ARMRegisterInfo.td revision 212904
1//===- ARMRegisterInfo.td - ARM Register defs --------------*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10//===----------------------------------------------------------------------===//
11//  Declarations that describe the ARM register file
12//===----------------------------------------------------------------------===//
13
14// Registers are identified with 4-bit ID numbers.
15class ARMReg<bits<4> num, string n, list<Register> subregs = []> : Register<n> {
16  field bits<4> Num;
17  let Namespace = "ARM";
18  let SubRegs = subregs;
19}
20
21class ARMFReg<bits<6> num, string n> : Register<n> {
22  field bits<6> Num;
23  let Namespace = "ARM";
24}
25
26// Subregister indices.
27let Namespace = "ARM" in {
28// Note: Code depends on these having consecutive numbers.
29def ssub_0  : SubRegIndex;
30def ssub_1  : SubRegIndex;
31def ssub_2  : SubRegIndex; // In a Q reg.
32def ssub_3  : SubRegIndex;
33def ssub_4  : SubRegIndex; // In a QQ reg.
34def ssub_5  : SubRegIndex;
35def ssub_6  : SubRegIndex;
36def ssub_7  : SubRegIndex;
37def ssub_8  : SubRegIndex; // In a QQQQ reg.
38def ssub_9  : SubRegIndex;
39def ssub_10 : SubRegIndex;
40def ssub_11 : SubRegIndex;
41def ssub_12 : SubRegIndex;
42def ssub_13 : SubRegIndex;
43def ssub_14 : SubRegIndex;
44def ssub_15 : SubRegIndex;
45
46def dsub_0 : SubRegIndex;
47def dsub_1 : SubRegIndex;
48def dsub_2 : SubRegIndex;
49def dsub_3 : SubRegIndex;
50def dsub_4 : SubRegIndex;
51def dsub_5 : SubRegIndex;
52def dsub_6 : SubRegIndex;
53def dsub_7 : SubRegIndex;
54
55def qsub_0 : SubRegIndex;
56def qsub_1 : SubRegIndex;
57def qsub_2 : SubRegIndex;
58def qsub_3 : SubRegIndex;
59
60def qqsub_0 : SubRegIndex;
61def qqsub_1 : SubRegIndex;
62}
63
64// Integer registers
65def R0  : ARMReg< 0, "r0">,  DwarfRegNum<[0]>;
66def R1  : ARMReg< 1, "r1">,  DwarfRegNum<[1]>;
67def R2  : ARMReg< 2, "r2">,  DwarfRegNum<[2]>;
68def R3  : ARMReg< 3, "r3">,  DwarfRegNum<[3]>;
69def R4  : ARMReg< 4, "r4">,  DwarfRegNum<[4]>;
70def R5  : ARMReg< 5, "r5">,  DwarfRegNum<[5]>;
71def R6  : ARMReg< 6, "r6">,  DwarfRegNum<[6]>;
72def R7  : ARMReg< 7, "r7">,  DwarfRegNum<[7]>;
73def R8  : ARMReg< 8, "r8">,  DwarfRegNum<[8]>;
74def R9  : ARMReg< 9, "r9">,  DwarfRegNum<[9]>;
75def R10 : ARMReg<10, "r10">, DwarfRegNum<[10]>;
76def R11 : ARMReg<11, "r11">, DwarfRegNum<[11]>;
77def R12 : ARMReg<12, "r12">, DwarfRegNum<[12]>;
78def SP  : ARMReg<13, "sp">,  DwarfRegNum<[13]>;
79def LR  : ARMReg<14, "lr">,  DwarfRegNum<[14]>;
80def PC  : ARMReg<15, "pc">,  DwarfRegNum<[15]>;
81
82// Float registers
83def S0  : ARMFReg< 0, "s0">;  def S1  : ARMFReg< 1, "s1">;
84def S2  : ARMFReg< 2, "s2">;  def S3  : ARMFReg< 3, "s3">;
85def S4  : ARMFReg< 4, "s4">;  def S5  : ARMFReg< 5, "s5">;
86def S6  : ARMFReg< 6, "s6">;  def S7  : ARMFReg< 7, "s7">;
87def S8  : ARMFReg< 8, "s8">;  def S9  : ARMFReg< 9, "s9">;
88def S10 : ARMFReg<10, "s10">; def S11 : ARMFReg<11, "s11">;
89def S12 : ARMFReg<12, "s12">; def S13 : ARMFReg<13, "s13">;
90def S14 : ARMFReg<14, "s14">; def S15 : ARMFReg<15, "s15">;
91def S16 : ARMFReg<16, "s16">; def S17 : ARMFReg<17, "s17">;
92def S18 : ARMFReg<18, "s18">; def S19 : ARMFReg<19, "s19">;
93def S20 : ARMFReg<20, "s20">; def S21 : ARMFReg<21, "s21">;
94def S22 : ARMFReg<22, "s22">; def S23 : ARMFReg<23, "s23">;
95def S24 : ARMFReg<24, "s24">; def S25 : ARMFReg<25, "s25">;
96def S26 : ARMFReg<26, "s26">; def S27 : ARMFReg<27, "s27">;
97def S28 : ARMFReg<28, "s28">; def S29 : ARMFReg<29, "s29">;
98def S30 : ARMFReg<30, "s30">; def S31 : ARMFReg<31, "s31">;
99
100// Aliases of the F* registers used to hold 64-bit fp values (doubles)
101let SubRegIndices = [ssub_0, ssub_1] in {
102def D0  : ARMReg< 0,  "d0", [S0,   S1]>;
103def D1  : ARMReg< 1,  "d1", [S2,   S3]>;
104def D2  : ARMReg< 2,  "d2", [S4,   S5]>;
105def D3  : ARMReg< 3,  "d3", [S6,   S7]>;
106def D4  : ARMReg< 4,  "d4", [S8,   S9]>;
107def D5  : ARMReg< 5,  "d5", [S10, S11]>;
108def D6  : ARMReg< 6,  "d6", [S12, S13]>;
109def D7  : ARMReg< 7,  "d7", [S14, S15]>;
110def D8  : ARMReg< 8,  "d8", [S16, S17]>;
111def D9  : ARMReg< 9,  "d9", [S18, S19]>;
112def D10 : ARMReg<10, "d10", [S20, S21]>;
113def D11 : ARMReg<11, "d11", [S22, S23]>;
114def D12 : ARMReg<12, "d12", [S24, S25]>;
115def D13 : ARMReg<13, "d13", [S26, S27]>;
116def D14 : ARMReg<14, "d14", [S28, S29]>;
117def D15 : ARMReg<15, "d15", [S30, S31]>;
118}
119
120// VFP3 defines 16 additional double registers
121def D16 : ARMFReg<16, "d16">; def D17 : ARMFReg<17, "d17">;
122def D18 : ARMFReg<18, "d18">; def D19 : ARMFReg<19, "d19">;
123def D20 : ARMFReg<20, "d20">; def D21 : ARMFReg<21, "d21">;
124def D22 : ARMFReg<22, "d22">; def D23 : ARMFReg<23, "d23">;
125def D24 : ARMFReg<24, "d24">; def D25 : ARMFReg<25, "d25">;
126def D26 : ARMFReg<26, "d26">; def D27 : ARMFReg<27, "d27">;
127def D28 : ARMFReg<28, "d28">; def D29 : ARMFReg<29, "d29">;
128def D30 : ARMFReg<30, "d30">; def D31 : ARMFReg<31, "d31">;
129
130// Advanced SIMD (NEON) defines 16 quad-word aliases
131let SubRegIndices = [dsub_0, dsub_1],
132 CompositeIndices = [(ssub_2 dsub_1, ssub_0),
133                     (ssub_3 dsub_1, ssub_1)] in {
134def Q0  : ARMReg< 0,  "q0", [D0,   D1]>;
135def Q1  : ARMReg< 1,  "q1", [D2,   D3]>;
136def Q2  : ARMReg< 2,  "q2", [D4,   D5]>;
137def Q3  : ARMReg< 3,  "q3", [D6,   D7]>;
138def Q4  : ARMReg< 4,  "q4", [D8,   D9]>;
139def Q5  : ARMReg< 5,  "q5", [D10, D11]>;
140def Q6  : ARMReg< 6,  "q6", [D12, D13]>;
141def Q7  : ARMReg< 7,  "q7", [D14, D15]>;
142}
143let SubRegIndices = [dsub_0, dsub_1] in {
144def Q8  : ARMReg< 8,  "q8", [D16, D17]>;
145def Q9  : ARMReg< 9,  "q9", [D18, D19]>;
146def Q10 : ARMReg<10, "q10", [D20, D21]>;
147def Q11 : ARMReg<11, "q11", [D22, D23]>;
148def Q12 : ARMReg<12, "q12", [D24, D25]>;
149def Q13 : ARMReg<13, "q13", [D26, D27]>;
150def Q14 : ARMReg<14, "q14", [D28, D29]>;
151def Q15 : ARMReg<15, "q15", [D30, D31]>;
152}
153
154// Pseudo 256-bit registers to represent pairs of Q registers. These should
155// never be present in the emitted code.
156// These are used for NEON load / store instructions, e.g., vld4, vst3.
157// NOTE: It's possible to define more QQ registers since technically the
158// starting D register number doesn't have to be multiple of 4, e.g.,
159// D1, D2, D3, D4 would be a legal quad, but that would make the subregister
160// stuff very messy.
161let SubRegIndices = [qsub_0, qsub_1] in {
162let CompositeIndices = [(dsub_2 qsub_1, dsub_0), (dsub_3 qsub_1, dsub_1),
163                        (ssub_4 qsub_1, ssub_0), (ssub_5 qsub_1, ssub_1),
164                        (ssub_6 qsub_1, ssub_2), (ssub_7 qsub_1, ssub_3)] in {
165def QQ0 : ARMReg<0, "qq0", [Q0,  Q1]>;
166def QQ1 : ARMReg<1, "qq1", [Q2,  Q3]>;
167def QQ2 : ARMReg<2, "qq2", [Q4,  Q5]>;
168def QQ3 : ARMReg<3, "qq3", [Q6,  Q7]>;
169}
170let CompositeIndices = [(dsub_2 qsub_1, dsub_0), (dsub_3 qsub_1, dsub_1)] in {
171def QQ4 : ARMReg<4, "qq4", [Q8,  Q9]>;
172def QQ5 : ARMReg<5, "qq5", [Q10, Q11]>;
173def QQ6 : ARMReg<6, "qq6", [Q12, Q13]>;
174def QQ7 : ARMReg<7, "qq7", [Q14, Q15]>;
175}
176}
177
178// Pseudo 512-bit registers to represent four consecutive Q registers.
179let SubRegIndices = [qqsub_0, qqsub_1] in {
180let CompositeIndices = [(qsub_2  qqsub_1, qsub_0), (qsub_3  qqsub_1, qsub_1),
181                        (dsub_4  qqsub_1, dsub_0), (dsub_5  qqsub_1, dsub_1),
182                        (dsub_6  qqsub_1, dsub_2), (dsub_7  qqsub_1, dsub_3),
183                        (ssub_8  qqsub_1, ssub_0), (ssub_9  qqsub_1, ssub_1),
184                        (ssub_10 qqsub_1, ssub_2), (ssub_11 qqsub_1, ssub_3),
185                        (ssub_12 qqsub_1, ssub_4), (ssub_13 qqsub_1, ssub_5),
186                        (ssub_14 qqsub_1, ssub_6), (ssub_15 qqsub_1, ssub_7)] in
187{
188def QQQQ0 : ARMReg<0, "qqqq0", [QQ0, QQ1]>;
189def QQQQ1 : ARMReg<1, "qqqq1", [QQ2, QQ3]>;
190}
191let CompositeIndices = [(qsub_2 qqsub_1, qsub_0), (qsub_3 qqsub_1, qsub_1),
192                        (dsub_4 qqsub_1, dsub_0), (dsub_5 qqsub_1, dsub_1),
193                        (dsub_6 qqsub_1, dsub_2), (dsub_7 qqsub_1, dsub_3)] in {
194def QQQQ2 : ARMReg<2, "qqqq2", [QQ4, QQ5]>;
195def QQQQ3 : ARMReg<3, "qqqq3", [QQ6, QQ7]>;
196}
197}
198
199// Current Program Status Register.
200def CPSR    : ARMReg<0, "cpsr">;
201def FPSCR   : ARMReg<1, "fpscr">;
202def ITSTATE : ARMReg<2, "itstate">;
203
204// Register classes.
205//
206// pc  == Program Counter
207// lr  == Link Register
208// sp  == Stack Pointer
209// r12 == ip (scratch)
210// r7  == Frame Pointer (thumb-style backtraces)
211// r9  == May be reserved as Thread Register
212// r11 == Frame Pointer (arm-style backtraces)
213// r10 == Stack Limit
214//
215def GPR : RegisterClass<"ARM", [i32], 32, [R0, R1, R2, R3, R4, R5, R6,
216                                           R7, R8, R9, R10, R11, R12,
217                                           SP, LR, PC]> {
218  let MethodProtos = [{
219    iterator allocation_order_begin(const MachineFunction &MF) const;
220    iterator allocation_order_end(const MachineFunction &MF) const;
221  }];
222  let MethodBodies = [{
223    static const unsigned ARM_GPR_AO[] = {
224      ARM::R0, ARM::R1, ARM::R2, ARM::R3,
225      ARM::R12,ARM::LR,
226      ARM::R4, ARM::R5, ARM::R6, ARM::R7,
227      ARM::R8, ARM::R9, ARM::R10, ARM::R11 };
228
229    // For Thumb1 mode, we don't want to allocate hi regs at all, as we
230    // don't know how to spill them. If we make our prologue/epilogue code
231    // smarter at some point, we can go back to using the above allocation
232    // orders for the Thumb1 instructions that know how to use hi regs.
233    static const unsigned THUMB_GPR_AO[] = {
234      ARM::R0, ARM::R1, ARM::R2, ARM::R3,
235      ARM::R4, ARM::R5, ARM::R6, ARM::R7 };
236
237    GPRClass::iterator
238    GPRClass::allocation_order_begin(const MachineFunction &MF) const {
239      const TargetMachine &TM = MF.getTarget();
240      const ARMSubtarget &Subtarget = TM.getSubtarget<ARMSubtarget>();
241      if (Subtarget.isThumb1Only())
242        return THUMB_GPR_AO;
243      return ARM_GPR_AO;
244    }
245
246    GPRClass::iterator
247    GPRClass::allocation_order_end(const MachineFunction &MF) const {
248      const TargetMachine &TM = MF.getTarget();
249      const ARMSubtarget &Subtarget = TM.getSubtarget<ARMSubtarget>();
250      if (Subtarget.isThumb1Only())
251        return THUMB_GPR_AO + (sizeof(THUMB_GPR_AO)/sizeof(unsigned));
252      return ARM_GPR_AO + (sizeof(ARM_GPR_AO)/sizeof(unsigned));
253    }
254  }];
255}
256
257// restricted GPR register class. Many Thumb2 instructions allow the full
258// register range for operands, but have undefined behaviours when PC
259// or SP (R13 or R15) are used. The ARM ARM refers to these operands
260// via the BadReg() pseudo-code description.
261def rGPR : RegisterClass<"ARM", [i32], 32, [R0, R1, R2, R3, R4, R5, R6,
262                                            R7, R8, R9, R10, R11, R12, LR]> {
263  let MethodProtos = [{
264    iterator allocation_order_begin(const MachineFunction &MF) const;
265    iterator allocation_order_end(const MachineFunction &MF) const;
266  }];
267  let MethodBodies = [{
268    static const unsigned ARM_rGPR_AO[] = {
269      ARM::R0, ARM::R1, ARM::R2, ARM::R3,
270      ARM::R12,ARM::LR,
271      ARM::R4, ARM::R5, ARM::R6, ARM::R7,
272      ARM::R8, ARM::R9, ARM::R10,
273      ARM::R11 };
274
275    // For Thumb1 mode, we don't want to allocate hi regs at all, as we
276    // don't know how to spill them. If we make our prologue/epilogue code
277    // smarter at some point, we can go back to using the above allocation
278    // orders for the Thumb1 instructions that know how to use hi regs.
279    static const unsigned THUMB_rGPR_AO[] = {
280      ARM::R0, ARM::R1, ARM::R2, ARM::R3,
281      ARM::R4, ARM::R5, ARM::R6, ARM::R7 };
282
283    rGPRClass::iterator
284    rGPRClass::allocation_order_begin(const MachineFunction &MF) const {
285      const TargetMachine &TM = MF.getTarget();
286      const ARMSubtarget &Subtarget = TM.getSubtarget<ARMSubtarget>();
287      if (Subtarget.isThumb1Only())
288        return THUMB_rGPR_AO;
289      return ARM_rGPR_AO;
290    }
291
292    rGPRClass::iterator
293    rGPRClass::allocation_order_end(const MachineFunction &MF) const {
294      const TargetMachine &TM = MF.getTarget();
295      const ARMSubtarget &Subtarget = TM.getSubtarget<ARMSubtarget>();
296
297      if (Subtarget.isThumb1Only())
298        return THUMB_rGPR_AO + (sizeof(THUMB_rGPR_AO)/sizeof(unsigned));
299      return ARM_rGPR_AO + (sizeof(ARM_rGPR_AO)/sizeof(unsigned));
300    }
301  }];
302}
303
304// Thumb registers are R0-R7 normally. Some instructions can still use
305// the general GPR register class above (MOV, e.g.)
306def tGPR : RegisterClass<"ARM", [i32], 32, [R0, R1, R2, R3, R4, R5, R6, R7]> {}
307
308// For tail calls, we can't use callee-saved registers, as they are restored
309// to the saved value before the tail call, which would clobber a call address.
310// Note, getMinimalPhysRegClass(R0) returns tGPR because of the names of
311// this class and the preceding one(!)  This is what we want.
312def tcGPR : RegisterClass<"ARM", [i32], 32, [R0, R1, R2, R3, R9, R12]> {
313  let MethodProtos = [{
314    iterator allocation_order_begin(const MachineFunction &MF) const;
315    iterator allocation_order_end(const MachineFunction &MF) const;
316  }];
317  let MethodBodies = [{
318    // R9 is available.
319    static const unsigned ARM_GPR_R9_TC[] = {
320      ARM::R0, ARM::R1, ARM::R2, ARM::R3,
321      ARM::R9, ARM::R12 };
322    // R9 is not available.
323    static const unsigned ARM_GPR_NOR9_TC[] = {
324      ARM::R0, ARM::R1, ARM::R2, ARM::R3,
325      ARM::R12 };
326
327    // For Thumb1 mode, we don't want to allocate hi regs at all, as we
328    // don't know how to spill them. If we make our prologue/epilogue code
329    // smarter at some point, we can go back to using the above allocation
330    // orders for the Thumb1 instructions that know how to use hi regs.
331    static const unsigned THUMB_GPR_AO_TC[] = {
332      ARM::R0, ARM::R1, ARM::R2, ARM::R3 };
333
334    tcGPRClass::iterator
335    tcGPRClass::allocation_order_begin(const MachineFunction &MF) const {
336      const TargetMachine &TM = MF.getTarget();
337      const ARMSubtarget &Subtarget = TM.getSubtarget<ARMSubtarget>();
338      if (Subtarget.isThumb1Only())
339        return THUMB_GPR_AO_TC;
340      return Subtarget.isTargetDarwin() ? ARM_GPR_R9_TC : ARM_GPR_NOR9_TC;
341    }
342
343    tcGPRClass::iterator
344    tcGPRClass::allocation_order_end(const MachineFunction &MF) const {
345      const TargetMachine &TM = MF.getTarget();
346      const ARMSubtarget &Subtarget = TM.getSubtarget<ARMSubtarget>();
347
348      if (Subtarget.isThumb1Only())
349        return THUMB_GPR_AO_TC + (sizeof(THUMB_GPR_AO_TC)/sizeof(unsigned));
350
351      return Subtarget.isTargetDarwin() ?
352        ARM_GPR_R9_TC + (sizeof(ARM_GPR_R9_TC)/sizeof(unsigned)) :
353        ARM_GPR_NOR9_TC + (sizeof(ARM_GPR_NOR9_TC)/sizeof(unsigned));
354    }
355  }];
356}
357
358
359// Scalar single precision floating point register class..
360def SPR : RegisterClass<"ARM", [f32], 32, [S0, S1, S2, S3, S4, S5, S6, S7, S8,
361  S9, S10, S11, S12, S13, S14, S15, S16, S17, S18, S19, S20, S21, S22,
362  S23, S24, S25, S26, S27, S28, S29, S30, S31]>;
363
364// Subset of SPR which can be used as a source of NEON scalars for 16-bit
365// operations
366def SPR_8 : RegisterClass<"ARM", [f32], 32,
367                          [S0, S1,  S2,  S3,  S4,  S5,  S6,  S7,
368                           S8, S9, S10, S11, S12, S13, S14, S15]>;
369
370// Scalar double precision floating point / generic 64-bit vector register
371// class.
372// ARM requires only word alignment for double. It's more performant if it
373// is double-word alignment though.
374def DPR : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32], 64,
375                        [D0,  D1,  D2,  D3,  D4,  D5,  D6,  D7,
376                         D8,  D9,  D10, D11, D12, D13, D14, D15,
377                         D16, D17, D18, D19, D20, D21, D22, D23,
378                         D24, D25, D26, D27, D28, D29, D30, D31]> {
379  let MethodProtos = [{
380    iterator allocation_order_begin(const MachineFunction &MF) const;
381    iterator allocation_order_end(const MachineFunction &MF) const;
382  }];
383  let MethodBodies = [{
384    // VFP2
385    static const unsigned ARM_DPR_VFP2[] = {
386      ARM::D0,  ARM::D1,  ARM::D2,  ARM::D3,
387      ARM::D4,  ARM::D5,  ARM::D6,  ARM::D7,
388      ARM::D8,  ARM::D9,  ARM::D10, ARM::D11,
389      ARM::D12, ARM::D13, ARM::D14, ARM::D15 };
390    // VFP3
391    static const unsigned ARM_DPR_VFP3[] = {
392      ARM::D0,  ARM::D1,  ARM::D2,  ARM::D3,
393      ARM::D4,  ARM::D5,  ARM::D6,  ARM::D7,
394      ARM::D8,  ARM::D9,  ARM::D10, ARM::D11,
395      ARM::D12, ARM::D13, ARM::D14, ARM::D15,
396      ARM::D16, ARM::D17, ARM::D18, ARM::D19,
397      ARM::D20, ARM::D21, ARM::D22, ARM::D23,
398      ARM::D24, ARM::D25, ARM::D26, ARM::D27,
399      ARM::D28, ARM::D29, ARM::D30, ARM::D31 };
400    DPRClass::iterator
401    DPRClass::allocation_order_begin(const MachineFunction &MF) const {
402      const TargetMachine &TM = MF.getTarget();
403      const ARMSubtarget &Subtarget = TM.getSubtarget<ARMSubtarget>();
404      if (Subtarget.hasVFP3())
405        return ARM_DPR_VFP3;
406      return ARM_DPR_VFP2;
407    }
408
409    DPRClass::iterator
410    DPRClass::allocation_order_end(const MachineFunction &MF) const {
411      const TargetMachine &TM = MF.getTarget();
412      const ARMSubtarget &Subtarget = TM.getSubtarget<ARMSubtarget>();
413      if (Subtarget.hasVFP3())
414        return ARM_DPR_VFP3 + (sizeof(ARM_DPR_VFP3)/sizeof(unsigned));
415      else
416        return ARM_DPR_VFP2 + (sizeof(ARM_DPR_VFP2)/sizeof(unsigned));
417    }
418  }];
419}
420
421// Subset of DPR that are accessible with VFP2 (and so that also have
422// 32-bit SPR subregs).
423def DPR_VFP2 : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32], 64,
424                             [D0,  D1,  D2,  D3,  D4,  D5,  D6,  D7,
425                              D8,  D9,  D10, D11, D12, D13, D14, D15]> {
426  let SubRegClasses = [(SPR ssub_0, ssub_1)];
427}
428
429// Subset of DPR which can be used as a source of NEON scalars for 16-bit
430// operations
431def DPR_8 : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32], 64,
432                          [D0,  D1,  D2,  D3,  D4,  D5,  D6,  D7]> {
433  let SubRegClasses = [(SPR_8 ssub_0, ssub_1)];
434}
435
436// Generic 128-bit vector register class.
437def QPR : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 128,
438                        [Q0,  Q1,  Q2,  Q3,  Q4,  Q5,  Q6,  Q7,
439                         Q8,  Q9,  Q10, Q11, Q12, Q13, Q14, Q15]> {
440  let SubRegClasses = [(DPR dsub_0, dsub_1)];
441}
442
443// Subset of QPR that have 32-bit SPR subregs.
444def QPR_VFP2 : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
445                             128,
446                             [Q0,  Q1,  Q2,  Q3,  Q4,  Q5,  Q6,  Q7]> {
447  let SubRegClasses = [(SPR      ssub_0, ssub_1, ssub_2, ssub_3),
448                       (DPR_VFP2 dsub_0, dsub_1)];
449}
450
451// Subset of QPR that have DPR_8 and SPR_8 subregs.
452def QPR_8 : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
453                           128,
454                           [Q0,  Q1,  Q2,  Q3]> {
455  let SubRegClasses = [(SPR_8 ssub_0, ssub_1, ssub_2, ssub_3),
456                       (DPR_8 dsub_0, dsub_1)];
457}
458
459// Pseudo 256-bit vector register class to model pairs of Q registers
460// (4 consecutive D registers).
461def QQPR : RegisterClass<"ARM", [v4i64],
462                         256,
463                         [QQ0, QQ1, QQ2, QQ3, QQ4, QQ5, QQ6, QQ7]> {
464  let SubRegClasses = [(DPR dsub_0, dsub_1, dsub_2, dsub_3),
465                       (QPR qsub_0, qsub_1)];
466}
467
468// Subset of QQPR that have 32-bit SPR subregs.
469def QQPR_VFP2 : RegisterClass<"ARM", [v4i64],
470                              256,
471                              [QQ0, QQ1, QQ2, QQ3]> {
472  let SubRegClasses = [(SPR      ssub_0, ssub_1, ssub_2, ssub_3),
473                       (DPR_VFP2 dsub_0, dsub_1, dsub_2, dsub_3),
474                       (QPR_VFP2 qsub_0, qsub_1)];
475
476}
477
478// Pseudo 512-bit vector register class to model 4 consecutive Q registers
479// (8 consecutive D registers).
480def QQQQPR : RegisterClass<"ARM", [v8i64],
481                         256,
482                         [QQQQ0, QQQQ1, QQQQ2, QQQQ3]> {
483  let SubRegClasses = [(DPR dsub_0, dsub_1, dsub_2, dsub_3,
484                            dsub_4, dsub_5, dsub_6, dsub_7),
485                       (QPR qsub_0, qsub_1, qsub_2, qsub_3)];
486}
487
488// Condition code registers.
489def CCR : RegisterClass<"ARM", [i32], 32, [CPSR]>;
490