1218885Sdim//===-- SpillPlacement.cpp - Optimal Spill Code Placement -----------------===//
2218885Sdim//
3218885Sdim//                     The LLVM Compiler Infrastructure
4218885Sdim//
5218885Sdim// This file is distributed under the University of Illinois Open Source
6218885Sdim// License. See LICENSE.TXT for details.
7218885Sdim//
8218885Sdim//===----------------------------------------------------------------------===//
9218885Sdim//
10218885Sdim// This file implements the spill code placement analysis.
11218885Sdim//
12218885Sdim// Each edge bundle corresponds to a node in a Hopfield network. Constraints on
13218885Sdim// basic blocks are weighted by the block frequency and added to become the node
14218885Sdim// bias.
15218885Sdim//
16218885Sdim// Transparent basic blocks have the variable live through, but don't care if it
17218885Sdim// is spilled or in a register. These blocks become connections in the Hopfield
18218885Sdim// network, again weighted by block frequency.
19218885Sdim//
20218885Sdim// The Hopfield network minimizes (possibly locally) its energy function:
21218885Sdim//
22218885Sdim//   E = -sum_n V_n * ( B_n + sum_{n, m linked by b} V_m * F_b )
23218885Sdim//
24218885Sdim// The energy function represents the expected spill code execution frequency,
25218885Sdim// or the cost of spilling. This is a Lyapunov function which never increases
26218885Sdim// when a node is updated. It is guaranteed to converge to a local minimum.
27218885Sdim//
28218885Sdim//===----------------------------------------------------------------------===//
29218885Sdim
30218885Sdim#define DEBUG_TYPE "spillplacement"
31218885Sdim#include "SpillPlacement.h"
32252723Sdim#include "llvm/ADT/BitVector.h"
33218885Sdim#include "llvm/CodeGen/EdgeBundles.h"
34218885Sdim#include "llvm/CodeGen/MachineBasicBlock.h"
35263509Sdim#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
36218885Sdim#include "llvm/CodeGen/MachineFunction.h"
37218885Sdim#include "llvm/CodeGen/MachineLoopInfo.h"
38218885Sdim#include "llvm/CodeGen/Passes.h"
39218885Sdim#include "llvm/Support/Debug.h"
40218885Sdim#include "llvm/Support/Format.h"
41218885Sdim
42218885Sdimusing namespace llvm;
43218885Sdim
44218885Sdimchar SpillPlacement::ID = 0;
45218885SdimINITIALIZE_PASS_BEGIN(SpillPlacement, "spill-code-placement",
46218885Sdim                      "Spill Code Placement Analysis", true, true)
47218885SdimINITIALIZE_PASS_DEPENDENCY(EdgeBundles)
48218885SdimINITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
49218885SdimINITIALIZE_PASS_END(SpillPlacement, "spill-code-placement",
50218885Sdim                    "Spill Code Placement Analysis", true, true)
51218885Sdim
52218885Sdimchar &llvm::SpillPlacementID = SpillPlacement::ID;
53218885Sdim
54218885Sdimvoid SpillPlacement::getAnalysisUsage(AnalysisUsage &AU) const {
55218885Sdim  AU.setPreservesAll();
56263509Sdim  AU.addRequired<MachineBlockFrequencyInfo>();
57218885Sdim  AU.addRequiredTransitive<EdgeBundles>();
58218885Sdim  AU.addRequiredTransitive<MachineLoopInfo>();
59218885Sdim  MachineFunctionPass::getAnalysisUsage(AU);
60218885Sdim}
61218885Sdim
62263509Sdim/// Decision threshold. A node gets the output value 0 if the weighted sum of
63263509Sdim/// its inputs falls in the open interval (-Threshold;Threshold).
64263509Sdimstatic const BlockFrequency Threshold = 2;
65263509Sdim
66218885Sdim/// Node - Each edge bundle corresponds to a Hopfield node.
67218885Sdim///
68218885Sdim/// The node contains precomputed frequency data that only depends on the CFG,
69218885Sdim/// but Bias and Links are computed each time placeSpills is called.
70218885Sdim///
71218885Sdim/// The node Value is positive when the variable should be in a register. The
72218885Sdim/// value can change when linked nodes change, but convergence is very fast
73218885Sdim/// because all weights are positive.
74218885Sdim///
75218885Sdimstruct SpillPlacement::Node {
76263509Sdim  /// BiasN - Sum of blocks that prefer a spill.
77263509Sdim  BlockFrequency BiasN;
78263509Sdim  /// BiasP - Sum of blocks that prefer a register.
79263509Sdim  BlockFrequency BiasP;
80218885Sdim
81218885Sdim  /// Value - Output value of this node computed from the Bias and links.
82263509Sdim  /// This is always on of the values {-1, 0, 1}. A positive number means the
83263509Sdim  /// variable should go in a register through this bundle.
84263509Sdim  int Value;
85218885Sdim
86263509Sdim  typedef SmallVector<std::pair<BlockFrequency, unsigned>, 4> LinkVector;
87218885Sdim
88218885Sdim  /// Links - (Weight, BundleNo) for all transparent blocks connecting to other
89263509Sdim  /// bundles. The weights are all positive block frequencies.
90218885Sdim  LinkVector Links;
91218885Sdim
92263509Sdim  /// SumLinkWeights - Cached sum of the weights of all links + ThresHold.
93263509Sdim  BlockFrequency SumLinkWeights;
94263509Sdim
95218885Sdim  /// preferReg - Return true when this node prefers to be in a register.
96218885Sdim  bool preferReg() const {
97218885Sdim    // Undecided nodes (Value==0) go on the stack.
98218885Sdim    return Value > 0;
99218885Sdim  }
100218885Sdim
101218885Sdim  /// mustSpill - Return True if this node is so biased that it must spill.
102218885Sdim  bool mustSpill() const {
103263509Sdim    // We must spill if Bias < -sum(weights) or the MustSpill flag was set.
104263509Sdim    // BiasN is saturated when MustSpill is set, make sure this still returns
105263509Sdim    // true when the RHS saturates. Note that SumLinkWeights includes Threshold.
106263509Sdim    return BiasN >= BiasP + SumLinkWeights;
107218885Sdim  }
108218885Sdim
109218885Sdim  /// clear - Reset per-query data, but preserve frequencies that only depend on
110218885Sdim  // the CFG.
111218885Sdim  void clear() {
112263509Sdim    BiasN = BiasP = Value = 0;
113263509Sdim    SumLinkWeights = Threshold;
114218885Sdim    Links.clear();
115218885Sdim  }
116218885Sdim
117218885Sdim  /// addLink - Add a link to bundle b with weight w.
118263509Sdim  void addLink(unsigned b, BlockFrequency w) {
119263509Sdim    // Update cached sum.
120263509Sdim    SumLinkWeights += w;
121218885Sdim
122218885Sdim    // There can be multiple links to the same bundle, add them up.
123218885Sdim    for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I)
124218885Sdim      if (I->second == b) {
125218885Sdim        I->first += w;
126218885Sdim        return;
127218885Sdim      }
128218885Sdim    // This must be the first link to b.
129218885Sdim    Links.push_back(std::make_pair(w, b));
130218885Sdim  }
131218885Sdim
132263509Sdim  /// addBias - Bias this node.
133263509Sdim  void addBias(BlockFrequency freq, BorderConstraint direction) {
134263509Sdim    switch (direction) {
135263509Sdim    default:
136263509Sdim      break;
137263509Sdim    case PrefReg:
138263509Sdim      BiasP += freq;
139263509Sdim      break;
140263509Sdim    case PrefSpill:
141263509Sdim      BiasN += freq;
142263509Sdim      break;
143263509Sdim    case MustSpill:
144263509Sdim      BiasN = BlockFrequency::getMaxFrequency();
145263509Sdim      break;
146263509Sdim    }
147218885Sdim  }
148218885Sdim
149218885Sdim  /// update - Recompute Value from Bias and Links. Return true when node
150218885Sdim  /// preference changes.
151218885Sdim  bool update(const Node nodes[]) {
152218885Sdim    // Compute the weighted sum of inputs.
153263509Sdim    BlockFrequency SumN = BiasN;
154263509Sdim    BlockFrequency SumP = BiasP;
155263509Sdim    for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I) {
156263509Sdim      if (nodes[I->second].Value == -1)
157263509Sdim        SumN += I->first;
158263509Sdim      else if (nodes[I->second].Value == 1)
159263509Sdim        SumP += I->first;
160263509Sdim    }
161218885Sdim
162263509Sdim    // Each weighted sum is going to be less than the total frequency of the
163263509Sdim    // bundle. Ideally, we should simply set Value = sign(SumP - SumN), but we
164263509Sdim    // will add a dead zone around 0 for two reasons:
165263509Sdim    //
166218885Sdim    //  1. It avoids arbitrary bias when all links are 0 as is possible during
167218885Sdim    //     initial iterations.
168218885Sdim    //  2. It helps tame rounding errors when the links nominally sum to 0.
169263509Sdim    //
170218885Sdim    bool Before = preferReg();
171263509Sdim    if (SumN >= SumP + Threshold)
172218885Sdim      Value = -1;
173263509Sdim    else if (SumP >= SumN + Threshold)
174218885Sdim      Value = 1;
175218885Sdim    else
176218885Sdim      Value = 0;
177218885Sdim    return Before != preferReg();
178218885Sdim  }
179218885Sdim};
180218885Sdim
181218885Sdimbool SpillPlacement::runOnMachineFunction(MachineFunction &mf) {
182218885Sdim  MF = &mf;
183218885Sdim  bundles = &getAnalysis<EdgeBundles>();
184218885Sdim  loops = &getAnalysis<MachineLoopInfo>();
185218885Sdim
186218885Sdim  assert(!nodes && "Leaking node array");
187218885Sdim  nodes = new Node[bundles->getNumBundles()];
188218885Sdim
189218885Sdim  // Compute total ingoing and outgoing block frequencies for all bundles.
190263509Sdim  BlockFrequencies.resize(mf.getNumBlockIDs());
191263509Sdim  MachineBlockFrequencyInfo &MBFI = getAnalysis<MachineBlockFrequencyInfo>();
192218885Sdim  for (MachineFunction::iterator I = mf.begin(), E = mf.end(); I != E; ++I) {
193218885Sdim    unsigned Num = I->getNumber();
194263509Sdim    BlockFrequencies[Num] = MBFI.getBlockFreq(I);
195218885Sdim  }
196218885Sdim
197218885Sdim  // We never change the function.
198218885Sdim  return false;
199218885Sdim}
200218885Sdim
201218885Sdimvoid SpillPlacement::releaseMemory() {
202218885Sdim  delete[] nodes;
203218885Sdim  nodes = 0;
204218885Sdim}
205218885Sdim
206218885Sdim/// activate - mark node n as active if it wasn't already.
207218885Sdimvoid SpillPlacement::activate(unsigned n) {
208218885Sdim  if (ActiveNodes->test(n))
209218885Sdim    return;
210218885Sdim  ActiveNodes->set(n);
211218885Sdim  nodes[n].clear();
212245431Sdim
213245431Sdim  // Very large bundles usually come from big switches, indirect branches,
214245431Sdim  // landing pads, or loops with many 'continue' statements. It is difficult to
215245431Sdim  // allocate registers when so many different blocks are involved.
216245431Sdim  //
217263509Sdim  // Give a small negative bias to large bundles such that a substantial
218263509Sdim  // fraction of the connected blocks need to be interested before we consider
219263509Sdim  // expanding the region through the bundle. This helps compile time by
220263509Sdim  // limiting the number of blocks visited and the number of links in the
221263509Sdim  // Hopfield network.
222263509Sdim  if (bundles->getBlocks(n).size() > 100) {
223263509Sdim    nodes[n].BiasP = 0;
224263509Sdim    nodes[n].BiasN = (BlockFrequency::getEntryFrequency() / 16);
225263509Sdim  }
226218885Sdim}
227218885Sdim
228218885Sdim
229221345Sdim/// addConstraints - Compute node biases and weights from a set of constraints.
230218885Sdim/// Set a bit in NodeMask for each active node.
231221345Sdimvoid SpillPlacement::addConstraints(ArrayRef<BlockConstraint> LiveBlocks) {
232221345Sdim  for (ArrayRef<BlockConstraint>::iterator I = LiveBlocks.begin(),
233218885Sdim       E = LiveBlocks.end(); I != E; ++I) {
234263509Sdim    BlockFrequency Freq = BlockFrequencies[I->Number];
235218885Sdim
236218885Sdim    // Live-in to block?
237218885Sdim    if (I->Entry != DontCare) {
238218885Sdim      unsigned ib = bundles->getBundle(I->Number, 0);
239218885Sdim      activate(ib);
240263509Sdim      nodes[ib].addBias(Freq, I->Entry);
241218885Sdim    }
242218885Sdim
243218885Sdim    // Live-out from block?
244218885Sdim    if (I->Exit != DontCare) {
245218885Sdim      unsigned ob = bundles->getBundle(I->Number, 1);
246218885Sdim      activate(ob);
247263509Sdim      nodes[ob].addBias(Freq, I->Exit);
248218885Sdim    }
249218885Sdim  }
250218885Sdim}
251218885Sdim
252226890Sdim/// addPrefSpill - Same as addConstraints(PrefSpill)
253226890Sdimvoid SpillPlacement::addPrefSpill(ArrayRef<unsigned> Blocks, bool Strong) {
254226890Sdim  for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
255226890Sdim       I != E; ++I) {
256263509Sdim    BlockFrequency Freq = BlockFrequencies[*I];
257226890Sdim    if (Strong)
258226890Sdim      Freq += Freq;
259226890Sdim    unsigned ib = bundles->getBundle(*I, 0);
260226890Sdim    unsigned ob = bundles->getBundle(*I, 1);
261226890Sdim    activate(ib);
262226890Sdim    activate(ob);
263263509Sdim    nodes[ib].addBias(Freq, PrefSpill);
264263509Sdim    nodes[ob].addBias(Freq, PrefSpill);
265226890Sdim  }
266226890Sdim}
267226890Sdim
268221345Sdimvoid SpillPlacement::addLinks(ArrayRef<unsigned> Links) {
269221345Sdim  for (ArrayRef<unsigned>::iterator I = Links.begin(), E = Links.end(); I != E;
270221345Sdim       ++I) {
271221345Sdim    unsigned Number = *I;
272221345Sdim    unsigned ib = bundles->getBundle(Number, 0);
273221345Sdim    unsigned ob = bundles->getBundle(Number, 1);
274221345Sdim
275221345Sdim    // Ignore self-loops.
276221345Sdim    if (ib == ob)
277221345Sdim      continue;
278221345Sdim    activate(ib);
279221345Sdim    activate(ob);
280221345Sdim    if (nodes[ib].Links.empty() && !nodes[ib].mustSpill())
281221345Sdim      Linked.push_back(ib);
282221345Sdim    if (nodes[ob].Links.empty() && !nodes[ob].mustSpill())
283221345Sdim      Linked.push_back(ob);
284263509Sdim    BlockFrequency Freq = BlockFrequencies[Number];
285263509Sdim    nodes[ib].addLink(ob, Freq);
286263509Sdim    nodes[ob].addLink(ib, Freq);
287221345Sdim  }
288221345Sdim}
289221345Sdim
290221345Sdimbool SpillPlacement::scanActiveBundles() {
291221345Sdim  Linked.clear();
292221345Sdim  RecentPositive.clear();
293221345Sdim  for (int n = ActiveNodes->find_first(); n>=0; n = ActiveNodes->find_next(n)) {
294221345Sdim    nodes[n].update(nodes);
295221345Sdim    // A node that must spill, or a node without any links is not going to
296221345Sdim    // change its value ever again, so exclude it from iterations.
297221345Sdim    if (nodes[n].mustSpill())
298221345Sdim      continue;
299221345Sdim    if (!nodes[n].Links.empty())
300221345Sdim      Linked.push_back(n);
301221345Sdim    if (nodes[n].preferReg())
302221345Sdim      RecentPositive.push_back(n);
303221345Sdim  }
304221345Sdim  return !RecentPositive.empty();
305221345Sdim}
306221345Sdim
307218885Sdim/// iterate - Repeatedly update the Hopfield nodes until stability or the
308218885Sdim/// maximum number of iterations is reached.
309218885Sdim/// @param Linked - Numbers of linked nodes that need updating.
310221345Sdimvoid SpillPlacement::iterate() {
311221345Sdim  // First update the recently positive nodes. They have likely received new
312221345Sdim  // negative bias that will turn them off.
313221345Sdim  while (!RecentPositive.empty())
314221345Sdim    nodes[RecentPositive.pop_back_val()].update(nodes);
315221345Sdim
316218885Sdim  if (Linked.empty())
317218885Sdim    return;
318218885Sdim
319218885Sdim  // Run up to 10 iterations. The edge bundle numbering is closely related to
320218885Sdim  // basic block numbering, so there is a strong tendency towards chains of
321218885Sdim  // linked nodes with sequential numbers. By scanning the linked nodes
322218885Sdim  // backwards and forwards, we make it very likely that a single node can
323218885Sdim  // affect the entire network in a single iteration. That means very fast
324218885Sdim  // convergence, usually in a single iteration.
325218885Sdim  for (unsigned iteration = 0; iteration != 10; ++iteration) {
326218885Sdim    // Scan backwards, skipping the last node which was just updated.
327218885Sdim    bool Changed = false;
328218885Sdim    for (SmallVectorImpl<unsigned>::const_reverse_iterator I =
329218885Sdim           llvm::next(Linked.rbegin()), E = Linked.rend(); I != E; ++I) {
330218885Sdim      unsigned n = *I;
331221345Sdim      if (nodes[n].update(nodes)) {
332221345Sdim        Changed = true;
333221345Sdim        if (nodes[n].preferReg())
334221345Sdim          RecentPositive.push_back(n);
335221345Sdim      }
336218885Sdim    }
337221345Sdim    if (!Changed || !RecentPositive.empty())
338218885Sdim      return;
339218885Sdim
340218885Sdim    // Scan forwards, skipping the first node which was just updated.
341218885Sdim    Changed = false;
342218885Sdim    for (SmallVectorImpl<unsigned>::const_iterator I =
343218885Sdim           llvm::next(Linked.begin()), E = Linked.end(); I != E; ++I) {
344218885Sdim      unsigned n = *I;
345221345Sdim      if (nodes[n].update(nodes)) {
346221345Sdim        Changed = true;
347221345Sdim        if (nodes[n].preferReg())
348221345Sdim          RecentPositive.push_back(n);
349221345Sdim      }
350218885Sdim    }
351221345Sdim    if (!Changed || !RecentPositive.empty())
352218885Sdim      return;
353218885Sdim  }
354218885Sdim}
355218885Sdim
356221345Sdimvoid SpillPlacement::prepare(BitVector &RegBundles) {
357221345Sdim  Linked.clear();
358221345Sdim  RecentPositive.clear();
359218885Sdim  // Reuse RegBundles as our ActiveNodes vector.
360218885Sdim  ActiveNodes = &RegBundles;
361218885Sdim  ActiveNodes->clear();
362218885Sdim  ActiveNodes->resize(bundles->getNumBundles());
363221345Sdim}
364218885Sdim
365221345Sdimbool
366221345SdimSpillPlacement::finish() {
367221345Sdim  assert(ActiveNodes && "Call prepare() first");
368218885Sdim
369221345Sdim  // Write preferences back to ActiveNodes.
370218885Sdim  bool Perfect = true;
371221345Sdim  for (int n = ActiveNodes->find_first(); n>=0; n = ActiveNodes->find_next(n))
372218885Sdim    if (!nodes[n].preferReg()) {
373221345Sdim      ActiveNodes->reset(n);
374218885Sdim      Perfect = false;
375218885Sdim    }
376221345Sdim  ActiveNodes = 0;
377218885Sdim  return Perfect;
378218885Sdim}
379