ARMFastISel.cpp revision 218893
1//===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the ARM-specific support for the FastISel class. Some
11// of the target-specific code is generated by tablegen in the file
12// ARMGenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#include "ARM.h"
17#include "ARMBaseInstrInfo.h"
18#include "ARMCallingConv.h"
19#include "ARMRegisterInfo.h"
20#include "ARMTargetMachine.h"
21#include "ARMSubtarget.h"
22#include "ARMConstantPoolValue.h"
23#include "llvm/CallingConv.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/Instructions.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/Module.h"
29#include "llvm/CodeGen/Analysis.h"
30#include "llvm/CodeGen/FastISel.h"
31#include "llvm/CodeGen/FunctionLoweringInfo.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineModuleInfo.h"
34#include "llvm/CodeGen/MachineConstantPool.h"
35#include "llvm/CodeGen/MachineFrameInfo.h"
36#include "llvm/CodeGen/MachineMemOperand.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/PseudoSourceValue.h"
39#include "llvm/Support/CallSite.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/GetElementPtrTypeIterator.h"
43#include "llvm/Target/TargetData.h"
44#include "llvm/Target/TargetInstrInfo.h"
45#include "llvm/Target/TargetLowering.h"
46#include "llvm/Target/TargetMachine.h"
47#include "llvm/Target/TargetOptions.h"
48using namespace llvm;
49
50static cl::opt<bool>
51DisableARMFastISel("disable-arm-fast-isel",
52                    cl::desc("Turn off experimental ARM fast-isel support"),
53                    cl::init(false), cl::Hidden);
54
55extern cl::opt<bool> EnableARMLongCalls;
56
57namespace {
58
59  // All possible address modes, plus some.
60  typedef struct Address {
61    enum {
62      RegBase,
63      FrameIndexBase
64    } BaseType;
65
66    union {
67      unsigned Reg;
68      int FI;
69    } Base;
70
71    int Offset;
72    unsigned Scale;
73    unsigned PlusReg;
74
75    // Innocuous defaults for our address.
76    Address()
77     : BaseType(RegBase), Offset(0), Scale(0), PlusReg(0) {
78       Base.Reg = 0;
79     }
80  } Address;
81
82class ARMFastISel : public FastISel {
83
84  /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
85  /// make the right decision when generating code for different targets.
86  const ARMSubtarget *Subtarget;
87  const TargetMachine &TM;
88  const TargetInstrInfo &TII;
89  const TargetLowering &TLI;
90  ARMFunctionInfo *AFI;
91
92  // Convenience variables to avoid some queries.
93  bool isThumb;
94  LLVMContext *Context;
95
96  public:
97    explicit ARMFastISel(FunctionLoweringInfo &funcInfo)
98    : FastISel(funcInfo),
99      TM(funcInfo.MF->getTarget()),
100      TII(*TM.getInstrInfo()),
101      TLI(*TM.getTargetLowering()) {
102      Subtarget = &TM.getSubtarget<ARMSubtarget>();
103      AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
104      isThumb = AFI->isThumbFunction();
105      Context = &funcInfo.Fn->getContext();
106    }
107
108    // Code from FastISel.cpp.
109    virtual unsigned FastEmitInst_(unsigned MachineInstOpcode,
110                                   const TargetRegisterClass *RC);
111    virtual unsigned FastEmitInst_r(unsigned MachineInstOpcode,
112                                    const TargetRegisterClass *RC,
113                                    unsigned Op0, bool Op0IsKill);
114    virtual unsigned FastEmitInst_rr(unsigned MachineInstOpcode,
115                                     const TargetRegisterClass *RC,
116                                     unsigned Op0, bool Op0IsKill,
117                                     unsigned Op1, bool Op1IsKill);
118    virtual unsigned FastEmitInst_ri(unsigned MachineInstOpcode,
119                                     const TargetRegisterClass *RC,
120                                     unsigned Op0, bool Op0IsKill,
121                                     uint64_t Imm);
122    virtual unsigned FastEmitInst_rf(unsigned MachineInstOpcode,
123                                     const TargetRegisterClass *RC,
124                                     unsigned Op0, bool Op0IsKill,
125                                     const ConstantFP *FPImm);
126    virtual unsigned FastEmitInst_i(unsigned MachineInstOpcode,
127                                    const TargetRegisterClass *RC,
128                                    uint64_t Imm);
129    virtual unsigned FastEmitInst_rri(unsigned MachineInstOpcode,
130                                      const TargetRegisterClass *RC,
131                                      unsigned Op0, bool Op0IsKill,
132                                      unsigned Op1, bool Op1IsKill,
133                                      uint64_t Imm);
134    virtual unsigned FastEmitInst_extractsubreg(MVT RetVT,
135                                                unsigned Op0, bool Op0IsKill,
136                                                uint32_t Idx);
137
138    // Backend specific FastISel code.
139    virtual bool TargetSelectInstruction(const Instruction *I);
140    virtual unsigned TargetMaterializeConstant(const Constant *C);
141    virtual unsigned TargetMaterializeAlloca(const AllocaInst *AI);
142
143  #include "ARMGenFastISel.inc"
144
145    // Instruction selection routines.
146  private:
147    bool SelectLoad(const Instruction *I);
148    bool SelectStore(const Instruction *I);
149    bool SelectBranch(const Instruction *I);
150    bool SelectCmp(const Instruction *I);
151    bool SelectFPExt(const Instruction *I);
152    bool SelectFPTrunc(const Instruction *I);
153    bool SelectBinaryOp(const Instruction *I, unsigned ISDOpcode);
154    bool SelectSIToFP(const Instruction *I);
155    bool SelectFPToSI(const Instruction *I);
156    bool SelectSDiv(const Instruction *I);
157    bool SelectSRem(const Instruction *I);
158    bool SelectCall(const Instruction *I);
159    bool SelectSelect(const Instruction *I);
160    bool SelectRet(const Instruction *I);
161
162    // Utility routines.
163  private:
164    bool isTypeLegal(const Type *Ty, MVT &VT);
165    bool isLoadTypeLegal(const Type *Ty, MVT &VT);
166    bool ARMEmitLoad(EVT VT, unsigned &ResultReg, Address &Addr);
167    bool ARMEmitStore(EVT VT, unsigned SrcReg, Address &Addr);
168    bool ARMComputeAddress(const Value *Obj, Address &Addr);
169    void ARMSimplifyAddress(Address &Addr, EVT VT);
170    unsigned ARMMaterializeFP(const ConstantFP *CFP, EVT VT);
171    unsigned ARMMaterializeInt(const Constant *C, EVT VT);
172    unsigned ARMMaterializeGV(const GlobalValue *GV, EVT VT);
173    unsigned ARMMoveToFPReg(EVT VT, unsigned SrcReg);
174    unsigned ARMMoveToIntReg(EVT VT, unsigned SrcReg);
175
176    // Call handling routines.
177  private:
178    bool FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
179                        unsigned &ResultReg);
180    CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool Return);
181    bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
182                         SmallVectorImpl<unsigned> &ArgRegs,
183                         SmallVectorImpl<MVT> &ArgVTs,
184                         SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
185                         SmallVectorImpl<unsigned> &RegArgs,
186                         CallingConv::ID CC,
187                         unsigned &NumBytes);
188    bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
189                    const Instruction *I, CallingConv::ID CC,
190                    unsigned &NumBytes);
191    bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
192
193    // OptionalDef handling routines.
194  private:
195    bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
196    const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
197    void AddLoadStoreOperands(EVT VT, Address &Addr,
198                              const MachineInstrBuilder &MIB);
199};
200
201} // end anonymous namespace
202
203#include "ARMGenCallingConv.inc"
204
205// DefinesOptionalPredicate - This is different from DefinesPredicate in that
206// we don't care about implicit defs here, just places we'll need to add a
207// default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
208bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
209  const TargetInstrDesc &TID = MI->getDesc();
210  if (!TID.hasOptionalDef())
211    return false;
212
213  // Look to see if our OptionalDef is defining CPSR or CCR.
214  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
215    const MachineOperand &MO = MI->getOperand(i);
216    if (!MO.isReg() || !MO.isDef()) continue;
217    if (MO.getReg() == ARM::CPSR)
218      *CPSR = true;
219  }
220  return true;
221}
222
223// If the machine is predicable go ahead and add the predicate operands, if
224// it needs default CC operands add those.
225// TODO: If we want to support thumb1 then we'll need to deal with optional
226// CPSR defs that need to be added before the remaining operands. See s_cc_out
227// for descriptions why.
228const MachineInstrBuilder &
229ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
230  MachineInstr *MI = &*MIB;
231
232  // Do we use a predicate?
233  if (TII.isPredicable(MI))
234    AddDefaultPred(MIB);
235
236  // Do we optionally set a predicate?  Preds is size > 0 iff the predicate
237  // defines CPSR. All other OptionalDefines in ARM are the CCR register.
238  bool CPSR = false;
239  if (DefinesOptionalPredicate(MI, &CPSR)) {
240    if (CPSR)
241      AddDefaultT1CC(MIB);
242    else
243      AddDefaultCC(MIB);
244  }
245  return MIB;
246}
247
248unsigned ARMFastISel::FastEmitInst_(unsigned MachineInstOpcode,
249                                    const TargetRegisterClass* RC) {
250  unsigned ResultReg = createResultReg(RC);
251  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
252
253  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg));
254  return ResultReg;
255}
256
257unsigned ARMFastISel::FastEmitInst_r(unsigned MachineInstOpcode,
258                                     const TargetRegisterClass *RC,
259                                     unsigned Op0, bool Op0IsKill) {
260  unsigned ResultReg = createResultReg(RC);
261  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
262
263  if (II.getNumDefs() >= 1)
264    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
265                   .addReg(Op0, Op0IsKill * RegState::Kill));
266  else {
267    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
268                   .addReg(Op0, Op0IsKill * RegState::Kill));
269    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
270                   TII.get(TargetOpcode::COPY), ResultReg)
271                   .addReg(II.ImplicitDefs[0]));
272  }
273  return ResultReg;
274}
275
276unsigned ARMFastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
277                                      const TargetRegisterClass *RC,
278                                      unsigned Op0, bool Op0IsKill,
279                                      unsigned Op1, bool Op1IsKill) {
280  unsigned ResultReg = createResultReg(RC);
281  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
282
283  if (II.getNumDefs() >= 1)
284    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
285                   .addReg(Op0, Op0IsKill * RegState::Kill)
286                   .addReg(Op1, Op1IsKill * RegState::Kill));
287  else {
288    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
289                   .addReg(Op0, Op0IsKill * RegState::Kill)
290                   .addReg(Op1, Op1IsKill * RegState::Kill));
291    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
292                           TII.get(TargetOpcode::COPY), ResultReg)
293                   .addReg(II.ImplicitDefs[0]));
294  }
295  return ResultReg;
296}
297
298unsigned ARMFastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
299                                      const TargetRegisterClass *RC,
300                                      unsigned Op0, bool Op0IsKill,
301                                      uint64_t Imm) {
302  unsigned ResultReg = createResultReg(RC);
303  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
304
305  if (II.getNumDefs() >= 1)
306    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
307                   .addReg(Op0, Op0IsKill * RegState::Kill)
308                   .addImm(Imm));
309  else {
310    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
311                   .addReg(Op0, Op0IsKill * RegState::Kill)
312                   .addImm(Imm));
313    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
314                           TII.get(TargetOpcode::COPY), ResultReg)
315                   .addReg(II.ImplicitDefs[0]));
316  }
317  return ResultReg;
318}
319
320unsigned ARMFastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
321                                      const TargetRegisterClass *RC,
322                                      unsigned Op0, bool Op0IsKill,
323                                      const ConstantFP *FPImm) {
324  unsigned ResultReg = createResultReg(RC);
325  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
326
327  if (II.getNumDefs() >= 1)
328    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
329                   .addReg(Op0, Op0IsKill * RegState::Kill)
330                   .addFPImm(FPImm));
331  else {
332    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
333                   .addReg(Op0, Op0IsKill * RegState::Kill)
334                   .addFPImm(FPImm));
335    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
336                           TII.get(TargetOpcode::COPY), ResultReg)
337                   .addReg(II.ImplicitDefs[0]));
338  }
339  return ResultReg;
340}
341
342unsigned ARMFastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
343                                       const TargetRegisterClass *RC,
344                                       unsigned Op0, bool Op0IsKill,
345                                       unsigned Op1, bool Op1IsKill,
346                                       uint64_t Imm) {
347  unsigned ResultReg = createResultReg(RC);
348  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
349
350  if (II.getNumDefs() >= 1)
351    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
352                   .addReg(Op0, Op0IsKill * RegState::Kill)
353                   .addReg(Op1, Op1IsKill * RegState::Kill)
354                   .addImm(Imm));
355  else {
356    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
357                   .addReg(Op0, Op0IsKill * RegState::Kill)
358                   .addReg(Op1, Op1IsKill * RegState::Kill)
359                   .addImm(Imm));
360    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
361                           TII.get(TargetOpcode::COPY), ResultReg)
362                   .addReg(II.ImplicitDefs[0]));
363  }
364  return ResultReg;
365}
366
367unsigned ARMFastISel::FastEmitInst_i(unsigned MachineInstOpcode,
368                                     const TargetRegisterClass *RC,
369                                     uint64_t Imm) {
370  unsigned ResultReg = createResultReg(RC);
371  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
372
373  if (II.getNumDefs() >= 1)
374    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
375                   .addImm(Imm));
376  else {
377    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
378                   .addImm(Imm));
379    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
380                           TII.get(TargetOpcode::COPY), ResultReg)
381                   .addReg(II.ImplicitDefs[0]));
382  }
383  return ResultReg;
384}
385
386unsigned ARMFastISel::FastEmitInst_extractsubreg(MVT RetVT,
387                                                 unsigned Op0, bool Op0IsKill,
388                                                 uint32_t Idx) {
389  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
390  assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
391         "Cannot yet extract from physregs");
392  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
393                         DL, TII.get(TargetOpcode::COPY), ResultReg)
394                 .addReg(Op0, getKillRegState(Op0IsKill), Idx));
395  return ResultReg;
396}
397
398// TODO: Don't worry about 64-bit now, but when this is fixed remove the
399// checks from the various callers.
400unsigned ARMFastISel::ARMMoveToFPReg(EVT VT, unsigned SrcReg) {
401  if (VT == MVT::f64) return 0;
402
403  unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
404  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
405                          TII.get(ARM::VMOVRS), MoveReg)
406                  .addReg(SrcReg));
407  return MoveReg;
408}
409
410unsigned ARMFastISel::ARMMoveToIntReg(EVT VT, unsigned SrcReg) {
411  if (VT == MVT::i64) return 0;
412
413  unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
414  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
415                          TII.get(ARM::VMOVSR), MoveReg)
416                  .addReg(SrcReg));
417  return MoveReg;
418}
419
420// For double width floating point we need to materialize two constants
421// (the high and the low) into integer registers then use a move to get
422// the combined constant into an FP reg.
423unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, EVT VT) {
424  const APFloat Val = CFP->getValueAPF();
425  bool is64bit = VT == MVT::f64;
426
427  // This checks to see if we can use VFP3 instructions to materialize
428  // a constant, otherwise we have to go through the constant pool.
429  if (TLI.isFPImmLegal(Val, VT)) {
430    unsigned Opc = is64bit ? ARM::FCONSTD : ARM::FCONSTS;
431    unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
432    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
433                            DestReg)
434                    .addFPImm(CFP));
435    return DestReg;
436  }
437
438  // Require VFP2 for loading fp constants.
439  if (!Subtarget->hasVFP2()) return false;
440
441  // MachineConstantPool wants an explicit alignment.
442  unsigned Align = TD.getPrefTypeAlignment(CFP->getType());
443  if (Align == 0) {
444    // TODO: Figure out if this is correct.
445    Align = TD.getTypeAllocSize(CFP->getType());
446  }
447  unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
448  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
449  unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
450
451  // The extra reg is for addrmode5.
452  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
453                          DestReg)
454                  .addConstantPoolIndex(Idx)
455                  .addReg(0));
456  return DestReg;
457}
458
459unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, EVT VT) {
460
461  // For now 32-bit only.
462  if (VT != MVT::i32) return false;
463
464  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
465
466  // If we can do this in a single instruction without a constant pool entry
467  // do so now.
468  const ConstantInt *CI = cast<ConstantInt>(C);
469  if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getSExtValue())) {
470    unsigned Opc = isThumb ? ARM::t2MOVi16 : ARM::MOVi16;
471    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
472                            TII.get(Opc), DestReg)
473                    .addImm(CI->getSExtValue()));
474    return DestReg;
475  }
476
477  // MachineConstantPool wants an explicit alignment.
478  unsigned Align = TD.getPrefTypeAlignment(C->getType());
479  if (Align == 0) {
480    // TODO: Figure out if this is correct.
481    Align = TD.getTypeAllocSize(C->getType());
482  }
483  unsigned Idx = MCP.getConstantPoolIndex(C, Align);
484
485  if (isThumb)
486    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
487                            TII.get(ARM::t2LDRpci), DestReg)
488                    .addConstantPoolIndex(Idx));
489  else
490    // The extra immediate is for addrmode2.
491    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
492                            TII.get(ARM::LDRcp), DestReg)
493                    .addConstantPoolIndex(Idx)
494                    .addImm(0));
495
496  return DestReg;
497}
498
499unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, EVT VT) {
500  // For now 32-bit only.
501  if (VT != MVT::i32) return 0;
502
503  Reloc::Model RelocM = TM.getRelocationModel();
504
505  // TODO: No external globals for now.
506  if (Subtarget->GVIsIndirectSymbol(GV, RelocM)) return 0;
507
508  // TODO: Need more magic for ARM PIC.
509  if (!isThumb && (RelocM == Reloc::PIC_)) return 0;
510
511  // MachineConstantPool wants an explicit alignment.
512  unsigned Align = TD.getPrefTypeAlignment(GV->getType());
513  if (Align == 0) {
514    // TODO: Figure out if this is correct.
515    Align = TD.getTypeAllocSize(GV->getType());
516  }
517
518  // Grab index.
519  unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb() ? 4 : 8);
520  unsigned Id = AFI->createPICLabelUId();
521  ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, Id,
522                                                       ARMCP::CPValue, PCAdj);
523  unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
524
525  // Load value.
526  MachineInstrBuilder MIB;
527  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
528  if (isThumb) {
529    unsigned Opc = (RelocM != Reloc::PIC_) ? ARM::t2LDRpci : ARM::t2LDRpci_pic;
530    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
531          .addConstantPoolIndex(Idx);
532    if (RelocM == Reloc::PIC_)
533      MIB.addImm(Id);
534  } else {
535    // The extra immediate is for addrmode2.
536    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRcp),
537                  DestReg)
538          .addConstantPoolIndex(Idx)
539          .addImm(0);
540  }
541  AddOptionalDefs(MIB);
542  return DestReg;
543}
544
545unsigned ARMFastISel::TargetMaterializeConstant(const Constant *C) {
546  EVT VT = TLI.getValueType(C->getType(), true);
547
548  // Only handle simple types.
549  if (!VT.isSimple()) return 0;
550
551  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
552    return ARMMaterializeFP(CFP, VT);
553  else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
554    return ARMMaterializeGV(GV, VT);
555  else if (isa<ConstantInt>(C))
556    return ARMMaterializeInt(C, VT);
557
558  return 0;
559}
560
561unsigned ARMFastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
562  // Don't handle dynamic allocas.
563  if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
564
565  MVT VT;
566  if (!isLoadTypeLegal(AI->getType(), VT)) return false;
567
568  DenseMap<const AllocaInst*, int>::iterator SI =
569    FuncInfo.StaticAllocaMap.find(AI);
570
571  // This will get lowered later into the correct offsets and registers
572  // via rewriteXFrameIndex.
573  if (SI != FuncInfo.StaticAllocaMap.end()) {
574    TargetRegisterClass* RC = TLI.getRegClassFor(VT);
575    unsigned ResultReg = createResultReg(RC);
576    unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri;
577    AddOptionalDefs(BuildMI(*FuncInfo.MBB, *FuncInfo.InsertPt, DL,
578                            TII.get(Opc), ResultReg)
579                            .addFrameIndex(SI->second)
580                            .addImm(0));
581    return ResultReg;
582  }
583
584  return 0;
585}
586
587bool ARMFastISel::isTypeLegal(const Type *Ty, MVT &VT) {
588  EVT evt = TLI.getValueType(Ty, true);
589
590  // Only handle simple types.
591  if (evt == MVT::Other || !evt.isSimple()) return false;
592  VT = evt.getSimpleVT();
593
594  // Handle all legal types, i.e. a register that will directly hold this
595  // value.
596  return TLI.isTypeLegal(VT);
597}
598
599bool ARMFastISel::isLoadTypeLegal(const Type *Ty, MVT &VT) {
600  if (isTypeLegal(Ty, VT)) return true;
601
602  // If this is a type than can be sign or zero-extended to a basic operation
603  // go ahead and accept it now.
604  if (VT == MVT::i8 || VT == MVT::i16)
605    return true;
606
607  return false;
608}
609
610// Computes the address to get to an object.
611bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) {
612  // Some boilerplate from the X86 FastISel.
613  const User *U = NULL;
614  unsigned Opcode = Instruction::UserOp1;
615  if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
616    // Don't walk into other basic blocks unless the object is an alloca from
617    // another block, otherwise it may not have a virtual register assigned.
618    if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
619        FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
620      Opcode = I->getOpcode();
621      U = I;
622    }
623  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
624    Opcode = C->getOpcode();
625    U = C;
626  }
627
628  if (const PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
629    if (Ty->getAddressSpace() > 255)
630      // Fast instruction selection doesn't support the special
631      // address spaces.
632      return false;
633
634  switch (Opcode) {
635    default:
636    break;
637    case Instruction::BitCast: {
638      // Look through bitcasts.
639      return ARMComputeAddress(U->getOperand(0), Addr);
640    }
641    case Instruction::IntToPtr: {
642      // Look past no-op inttoptrs.
643      if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
644        return ARMComputeAddress(U->getOperand(0), Addr);
645      break;
646    }
647    case Instruction::PtrToInt: {
648      // Look past no-op ptrtoints.
649      if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
650        return ARMComputeAddress(U->getOperand(0), Addr);
651      break;
652    }
653    case Instruction::GetElementPtr: {
654      Address SavedAddr = Addr;
655      int TmpOffset = Addr.Offset;
656
657      // Iterate through the GEP folding the constants into offsets where
658      // we can.
659      gep_type_iterator GTI = gep_type_begin(U);
660      for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
661           i != e; ++i, ++GTI) {
662        const Value *Op = *i;
663        if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
664          const StructLayout *SL = TD.getStructLayout(STy);
665          unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
666          TmpOffset += SL->getElementOffset(Idx);
667        } else {
668          uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
669          SmallVector<const Value *, 4> Worklist;
670          Worklist.push_back(Op);
671          do {
672            Op = Worklist.pop_back_val();
673            if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
674              // Constant-offset addressing.
675              TmpOffset += CI->getSExtValue() * S;
676            } else if (isa<AddOperator>(Op) &&
677                       isa<ConstantInt>(cast<AddOperator>(Op)->getOperand(1))) {
678              // An add with a constant operand. Fold the constant.
679              ConstantInt *CI =
680                cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
681              TmpOffset += CI->getSExtValue() * S;
682              // Add the other operand back to the work list.
683              Worklist.push_back(cast<AddOperator>(Op)->getOperand(0));
684            } else
685              goto unsupported_gep;
686          } while (!Worklist.empty());
687        }
688      }
689
690      // Try to grab the base operand now.
691      Addr.Offset = TmpOffset;
692      if (ARMComputeAddress(U->getOperand(0), Addr)) return true;
693
694      // We failed, restore everything and try the other options.
695      Addr = SavedAddr;
696
697      unsupported_gep:
698      break;
699    }
700    case Instruction::Alloca: {
701      const AllocaInst *AI = cast<AllocaInst>(Obj);
702      DenseMap<const AllocaInst*, int>::iterator SI =
703        FuncInfo.StaticAllocaMap.find(AI);
704      if (SI != FuncInfo.StaticAllocaMap.end()) {
705        Addr.BaseType = Address::FrameIndexBase;
706        Addr.Base.FI = SI->second;
707        return true;
708      }
709      break;
710    }
711  }
712
713  // Materialize the global variable's address into a reg which can
714  // then be used later to load the variable.
715  if (const GlobalValue *GV = dyn_cast<GlobalValue>(Obj)) {
716    unsigned Tmp = ARMMaterializeGV(GV, TLI.getValueType(Obj->getType()));
717    if (Tmp == 0) return false;
718
719    Addr.Base.Reg = Tmp;
720    return true;
721  }
722
723  // Try to get this in a register if nothing else has worked.
724  if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj);
725  return Addr.Base.Reg != 0;
726}
727
728void ARMFastISel::ARMSimplifyAddress(Address &Addr, EVT VT) {
729
730  assert(VT.isSimple() && "Non-simple types are invalid here!");
731
732  bool needsLowering = false;
733  switch (VT.getSimpleVT().SimpleTy) {
734    default:
735      assert(false && "Unhandled load/store type!");
736    case MVT::i1:
737    case MVT::i8:
738    case MVT::i16:
739    case MVT::i32:
740      // Integer loads/stores handle 12-bit offsets.
741      needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset);
742      break;
743    case MVT::f32:
744    case MVT::f64:
745      // Floating point operands handle 8-bit offsets.
746      needsLowering = ((Addr.Offset & 0xff) != Addr.Offset);
747      break;
748  }
749
750  // If this is a stack pointer and the offset needs to be simplified then
751  // put the alloca address into a register, set the base type back to
752  // register and continue. This should almost never happen.
753  if (needsLowering && Addr.BaseType == Address::FrameIndexBase) {
754    TargetRegisterClass *RC = isThumb ? ARM::tGPRRegisterClass :
755                              ARM::GPRRegisterClass;
756    unsigned ResultReg = createResultReg(RC);
757    unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri;
758    AddOptionalDefs(BuildMI(*FuncInfo.MBB, *FuncInfo.InsertPt, DL,
759                            TII.get(Opc), ResultReg)
760                            .addFrameIndex(Addr.Base.FI)
761                            .addImm(0));
762    Addr.Base.Reg = ResultReg;
763    Addr.BaseType = Address::RegBase;
764  }
765
766  // Since the offset is too large for the load/store instruction
767  // get the reg+offset into a register.
768  if (needsLowering) {
769    ARMCC::CondCodes Pred = ARMCC::AL;
770    unsigned PredReg = 0;
771
772    TargetRegisterClass *RC = isThumb ? ARM::tGPRRegisterClass :
773      ARM::GPRRegisterClass;
774    unsigned BaseReg = createResultReg(RC);
775
776    if (!isThumb)
777      emitARMRegPlusImmediate(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
778                              BaseReg, Addr.Base.Reg, Addr.Offset,
779                              Pred, PredReg,
780                              static_cast<const ARMBaseInstrInfo&>(TII));
781    else {
782      assert(AFI->isThumb2Function());
783      emitT2RegPlusImmediate(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
784                             BaseReg, Addr.Base.Reg, Addr.Offset, Pred, PredReg,
785                             static_cast<const ARMBaseInstrInfo&>(TII));
786    }
787    Addr.Offset = 0;
788    Addr.Base.Reg = BaseReg;
789  }
790}
791
792void ARMFastISel::AddLoadStoreOperands(EVT VT, Address &Addr,
793                                       const MachineInstrBuilder &MIB) {
794  // addrmode5 output depends on the selection dag addressing dividing the
795  // offset by 4 that it then later multiplies. Do this here as well.
796  if (VT.getSimpleVT().SimpleTy == MVT::f32 ||
797      VT.getSimpleVT().SimpleTy == MVT::f64)
798    Addr.Offset /= 4;
799
800  // Frame base works a bit differently. Handle it separately.
801  if (Addr.BaseType == Address::FrameIndexBase) {
802    int FI = Addr.Base.FI;
803    int Offset = Addr.Offset;
804    MachineMemOperand *MMO =
805          FuncInfo.MF->getMachineMemOperand(
806                                  MachinePointerInfo::getFixedStack(FI, Offset),
807                                  MachineMemOperand::MOLoad,
808                                  MFI.getObjectSize(FI),
809                                  MFI.getObjectAlignment(FI));
810    // Now add the rest of the operands.
811    MIB.addFrameIndex(FI);
812
813    // ARM halfword load/stores need an additional operand.
814    if (!isThumb && VT.getSimpleVT().SimpleTy == MVT::i16) MIB.addReg(0);
815
816    MIB.addImm(Addr.Offset);
817    MIB.addMemOperand(MMO);
818  } else {
819    // Now add the rest of the operands.
820    MIB.addReg(Addr.Base.Reg);
821
822    // ARM halfword load/stores need an additional operand.
823    if (!isThumb && VT.getSimpleVT().SimpleTy == MVT::i16) MIB.addReg(0);
824
825    MIB.addImm(Addr.Offset);
826  }
827  AddOptionalDefs(MIB);
828}
829
830bool ARMFastISel::ARMEmitLoad(EVT VT, unsigned &ResultReg, Address &Addr) {
831
832  assert(VT.isSimple() && "Non-simple types are invalid here!");
833  unsigned Opc;
834  TargetRegisterClass *RC;
835  switch (VT.getSimpleVT().SimpleTy) {
836    // This is mostly going to be Neon/vector support.
837    default: return false;
838    case MVT::i16:
839      Opc = isThumb ? ARM::t2LDRHi12 : ARM::LDRH;
840      RC = ARM::GPRRegisterClass;
841      break;
842    case MVT::i8:
843      Opc = isThumb ? ARM::t2LDRBi12 : ARM::LDRBi12;
844      RC = ARM::GPRRegisterClass;
845      break;
846    case MVT::i32:
847      Opc = isThumb ? ARM::t2LDRi12 : ARM::LDRi12;
848      RC = ARM::GPRRegisterClass;
849      break;
850    case MVT::f32:
851      Opc = ARM::VLDRS;
852      RC = TLI.getRegClassFor(VT);
853      break;
854    case MVT::f64:
855      Opc = ARM::VLDRD;
856      RC = TLI.getRegClassFor(VT);
857      break;
858  }
859  // Simplify this down to something we can handle.
860  ARMSimplifyAddress(Addr, VT);
861
862  // Create the base instruction, then add the operands.
863  ResultReg = createResultReg(RC);
864  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
865                                    TII.get(Opc), ResultReg);
866  AddLoadStoreOperands(VT, Addr, MIB);
867  return true;
868}
869
870bool ARMFastISel::SelectLoad(const Instruction *I) {
871  // Verify we have a legal type before going any further.
872  MVT VT;
873  if (!isLoadTypeLegal(I->getType(), VT))
874    return false;
875
876  // See if we can handle this address.
877  Address Addr;
878  if (!ARMComputeAddress(I->getOperand(0), Addr)) return false;
879
880  unsigned ResultReg;
881  if (!ARMEmitLoad(VT, ResultReg, Addr)) return false;
882  UpdateValueMap(I, ResultReg);
883  return true;
884}
885
886bool ARMFastISel::ARMEmitStore(EVT VT, unsigned SrcReg, Address &Addr) {
887  unsigned StrOpc;
888  switch (VT.getSimpleVT().SimpleTy) {
889    // This is mostly going to be Neon/vector support.
890    default: return false;
891    case MVT::i1: {
892      unsigned Res = createResultReg(isThumb ? ARM::tGPRRegisterClass :
893                                               ARM::GPRRegisterClass);
894      unsigned Opc = isThumb ? ARM::t2ANDri : ARM::ANDri;
895      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
896                              TII.get(Opc), Res)
897                      .addReg(SrcReg).addImm(1));
898      SrcReg = Res;
899    } // Fallthrough here.
900    case MVT::i8:
901      StrOpc = isThumb ? ARM::t2STRBi12 : ARM::STRBi12;
902      break;
903    case MVT::i16:
904      StrOpc = isThumb ? ARM::t2STRHi12 : ARM::STRH;
905      break;
906    case MVT::i32:
907      StrOpc = isThumb ? ARM::t2STRi12 : ARM::STRi12;
908      break;
909    case MVT::f32:
910      if (!Subtarget->hasVFP2()) return false;
911      StrOpc = ARM::VSTRS;
912      break;
913    case MVT::f64:
914      if (!Subtarget->hasVFP2()) return false;
915      StrOpc = ARM::VSTRD;
916      break;
917  }
918  // Simplify this down to something we can handle.
919  ARMSimplifyAddress(Addr, VT);
920
921  // Create the base instruction, then add the operands.
922  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
923                                    TII.get(StrOpc))
924                            .addReg(SrcReg, getKillRegState(true));
925  AddLoadStoreOperands(VT, Addr, MIB);
926  return true;
927}
928
929bool ARMFastISel::SelectStore(const Instruction *I) {
930  Value *Op0 = I->getOperand(0);
931  unsigned SrcReg = 0;
932
933  // Verify we have a legal type before going any further.
934  MVT VT;
935  if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
936    return false;
937
938  // Get the value to be stored into a register.
939  SrcReg = getRegForValue(Op0);
940  if (SrcReg == 0) return false;
941
942  // See if we can handle this address.
943  Address Addr;
944  if (!ARMComputeAddress(I->getOperand(1), Addr))
945    return false;
946
947  if (!ARMEmitStore(VT, SrcReg, Addr)) return false;
948  return true;
949}
950
951static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
952  switch (Pred) {
953    // Needs two compares...
954    case CmpInst::FCMP_ONE:
955    case CmpInst::FCMP_UEQ:
956    default:
957      // AL is our "false" for now. The other two need more compares.
958      return ARMCC::AL;
959    case CmpInst::ICMP_EQ:
960    case CmpInst::FCMP_OEQ:
961      return ARMCC::EQ;
962    case CmpInst::ICMP_SGT:
963    case CmpInst::FCMP_OGT:
964      return ARMCC::GT;
965    case CmpInst::ICMP_SGE:
966    case CmpInst::FCMP_OGE:
967      return ARMCC::GE;
968    case CmpInst::ICMP_UGT:
969    case CmpInst::FCMP_UGT:
970      return ARMCC::HI;
971    case CmpInst::FCMP_OLT:
972      return ARMCC::MI;
973    case CmpInst::ICMP_ULE:
974    case CmpInst::FCMP_OLE:
975      return ARMCC::LS;
976    case CmpInst::FCMP_ORD:
977      return ARMCC::VC;
978    case CmpInst::FCMP_UNO:
979      return ARMCC::VS;
980    case CmpInst::FCMP_UGE:
981      return ARMCC::PL;
982    case CmpInst::ICMP_SLT:
983    case CmpInst::FCMP_ULT:
984      return ARMCC::LT;
985    case CmpInst::ICMP_SLE:
986    case CmpInst::FCMP_ULE:
987      return ARMCC::LE;
988    case CmpInst::FCMP_UNE:
989    case CmpInst::ICMP_NE:
990      return ARMCC::NE;
991    case CmpInst::ICMP_UGE:
992      return ARMCC::HS;
993    case CmpInst::ICMP_ULT:
994      return ARMCC::LO;
995  }
996}
997
998bool ARMFastISel::SelectBranch(const Instruction *I) {
999  const BranchInst *BI = cast<BranchInst>(I);
1000  MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1001  MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1002
1003  // Simple branch support.
1004
1005  // If we can, avoid recomputing the compare - redoing it could lead to wonky
1006  // behavior.
1007  // TODO: Factor this out.
1008  if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1009    if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
1010      MVT VT;
1011      const Type *Ty = CI->getOperand(0)->getType();
1012      if (!isTypeLegal(Ty, VT))
1013        return false;
1014
1015      bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1016      if (isFloat && !Subtarget->hasVFP2())
1017        return false;
1018
1019      unsigned CmpOpc;
1020      switch (VT.SimpleTy) {
1021        default: return false;
1022        // TODO: Verify compares.
1023        case MVT::f32:
1024          CmpOpc = ARM::VCMPES;
1025          break;
1026        case MVT::f64:
1027          CmpOpc = ARM::VCMPED;
1028          break;
1029        case MVT::i32:
1030          CmpOpc = isThumb ? ARM::t2CMPrr : ARM::CMPrr;
1031          break;
1032      }
1033
1034      // Get the compare predicate.
1035      ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
1036
1037      // We may not handle every CC for now.
1038      if (ARMPred == ARMCC::AL) return false;
1039
1040      unsigned Arg1 = getRegForValue(CI->getOperand(0));
1041      if (Arg1 == 0) return false;
1042
1043      unsigned Arg2 = getRegForValue(CI->getOperand(1));
1044      if (Arg2 == 0) return false;
1045
1046      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1047                              TII.get(CmpOpc))
1048                      .addReg(Arg1).addReg(Arg2));
1049
1050      // For floating point we need to move the result to a comparison register
1051      // that we can then use for branches.
1052      if (isFloat)
1053        AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1054                                TII.get(ARM::FMSTAT)));
1055
1056      unsigned BrOpc = isThumb ? ARM::t2Bcc : ARM::Bcc;
1057      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1058      .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
1059      FastEmitBranch(FBB, DL);
1060      FuncInfo.MBB->addSuccessor(TBB);
1061      return true;
1062    }
1063  }
1064
1065  unsigned CmpReg = getRegForValue(BI->getCondition());
1066  if (CmpReg == 0) return false;
1067
1068  // Re-set the flags just in case.
1069  unsigned CmpOpc = isThumb ? ARM::t2CMPri : ARM::CMPri;
1070  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1071                  .addReg(CmpReg).addImm(0));
1072
1073  unsigned BrOpc = isThumb ? ARM::t2Bcc : ARM::Bcc;
1074  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1075                  .addMBB(TBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
1076  FastEmitBranch(FBB, DL);
1077  FuncInfo.MBB->addSuccessor(TBB);
1078  return true;
1079}
1080
1081bool ARMFastISel::SelectCmp(const Instruction *I) {
1082  const CmpInst *CI = cast<CmpInst>(I);
1083
1084  MVT VT;
1085  const Type *Ty = CI->getOperand(0)->getType();
1086  if (!isTypeLegal(Ty, VT))
1087    return false;
1088
1089  bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1090  if (isFloat && !Subtarget->hasVFP2())
1091    return false;
1092
1093  unsigned CmpOpc;
1094  unsigned CondReg;
1095  switch (VT.SimpleTy) {
1096    default: return false;
1097    // TODO: Verify compares.
1098    case MVT::f32:
1099      CmpOpc = ARM::VCMPES;
1100      CondReg = ARM::FPSCR;
1101      break;
1102    case MVT::f64:
1103      CmpOpc = ARM::VCMPED;
1104      CondReg = ARM::FPSCR;
1105      break;
1106    case MVT::i32:
1107      CmpOpc = isThumb ? ARM::t2CMPrr : ARM::CMPrr;
1108      CondReg = ARM::CPSR;
1109      break;
1110  }
1111
1112  // Get the compare predicate.
1113  ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
1114
1115  // We may not handle every CC for now.
1116  if (ARMPred == ARMCC::AL) return false;
1117
1118  unsigned Arg1 = getRegForValue(CI->getOperand(0));
1119  if (Arg1 == 0) return false;
1120
1121  unsigned Arg2 = getRegForValue(CI->getOperand(1));
1122  if (Arg2 == 0) return false;
1123
1124  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1125                  .addReg(Arg1).addReg(Arg2));
1126
1127  // For floating point we need to move the result to a comparison register
1128  // that we can then use for branches.
1129  if (isFloat)
1130    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1131                            TII.get(ARM::FMSTAT)));
1132
1133  // Now set a register based on the comparison. Explicitly set the predicates
1134  // here.
1135  unsigned MovCCOpc = isThumb ? ARM::t2MOVCCi : ARM::MOVCCi;
1136  TargetRegisterClass *RC = isThumb ? ARM::rGPRRegisterClass
1137                                    : ARM::GPRRegisterClass;
1138  unsigned DestReg = createResultReg(RC);
1139  Constant *Zero
1140    = ConstantInt::get(Type::getInt32Ty(*Context), 0);
1141  unsigned ZeroReg = TargetMaterializeConstant(Zero);
1142  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), DestReg)
1143          .addReg(ZeroReg).addImm(1)
1144          .addImm(ARMPred).addReg(CondReg);
1145
1146  UpdateValueMap(I, DestReg);
1147  return true;
1148}
1149
1150bool ARMFastISel::SelectFPExt(const Instruction *I) {
1151  // Make sure we have VFP and that we're extending float to double.
1152  if (!Subtarget->hasVFP2()) return false;
1153
1154  Value *V = I->getOperand(0);
1155  if (!I->getType()->isDoubleTy() ||
1156      !V->getType()->isFloatTy()) return false;
1157
1158  unsigned Op = getRegForValue(V);
1159  if (Op == 0) return false;
1160
1161  unsigned Result = createResultReg(ARM::DPRRegisterClass);
1162  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1163                          TII.get(ARM::VCVTDS), Result)
1164                  .addReg(Op));
1165  UpdateValueMap(I, Result);
1166  return true;
1167}
1168
1169bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
1170  // Make sure we have VFP and that we're truncating double to float.
1171  if (!Subtarget->hasVFP2()) return false;
1172
1173  Value *V = I->getOperand(0);
1174  if (!(I->getType()->isFloatTy() &&
1175        V->getType()->isDoubleTy())) return false;
1176
1177  unsigned Op = getRegForValue(V);
1178  if (Op == 0) return false;
1179
1180  unsigned Result = createResultReg(ARM::SPRRegisterClass);
1181  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1182                          TII.get(ARM::VCVTSD), Result)
1183                  .addReg(Op));
1184  UpdateValueMap(I, Result);
1185  return true;
1186}
1187
1188bool ARMFastISel::SelectSIToFP(const Instruction *I) {
1189  // Make sure we have VFP.
1190  if (!Subtarget->hasVFP2()) return false;
1191
1192  MVT DstVT;
1193  const Type *Ty = I->getType();
1194  if (!isTypeLegal(Ty, DstVT))
1195    return false;
1196
1197  unsigned Op = getRegForValue(I->getOperand(0));
1198  if (Op == 0) return false;
1199
1200  // The conversion routine works on fp-reg to fp-reg and the operand above
1201  // was an integer, move it to the fp registers if possible.
1202  unsigned FP = ARMMoveToFPReg(MVT::f32, Op);
1203  if (FP == 0) return false;
1204
1205  unsigned Opc;
1206  if (Ty->isFloatTy()) Opc = ARM::VSITOS;
1207  else if (Ty->isDoubleTy()) Opc = ARM::VSITOD;
1208  else return 0;
1209
1210  unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
1211  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1212                          ResultReg)
1213                  .addReg(FP));
1214  UpdateValueMap(I, ResultReg);
1215  return true;
1216}
1217
1218bool ARMFastISel::SelectFPToSI(const Instruction *I) {
1219  // Make sure we have VFP.
1220  if (!Subtarget->hasVFP2()) return false;
1221
1222  MVT DstVT;
1223  const Type *RetTy = I->getType();
1224  if (!isTypeLegal(RetTy, DstVT))
1225    return false;
1226
1227  unsigned Op = getRegForValue(I->getOperand(0));
1228  if (Op == 0) return false;
1229
1230  unsigned Opc;
1231  const Type *OpTy = I->getOperand(0)->getType();
1232  if (OpTy->isFloatTy()) Opc = ARM::VTOSIZS;
1233  else if (OpTy->isDoubleTy()) Opc = ARM::VTOSIZD;
1234  else return 0;
1235
1236  // f64->s32 or f32->s32 both need an intermediate f32 reg.
1237  unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1238  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1239                          ResultReg)
1240                  .addReg(Op));
1241
1242  // This result needs to be in an integer register, but the conversion only
1243  // takes place in fp-regs.
1244  unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
1245  if (IntReg == 0) return false;
1246
1247  UpdateValueMap(I, IntReg);
1248  return true;
1249}
1250
1251bool ARMFastISel::SelectSelect(const Instruction *I) {
1252  MVT VT;
1253  if (!isTypeLegal(I->getType(), VT))
1254    return false;
1255
1256  // Things need to be register sized for register moves.
1257  if (VT != MVT::i32) return false;
1258  const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
1259
1260  unsigned CondReg = getRegForValue(I->getOperand(0));
1261  if (CondReg == 0) return false;
1262  unsigned Op1Reg = getRegForValue(I->getOperand(1));
1263  if (Op1Reg == 0) return false;
1264  unsigned Op2Reg = getRegForValue(I->getOperand(2));
1265  if (Op2Reg == 0) return false;
1266
1267  unsigned CmpOpc = isThumb ? ARM::t2TSTri : ARM::TSTri;
1268  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1269                  .addReg(CondReg).addImm(1));
1270  unsigned ResultReg = createResultReg(RC);
1271  unsigned MovCCOpc = isThumb ? ARM::t2MOVCCr : ARM::MOVCCr;
1272  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg)
1273    .addReg(Op1Reg).addReg(Op2Reg)
1274    .addImm(ARMCC::EQ).addReg(ARM::CPSR);
1275  UpdateValueMap(I, ResultReg);
1276  return true;
1277}
1278
1279bool ARMFastISel::SelectSDiv(const Instruction *I) {
1280  MVT VT;
1281  const Type *Ty = I->getType();
1282  if (!isTypeLegal(Ty, VT))
1283    return false;
1284
1285  // If we have integer div support we should have selected this automagically.
1286  // In case we have a real miss go ahead and return false and we'll pick
1287  // it up later.
1288  if (Subtarget->hasDivide()) return false;
1289
1290  // Otherwise emit a libcall.
1291  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1292  if (VT == MVT::i8)
1293    LC = RTLIB::SDIV_I8;
1294  else if (VT == MVT::i16)
1295    LC = RTLIB::SDIV_I16;
1296  else if (VT == MVT::i32)
1297    LC = RTLIB::SDIV_I32;
1298  else if (VT == MVT::i64)
1299    LC = RTLIB::SDIV_I64;
1300  else if (VT == MVT::i128)
1301    LC = RTLIB::SDIV_I128;
1302  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
1303
1304  return ARMEmitLibcall(I, LC);
1305}
1306
1307bool ARMFastISel::SelectSRem(const Instruction *I) {
1308  MVT VT;
1309  const Type *Ty = I->getType();
1310  if (!isTypeLegal(Ty, VT))
1311    return false;
1312
1313  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1314  if (VT == MVT::i8)
1315    LC = RTLIB::SREM_I8;
1316  else if (VT == MVT::i16)
1317    LC = RTLIB::SREM_I16;
1318  else if (VT == MVT::i32)
1319    LC = RTLIB::SREM_I32;
1320  else if (VT == MVT::i64)
1321    LC = RTLIB::SREM_I64;
1322  else if (VT == MVT::i128)
1323    LC = RTLIB::SREM_I128;
1324  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
1325
1326  return ARMEmitLibcall(I, LC);
1327}
1328
1329bool ARMFastISel::SelectBinaryOp(const Instruction *I, unsigned ISDOpcode) {
1330  EVT VT  = TLI.getValueType(I->getType(), true);
1331
1332  // We can get here in the case when we want to use NEON for our fp
1333  // operations, but can't figure out how to. Just use the vfp instructions
1334  // if we have them.
1335  // FIXME: It'd be nice to use NEON instructions.
1336  const Type *Ty = I->getType();
1337  bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1338  if (isFloat && !Subtarget->hasVFP2())
1339    return false;
1340
1341  unsigned Op1 = getRegForValue(I->getOperand(0));
1342  if (Op1 == 0) return false;
1343
1344  unsigned Op2 = getRegForValue(I->getOperand(1));
1345  if (Op2 == 0) return false;
1346
1347  unsigned Opc;
1348  bool is64bit = VT == MVT::f64 || VT == MVT::i64;
1349  switch (ISDOpcode) {
1350    default: return false;
1351    case ISD::FADD:
1352      Opc = is64bit ? ARM::VADDD : ARM::VADDS;
1353      break;
1354    case ISD::FSUB:
1355      Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
1356      break;
1357    case ISD::FMUL:
1358      Opc = is64bit ? ARM::VMULD : ARM::VMULS;
1359      break;
1360  }
1361  unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
1362  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1363                          TII.get(Opc), ResultReg)
1364                  .addReg(Op1).addReg(Op2));
1365  UpdateValueMap(I, ResultReg);
1366  return true;
1367}
1368
1369// Call Handling Code
1370
1371bool ARMFastISel::FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src,
1372                                 EVT SrcVT, unsigned &ResultReg) {
1373  unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
1374                           Src, /*TODO: Kill=*/false);
1375
1376  if (RR != 0) {
1377    ResultReg = RR;
1378    return true;
1379  } else
1380    return false;
1381}
1382
1383// This is largely taken directly from CCAssignFnForNode - we don't support
1384// varargs in FastISel so that part has been removed.
1385// TODO: We may not support all of this.
1386CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, bool Return) {
1387  switch (CC) {
1388  default:
1389    llvm_unreachable("Unsupported calling convention");
1390  case CallingConv::Fast:
1391    // Ignore fastcc. Silence compiler warnings.
1392    (void)RetFastCC_ARM_APCS;
1393    (void)FastCC_ARM_APCS;
1394    // Fallthrough
1395  case CallingConv::C:
1396    // Use target triple & subtarget features to do actual dispatch.
1397    if (Subtarget->isAAPCS_ABI()) {
1398      if (Subtarget->hasVFP2() &&
1399          FloatABIType == FloatABI::Hard)
1400        return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1401      else
1402        return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1403    } else
1404        return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1405  case CallingConv::ARM_AAPCS_VFP:
1406    return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1407  case CallingConv::ARM_AAPCS:
1408    return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1409  case CallingConv::ARM_APCS:
1410    return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1411  }
1412}
1413
1414bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
1415                                  SmallVectorImpl<unsigned> &ArgRegs,
1416                                  SmallVectorImpl<MVT> &ArgVTs,
1417                                  SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1418                                  SmallVectorImpl<unsigned> &RegArgs,
1419                                  CallingConv::ID CC,
1420                                  unsigned &NumBytes) {
1421  SmallVector<CCValAssign, 16> ArgLocs;
1422  CCState CCInfo(CC, false, TM, ArgLocs, *Context);
1423  CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC, false));
1424
1425  // Get a count of how many bytes are to be pushed on the stack.
1426  NumBytes = CCInfo.getNextStackOffset();
1427
1428  // Issue CALLSEQ_START
1429  unsigned AdjStackDown = TM.getRegisterInfo()->getCallFrameSetupOpcode();
1430  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1431                          TII.get(AdjStackDown))
1432                  .addImm(NumBytes));
1433
1434  // Process the args.
1435  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1436    CCValAssign &VA = ArgLocs[i];
1437    unsigned Arg = ArgRegs[VA.getValNo()];
1438    MVT ArgVT = ArgVTs[VA.getValNo()];
1439
1440    // We don't handle NEON/vector parameters yet.
1441    if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
1442      return false;
1443
1444    // Handle arg promotion, etc.
1445    switch (VA.getLocInfo()) {
1446      case CCValAssign::Full: break;
1447      case CCValAssign::SExt: {
1448        bool Emitted = FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1449                                         Arg, ArgVT, Arg);
1450        assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
1451        Emitted = true;
1452        ArgVT = VA.getLocVT();
1453        break;
1454      }
1455      case CCValAssign::ZExt: {
1456        bool Emitted = FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1457                                         Arg, ArgVT, Arg);
1458        assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
1459        Emitted = true;
1460        ArgVT = VA.getLocVT();
1461        break;
1462      }
1463      case CCValAssign::AExt: {
1464        bool Emitted = FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(),
1465                                         Arg, ArgVT, Arg);
1466        if (!Emitted)
1467          Emitted = FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1468                                      Arg, ArgVT, Arg);
1469        if (!Emitted)
1470          Emitted = FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1471                                      Arg, ArgVT, Arg);
1472
1473        assert(Emitted && "Failed to emit a aext!"); (void)Emitted;
1474        ArgVT = VA.getLocVT();
1475        break;
1476      }
1477      case CCValAssign::BCvt: {
1478        unsigned BC = FastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg,
1479                                 /*TODO: Kill=*/false);
1480        assert(BC != 0 && "Failed to emit a bitcast!");
1481        Arg = BC;
1482        ArgVT = VA.getLocVT();
1483        break;
1484      }
1485      default: llvm_unreachable("Unknown arg promotion!");
1486    }
1487
1488    // Now copy/store arg to correct locations.
1489    if (VA.isRegLoc() && !VA.needsCustom()) {
1490      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1491              VA.getLocReg())
1492      .addReg(Arg);
1493      RegArgs.push_back(VA.getLocReg());
1494    } else if (VA.needsCustom()) {
1495      // TODO: We need custom lowering for vector (v2f64) args.
1496      if (VA.getLocVT() != MVT::f64) return false;
1497
1498      CCValAssign &NextVA = ArgLocs[++i];
1499
1500      // TODO: Only handle register args for now.
1501      if(!(VA.isRegLoc() && NextVA.isRegLoc())) return false;
1502
1503      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1504                              TII.get(ARM::VMOVRRD), VA.getLocReg())
1505                      .addReg(NextVA.getLocReg(), RegState::Define)
1506                      .addReg(Arg));
1507      RegArgs.push_back(VA.getLocReg());
1508      RegArgs.push_back(NextVA.getLocReg());
1509    } else {
1510      assert(VA.isMemLoc());
1511      // Need to store on the stack.
1512      Address Addr;
1513      Addr.BaseType = Address::RegBase;
1514      Addr.Base.Reg = ARM::SP;
1515      Addr.Offset = VA.getLocMemOffset();
1516
1517      if (!ARMEmitStore(ArgVT, Arg, Addr)) return false;
1518    }
1519  }
1520  return true;
1521}
1522
1523bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
1524                             const Instruction *I, CallingConv::ID CC,
1525                             unsigned &NumBytes) {
1526  // Issue CALLSEQ_END
1527  unsigned AdjStackUp = TM.getRegisterInfo()->getCallFrameDestroyOpcode();
1528  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1529                          TII.get(AdjStackUp))
1530                  .addImm(NumBytes).addImm(0));
1531
1532  // Now the return value.
1533  if (RetVT != MVT::isVoid) {
1534    SmallVector<CCValAssign, 16> RVLocs;
1535    CCState CCInfo(CC, false, TM, RVLocs, *Context);
1536    CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true));
1537
1538    // Copy all of the result registers out of their specified physreg.
1539    if (RVLocs.size() == 2 && RetVT == MVT::f64) {
1540      // For this move we copy into two registers and then move into the
1541      // double fp reg we want.
1542      EVT DestVT = RVLocs[0].getValVT();
1543      TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
1544      unsigned ResultReg = createResultReg(DstRC);
1545      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1546                              TII.get(ARM::VMOVDRR), ResultReg)
1547                      .addReg(RVLocs[0].getLocReg())
1548                      .addReg(RVLocs[1].getLocReg()));
1549
1550      UsedRegs.push_back(RVLocs[0].getLocReg());
1551      UsedRegs.push_back(RVLocs[1].getLocReg());
1552
1553      // Finally update the result.
1554      UpdateValueMap(I, ResultReg);
1555    } else {
1556      assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
1557      EVT CopyVT = RVLocs[0].getValVT();
1558      TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
1559
1560      unsigned ResultReg = createResultReg(DstRC);
1561      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1562              ResultReg).addReg(RVLocs[0].getLocReg());
1563      UsedRegs.push_back(RVLocs[0].getLocReg());
1564
1565      // Finally update the result.
1566      UpdateValueMap(I, ResultReg);
1567    }
1568  }
1569
1570  return true;
1571}
1572
1573bool ARMFastISel::SelectRet(const Instruction *I) {
1574  const ReturnInst *Ret = cast<ReturnInst>(I);
1575  const Function &F = *I->getParent()->getParent();
1576
1577  if (!FuncInfo.CanLowerReturn)
1578    return false;
1579
1580  if (F.isVarArg())
1581    return false;
1582
1583  CallingConv::ID CC = F.getCallingConv();
1584  if (Ret->getNumOperands() > 0) {
1585    SmallVector<ISD::OutputArg, 4> Outs;
1586    GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
1587                  Outs, TLI);
1588
1589    // Analyze operands of the call, assigning locations to each operand.
1590    SmallVector<CCValAssign, 16> ValLocs;
1591    CCState CCInfo(CC, F.isVarArg(), TM, ValLocs, I->getContext());
1592    CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */));
1593
1594    const Value *RV = Ret->getOperand(0);
1595    unsigned Reg = getRegForValue(RV);
1596    if (Reg == 0)
1597      return false;
1598
1599    // Only handle a single return value for now.
1600    if (ValLocs.size() != 1)
1601      return false;
1602
1603    CCValAssign &VA = ValLocs[0];
1604
1605    // Don't bother handling odd stuff for now.
1606    if (VA.getLocInfo() != CCValAssign::Full)
1607      return false;
1608    // Only handle register returns for now.
1609    if (!VA.isRegLoc())
1610      return false;
1611    // TODO: For now, don't try to handle cases where getLocInfo()
1612    // says Full but the types don't match.
1613    if (TLI.getValueType(RV->getType()) != VA.getValVT())
1614      return false;
1615
1616    // Make the copy.
1617    unsigned SrcReg = Reg + VA.getValNo();
1618    unsigned DstReg = VA.getLocReg();
1619    const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
1620    // Avoid a cross-class copy. This is very unlikely.
1621    if (!SrcRC->contains(DstReg))
1622      return false;
1623    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1624            DstReg).addReg(SrcReg);
1625
1626    // Mark the register as live out of the function.
1627    MRI.addLiveOut(VA.getLocReg());
1628  }
1629
1630  unsigned RetOpc = isThumb ? ARM::tBX_RET : ARM::BX_RET;
1631  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1632                          TII.get(RetOpc)));
1633  return true;
1634}
1635
1636// A quick function that will emit a call for a named libcall in F with the
1637// vector of passed arguments for the Instruction in I. We can assume that we
1638// can emit a call for any libcall we can produce. This is an abridged version
1639// of the full call infrastructure since we won't need to worry about things
1640// like computed function pointers or strange arguments at call sites.
1641// TODO: Try to unify this and the normal call bits for ARM, then try to unify
1642// with X86.
1643bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
1644  CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
1645
1646  // Handle *simple* calls for now.
1647  const Type *RetTy = I->getType();
1648  MVT RetVT;
1649  if (RetTy->isVoidTy())
1650    RetVT = MVT::isVoid;
1651  else if (!isTypeLegal(RetTy, RetVT))
1652    return false;
1653
1654  // For now we're using BLX etc on the assumption that we have v5t ops.
1655  if (!Subtarget->hasV5TOps()) return false;
1656
1657  // TODO: For now if we have long calls specified we don't handle the call.
1658  if (EnableARMLongCalls) return false;
1659
1660  // Set up the argument vectors.
1661  SmallVector<Value*, 8> Args;
1662  SmallVector<unsigned, 8> ArgRegs;
1663  SmallVector<MVT, 8> ArgVTs;
1664  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1665  Args.reserve(I->getNumOperands());
1666  ArgRegs.reserve(I->getNumOperands());
1667  ArgVTs.reserve(I->getNumOperands());
1668  ArgFlags.reserve(I->getNumOperands());
1669  for (unsigned i = 0; i < I->getNumOperands(); ++i) {
1670    Value *Op = I->getOperand(i);
1671    unsigned Arg = getRegForValue(Op);
1672    if (Arg == 0) return false;
1673
1674    const Type *ArgTy = Op->getType();
1675    MVT ArgVT;
1676    if (!isTypeLegal(ArgTy, ArgVT)) return false;
1677
1678    ISD::ArgFlagsTy Flags;
1679    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
1680    Flags.setOrigAlign(OriginalAlignment);
1681
1682    Args.push_back(Op);
1683    ArgRegs.push_back(Arg);
1684    ArgVTs.push_back(ArgVT);
1685    ArgFlags.push_back(Flags);
1686  }
1687
1688  // Handle the arguments now that we've gotten them.
1689  SmallVector<unsigned, 4> RegArgs;
1690  unsigned NumBytes;
1691  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
1692    return false;
1693
1694  // Issue the call, BLXr9 for darwin, BLX otherwise. This uses V5 ops.
1695  // TODO: Turn this into the table of arm call ops.
1696  MachineInstrBuilder MIB;
1697  unsigned CallOpc;
1698  if(isThumb) {
1699    CallOpc = Subtarget->isTargetDarwin() ? ARM::tBLXi_r9 : ARM::tBLXi;
1700    // Explicitly adding the predicate here.
1701    MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1702                         TII.get(CallOpc)))
1703                         .addExternalSymbol(TLI.getLibcallName(Call));
1704  } else {
1705    CallOpc = Subtarget->isTargetDarwin() ? ARM::BLr9 : ARM::BL;
1706    // Explicitly adding the predicate here.
1707    MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1708                         TII.get(CallOpc))
1709          .addExternalSymbol(TLI.getLibcallName(Call)));
1710  }
1711
1712  // Add implicit physical register uses to the call.
1713  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
1714    MIB.addReg(RegArgs[i]);
1715
1716  // Finish off the call including any return values.
1717  SmallVector<unsigned, 4> UsedRegs;
1718  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false;
1719
1720  // Set all unused physreg defs as dead.
1721  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
1722
1723  return true;
1724}
1725
1726bool ARMFastISel::SelectCall(const Instruction *I) {
1727  const CallInst *CI = cast<CallInst>(I);
1728  const Value *Callee = CI->getCalledValue();
1729
1730  // Can't handle inline asm or worry about intrinsics yet.
1731  if (isa<InlineAsm>(Callee) || isa<IntrinsicInst>(CI)) return false;
1732
1733  // Only handle global variable Callees that are direct calls.
1734  const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
1735  if (!GV || Subtarget->GVIsIndirectSymbol(GV, TM.getRelocationModel()))
1736    return false;
1737
1738  // Check the calling convention.
1739  ImmutableCallSite CS(CI);
1740  CallingConv::ID CC = CS.getCallingConv();
1741
1742  // TODO: Avoid some calling conventions?
1743
1744  // Let SDISel handle vararg functions.
1745  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
1746  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1747  if (FTy->isVarArg())
1748    return false;
1749
1750  // Handle *simple* calls for now.
1751  const Type *RetTy = I->getType();
1752  MVT RetVT;
1753  if (RetTy->isVoidTy())
1754    RetVT = MVT::isVoid;
1755  else if (!isTypeLegal(RetTy, RetVT))
1756    return false;
1757
1758  // For now we're using BLX etc on the assumption that we have v5t ops.
1759  // TODO: Maybe?
1760  if (!Subtarget->hasV5TOps()) return false;
1761
1762  // TODO: For now if we have long calls specified we don't handle the call.
1763  if (EnableARMLongCalls) return false;
1764
1765  // Set up the argument vectors.
1766  SmallVector<Value*, 8> Args;
1767  SmallVector<unsigned, 8> ArgRegs;
1768  SmallVector<MVT, 8> ArgVTs;
1769  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1770  Args.reserve(CS.arg_size());
1771  ArgRegs.reserve(CS.arg_size());
1772  ArgVTs.reserve(CS.arg_size());
1773  ArgFlags.reserve(CS.arg_size());
1774  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1775       i != e; ++i) {
1776    unsigned Arg = getRegForValue(*i);
1777
1778    if (Arg == 0)
1779      return false;
1780    ISD::ArgFlagsTy Flags;
1781    unsigned AttrInd = i - CS.arg_begin() + 1;
1782    if (CS.paramHasAttr(AttrInd, Attribute::SExt))
1783      Flags.setSExt();
1784    if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
1785      Flags.setZExt();
1786
1787         // FIXME: Only handle *easy* calls for now.
1788    if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
1789        CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
1790        CS.paramHasAttr(AttrInd, Attribute::Nest) ||
1791        CS.paramHasAttr(AttrInd, Attribute::ByVal))
1792      return false;
1793
1794    const Type *ArgTy = (*i)->getType();
1795    MVT ArgVT;
1796    if (!isTypeLegal(ArgTy, ArgVT))
1797      return false;
1798    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
1799    Flags.setOrigAlign(OriginalAlignment);
1800
1801    Args.push_back(*i);
1802    ArgRegs.push_back(Arg);
1803    ArgVTs.push_back(ArgVT);
1804    ArgFlags.push_back(Flags);
1805  }
1806
1807  // Handle the arguments now that we've gotten them.
1808  SmallVector<unsigned, 4> RegArgs;
1809  unsigned NumBytes;
1810  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
1811    return false;
1812
1813  // Issue the call, BLXr9 for darwin, BLX otherwise. This uses V5 ops.
1814  // TODO: Turn this into the table of arm call ops.
1815  MachineInstrBuilder MIB;
1816  unsigned CallOpc;
1817  // Explicitly adding the predicate here.
1818  if(isThumb) {
1819    CallOpc = Subtarget->isTargetDarwin() ? ARM::tBLXi_r9 : ARM::tBLXi;
1820    // Explicitly adding the predicate here.
1821    MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1822                         TII.get(CallOpc)))
1823          .addGlobalAddress(GV, 0, 0);
1824  } else {
1825    CallOpc = Subtarget->isTargetDarwin() ? ARM::BLr9 : ARM::BL;
1826    // Explicitly adding the predicate here.
1827    MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1828                         TII.get(CallOpc))
1829          .addGlobalAddress(GV, 0, 0));
1830  }
1831
1832  // Add implicit physical register uses to the call.
1833  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
1834    MIB.addReg(RegArgs[i]);
1835
1836  // Finish off the call including any return values.
1837  SmallVector<unsigned, 4> UsedRegs;
1838  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false;
1839
1840  // Set all unused physreg defs as dead.
1841  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
1842
1843  return true;
1844
1845}
1846
1847// TODO: SoftFP support.
1848bool ARMFastISel::TargetSelectInstruction(const Instruction *I) {
1849
1850  switch (I->getOpcode()) {
1851    case Instruction::Load:
1852      return SelectLoad(I);
1853    case Instruction::Store:
1854      return SelectStore(I);
1855    case Instruction::Br:
1856      return SelectBranch(I);
1857    case Instruction::ICmp:
1858    case Instruction::FCmp:
1859      return SelectCmp(I);
1860    case Instruction::FPExt:
1861      return SelectFPExt(I);
1862    case Instruction::FPTrunc:
1863      return SelectFPTrunc(I);
1864    case Instruction::SIToFP:
1865      return SelectSIToFP(I);
1866    case Instruction::FPToSI:
1867      return SelectFPToSI(I);
1868    case Instruction::FAdd:
1869      return SelectBinaryOp(I, ISD::FADD);
1870    case Instruction::FSub:
1871      return SelectBinaryOp(I, ISD::FSUB);
1872    case Instruction::FMul:
1873      return SelectBinaryOp(I, ISD::FMUL);
1874    case Instruction::SDiv:
1875      return SelectSDiv(I);
1876    case Instruction::SRem:
1877      return SelectSRem(I);
1878    case Instruction::Call:
1879      return SelectCall(I);
1880    case Instruction::Select:
1881      return SelectSelect(I);
1882    case Instruction::Ret:
1883      return SelectRet(I);
1884    default: break;
1885  }
1886  return false;
1887}
1888
1889namespace llvm {
1890  llvm::FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo) {
1891    // Completely untested on non-darwin.
1892    const TargetMachine &TM = funcInfo.MF->getTarget();
1893
1894    // Darwin and thumb1 only for now.
1895    const ARMSubtarget *Subtarget = &TM.getSubtarget<ARMSubtarget>();
1896    if (Subtarget->isTargetDarwin() && !Subtarget->isThumb1Only() &&
1897        !DisableARMFastISel)
1898      return new ARMFastISel(funcInfo);
1899    return 0;
1900  }
1901}
1902