ppc_altivec_vcmpeqfp_p:
5161    case Intrinsic::ppc_altivec_vcmpequb_p:
5162    case Intrinsic::ppc_altivec_vcmpequh_p:
5163    case Intrinsic::ppc_altivec_vcmpequw_p:
5164    case Intrinsic::ppc_altivec_vcmpgefp_p:
5165    case Intrinsic::ppc_altivec_vcmpgtfp_p:
5166    case Intrinsic::ppc_altivec_vcmpgtsb_p:
5167    case Intrinsic::ppc_altivec_vcmpgtsh_p:
5168    case Intrinsic::ppc_altivec_vcmpgtsw_p:
5169    case Intrinsic::ppc_altivec_vcmpgtub_p:
5170    case Intrinsic::ppc_altivec_vcmpgtuh_p:
5171    case Intrinsic::ppc_altivec_vcmpgtuw_p:
5172      KnownZero = ~1U;  // All bits but the low one are known to be zero.
5173      break;
5174    }
5175  }
5176  }
5177}
5178
5179
5180/// getConstraintType - Given a constraint, return the type of
5181/// constraint it is for this target.
5182PPCTargetLowering::ConstraintType
5183PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
5184  if (Constraint.size() == 1) {
5185    switch (Constraint[0]) {
5186    default: break;
5187    case 'b':
5188    case 'r':
5189    case 'f':
5190    case 'v':
5191    case 'y':
5192      return C_RegisterClass;
5193    }
5194  }
5195  return TargetLowering::getConstraintType(Constraint);
5196}
5197
5198std::pair<unsigned, const TargetRegisterClass*>
5199PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5200                                                EVT VT) const {
5201  if (Constraint.size() == 1) {
5202    // GCC RS6000 Constraint Letters
5203    switch (Constraint[0]) {
5204    case 'b':   // R1-R31
5205    case 'r':   // R0-R31
5206      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
5207        return std::make_pair(0U, PPC::G8RCRegisterClass);
5208      return std::make_pair(0U, PPC::GPRCRegisterClass);
5209    case 'f':
5210      if (VT == MVT::f32)
5211        return std::make_pair(0U, PPC::F4RCRegisterClass);
5212      else if (VT == MVT::f64)
5213        return std::make_pair(0U, PPC::F8RCRegisterClass);
5214      break;
5215    case 'v':
5216      return std::make_pair(0U, PPC::VRRCRegisterClass);
5217    case 'y':   // crrc
5218      return std::make_pair(0U, PPC::CRRCRegisterClass);
5219    }
5220  }
5221
5222  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5223}
5224
5225
5226/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5227/// vector.  If it is invalid, don't add anything to Ops. If hasMemory is true
5228/// it means one of the asm constraint of the inline asm instruction being
5229/// processed is 'm'.
5230void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, char Letter,
5231                                                     bool hasMemory,
5232                                                     std::vector<SDValue>&Ops,
5233                                                     SelectionDAG &DAG) const {
5234  SDValue Result(0,0);
5235  switch (Letter) {
5236  default: break;
5237  case 'I':
5238  case 'J':
5239  case 'K':
5240  case 'L':
5241  case 'M':
5242  case 'N':
5243  case 'O':
5244  case 'P': {
5245    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
5246    if (!CST) return; // Must be an immediate to match.
5247    unsigned Value = CST->getZExtValue();
5248    switch (Letter) {
5249    default: llvm_unreachable("Unknown constraint letter!");
5250    case 'I':  // "I" is a signed 16-bit constant.
5251      if ((short)Value == (int)Value)
5252        Result = DAG.getTargetConstant(Value, Op.getValueType());
5253      break;
5254    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
5255    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
5256      if ((short)Value == 0)
5257        Result = DAG.getTargetConstant(Value, Op.getValueType());
5258      break;
5259    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
5260      if ((Value >> 16) == 0)
5261        Result = DAG.getTargetConstant(Value, Op.getValueType());
5262      break;
5263    case 'M':  // "M" is a constant that is greater than 31.
5264      if (Value > 31)
5265        Result = DAG.getTargetConstant(Value, Op.getValueType());
5266      break;
5267    case 'N':  // "N" is a positive constant that is an exact power of two.
5268      if ((int)Value > 0 && isPowerOf2_32(Value))
5269        Result = DAG.getTargetConstant(Value, Op.getValueType());
5270      break;
5271    case 'O':  // "O" is the constant zero.
5272      if (Value == 0)
5273        Result = DAG.getTargetConstant(Value, Op.getValueType());
5274      break;
5275    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
5276      if ((short)-Value == (int)-Value)
5277        Result = DAG.getTargetConstant(Value, Op.getValueType());
5278      break;
5279    }
5280    break;
5281  }
5282  }
5283
5284  if (Result.getNode()) {
5285    Ops.push_back(Result);
5286    return;
5287  }
5288
5289  // Handle standard constraint letters.
5290  TargetLowering::LowerAsmOperandForConstraint(Op, Letter, hasMemory, Ops, DAG);
5291}
5292
5293// isLegalAddressingMode - Return true if the addressing mode represented
5294// by AM is legal for this target, for a load/store of the specified type.
5295bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
5296                                              const Type *Ty) const {
5297  // FIXME: PPC does not allow r+i addressing modes for vectors!
5298
5299  // PPC allows a sign-extended 16-bit immediate field.
5300  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
5301    return false;
5302
5303  // No global is ever allowed as a base.
5304  if (AM.BaseGV)
5305    return false;
5306
5307  // PPC only support r+r,
5308  switch (AM.Scale) {
5309  case 0:  // "r+i" or just "i", depending on HasBaseReg.
5310    break;
5311  case 1:
5312    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
5313      return false;
5314    // Otherwise we have r+r or r+i.
5315    break;
5316  case 2:
5317    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
5318      return false;
5319    // Allow 2*r as r+r.
5320    break;
5321  default:
5322    // No other scales are supported.
5323    return false;
5324  }
5325
5326  return true;
5327}
5328
5329/// isLegalAddressImmediate - Return true if the integer value can be used
5330/// as the offset of the target addressing mode for load / store of the
5331/// given type.
5332bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
5333  // PPC allows a sign-extended 16-bit immediate field.
5334  return (V > -(1 << 16) && V < (1 << 16)-1);
5335}
5336
5337bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
5338  return false;
5339}
5340
5341SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
5342  DebugLoc dl = Op.getDebugLoc();
5343  // Depths > 0 not supported yet!
5344  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
5345    return SDValue();
5346
5347  MachineFunction &MF = DAG.getMachineFunction();
5348  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
5349
5350  // Just load the return address off the stack.
5351  SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
5352
5353  // Make sure the function really does not optimize away the store of the RA
5354  // to the stack.
5355  FuncInfo->setLRStoreRequired();
5356  return DAG.getLoad(getPointerTy(), dl,
5357                     DAG.getEntryNode(), RetAddrFI, NULL, 0);
5358}
5359
5360SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
5361  DebugLoc dl = Op.getDebugLoc();
5362  // Depths > 0 not supported yet!
5363  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
5364    return SDValue();
5365
5366  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
5367  bool isPPC64 = PtrVT == MVT::i64;
5368
5369  MachineFunction &MF = DAG.getMachineFunction();
5370  MachineFrameInfo *MFI = MF.getFrameInfo();
5371  bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects())
5372                  && MFI->getStackSize();
5373
5374  if (isPPC64)
5375    return DAG.getCopyFromReg(DAG.getEntryNode(), dl, is31 ? PPC::X31 : PPC::X1,
5376      MVT::i64);
5377  else
5378    return DAG.getCopyFromReg(DAG.getEntryNode(), dl, is31 ? PPC::R31 : PPC::R1,
5379      MVT::i32);
5380}
5381
5382bool
5383PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5384  // The PowerPC target isn't yet aware of offsets.
5385  return false;
5386}
5387
5388EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align,
5389                                           bool isSrcConst, bool isSrcStr,
5390                                           SelectionDAG &DAG) const {
5391  if (this->PPCSubTarget.isPPC64()) {
5392    return MVT::i64;
5393  } else {
5394    return MVT::i32;
5395  }
5396}
5397