TargetLowering.cpp revision 207618
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/MC/MCAsmInfo.h"
16#include "llvm/MC/MCExpr.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Target/TargetLoweringObjectFile.h"
19#include "llvm/Target/TargetMachine.h"
20#include "llvm/Target/TargetRegisterInfo.h"
21#include "llvm/Target/TargetSubtarget.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineJumpTableInfo.h"
26#include "llvm/CodeGen/MachineFunction.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/Support/ErrorHandling.h"
30#include "llvm/Support/MathExtras.h"
31using namespace llvm;
32
33namespace llvm {
34TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc) {
35  bool isLocal = GV->hasLocalLinkage();
36  bool isDeclaration = GV->isDeclaration();
37  // FIXME: what should we do for protected and internal visibility?
38  // For variables, is internal different from hidden?
39  bool isHidden = GV->hasHiddenVisibility();
40
41  if (reloc == Reloc::PIC_) {
42    if (isLocal || isHidden)
43      return TLSModel::LocalDynamic;
44    else
45      return TLSModel::GeneralDynamic;
46  } else {
47    if (!isDeclaration || isHidden)
48      return TLSModel::LocalExec;
49    else
50      return TLSModel::InitialExec;
51  }
52}
53}
54
55/// InitLibcallNames - Set default libcall names.
56///
57static void InitLibcallNames(const char **Names) {
58  Names[RTLIB::SHL_I16] = "__ashlhi3";
59  Names[RTLIB::SHL_I32] = "__ashlsi3";
60  Names[RTLIB::SHL_I64] = "__ashldi3";
61  Names[RTLIB::SHL_I128] = "__ashlti3";
62  Names[RTLIB::SRL_I16] = "__lshrhi3";
63  Names[RTLIB::SRL_I32] = "__lshrsi3";
64  Names[RTLIB::SRL_I64] = "__lshrdi3";
65  Names[RTLIB::SRL_I128] = "__lshrti3";
66  Names[RTLIB::SRA_I16] = "__ashrhi3";
67  Names[RTLIB::SRA_I32] = "__ashrsi3";
68  Names[RTLIB::SRA_I64] = "__ashrdi3";
69  Names[RTLIB::SRA_I128] = "__ashrti3";
70  Names[RTLIB::MUL_I8] = "__mulqi3";
71  Names[RTLIB::MUL_I16] = "__mulhi3";
72  Names[RTLIB::MUL_I32] = "__mulsi3";
73  Names[RTLIB::MUL_I64] = "__muldi3";
74  Names[RTLIB::MUL_I128] = "__multi3";
75  Names[RTLIB::SDIV_I8] = "__divqi3";
76  Names[RTLIB::SDIV_I16] = "__divhi3";
77  Names[RTLIB::SDIV_I32] = "__divsi3";
78  Names[RTLIB::SDIV_I64] = "__divdi3";
79  Names[RTLIB::SDIV_I128] = "__divti3";
80  Names[RTLIB::UDIV_I8] = "__udivqi3";
81  Names[RTLIB::UDIV_I16] = "__udivhi3";
82  Names[RTLIB::UDIV_I32] = "__udivsi3";
83  Names[RTLIB::UDIV_I64] = "__udivdi3";
84  Names[RTLIB::UDIV_I128] = "__udivti3";
85  Names[RTLIB::SREM_I8] = "__modqi3";
86  Names[RTLIB::SREM_I16] = "__modhi3";
87  Names[RTLIB::SREM_I32] = "__modsi3";
88  Names[RTLIB::SREM_I64] = "__moddi3";
89  Names[RTLIB::SREM_I128] = "__modti3";
90  Names[RTLIB::UREM_I8] = "__umodqi3";
91  Names[RTLIB::UREM_I16] = "__umodhi3";
92  Names[RTLIB::UREM_I32] = "__umodsi3";
93  Names[RTLIB::UREM_I64] = "__umoddi3";
94  Names[RTLIB::UREM_I128] = "__umodti3";
95  Names[RTLIB::NEG_I32] = "__negsi2";
96  Names[RTLIB::NEG_I64] = "__negdi2";
97  Names[RTLIB::ADD_F32] = "__addsf3";
98  Names[RTLIB::ADD_F64] = "__adddf3";
99  Names[RTLIB::ADD_F80] = "__addxf3";
100  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
101  Names[RTLIB::SUB_F32] = "__subsf3";
102  Names[RTLIB::SUB_F64] = "__subdf3";
103  Names[RTLIB::SUB_F80] = "__subxf3";
104  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
105  Names[RTLIB::MUL_F32] = "__mulsf3";
106  Names[RTLIB::MUL_F64] = "__muldf3";
107  Names[RTLIB::MUL_F80] = "__mulxf3";
108  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
109  Names[RTLIB::DIV_F32] = "__divsf3";
110  Names[RTLIB::DIV_F64] = "__divdf3";
111  Names[RTLIB::DIV_F80] = "__divxf3";
112  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
113  Names[RTLIB::REM_F32] = "fmodf";
114  Names[RTLIB::REM_F64] = "fmod";
115  Names[RTLIB::REM_F80] = "fmodl";
116  Names[RTLIB::REM_PPCF128] = "fmodl";
117  Names[RTLIB::POWI_F32] = "__powisf2";
118  Names[RTLIB::POWI_F64] = "__powidf2";
119  Names[RTLIB::POWI_F80] = "__powixf2";
120  Names[RTLIB::POWI_PPCF128] = "__powitf2";
121  Names[RTLIB::SQRT_F32] = "sqrtf";
122  Names[RTLIB::SQRT_F64] = "sqrt";
123  Names[RTLIB::SQRT_F80] = "sqrtl";
124  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
125  Names[RTLIB::LOG_F32] = "logf";
126  Names[RTLIB::LOG_F64] = "log";
127  Names[RTLIB::LOG_F80] = "logl";
128  Names[RTLIB::LOG_PPCF128] = "logl";
129  Names[RTLIB::LOG2_F32] = "log2f";
130  Names[RTLIB::LOG2_F64] = "log2";
131  Names[RTLIB::LOG2_F80] = "log2l";
132  Names[RTLIB::LOG2_PPCF128] = "log2l";
133  Names[RTLIB::LOG10_F32] = "log10f";
134  Names[RTLIB::LOG10_F64] = "log10";
135  Names[RTLIB::LOG10_F80] = "log10l";
136  Names[RTLIB::LOG10_PPCF128] = "log10l";
137  Names[RTLIB::EXP_F32] = "expf";
138  Names[RTLIB::EXP_F64] = "exp";
139  Names[RTLIB::EXP_F80] = "expl";
140  Names[RTLIB::EXP_PPCF128] = "expl";
141  Names[RTLIB::EXP2_F32] = "exp2f";
142  Names[RTLIB::EXP2_F64] = "exp2";
143  Names[RTLIB::EXP2_F80] = "exp2l";
144  Names[RTLIB::EXP2_PPCF128] = "exp2l";
145  Names[RTLIB::SIN_F32] = "sinf";
146  Names[RTLIB::SIN_F64] = "sin";
147  Names[RTLIB::SIN_F80] = "sinl";
148  Names[RTLIB::SIN_PPCF128] = "sinl";
149  Names[RTLIB::COS_F32] = "cosf";
150  Names[RTLIB::COS_F64] = "cos";
151  Names[RTLIB::COS_F80] = "cosl";
152  Names[RTLIB::COS_PPCF128] = "cosl";
153  Names[RTLIB::POW_F32] = "powf";
154  Names[RTLIB::POW_F64] = "pow";
155  Names[RTLIB::POW_F80] = "powl";
156  Names[RTLIB::POW_PPCF128] = "powl";
157  Names[RTLIB::CEIL_F32] = "ceilf";
158  Names[RTLIB::CEIL_F64] = "ceil";
159  Names[RTLIB::CEIL_F80] = "ceill";
160  Names[RTLIB::CEIL_PPCF128] = "ceill";
161  Names[RTLIB::TRUNC_F32] = "truncf";
162  Names[RTLIB::TRUNC_F64] = "trunc";
163  Names[RTLIB::TRUNC_F80] = "truncl";
164  Names[RTLIB::TRUNC_PPCF128] = "truncl";
165  Names[RTLIB::RINT_F32] = "rintf";
166  Names[RTLIB::RINT_F64] = "rint";
167  Names[RTLIB::RINT_F80] = "rintl";
168  Names[RTLIB::RINT_PPCF128] = "rintl";
169  Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
170  Names[RTLIB::NEARBYINT_F64] = "nearbyint";
171  Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
172  Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
173  Names[RTLIB::FLOOR_F32] = "floorf";
174  Names[RTLIB::FLOOR_F64] = "floor";
175  Names[RTLIB::FLOOR_F80] = "floorl";
176  Names[RTLIB::FLOOR_PPCF128] = "floorl";
177  Names[RTLIB::COPYSIGN_F32] = "copysignf";
178  Names[RTLIB::COPYSIGN_F64] = "copysign";
179  Names[RTLIB::COPYSIGN_F80] = "copysignl";
180  Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
181  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
182  Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
183  Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
184  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
185  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
186  Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
187  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
188  Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
189  Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
190  Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
191  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
192  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
193  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
194  Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
195  Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
196  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
197  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
198  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
199  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
200  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
201  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
202  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
203  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
204  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
205  Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
206  Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
207  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
208  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
209  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
210  Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
211  Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
212  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
213  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
214  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
215  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
216  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
217  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
218  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
219  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
220  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
221  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
222  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
223  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
224  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
225  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
226  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
227  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
228  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
229  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
230  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
231  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
232  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
233  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
234  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
235  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
236  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
237  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
238  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
239  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
240  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
241  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
242  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
243  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
244  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
245  Names[RTLIB::OEQ_F32] = "__eqsf2";
246  Names[RTLIB::OEQ_F64] = "__eqdf2";
247  Names[RTLIB::UNE_F32] = "__nesf2";
248  Names[RTLIB::UNE_F64] = "__nedf2";
249  Names[RTLIB::OGE_F32] = "__gesf2";
250  Names[RTLIB::OGE_F64] = "__gedf2";
251  Names[RTLIB::OLT_F32] = "__ltsf2";
252  Names[RTLIB::OLT_F64] = "__ltdf2";
253  Names[RTLIB::OLE_F32] = "__lesf2";
254  Names[RTLIB::OLE_F64] = "__ledf2";
255  Names[RTLIB::OGT_F32] = "__gtsf2";
256  Names[RTLIB::OGT_F64] = "__gtdf2";
257  Names[RTLIB::UO_F32] = "__unordsf2";
258  Names[RTLIB::UO_F64] = "__unorddf2";
259  Names[RTLIB::O_F32] = "__unordsf2";
260  Names[RTLIB::O_F64] = "__unorddf2";
261  Names[RTLIB::MEMCPY] = "memcpy";
262  Names[RTLIB::MEMMOVE] = "memmove";
263  Names[RTLIB::MEMSET] = "memset";
264  Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
265}
266
267/// InitLibcallCallingConvs - Set default libcall CallingConvs.
268///
269static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
270  for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
271    CCs[i] = CallingConv::C;
272  }
273}
274
275/// getFPEXT - Return the FPEXT_*_* value for the given types, or
276/// UNKNOWN_LIBCALL if there is none.
277RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
278  if (OpVT == MVT::f32) {
279    if (RetVT == MVT::f64)
280      return FPEXT_F32_F64;
281  }
282
283  return UNKNOWN_LIBCALL;
284}
285
286/// getFPROUND - Return the FPROUND_*_* value for the given types, or
287/// UNKNOWN_LIBCALL if there is none.
288RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
289  if (RetVT == MVT::f32) {
290    if (OpVT == MVT::f64)
291      return FPROUND_F64_F32;
292    if (OpVT == MVT::f80)
293      return FPROUND_F80_F32;
294    if (OpVT == MVT::ppcf128)
295      return FPROUND_PPCF128_F32;
296  } else if (RetVT == MVT::f64) {
297    if (OpVT == MVT::f80)
298      return FPROUND_F80_F64;
299    if (OpVT == MVT::ppcf128)
300      return FPROUND_PPCF128_F64;
301  }
302
303  return UNKNOWN_LIBCALL;
304}
305
306/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
307/// UNKNOWN_LIBCALL if there is none.
308RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
309  if (OpVT == MVT::f32) {
310    if (RetVT == MVT::i8)
311      return FPTOSINT_F32_I8;
312    if (RetVT == MVT::i16)
313      return FPTOSINT_F32_I16;
314    if (RetVT == MVT::i32)
315      return FPTOSINT_F32_I32;
316    if (RetVT == MVT::i64)
317      return FPTOSINT_F32_I64;
318    if (RetVT == MVT::i128)
319      return FPTOSINT_F32_I128;
320  } else if (OpVT == MVT::f64) {
321    if (RetVT == MVT::i8)
322      return FPTOSINT_F64_I8;
323    if (RetVT == MVT::i16)
324      return FPTOSINT_F64_I16;
325    if (RetVT == MVT::i32)
326      return FPTOSINT_F64_I32;
327    if (RetVT == MVT::i64)
328      return FPTOSINT_F64_I64;
329    if (RetVT == MVT::i128)
330      return FPTOSINT_F64_I128;
331  } else if (OpVT == MVT::f80) {
332    if (RetVT == MVT::i32)
333      return FPTOSINT_F80_I32;
334    if (RetVT == MVT::i64)
335      return FPTOSINT_F80_I64;
336    if (RetVT == MVT::i128)
337      return FPTOSINT_F80_I128;
338  } else if (OpVT == MVT::ppcf128) {
339    if (RetVT == MVT::i32)
340      return FPTOSINT_PPCF128_I32;
341    if (RetVT == MVT::i64)
342      return FPTOSINT_PPCF128_I64;
343    if (RetVT == MVT::i128)
344      return FPTOSINT_PPCF128_I128;
345  }
346  return UNKNOWN_LIBCALL;
347}
348
349/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
350/// UNKNOWN_LIBCALL if there is none.
351RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
352  if (OpVT == MVT::f32) {
353    if (RetVT == MVT::i8)
354      return FPTOUINT_F32_I8;
355    if (RetVT == MVT::i16)
356      return FPTOUINT_F32_I16;
357    if (RetVT == MVT::i32)
358      return FPTOUINT_F32_I32;
359    if (RetVT == MVT::i64)
360      return FPTOUINT_F32_I64;
361    if (RetVT == MVT::i128)
362      return FPTOUINT_F32_I128;
363  } else if (OpVT == MVT::f64) {
364    if (RetVT == MVT::i8)
365      return FPTOUINT_F64_I8;
366    if (RetVT == MVT::i16)
367      return FPTOUINT_F64_I16;
368    if (RetVT == MVT::i32)
369      return FPTOUINT_F64_I32;
370    if (RetVT == MVT::i64)
371      return FPTOUINT_F64_I64;
372    if (RetVT == MVT::i128)
373      return FPTOUINT_F64_I128;
374  } else if (OpVT == MVT::f80) {
375    if (RetVT == MVT::i32)
376      return FPTOUINT_F80_I32;
377    if (RetVT == MVT::i64)
378      return FPTOUINT_F80_I64;
379    if (RetVT == MVT::i128)
380      return FPTOUINT_F80_I128;
381  } else if (OpVT == MVT::ppcf128) {
382    if (RetVT == MVT::i32)
383      return FPTOUINT_PPCF128_I32;
384    if (RetVT == MVT::i64)
385      return FPTOUINT_PPCF128_I64;
386    if (RetVT == MVT::i128)
387      return FPTOUINT_PPCF128_I128;
388  }
389  return UNKNOWN_LIBCALL;
390}
391
392/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
393/// UNKNOWN_LIBCALL if there is none.
394RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
395  if (OpVT == MVT::i32) {
396    if (RetVT == MVT::f32)
397      return SINTTOFP_I32_F32;
398    else if (RetVT == MVT::f64)
399      return SINTTOFP_I32_F64;
400    else if (RetVT == MVT::f80)
401      return SINTTOFP_I32_F80;
402    else if (RetVT == MVT::ppcf128)
403      return SINTTOFP_I32_PPCF128;
404  } else if (OpVT == MVT::i64) {
405    if (RetVT == MVT::f32)
406      return SINTTOFP_I64_F32;
407    else if (RetVT == MVT::f64)
408      return SINTTOFP_I64_F64;
409    else if (RetVT == MVT::f80)
410      return SINTTOFP_I64_F80;
411    else if (RetVT == MVT::ppcf128)
412      return SINTTOFP_I64_PPCF128;
413  } else if (OpVT == MVT::i128) {
414    if (RetVT == MVT::f32)
415      return SINTTOFP_I128_F32;
416    else if (RetVT == MVT::f64)
417      return SINTTOFP_I128_F64;
418    else if (RetVT == MVT::f80)
419      return SINTTOFP_I128_F80;
420    else if (RetVT == MVT::ppcf128)
421      return SINTTOFP_I128_PPCF128;
422  }
423  return UNKNOWN_LIBCALL;
424}
425
426/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
427/// UNKNOWN_LIBCALL if there is none.
428RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
429  if (OpVT == MVT::i32) {
430    if (RetVT == MVT::f32)
431      return UINTTOFP_I32_F32;
432    else if (RetVT == MVT::f64)
433      return UINTTOFP_I32_F64;
434    else if (RetVT == MVT::f80)
435      return UINTTOFP_I32_F80;
436    else if (RetVT == MVT::ppcf128)
437      return UINTTOFP_I32_PPCF128;
438  } else if (OpVT == MVT::i64) {
439    if (RetVT == MVT::f32)
440      return UINTTOFP_I64_F32;
441    else if (RetVT == MVT::f64)
442      return UINTTOFP_I64_F64;
443    else if (RetVT == MVT::f80)
444      return UINTTOFP_I64_F80;
445    else if (RetVT == MVT::ppcf128)
446      return UINTTOFP_I64_PPCF128;
447  } else if (OpVT == MVT::i128) {
448    if (RetVT == MVT::f32)
449      return UINTTOFP_I128_F32;
450    else if (RetVT == MVT::f64)
451      return UINTTOFP_I128_F64;
452    else if (RetVT == MVT::f80)
453      return UINTTOFP_I128_F80;
454    else if (RetVT == MVT::ppcf128)
455      return UINTTOFP_I128_PPCF128;
456  }
457  return UNKNOWN_LIBCALL;
458}
459
460/// InitCmpLibcallCCs - Set default comparison libcall CC.
461///
462static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
463  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
464  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
465  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
466  CCs[RTLIB::UNE_F32] = ISD::SETNE;
467  CCs[RTLIB::UNE_F64] = ISD::SETNE;
468  CCs[RTLIB::OGE_F32] = ISD::SETGE;
469  CCs[RTLIB::OGE_F64] = ISD::SETGE;
470  CCs[RTLIB::OLT_F32] = ISD::SETLT;
471  CCs[RTLIB::OLT_F64] = ISD::SETLT;
472  CCs[RTLIB::OLE_F32] = ISD::SETLE;
473  CCs[RTLIB::OLE_F64] = ISD::SETLE;
474  CCs[RTLIB::OGT_F32] = ISD::SETGT;
475  CCs[RTLIB::OGT_F64] = ISD::SETGT;
476  CCs[RTLIB::UO_F32] = ISD::SETNE;
477  CCs[RTLIB::UO_F64] = ISD::SETNE;
478  CCs[RTLIB::O_F32] = ISD::SETEQ;
479  CCs[RTLIB::O_F64] = ISD::SETEQ;
480}
481
482/// NOTE: The constructor takes ownership of TLOF.
483TargetLowering::TargetLowering(const TargetMachine &tm,
484                               const TargetLoweringObjectFile *tlof)
485  : TM(tm), TD(TM.getTargetData()), TLOF(*tlof) {
486  // All operations default to being supported.
487  memset(OpActions, 0, sizeof(OpActions));
488  memset(LoadExtActions, 0, sizeof(LoadExtActions));
489  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
490  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
491  memset(CondCodeActions, 0, sizeof(CondCodeActions));
492
493  // Set default actions for various operations.
494  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
495    // Default all indexed load / store to expand.
496    for (unsigned IM = (unsigned)ISD::PRE_INC;
497         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
498      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
499      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
500    }
501
502    // These operations default to expand.
503    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
504    setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
505  }
506
507  // Most targets ignore the @llvm.prefetch intrinsic.
508  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
509
510  // ConstantFP nodes default to expand.  Targets can either change this to
511  // Legal, in which case all fp constants are legal, or use isFPImmLegal()
512  // to optimize expansions for certain constants.
513  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
514  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
515  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
516
517  // These library functions default to expand.
518  setOperationAction(ISD::FLOG , MVT::f64, Expand);
519  setOperationAction(ISD::FLOG2, MVT::f64, Expand);
520  setOperationAction(ISD::FLOG10,MVT::f64, Expand);
521  setOperationAction(ISD::FEXP , MVT::f64, Expand);
522  setOperationAction(ISD::FEXP2, MVT::f64, Expand);
523  setOperationAction(ISD::FLOG , MVT::f32, Expand);
524  setOperationAction(ISD::FLOG2, MVT::f32, Expand);
525  setOperationAction(ISD::FLOG10,MVT::f32, Expand);
526  setOperationAction(ISD::FEXP , MVT::f32, Expand);
527  setOperationAction(ISD::FEXP2, MVT::f32, Expand);
528
529  // Default ISD::TRAP to expand (which turns it into abort).
530  setOperationAction(ISD::TRAP, MVT::Other, Expand);
531
532  IsLittleEndian = TD->isLittleEndian();
533  ShiftAmountTy = PointerTy = MVT::getIntegerVT(8*TD->getPointerSize());
534  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
535  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
536  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
537  benefitFromCodePlacementOpt = false;
538  UseUnderscoreSetJmp = false;
539  UseUnderscoreLongJmp = false;
540  SelectIsExpensive = false;
541  IntDivIsCheap = false;
542  Pow2DivIsCheap = false;
543  StackPointerRegisterToSaveRestore = 0;
544  ExceptionPointerRegister = 0;
545  ExceptionSelectorRegister = 0;
546  BooleanContents = UndefinedBooleanContent;
547  SchedPreferenceInfo = SchedulingForLatency;
548  JumpBufSize = 0;
549  JumpBufAlignment = 0;
550  IfCvtBlockSizeLimit = 2;
551  IfCvtDupBlockSizeLimit = 0;
552  PrefLoopAlignment = 0;
553
554  InitLibcallNames(LibcallRoutineNames);
555  InitCmpLibcallCCs(CmpLibcallCCs);
556  InitLibcallCallingConvs(LibcallCallingConvs);
557}
558
559TargetLowering::~TargetLowering() {
560  delete &TLOF;
561}
562
563/// canOpTrap - Returns true if the operation can trap for the value type.
564/// VT must be a legal type.
565bool TargetLowering::canOpTrap(unsigned Op, EVT VT) const {
566  assert(isTypeLegal(VT));
567  switch (Op) {
568  default:
569    return false;
570  case ISD::FDIV:
571  case ISD::FREM:
572  case ISD::SDIV:
573  case ISD::UDIV:
574  case ISD::SREM:
575  case ISD::UREM:
576    return true;
577  }
578}
579
580
581static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
582                                       unsigned &NumIntermediates,
583                                       EVT &RegisterVT,
584                                       TargetLowering* TLI) {
585  // Figure out the right, legal destination reg to copy into.
586  unsigned NumElts = VT.getVectorNumElements();
587  MVT EltTy = VT.getVectorElementType();
588
589  unsigned NumVectorRegs = 1;
590
591  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
592  // could break down into LHS/RHS like LegalizeDAG does.
593  if (!isPowerOf2_32(NumElts)) {
594    NumVectorRegs = NumElts;
595    NumElts = 1;
596  }
597
598  // Divide the input until we get to a supported size.  This will always
599  // end with a scalar if the target doesn't support vectors.
600  while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
601    NumElts >>= 1;
602    NumVectorRegs <<= 1;
603  }
604
605  NumIntermediates = NumVectorRegs;
606
607  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
608  if (!TLI->isTypeLegal(NewVT))
609    NewVT = EltTy;
610  IntermediateVT = NewVT;
611
612  EVT DestVT = TLI->getRegisterType(NewVT);
613  RegisterVT = DestVT;
614  if (EVT(DestVT).bitsLT(NewVT)) {
615    // Value is expanded, e.g. i64 -> i16.
616    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
617  } else {
618    // Otherwise, promotion or legal types use the same number of registers as
619    // the vector decimated to the appropriate level.
620    return NumVectorRegs;
621  }
622
623  return 1;
624}
625
626/// computeRegisterProperties - Once all of the register classes are added,
627/// this allows us to compute derived properties we expose.
628void TargetLowering::computeRegisterProperties() {
629  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
630         "Too many value types for ValueTypeActions to hold!");
631
632  // Everything defaults to needing one register.
633  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
634    NumRegistersForVT[i] = 1;
635    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
636  }
637  // ...except isVoid, which doesn't need any registers.
638  NumRegistersForVT[MVT::isVoid] = 0;
639
640  // Find the largest integer register class.
641  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
642  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
643    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
644
645  // Every integer value type larger than this largest register takes twice as
646  // many registers to represent as the previous ValueType.
647  for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
648    EVT ExpandedVT = (MVT::SimpleValueType)ExpandedReg;
649    if (!ExpandedVT.isInteger())
650      break;
651    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
652    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
653    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
654    ValueTypeActions.setTypeAction(ExpandedVT, Expand);
655  }
656
657  // Inspect all of the ValueType's smaller than the largest integer
658  // register to see which ones need promotion.
659  unsigned LegalIntReg = LargestIntReg;
660  for (unsigned IntReg = LargestIntReg - 1;
661       IntReg >= (unsigned)MVT::i1; --IntReg) {
662    EVT IVT = (MVT::SimpleValueType)IntReg;
663    if (isTypeLegal(IVT)) {
664      LegalIntReg = IntReg;
665    } else {
666      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
667        (MVT::SimpleValueType)LegalIntReg;
668      ValueTypeActions.setTypeAction(IVT, Promote);
669    }
670  }
671
672  // ppcf128 type is really two f64's.
673  if (!isTypeLegal(MVT::ppcf128)) {
674    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
675    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
676    TransformToType[MVT::ppcf128] = MVT::f64;
677    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
678  }
679
680  // Decide how to handle f64. If the target does not have native f64 support,
681  // expand it to i64 and we will be generating soft float library calls.
682  if (!isTypeLegal(MVT::f64)) {
683    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
684    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
685    TransformToType[MVT::f64] = MVT::i64;
686    ValueTypeActions.setTypeAction(MVT::f64, Expand);
687  }
688
689  // Decide how to handle f32. If the target does not have native support for
690  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
691  if (!isTypeLegal(MVT::f32)) {
692    if (isTypeLegal(MVT::f64)) {
693      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
694      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
695      TransformToType[MVT::f32] = MVT::f64;
696      ValueTypeActions.setTypeAction(MVT::f32, Promote);
697    } else {
698      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
699      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
700      TransformToType[MVT::f32] = MVT::i32;
701      ValueTypeActions.setTypeAction(MVT::f32, Expand);
702    }
703  }
704
705  // Loop over all of the vector value types to see which need transformations.
706  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
707       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
708    MVT VT = (MVT::SimpleValueType)i;
709    if (!isTypeLegal(VT)) {
710      MVT IntermediateVT;
711      EVT RegisterVT;
712      unsigned NumIntermediates;
713      NumRegistersForVT[i] =
714        getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
715                                  RegisterVT, this);
716      RegisterTypeForVT[i] = RegisterVT;
717
718      // Determine if there is a legal wider type.
719      bool IsLegalWiderType = false;
720      EVT EltVT = VT.getVectorElementType();
721      unsigned NElts = VT.getVectorNumElements();
722      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
723        EVT SVT = (MVT::SimpleValueType)nVT;
724        if (isTypeSynthesizable(SVT) && SVT.getVectorElementType() == EltVT &&
725            SVT.getVectorNumElements() > NElts && NElts != 1) {
726          TransformToType[i] = SVT;
727          ValueTypeActions.setTypeAction(VT, Promote);
728          IsLegalWiderType = true;
729          break;
730        }
731      }
732      if (!IsLegalWiderType) {
733        EVT NVT = VT.getPow2VectorType();
734        if (NVT == VT) {
735          // Type is already a power of 2.  The default action is to split.
736          TransformToType[i] = MVT::Other;
737          ValueTypeActions.setTypeAction(VT, Expand);
738        } else {
739          TransformToType[i] = NVT;
740          ValueTypeActions.setTypeAction(VT, Promote);
741        }
742      }
743    }
744  }
745}
746
747const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
748  return NULL;
749}
750
751
752MVT::SimpleValueType TargetLowering::getSetCCResultType(EVT VT) const {
753  return PointerTy.SimpleTy;
754}
755
756MVT::SimpleValueType TargetLowering::getCmpLibcallReturnType() const {
757  return MVT::i32; // return the default value
758}
759
760/// getVectorTypeBreakdown - Vector types are broken down into some number of
761/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
762/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
763/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
764///
765/// This method returns the number of registers needed, and the VT for each
766/// register.  It also returns the VT and quantity of the intermediate values
767/// before they are promoted/expanded.
768///
769unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
770                                                EVT &IntermediateVT,
771                                                unsigned &NumIntermediates,
772                                                EVT &RegisterVT) const {
773  // Figure out the right, legal destination reg to copy into.
774  unsigned NumElts = VT.getVectorNumElements();
775  EVT EltTy = VT.getVectorElementType();
776
777  unsigned NumVectorRegs = 1;
778
779  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
780  // could break down into LHS/RHS like LegalizeDAG does.
781  if (!isPowerOf2_32(NumElts)) {
782    NumVectorRegs = NumElts;
783    NumElts = 1;
784  }
785
786  // Divide the input until we get to a supported size.  This will always
787  // end with a scalar if the target doesn't support vectors.
788  while (NumElts > 1 && !isTypeLegal(
789                                   EVT::getVectorVT(Context, EltTy, NumElts))) {
790    NumElts >>= 1;
791    NumVectorRegs <<= 1;
792  }
793
794  NumIntermediates = NumVectorRegs;
795
796  EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
797  if (!isTypeLegal(NewVT))
798    NewVT = EltTy;
799  IntermediateVT = NewVT;
800
801  EVT DestVT = getRegisterType(Context, NewVT);
802  RegisterVT = DestVT;
803  if (DestVT.bitsLT(NewVT)) {
804    // Value is expanded, e.g. i64 -> i16.
805    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
806  } else {
807    // Otherwise, promotion or legal types use the same number of registers as
808    // the vector decimated to the appropriate level.
809    return NumVectorRegs;
810  }
811
812  return 1;
813}
814
815/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
816/// function arguments in the caller parameter area.  This is the actual
817/// alignment, not its logarithm.
818unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
819  return TD->getCallFrameTypeAlignment(Ty);
820}
821
822/// getJumpTableEncoding - Return the entry encoding for a jump table in the
823/// current function.  The returned value is a member of the
824/// MachineJumpTableInfo::JTEntryKind enum.
825unsigned TargetLowering::getJumpTableEncoding() const {
826  // In non-pic modes, just use the address of a block.
827  if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
828    return MachineJumpTableInfo::EK_BlockAddress;
829
830  // In PIC mode, if the target supports a GPRel32 directive, use it.
831  if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0)
832    return MachineJumpTableInfo::EK_GPRel32BlockAddress;
833
834  // Otherwise, use a label difference.
835  return MachineJumpTableInfo::EK_LabelDifference32;
836}
837
838SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
839                                                 SelectionDAG &DAG) const {
840  // If our PIC model is GP relative, use the global offset table as the base.
841  if (getJumpTableEncoding() == MachineJumpTableInfo::EK_GPRel32BlockAddress)
842    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
843  return Table;
844}
845
846/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
847/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
848/// MCExpr.
849const MCExpr *
850TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
851                                             unsigned JTI,MCContext &Ctx) const{
852  // The normal PIC reloc base is the label at the start of the jump table.
853  return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx);
854}
855
856bool
857TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
858  // Assume that everything is safe in static mode.
859  if (getTargetMachine().getRelocationModel() == Reloc::Static)
860    return true;
861
862  // In dynamic-no-pic mode, assume that known defined values are safe.
863  if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
864      GA &&
865      !GA->getGlobal()->isDeclaration() &&
866      !GA->getGlobal()->isWeakForLinker())
867    return true;
868
869  // Otherwise assume nothing is safe.
870  return false;
871}
872
873//===----------------------------------------------------------------------===//
874//  Optimization Methods
875//===----------------------------------------------------------------------===//
876
877/// ShrinkDemandedConstant - Check to see if the specified operand of the
878/// specified instruction is a constant integer.  If so, check to see if there
879/// are any bits set in the constant that are not demanded.  If so, shrink the
880/// constant and return true.
881bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
882                                                        const APInt &Demanded) {
883  DebugLoc dl = Op.getDebugLoc();
884
885  // FIXME: ISD::SELECT, ISD::SELECT_CC
886  switch (Op.getOpcode()) {
887  default: break;
888  case ISD::XOR:
889  case ISD::AND:
890  case ISD::OR: {
891    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
892    if (!C) return false;
893
894    if (Op.getOpcode() == ISD::XOR &&
895        (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
896      return false;
897
898    // if we can expand it to have all bits set, do it
899    if (C->getAPIntValue().intersects(~Demanded)) {
900      EVT VT = Op.getValueType();
901      SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
902                                DAG.getConstant(Demanded &
903                                                C->getAPIntValue(),
904                                                VT));
905      return CombineTo(Op, New);
906    }
907
908    break;
909  }
910  }
911
912  return false;
913}
914
915/// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
916/// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
917/// cast, but it could be generalized for targets with other types of
918/// implicit widening casts.
919bool
920TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
921                                                    unsigned BitWidth,
922                                                    const APInt &Demanded,
923                                                    DebugLoc dl) {
924  assert(Op.getNumOperands() == 2 &&
925         "ShrinkDemandedOp only supports binary operators!");
926  assert(Op.getNode()->getNumValues() == 1 &&
927         "ShrinkDemandedOp only supports nodes with one result!");
928
929  // Don't do this if the node has another user, which may require the
930  // full value.
931  if (!Op.getNode()->hasOneUse())
932    return false;
933
934  // Search for the smallest integer type with free casts to and from
935  // Op's type. For expedience, just check power-of-2 integer types.
936  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
937  unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
938  if (!isPowerOf2_32(SmallVTBits))
939    SmallVTBits = NextPowerOf2(SmallVTBits);
940  for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
941    EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
942    if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
943        TLI.isZExtFree(SmallVT, Op.getValueType())) {
944      // We found a type with free casts.
945      SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
946                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
947                                          Op.getNode()->getOperand(0)),
948                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
949                                          Op.getNode()->getOperand(1)));
950      SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
951      return CombineTo(Op, Z);
952    }
953  }
954  return false;
955}
956
957/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
958/// DemandedMask bits of the result of Op are ever used downstream.  If we can
959/// use this information to simplify Op, create a new simplified DAG node and
960/// return true, returning the original and new nodes in Old and New. Otherwise,
961/// analyze the expression and return a mask of KnownOne and KnownZero bits for
962/// the expression (used to simplify the caller).  The KnownZero/One bits may
963/// only be accurate for those bits in the DemandedMask.
964bool TargetLowering::SimplifyDemandedBits(SDValue Op,
965                                          const APInt &DemandedMask,
966                                          APInt &KnownZero,
967                                          APInt &KnownOne,
968                                          TargetLoweringOpt &TLO,
969                                          unsigned Depth) const {
970  unsigned BitWidth = DemandedMask.getBitWidth();
971  assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
972         "Mask size mismatches value type size!");
973  APInt NewMask = DemandedMask;
974  DebugLoc dl = Op.getDebugLoc();
975
976  // Don't know anything.
977  KnownZero = KnownOne = APInt(BitWidth, 0);
978
979  // Other users may use these bits.
980  if (!Op.getNode()->hasOneUse()) {
981    if (Depth != 0) {
982      // If not at the root, Just compute the KnownZero/KnownOne bits to
983      // simplify things downstream.
984      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
985      return false;
986    }
987    // If this is the root being simplified, allow it to have multiple uses,
988    // just set the NewMask to all bits.
989    NewMask = APInt::getAllOnesValue(BitWidth);
990  } else if (DemandedMask == 0) {
991    // Not demanding any bits from Op.
992    if (Op.getOpcode() != ISD::UNDEF)
993      return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
994    return false;
995  } else if (Depth == 6) {        // Limit search depth.
996    return false;
997  }
998
999  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
1000  switch (Op.getOpcode()) {
1001  case ISD::Constant:
1002    // We know all of the bits for a constant!
1003    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
1004    KnownZero = ~KnownOne & NewMask;
1005    return false;   // Don't fall through, will infinitely loop.
1006  case ISD::AND:
1007    // If the RHS is a constant, check to see if the LHS would be zero without
1008    // using the bits from the RHS.  Below, we use knowledge about the RHS to
1009    // simplify the LHS, here we're using information from the LHS to simplify
1010    // the RHS.
1011    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1012      APInt LHSZero, LHSOne;
1013      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
1014                                LHSZero, LHSOne, Depth+1);
1015      // If the LHS already has zeros where RHSC does, this and is dead.
1016      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
1017        return TLO.CombineTo(Op, Op.getOperand(0));
1018      // If any of the set bits in the RHS are known zero on the LHS, shrink
1019      // the constant.
1020      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
1021        return true;
1022    }
1023
1024    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1025                             KnownOne, TLO, Depth+1))
1026      return true;
1027    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1028    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
1029                             KnownZero2, KnownOne2, TLO, Depth+1))
1030      return true;
1031    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1032
1033    // If all of the demanded bits are known one on one side, return the other.
1034    // These bits cannot contribute to the result of the 'and'.
1035    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1036      return TLO.CombineTo(Op, Op.getOperand(0));
1037    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1038      return TLO.CombineTo(Op, Op.getOperand(1));
1039    // If all of the demanded bits in the inputs are known zeros, return zero.
1040    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
1041      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
1042    // If the RHS is a constant, see if we can simplify it.
1043    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
1044      return true;
1045    // If the operation can be done in a smaller type, do so.
1046    if (TLO.ShrinkOps && TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1047      return true;
1048
1049    // Output known-1 bits are only known if set in both the LHS & RHS.
1050    KnownOne &= KnownOne2;
1051    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1052    KnownZero |= KnownZero2;
1053    break;
1054  case ISD::OR:
1055    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1056                             KnownOne, TLO, Depth+1))
1057      return true;
1058    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1059    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
1060                             KnownZero2, KnownOne2, TLO, Depth+1))
1061      return true;
1062    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1063
1064    // If all of the demanded bits are known zero on one side, return the other.
1065    // These bits cannot contribute to the result of the 'or'.
1066    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
1067      return TLO.CombineTo(Op, Op.getOperand(0));
1068    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
1069      return TLO.CombineTo(Op, Op.getOperand(1));
1070    // If all of the potentially set bits on one side are known to be set on
1071    // the other side, just use the 'other' side.
1072    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1073      return TLO.CombineTo(Op, Op.getOperand(0));
1074    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1075      return TLO.CombineTo(Op, Op.getOperand(1));
1076    // If the RHS is a constant, see if we can simplify it.
1077    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1078      return true;
1079    // If the operation can be done in a smaller type, do so.
1080    if (TLO.ShrinkOps && TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1081      return true;
1082
1083    // Output known-0 bits are only known if clear in both the LHS & RHS.
1084    KnownZero &= KnownZero2;
1085    // Output known-1 are known to be set if set in either the LHS | RHS.
1086    KnownOne |= KnownOne2;
1087    break;
1088  case ISD::XOR:
1089    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1090                             KnownOne, TLO, Depth+1))
1091      return true;
1092    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1093    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
1094                             KnownOne2, TLO, Depth+1))
1095      return true;
1096    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1097
1098    // If all of the demanded bits are known zero on one side, return the other.
1099    // These bits cannot contribute to the result of the 'xor'.
1100    if ((KnownZero & NewMask) == NewMask)
1101      return TLO.CombineTo(Op, Op.getOperand(0));
1102    if ((KnownZero2 & NewMask) == NewMask)
1103      return TLO.CombineTo(Op, Op.getOperand(1));
1104    // If the operation can be done in a smaller type, do so.
1105    if (TLO.ShrinkOps && TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1106      return true;
1107
1108    // If all of the unknown bits are known to be zero on one side or the other
1109    // (but not both) turn this into an *inclusive* or.
1110    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1111    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
1112      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
1113                                               Op.getOperand(0),
1114                                               Op.getOperand(1)));
1115
1116    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1117    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1118    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1119    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1120
1121    // If all of the demanded bits on one side are known, and all of the set
1122    // bits on that side are also known to be set on the other side, turn this
1123    // into an AND, as we know the bits will be cleared.
1124    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1125    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
1126      if ((KnownOne & KnownOne2) == KnownOne) {
1127        EVT VT = Op.getValueType();
1128        SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
1129        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
1130                                                 Op.getOperand(0), ANDC));
1131      }
1132    }
1133
1134    // If the RHS is a constant, see if we can simplify it.
1135    // for XOR, we prefer to force bits to 1 if they will make a -1.
1136    // if we can't force bits, try to shrink constant
1137    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1138      APInt Expanded = C->getAPIntValue() | (~NewMask);
1139      // if we can expand it to have all bits set, do it
1140      if (Expanded.isAllOnesValue()) {
1141        if (Expanded != C->getAPIntValue()) {
1142          EVT VT = Op.getValueType();
1143          SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
1144                                          TLO.DAG.getConstant(Expanded, VT));
1145          return TLO.CombineTo(Op, New);
1146        }
1147        // if it already has all the bits set, nothing to change
1148        // but don't shrink either!
1149      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
1150        return true;
1151      }
1152    }
1153
1154    KnownZero = KnownZeroOut;
1155    KnownOne  = KnownOneOut;
1156    break;
1157  case ISD::SELECT:
1158    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
1159                             KnownOne, TLO, Depth+1))
1160      return true;
1161    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
1162                             KnownOne2, TLO, Depth+1))
1163      return true;
1164    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1165    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1166
1167    // If the operands are constants, see if we can simplify them.
1168    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1169      return true;
1170
1171    // Only known if known in both the LHS and RHS.
1172    KnownOne &= KnownOne2;
1173    KnownZero &= KnownZero2;
1174    break;
1175  case ISD::SELECT_CC:
1176    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
1177                             KnownOne, TLO, Depth+1))
1178      return true;
1179    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
1180                             KnownOne2, TLO, Depth+1))
1181      return true;
1182    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1183    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1184
1185    // If the operands are constants, see if we can simplify them.
1186    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1187      return true;
1188
1189    // Only known if known in both the LHS and RHS.
1190    KnownOne &= KnownOne2;
1191    KnownZero &= KnownZero2;
1192    break;
1193  case ISD::SHL:
1194    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1195      unsigned ShAmt = SA->getZExtValue();
1196      SDValue InOp = Op.getOperand(0);
1197
1198      // If the shift count is an invalid immediate, don't do anything.
1199      if (ShAmt >= BitWidth)
1200        break;
1201
1202      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1203      // single shift.  We can do this if the bottom bits (which are shifted
1204      // out) are never demanded.
1205      if (InOp.getOpcode() == ISD::SRL &&
1206          isa<ConstantSDNode>(InOp.getOperand(1))) {
1207        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1208          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1209          unsigned Opc = ISD::SHL;
1210          int Diff = ShAmt-C1;
1211          if (Diff < 0) {
1212            Diff = -Diff;
1213            Opc = ISD::SRL;
1214          }
1215
1216          SDValue NewSA =
1217            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1218          EVT VT = Op.getValueType();
1219          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1220                                                   InOp.getOperand(0), NewSA));
1221        }
1222      }
1223
1224      if (SimplifyDemandedBits(Op.getOperand(0), NewMask.lshr(ShAmt),
1225                               KnownZero, KnownOne, TLO, Depth+1))
1226        return true;
1227      KnownZero <<= SA->getZExtValue();
1228      KnownOne  <<= SA->getZExtValue();
1229      // low bits known zero.
1230      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
1231    }
1232    break;
1233  case ISD::SRL:
1234    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1235      EVT VT = Op.getValueType();
1236      unsigned ShAmt = SA->getZExtValue();
1237      unsigned VTSize = VT.getSizeInBits();
1238      SDValue InOp = Op.getOperand(0);
1239
1240      // If the shift count is an invalid immediate, don't do anything.
1241      if (ShAmt >= BitWidth)
1242        break;
1243
1244      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1245      // single shift.  We can do this if the top bits (which are shifted out)
1246      // are never demanded.
1247      if (InOp.getOpcode() == ISD::SHL &&
1248          isa<ConstantSDNode>(InOp.getOperand(1))) {
1249        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
1250          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1251          unsigned Opc = ISD::SRL;
1252          int Diff = ShAmt-C1;
1253          if (Diff < 0) {
1254            Diff = -Diff;
1255            Opc = ISD::SHL;
1256          }
1257
1258          SDValue NewSA =
1259            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1260          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1261                                                   InOp.getOperand(0), NewSA));
1262        }
1263      }
1264
1265      // Compute the new bits that are at the top now.
1266      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1267                               KnownZero, KnownOne, TLO, Depth+1))
1268        return true;
1269      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1270      KnownZero = KnownZero.lshr(ShAmt);
1271      KnownOne  = KnownOne.lshr(ShAmt);
1272
1273      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1274      KnownZero |= HighBits;  // High bits known zero.
1275    }
1276    break;
1277  case ISD::SRA:
1278    // If this is an arithmetic shift right and only the low-bit is set, we can
1279    // always convert this into a logical shr, even if the shift amount is
1280    // variable.  The low bit of the shift cannot be an input sign bit unless
1281    // the shift amount is >= the size of the datatype, which is undefined.
1282    if (DemandedMask == 1)
1283      return TLO.CombineTo(Op,
1284                           TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
1285                                           Op.getOperand(0), Op.getOperand(1)));
1286
1287    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1288      EVT VT = Op.getValueType();
1289      unsigned ShAmt = SA->getZExtValue();
1290
1291      // If the shift count is an invalid immediate, don't do anything.
1292      if (ShAmt >= BitWidth)
1293        break;
1294
1295      APInt InDemandedMask = (NewMask << ShAmt);
1296
1297      // If any of the demanded bits are produced by the sign extension, we also
1298      // demand the input sign bit.
1299      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1300      if (HighBits.intersects(NewMask))
1301        InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
1302
1303      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1304                               KnownZero, KnownOne, TLO, Depth+1))
1305        return true;
1306      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1307      KnownZero = KnownZero.lshr(ShAmt);
1308      KnownOne  = KnownOne.lshr(ShAmt);
1309
1310      // Handle the sign bit, adjusted to where it is now in the mask.
1311      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1312
1313      // If the input sign bit is known to be zero, or if none of the top bits
1314      // are demanded, turn this into an unsigned shift right.
1315      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1316        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
1317                                                 Op.getOperand(0),
1318                                                 Op.getOperand(1)));
1319      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1320        KnownOne |= HighBits;
1321      }
1322    }
1323    break;
1324  case ISD::SIGN_EXTEND_INREG: {
1325    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1326
1327    // Sign extension.  Compute the demanded bits in the result that are not
1328    // present in the input.
1329    APInt NewBits =
1330      APInt::getHighBitsSet(BitWidth,
1331                            BitWidth - EVT.getScalarType().getSizeInBits()) &
1332      NewMask;
1333
1334    // If none of the extended bits are demanded, eliminate the sextinreg.
1335    if (NewBits == 0)
1336      return TLO.CombineTo(Op, Op.getOperand(0));
1337
1338    APInt InSignBit = APInt::getSignBit(EVT.getScalarType().getSizeInBits());
1339    InSignBit.zext(BitWidth);
1340    APInt InputDemandedBits =
1341      APInt::getLowBitsSet(BitWidth,
1342                           EVT.getScalarType().getSizeInBits()) &
1343      NewMask;
1344
1345    // Since the sign extended bits are demanded, we know that the sign
1346    // bit is demanded.
1347    InputDemandedBits |= InSignBit;
1348
1349    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1350                             KnownZero, KnownOne, TLO, Depth+1))
1351      return true;
1352    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1353
1354    // If the sign bit of the input is known set or clear, then we know the
1355    // top bits of the result.
1356
1357    // If the input sign bit is known zero, convert this into a zero extension.
1358    if (KnownZero.intersects(InSignBit))
1359      return TLO.CombineTo(Op,
1360                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT));
1361
1362    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1363      KnownOne |= NewBits;
1364      KnownZero &= ~NewBits;
1365    } else {                       // Input sign bit unknown
1366      KnownZero &= ~NewBits;
1367      KnownOne &= ~NewBits;
1368    }
1369    break;
1370  }
1371  case ISD::ZERO_EXTEND: {
1372    unsigned OperandBitWidth =
1373      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1374    APInt InMask = NewMask;
1375    InMask.trunc(OperandBitWidth);
1376
1377    // If none of the top bits are demanded, convert this into an any_extend.
1378    APInt NewBits =
1379      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1380    if (!NewBits.intersects(NewMask))
1381      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1382                                               Op.getValueType(),
1383                                               Op.getOperand(0)));
1384
1385    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1386                             KnownZero, KnownOne, TLO, Depth+1))
1387      return true;
1388    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1389    KnownZero.zext(BitWidth);
1390    KnownOne.zext(BitWidth);
1391    KnownZero |= NewBits;
1392    break;
1393  }
1394  case ISD::SIGN_EXTEND: {
1395    EVT InVT = Op.getOperand(0).getValueType();
1396    unsigned InBits = InVT.getScalarType().getSizeInBits();
1397    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1398    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1399    APInt NewBits   = ~InMask & NewMask;
1400
1401    // If none of the top bits are demanded, convert this into an any_extend.
1402    if (NewBits == 0)
1403      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1404                                              Op.getValueType(),
1405                                              Op.getOperand(0)));
1406
1407    // Since some of the sign extended bits are demanded, we know that the sign
1408    // bit is demanded.
1409    APInt InDemandedBits = InMask & NewMask;
1410    InDemandedBits |= InSignBit;
1411    InDemandedBits.trunc(InBits);
1412
1413    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1414                             KnownOne, TLO, Depth+1))
1415      return true;
1416    KnownZero.zext(BitWidth);
1417    KnownOne.zext(BitWidth);
1418
1419    // If the sign bit is known zero, convert this to a zero extend.
1420    if (KnownZero.intersects(InSignBit))
1421      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1422                                               Op.getValueType(),
1423                                               Op.getOperand(0)));
1424
1425    // If the sign bit is known one, the top bits match.
1426    if (KnownOne.intersects(InSignBit)) {
1427      KnownOne  |= NewBits;
1428      KnownZero &= ~NewBits;
1429    } else {   // Otherwise, top bits aren't known.
1430      KnownOne  &= ~NewBits;
1431      KnownZero &= ~NewBits;
1432    }
1433    break;
1434  }
1435  case ISD::ANY_EXTEND: {
1436    unsigned OperandBitWidth =
1437      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1438    APInt InMask = NewMask;
1439    InMask.trunc(OperandBitWidth);
1440    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1441                             KnownZero, KnownOne, TLO, Depth+1))
1442      return true;
1443    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1444    KnownZero.zext(BitWidth);
1445    KnownOne.zext(BitWidth);
1446    break;
1447  }
1448  case ISD::TRUNCATE: {
1449    // Simplify the input, using demanded bit information, and compute the known
1450    // zero/one bits live out.
1451    unsigned OperandBitWidth =
1452      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1453    APInt TruncMask = NewMask;
1454    TruncMask.zext(OperandBitWidth);
1455    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1456                             KnownZero, KnownOne, TLO, Depth+1))
1457      return true;
1458    KnownZero.trunc(BitWidth);
1459    KnownOne.trunc(BitWidth);
1460
1461    // If the input is only used by this truncate, see if we can shrink it based
1462    // on the known demanded bits.
1463    if (Op.getOperand(0).getNode()->hasOneUse()) {
1464      SDValue In = Op.getOperand(0);
1465      switch (In.getOpcode()) {
1466      default: break;
1467      case ISD::SRL:
1468        // Shrink SRL by a constant if none of the high bits shifted in are
1469        // demanded.
1470        if (TLO.LegalTypes() &&
1471            !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
1472          // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1473          // undesirable.
1474          break;
1475        ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
1476        if (!ShAmt)
1477          break;
1478        APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1479                                               OperandBitWidth - BitWidth);
1480        HighBits = HighBits.lshr(ShAmt->getZExtValue());
1481        HighBits.trunc(BitWidth);
1482
1483        if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1484          // None of the shifted in bits are needed.  Add a truncate of the
1485          // shift input, then shift it.
1486          SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1487                                             Op.getValueType(),
1488                                             In.getOperand(0));
1489          return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1490                                                   Op.getValueType(),
1491                                                   NewTrunc,
1492                                                   In.getOperand(1)));
1493        }
1494        break;
1495      }
1496    }
1497
1498    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1499    break;
1500  }
1501  case ISD::AssertZext: {
1502    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1503    APInt InMask = APInt::getLowBitsSet(BitWidth,
1504                                        VT.getSizeInBits());
1505    if (SimplifyDemandedBits(Op.getOperand(0), InMask & NewMask,
1506                             KnownZero, KnownOne, TLO, Depth+1))
1507      return true;
1508    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1509    KnownZero |= ~InMask & NewMask;
1510    break;
1511  }
1512  case ISD::BIT_CONVERT:
1513#if 0
1514    // If this is an FP->Int bitcast and if the sign bit is the only thing that
1515    // is demanded, turn this into a FGETSIGN.
1516    if (NewMask == EVT::getIntegerVTSignBit(Op.getValueType()) &&
1517        MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
1518        !MVT::isVector(Op.getOperand(0).getValueType())) {
1519      // Only do this xform if FGETSIGN is valid or if before legalize.
1520      if (!TLO.AfterLegalize ||
1521          isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
1522        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1523        // place.  We expect the SHL to be eliminated by other optimizations.
1524        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
1525                                         Op.getOperand(0));
1526        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1527        SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
1528        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
1529                                                 Sign, ShAmt));
1530      }
1531    }
1532#endif
1533    break;
1534  case ISD::ADD:
1535  case ISD::MUL:
1536  case ISD::SUB: {
1537    // Add, Sub, and Mul don't demand any bits in positions beyond that
1538    // of the highest bit demanded of them.
1539    APInt LoMask = APInt::getLowBitsSet(BitWidth,
1540                                        BitWidth - NewMask.countLeadingZeros());
1541    if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1542                             KnownOne2, TLO, Depth+1))
1543      return true;
1544    if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1545                             KnownOne2, TLO, Depth+1))
1546      return true;
1547    // See if the operation should be performed at a smaller bit width.
1548    if (TLO.ShrinkOps && TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1549      return true;
1550  }
1551  // FALL THROUGH
1552  default:
1553    // Just use ComputeMaskedBits to compute output bits.
1554    TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1555    break;
1556  }
1557
1558  // If we know the value of all of the demanded bits, return this as a
1559  // constant.
1560  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1561    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1562
1563  return false;
1564}
1565
1566/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1567/// in Mask are known to be either zero or one and return them in the
1568/// KnownZero/KnownOne bitsets.
1569void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1570                                                    const APInt &Mask,
1571                                                    APInt &KnownZero,
1572                                                    APInt &KnownOne,
1573                                                    const SelectionDAG &DAG,
1574                                                    unsigned Depth) const {
1575  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1576          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1577          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1578          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1579         "Should use MaskedValueIsZero if you don't know whether Op"
1580         " is a target node!");
1581  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1582}
1583
1584/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1585/// targets that want to expose additional information about sign bits to the
1586/// DAG Combiner.
1587unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1588                                                         unsigned Depth) const {
1589  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1590          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1591          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1592          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1593         "Should use ComputeNumSignBits if you don't know whether Op"
1594         " is a target node!");
1595  return 1;
1596}
1597
1598/// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1599/// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1600/// determine which bit is set.
1601///
1602static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1603  // A left-shift of a constant one will have exactly one bit set, because
1604  // shifting the bit off the end is undefined.
1605  if (Val.getOpcode() == ISD::SHL)
1606    if (ConstantSDNode *C =
1607         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1608      if (C->getAPIntValue() == 1)
1609        return true;
1610
1611  // Similarly, a right-shift of a constant sign-bit will have exactly
1612  // one bit set.
1613  if (Val.getOpcode() == ISD::SRL)
1614    if (ConstantSDNode *C =
1615         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1616      if (C->getAPIntValue().isSignBit())
1617        return true;
1618
1619  // More could be done here, though the above checks are enough
1620  // to handle some common cases.
1621
1622  // Fall back to ComputeMaskedBits to catch other known cases.
1623  EVT OpVT = Val.getValueType();
1624  unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
1625  APInt Mask = APInt::getAllOnesValue(BitWidth);
1626  APInt KnownZero, KnownOne;
1627  DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne);
1628  return (KnownZero.countPopulation() == BitWidth - 1) &&
1629         (KnownOne.countPopulation() == 1);
1630}
1631
1632/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1633/// and cc. If it is unable to simplify it, return a null SDValue.
1634SDValue
1635TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1636                              ISD::CondCode Cond, bool foldBooleans,
1637                              DAGCombinerInfo &DCI, DebugLoc dl) const {
1638  SelectionDAG &DAG = DCI.DAG;
1639  LLVMContext &Context = *DAG.getContext();
1640
1641  // These setcc operations always fold.
1642  switch (Cond) {
1643  default: break;
1644  case ISD::SETFALSE:
1645  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1646  case ISD::SETTRUE:
1647  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1648  }
1649
1650  if (isa<ConstantSDNode>(N0.getNode())) {
1651    // Ensure that the constant occurs on the RHS, and fold constant
1652    // comparisons.
1653    return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1654  }
1655
1656  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1657    const APInt &C1 = N1C->getAPIntValue();
1658
1659    // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1660    // equality comparison, then we're just comparing whether X itself is
1661    // zero.
1662    if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1663        N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1664        N0.getOperand(1).getOpcode() == ISD::Constant) {
1665      const APInt &ShAmt
1666        = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1667      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1668          ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1669        if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1670          // (srl (ctlz x), 5) == 0  -> X != 0
1671          // (srl (ctlz x), 5) != 1  -> X != 0
1672          Cond = ISD::SETNE;
1673        } else {
1674          // (srl (ctlz x), 5) != 0  -> X == 0
1675          // (srl (ctlz x), 5) == 1  -> X == 0
1676          Cond = ISD::SETEQ;
1677        }
1678        SDValue Zero = DAG.getConstant(0, N0.getValueType());
1679        return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1680                            Zero, Cond);
1681      }
1682    }
1683
1684    // If the LHS is '(and load, const)', the RHS is 0,
1685    // the test is for equality or unsigned, and all 1 bits of the const are
1686    // in the same partial word, see if we can shorten the load.
1687    if (DCI.isBeforeLegalize() &&
1688        N0.getOpcode() == ISD::AND && C1 == 0 &&
1689        N0.getNode()->hasOneUse() &&
1690        isa<LoadSDNode>(N0.getOperand(0)) &&
1691        N0.getOperand(0).getNode()->hasOneUse() &&
1692        isa<ConstantSDNode>(N0.getOperand(1))) {
1693      LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1694      APInt bestMask;
1695      unsigned bestWidth = 0, bestOffset = 0;
1696      if (!Lod->isVolatile() && Lod->isUnindexed()) {
1697        unsigned origWidth = N0.getValueType().getSizeInBits();
1698        unsigned maskWidth = origWidth;
1699        // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1700        // 8 bits, but have to be careful...
1701        if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1702          origWidth = Lod->getMemoryVT().getSizeInBits();
1703        const APInt &Mask =
1704          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1705        for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1706          APInt newMask = APInt::getLowBitsSet(maskWidth, width);
1707          for (unsigned offset=0; offset<origWidth/width; offset++) {
1708            if ((newMask & Mask) == Mask) {
1709              if (!TD->isLittleEndian())
1710                bestOffset = (origWidth/width - offset - 1) * (width/8);
1711              else
1712                bestOffset = (uint64_t)offset * (width/8);
1713              bestMask = Mask.lshr(offset * (width/8) * 8);
1714              bestWidth = width;
1715              break;
1716            }
1717            newMask = newMask << width;
1718          }
1719        }
1720      }
1721      if (bestWidth) {
1722        EVT newVT = EVT::getIntegerVT(Context, bestWidth);
1723        if (newVT.isRound()) {
1724          EVT PtrType = Lod->getOperand(1).getValueType();
1725          SDValue Ptr = Lod->getBasePtr();
1726          if (bestOffset != 0)
1727            Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1728                              DAG.getConstant(bestOffset, PtrType));
1729          unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1730          SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
1731                                        Lod->getSrcValue(),
1732                                        Lod->getSrcValueOffset() + bestOffset,
1733                                        false, false, NewAlign);
1734          return DAG.getSetCC(dl, VT,
1735                              DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1736                                      DAG.getConstant(bestMask.trunc(bestWidth),
1737                                                      newVT)),
1738                              DAG.getConstant(0LL, newVT), Cond);
1739        }
1740      }
1741    }
1742
1743    // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1744    if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1745      unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1746
1747      // If the comparison constant has bits in the upper part, the
1748      // zero-extended value could never match.
1749      if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1750                                              C1.getBitWidth() - InSize))) {
1751        switch (Cond) {
1752        case ISD::SETUGT:
1753        case ISD::SETUGE:
1754        case ISD::SETEQ: return DAG.getConstant(0, VT);
1755        case ISD::SETULT:
1756        case ISD::SETULE:
1757        case ISD::SETNE: return DAG.getConstant(1, VT);
1758        case ISD::SETGT:
1759        case ISD::SETGE:
1760          // True if the sign bit of C1 is set.
1761          return DAG.getConstant(C1.isNegative(), VT);
1762        case ISD::SETLT:
1763        case ISD::SETLE:
1764          // True if the sign bit of C1 isn't set.
1765          return DAG.getConstant(C1.isNonNegative(), VT);
1766        default:
1767          break;
1768        }
1769      }
1770
1771      // Otherwise, we can perform the comparison with the low bits.
1772      switch (Cond) {
1773      case ISD::SETEQ:
1774      case ISD::SETNE:
1775      case ISD::SETUGT:
1776      case ISD::SETUGE:
1777      case ISD::SETULT:
1778      case ISD::SETULE: {
1779        EVT newVT = N0.getOperand(0).getValueType();
1780        if (DCI.isBeforeLegalizeOps() ||
1781            (isOperationLegal(ISD::SETCC, newVT) &&
1782              getCondCodeAction(Cond, newVT)==Legal))
1783          return DAG.getSetCC(dl, VT, N0.getOperand(0),
1784                              DAG.getConstant(APInt(C1).trunc(InSize), newVT),
1785                              Cond);
1786        break;
1787      }
1788      default:
1789        break;   // todo, be more careful with signed comparisons
1790      }
1791    } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1792               (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1793      EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1794      unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1795      EVT ExtDstTy = N0.getValueType();
1796      unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1797
1798      // If the extended part has any inconsistent bits, it cannot ever
1799      // compare equal.  In other words, they have to be all ones or all
1800      // zeros.
1801      APInt ExtBits =
1802        APInt::getHighBitsSet(ExtDstTyBits, ExtDstTyBits - ExtSrcTyBits);
1803      if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1804        return DAG.getConstant(Cond == ISD::SETNE, VT);
1805
1806      SDValue ZextOp;
1807      EVT Op0Ty = N0.getOperand(0).getValueType();
1808      if (Op0Ty == ExtSrcTy) {
1809        ZextOp = N0.getOperand(0);
1810      } else {
1811        APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1812        ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
1813                              DAG.getConstant(Imm, Op0Ty));
1814      }
1815      if (!DCI.isCalledByLegalizer())
1816        DCI.AddToWorklist(ZextOp.getNode());
1817      // Otherwise, make this a use of a zext.
1818      return DAG.getSetCC(dl, VT, ZextOp,
1819                          DAG.getConstant(C1 & APInt::getLowBitsSet(
1820                                                              ExtDstTyBits,
1821                                                              ExtSrcTyBits),
1822                                          ExtDstTy),
1823                          Cond);
1824    } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1825                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1826      // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1827      if (N0.getOpcode() == ISD::SETCC &&
1828          isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
1829        bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
1830        if (TrueWhenTrue)
1831          return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
1832        // Invert the condition.
1833        ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1834        CC = ISD::getSetCCInverse(CC,
1835                                  N0.getOperand(0).getValueType().isInteger());
1836        return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
1837      }
1838
1839      if ((N0.getOpcode() == ISD::XOR ||
1840           (N0.getOpcode() == ISD::AND &&
1841            N0.getOperand(0).getOpcode() == ISD::XOR &&
1842            N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1843          isa<ConstantSDNode>(N0.getOperand(1)) &&
1844          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1845        // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1846        // can only do this if the top bits are known zero.
1847        unsigned BitWidth = N0.getValueSizeInBits();
1848        if (DAG.MaskedValueIsZero(N0,
1849                                  APInt::getHighBitsSet(BitWidth,
1850                                                        BitWidth-1))) {
1851          // Okay, get the un-inverted input value.
1852          SDValue Val;
1853          if (N0.getOpcode() == ISD::XOR)
1854            Val = N0.getOperand(0);
1855          else {
1856            assert(N0.getOpcode() == ISD::AND &&
1857                    N0.getOperand(0).getOpcode() == ISD::XOR);
1858            // ((X^1)&1)^1 -> X & 1
1859            Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
1860                              N0.getOperand(0).getOperand(0),
1861                              N0.getOperand(1));
1862          }
1863
1864          return DAG.getSetCC(dl, VT, Val, N1,
1865                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1866        }
1867      } else if (N1C->getAPIntValue() == 1 &&
1868                 (VT == MVT::i1 ||
1869                  getBooleanContents() == ZeroOrOneBooleanContent)) {
1870        SDValue Op0 = N0;
1871        if (Op0.getOpcode() == ISD::TRUNCATE)
1872          Op0 = Op0.getOperand(0);
1873
1874        if ((Op0.getOpcode() == ISD::XOR) &&
1875            Op0.getOperand(0).getOpcode() == ISD::SETCC &&
1876            Op0.getOperand(1).getOpcode() == ISD::SETCC) {
1877          // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
1878          Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
1879          return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
1880                              Cond);
1881        } else if (Op0.getOpcode() == ISD::AND &&
1882                isa<ConstantSDNode>(Op0.getOperand(1)) &&
1883                cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
1884          // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
1885          if (Op0.getValueType().bitsGT(VT))
1886            Op0 = DAG.getNode(ISD::AND, dl, VT,
1887                          DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
1888                          DAG.getConstant(1, VT));
1889          else if (Op0.getValueType().bitsLT(VT))
1890            Op0 = DAG.getNode(ISD::AND, dl, VT,
1891                        DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
1892                        DAG.getConstant(1, VT));
1893
1894          return DAG.getSetCC(dl, VT, Op0,
1895                              DAG.getConstant(0, Op0.getValueType()),
1896                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1897        }
1898      }
1899    }
1900
1901    APInt MinVal, MaxVal;
1902    unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1903    if (ISD::isSignedIntSetCC(Cond)) {
1904      MinVal = APInt::getSignedMinValue(OperandBitSize);
1905      MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1906    } else {
1907      MinVal = APInt::getMinValue(OperandBitSize);
1908      MaxVal = APInt::getMaxValue(OperandBitSize);
1909    }
1910
1911    // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1912    if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1913      if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
1914      // X >= C0 --> X > (C0-1)
1915      return DAG.getSetCC(dl, VT, N0,
1916                          DAG.getConstant(C1-1, N1.getValueType()),
1917                          (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1918    }
1919
1920    if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1921      if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
1922      // X <= C0 --> X < (C0+1)
1923      return DAG.getSetCC(dl, VT, N0,
1924                          DAG.getConstant(C1+1, N1.getValueType()),
1925                          (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1926    }
1927
1928    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1929      return DAG.getConstant(0, VT);      // X < MIN --> false
1930    if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1931      return DAG.getConstant(1, VT);      // X >= MIN --> true
1932    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1933      return DAG.getConstant(0, VT);      // X > MAX --> false
1934    if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1935      return DAG.getConstant(1, VT);      // X <= MAX --> true
1936
1937    // Canonicalize setgt X, Min --> setne X, Min
1938    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1939      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1940    // Canonicalize setlt X, Max --> setne X, Max
1941    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1942      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1943
1944    // If we have setult X, 1, turn it into seteq X, 0
1945    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1946      return DAG.getSetCC(dl, VT, N0,
1947                          DAG.getConstant(MinVal, N0.getValueType()),
1948                          ISD::SETEQ);
1949    // If we have setugt X, Max-1, turn it into seteq X, Max
1950    else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1951      return DAG.getSetCC(dl, VT, N0,
1952                          DAG.getConstant(MaxVal, N0.getValueType()),
1953                          ISD::SETEQ);
1954
1955    // If we have "setcc X, C0", check to see if we can shrink the immediate
1956    // by changing cc.
1957
1958    // SETUGT X, SINTMAX  -> SETLT X, 0
1959    if (Cond == ISD::SETUGT &&
1960        C1 == APInt::getSignedMaxValue(OperandBitSize))
1961      return DAG.getSetCC(dl, VT, N0,
1962                          DAG.getConstant(0, N1.getValueType()),
1963                          ISD::SETLT);
1964
1965    // SETULT X, SINTMIN  -> SETGT X, -1
1966    if (Cond == ISD::SETULT &&
1967        C1 == APInt::getSignedMinValue(OperandBitSize)) {
1968      SDValue ConstMinusOne =
1969          DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
1970                          N1.getValueType());
1971      return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
1972    }
1973
1974    // Fold bit comparisons when we can.
1975    if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1976        (VT == N0.getValueType() ||
1977         (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
1978        N0.getOpcode() == ISD::AND)
1979      if (ConstantSDNode *AndRHS =
1980                  dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1981        EVT ShiftTy = DCI.isBeforeLegalize() ?
1982          getPointerTy() : getShiftAmountTy();
1983        if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1984          // Perform the xform if the AND RHS is a single bit.
1985          if (AndRHS->getAPIntValue().isPowerOf2()) {
1986            return DAG.getNode(ISD::TRUNCATE, dl, VT,
1987                              DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
1988                   DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
1989          }
1990        } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
1991          // (X & 8) == 8  -->  (X & 8) >> 3
1992          // Perform the xform if C1 is a single bit.
1993          if (C1.isPowerOf2()) {
1994            return DAG.getNode(ISD::TRUNCATE, dl, VT,
1995                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
1996                                      DAG.getConstant(C1.logBase2(), ShiftTy)));
1997          }
1998        }
1999      }
2000  }
2001
2002  if (isa<ConstantFPSDNode>(N0.getNode())) {
2003    // Constant fold or commute setcc.
2004    SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
2005    if (O.getNode()) return O;
2006  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
2007    // If the RHS of an FP comparison is a constant, simplify it away in
2008    // some cases.
2009    if (CFP->getValueAPF().isNaN()) {
2010      // If an operand is known to be a nan, we can fold it.
2011      switch (ISD::getUnorderedFlavor(Cond)) {
2012      default: llvm_unreachable("Unknown flavor!");
2013      case 0:  // Known false.
2014        return DAG.getConstant(0, VT);
2015      case 1:  // Known true.
2016        return DAG.getConstant(1, VT);
2017      case 2:  // Undefined.
2018        return DAG.getUNDEF(VT);
2019      }
2020    }
2021
2022    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
2023    // constant if knowing that the operand is non-nan is enough.  We prefer to
2024    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
2025    // materialize 0.0.
2026    if (Cond == ISD::SETO || Cond == ISD::SETUO)
2027      return DAG.getSetCC(dl, VT, N0, N0, Cond);
2028
2029    // If the condition is not legal, see if we can find an equivalent one
2030    // which is legal.
2031    if (!isCondCodeLegal(Cond, N0.getValueType())) {
2032      // If the comparison was an awkward floating-point == or != and one of
2033      // the comparison operands is infinity or negative infinity, convert the
2034      // condition to a less-awkward <= or >=.
2035      if (CFP->getValueAPF().isInfinity()) {
2036        if (CFP->getValueAPF().isNegative()) {
2037          if (Cond == ISD::SETOEQ &&
2038              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2039            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
2040          if (Cond == ISD::SETUEQ &&
2041              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2042            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
2043          if (Cond == ISD::SETUNE &&
2044              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2045            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
2046          if (Cond == ISD::SETONE &&
2047              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2048            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
2049        } else {
2050          if (Cond == ISD::SETOEQ &&
2051              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2052            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
2053          if (Cond == ISD::SETUEQ &&
2054              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2055            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
2056          if (Cond == ISD::SETUNE &&
2057              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2058            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
2059          if (Cond == ISD::SETONE &&
2060              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2061            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
2062        }
2063      }
2064    }
2065  }
2066
2067  if (N0 == N1) {
2068    // We can always fold X == X for integer setcc's.
2069    if (N0.getValueType().isInteger())
2070      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2071    unsigned UOF = ISD::getUnorderedFlavor(Cond);
2072    if (UOF == 2)   // FP operators that are undefined on NaNs.
2073      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2074    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
2075      return DAG.getConstant(UOF, VT);
2076    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
2077    // if it is not already.
2078    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
2079    if (NewCond != Cond)
2080      return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2081  }
2082
2083  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2084      N0.getValueType().isInteger()) {
2085    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2086        N0.getOpcode() == ISD::XOR) {
2087      // Simplify (X+Y) == (X+Z) -->  Y == Z
2088      if (N0.getOpcode() == N1.getOpcode()) {
2089        if (N0.getOperand(0) == N1.getOperand(0))
2090          return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2091        if (N0.getOperand(1) == N1.getOperand(1))
2092          return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2093        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
2094          // If X op Y == Y op X, try other combinations.
2095          if (N0.getOperand(0) == N1.getOperand(1))
2096            return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2097                                Cond);
2098          if (N0.getOperand(1) == N1.getOperand(0))
2099            return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2100                                Cond);
2101        }
2102      }
2103
2104      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2105        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2106          // Turn (X+C1) == C2 --> X == C2-C1
2107          if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2108            return DAG.getSetCC(dl, VT, N0.getOperand(0),
2109                                DAG.getConstant(RHSC->getAPIntValue()-
2110                                                LHSR->getAPIntValue(),
2111                                N0.getValueType()), Cond);
2112          }
2113
2114          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2115          if (N0.getOpcode() == ISD::XOR)
2116            // If we know that all of the inverted bits are zero, don't bother
2117            // performing the inversion.
2118            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2119              return
2120                DAG.getSetCC(dl, VT, N0.getOperand(0),
2121                             DAG.getConstant(LHSR->getAPIntValue() ^
2122                                               RHSC->getAPIntValue(),
2123                                             N0.getValueType()),
2124                             Cond);
2125        }
2126
2127        // Turn (C1-X) == C2 --> X == C1-C2
2128        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
2129          if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
2130            return
2131              DAG.getSetCC(dl, VT, N0.getOperand(1),
2132                           DAG.getConstant(SUBC->getAPIntValue() -
2133                                             RHSC->getAPIntValue(),
2134                                           N0.getValueType()),
2135                           Cond);
2136          }
2137        }
2138      }
2139
2140      // Simplify (X+Z) == X -->  Z == 0
2141      if (N0.getOperand(0) == N1)
2142        return DAG.getSetCC(dl, VT, N0.getOperand(1),
2143                        DAG.getConstant(0, N0.getValueType()), Cond);
2144      if (N0.getOperand(1) == N1) {
2145        if (DAG.isCommutativeBinOp(N0.getOpcode()))
2146          return DAG.getSetCC(dl, VT, N0.getOperand(0),
2147                          DAG.getConstant(0, N0.getValueType()), Cond);
2148        else if (N0.getNode()->hasOneUse()) {
2149          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
2150          // (Z-X) == X  --> Z == X<<1
2151          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(),
2152                                     N1,
2153                                     DAG.getConstant(1, getShiftAmountTy()));
2154          if (!DCI.isCalledByLegalizer())
2155            DCI.AddToWorklist(SH.getNode());
2156          return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
2157        }
2158      }
2159    }
2160
2161    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
2162        N1.getOpcode() == ISD::XOR) {
2163      // Simplify  X == (X+Z) -->  Z == 0
2164      if (N1.getOperand(0) == N0) {
2165        return DAG.getSetCC(dl, VT, N1.getOperand(1),
2166                        DAG.getConstant(0, N1.getValueType()), Cond);
2167      } else if (N1.getOperand(1) == N0) {
2168        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
2169          return DAG.getSetCC(dl, VT, N1.getOperand(0),
2170                          DAG.getConstant(0, N1.getValueType()), Cond);
2171        } else if (N1.getNode()->hasOneUse()) {
2172          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
2173          // X == (Z-X)  --> X<<1 == Z
2174          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
2175                                     DAG.getConstant(1, getShiftAmountTy()));
2176          if (!DCI.isCalledByLegalizer())
2177            DCI.AddToWorklist(SH.getNode());
2178          return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
2179        }
2180      }
2181    }
2182
2183    // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
2184    // Note that where y is variable and is known to have at most
2185    // one bit set (for example, if it is z&1) we cannot do this;
2186    // the expressions are not equivalent when y==0.
2187    if (N0.getOpcode() == ISD::AND)
2188      if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
2189        if (ValueHasExactlyOneBitSet(N1, DAG)) {
2190          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2191          SDValue Zero = DAG.getConstant(0, N1.getValueType());
2192          return DAG.getSetCC(dl, VT, N0, Zero, Cond);
2193        }
2194      }
2195    if (N1.getOpcode() == ISD::AND)
2196      if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
2197        if (ValueHasExactlyOneBitSet(N0, DAG)) {
2198          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2199          SDValue Zero = DAG.getConstant(0, N0.getValueType());
2200          return DAG.getSetCC(dl, VT, N1, Zero, Cond);
2201        }
2202      }
2203  }
2204
2205  // Fold away ALL boolean setcc's.
2206  SDValue Temp;
2207  if (N0.getValueType() == MVT::i1 && foldBooleans) {
2208    switch (Cond) {
2209    default: llvm_unreachable("Unknown integer setcc!");
2210    case ISD::SETEQ:  // X == Y  -> ~(X^Y)
2211      Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2212      N0 = DAG.getNOT(dl, Temp, MVT::i1);
2213      if (!DCI.isCalledByLegalizer())
2214        DCI.AddToWorklist(Temp.getNode());
2215      break;
2216    case ISD::SETNE:  // X != Y   -->  (X^Y)
2217      N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2218      break;
2219    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2220    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2221      Temp = DAG.getNOT(dl, N0, MVT::i1);
2222      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2223      if (!DCI.isCalledByLegalizer())
2224        DCI.AddToWorklist(Temp.getNode());
2225      break;
2226    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2227    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2228      Temp = DAG.getNOT(dl, N1, MVT::i1);
2229      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2230      if (!DCI.isCalledByLegalizer())
2231        DCI.AddToWorklist(Temp.getNode());
2232      break;
2233    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2234    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2235      Temp = DAG.getNOT(dl, N0, MVT::i1);
2236      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2237      if (!DCI.isCalledByLegalizer())
2238        DCI.AddToWorklist(Temp.getNode());
2239      break;
2240    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2241    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2242      Temp = DAG.getNOT(dl, N1, MVT::i1);
2243      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2244      break;
2245    }
2246    if (VT != MVT::i1) {
2247      if (!DCI.isCalledByLegalizer())
2248        DCI.AddToWorklist(N0.getNode());
2249      // FIXME: If running after legalize, we probably can't do this.
2250      N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2251    }
2252    return N0;
2253  }
2254
2255  // Could not fold it.
2256  return SDValue();
2257}
2258
2259/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2260/// node is a GlobalAddress + offset.
2261bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue* &GA,
2262                                    int64_t &Offset) const {
2263  if (isa<GlobalAddressSDNode>(N)) {
2264    GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
2265    GA = GASD->getGlobal();
2266    Offset += GASD->getOffset();
2267    return true;
2268  }
2269
2270  if (N->getOpcode() == ISD::ADD) {
2271    SDValue N1 = N->getOperand(0);
2272    SDValue N2 = N->getOperand(1);
2273    if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2274      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
2275      if (V) {
2276        Offset += V->getSExtValue();
2277        return true;
2278      }
2279    } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2280      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
2281      if (V) {
2282        Offset += V->getSExtValue();
2283        return true;
2284      }
2285    }
2286  }
2287  return false;
2288}
2289
2290
2291SDValue TargetLowering::
2292PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
2293  // Default implementation: no optimization.
2294  return SDValue();
2295}
2296
2297//===----------------------------------------------------------------------===//
2298//  Inline Assembler Implementation Methods
2299//===----------------------------------------------------------------------===//
2300
2301
2302TargetLowering::ConstraintType
2303TargetLowering::getConstraintType(const std::string &Constraint) const {
2304  // FIXME: lots more standard ones to handle.
2305  if (Constraint.size() == 1) {
2306    switch (Constraint[0]) {
2307    default: break;
2308    case 'r': return C_RegisterClass;
2309    case 'm':    // memory
2310    case 'o':    // offsetable
2311    case 'V':    // not offsetable
2312      return C_Memory;
2313    case 'i':    // Simple Integer or Relocatable Constant
2314    case 'n':    // Simple Integer
2315    case 's':    // Relocatable Constant
2316    case 'X':    // Allow ANY value.
2317    case 'I':    // Target registers.
2318    case 'J':
2319    case 'K':
2320    case 'L':
2321    case 'M':
2322    case 'N':
2323    case 'O':
2324    case 'P':
2325      return C_Other;
2326    }
2327  }
2328
2329  if (Constraint.size() > 1 && Constraint[0] == '{' &&
2330      Constraint[Constraint.size()-1] == '}')
2331    return C_Register;
2332  return C_Unknown;
2333}
2334
2335/// LowerXConstraint - try to replace an X constraint, which matches anything,
2336/// with another that has more specific requirements based on the type of the
2337/// corresponding operand.
2338const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2339  if (ConstraintVT.isInteger())
2340    return "r";
2341  if (ConstraintVT.isFloatingPoint())
2342    return "f";      // works for many targets
2343  return 0;
2344}
2345
2346/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2347/// vector.  If it is invalid, don't add anything to Ops.
2348void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2349                                                  char ConstraintLetter,
2350                                                  bool hasMemory,
2351                                                  std::vector<SDValue> &Ops,
2352                                                  SelectionDAG &DAG) const {
2353  switch (ConstraintLetter) {
2354  default: break;
2355  case 'X':     // Allows any operand; labels (basic block) use this.
2356    if (Op.getOpcode() == ISD::BasicBlock) {
2357      Ops.push_back(Op);
2358      return;
2359    }
2360    // fall through
2361  case 'i':    // Simple Integer or Relocatable Constant
2362  case 'n':    // Simple Integer
2363  case 's': {  // Relocatable Constant
2364    // These operands are interested in values of the form (GV+C), where C may
2365    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2366    // is possible and fine if either GV or C are missing.
2367    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2368    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2369
2370    // If we have "(add GV, C)", pull out GV/C
2371    if (Op.getOpcode() == ISD::ADD) {
2372      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2373      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2374      if (C == 0 || GA == 0) {
2375        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2376        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2377      }
2378      if (C == 0 || GA == 0)
2379        C = 0, GA = 0;
2380    }
2381
2382    // If we find a valid operand, map to the TargetXXX version so that the
2383    // value itself doesn't get selected.
2384    if (GA) {   // Either &GV   or   &GV+C
2385      if (ConstraintLetter != 'n') {
2386        int64_t Offs = GA->getOffset();
2387        if (C) Offs += C->getZExtValue();
2388        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2389                                                 Op.getValueType(), Offs));
2390        return;
2391      }
2392    }
2393    if (C) {   // just C, no GV.
2394      // Simple constants are not allowed for 's'.
2395      if (ConstraintLetter != 's') {
2396        // gcc prints these as sign extended.  Sign extend value to 64 bits
2397        // now; without this it would get ZExt'd later in
2398        // ScheduleDAGSDNodes::EmitNode, which is very generic.
2399        Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2400                                            MVT::i64));
2401        return;
2402      }
2403    }
2404    break;
2405  }
2406  }
2407}
2408
2409std::vector<unsigned> TargetLowering::
2410getRegClassForInlineAsmConstraint(const std::string &Constraint,
2411                                  EVT VT) const {
2412  return std::vector<unsigned>();
2413}
2414
2415
2416std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
2417getRegForInlineAsmConstraint(const std::string &Constraint,
2418                             EVT VT) const {
2419  if (Constraint[0] != '{')
2420    return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
2421  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2422
2423  // Remove the braces from around the name.
2424  StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2425
2426  // Figure out which register class contains this reg.
2427  const TargetRegisterInfo *RI = TM.getRegisterInfo();
2428  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2429       E = RI->regclass_end(); RCI != E; ++RCI) {
2430    const TargetRegisterClass *RC = *RCI;
2431
2432    // If none of the value types for this register class are valid, we
2433    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2434    bool isLegal = false;
2435    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2436         I != E; ++I) {
2437      if (isTypeLegal(*I)) {
2438        isLegal = true;
2439        break;
2440      }
2441    }
2442
2443    if (!isLegal) continue;
2444
2445    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2446         I != E; ++I) {
2447      if (RegName.equals_lower(RI->getName(*I)))
2448        return std::make_pair(*I, RC);
2449    }
2450  }
2451
2452  return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
2453}
2454
2455//===----------------------------------------------------------------------===//
2456// Constraint Selection.
2457
2458/// isMatchingInputConstraint - Return true of this is an input operand that is
2459/// a matching constraint like "4".
2460bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2461  assert(!ConstraintCode.empty() && "No known constraint!");
2462  return isdigit(ConstraintCode[0]);
2463}
2464
2465/// getMatchedOperand - If this is an input matching constraint, this method
2466/// returns the output operand it matches.
2467unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2468  assert(!ConstraintCode.empty() && "No known constraint!");
2469  return atoi(ConstraintCode.c_str());
2470}
2471
2472
2473/// getConstraintGenerality - Return an integer indicating how general CT
2474/// is.
2475static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2476  switch (CT) {
2477  default: llvm_unreachable("Unknown constraint type!");
2478  case TargetLowering::C_Other:
2479  case TargetLowering::C_Unknown:
2480    return 0;
2481  case TargetLowering::C_Register:
2482    return 1;
2483  case TargetLowering::C_RegisterClass:
2484    return 2;
2485  case TargetLowering::C_Memory:
2486    return 3;
2487  }
2488}
2489
2490/// ChooseConstraint - If there are multiple different constraints that we
2491/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
2492/// This is somewhat tricky: constraints fall into four classes:
2493///    Other         -> immediates and magic values
2494///    Register      -> one specific register
2495///    RegisterClass -> a group of regs
2496///    Memory        -> memory
2497/// Ideally, we would pick the most specific constraint possible: if we have
2498/// something that fits into a register, we would pick it.  The problem here
2499/// is that if we have something that could either be in a register or in
2500/// memory that use of the register could cause selection of *other*
2501/// operands to fail: they might only succeed if we pick memory.  Because of
2502/// this the heuristic we use is:
2503///
2504///  1) If there is an 'other' constraint, and if the operand is valid for
2505///     that constraint, use it.  This makes us take advantage of 'i'
2506///     constraints when available.
2507///  2) Otherwise, pick the most general constraint present.  This prefers
2508///     'm' over 'r', for example.
2509///
2510static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2511                             bool hasMemory,  const TargetLowering &TLI,
2512                             SDValue Op, SelectionDAG *DAG) {
2513  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2514  unsigned BestIdx = 0;
2515  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2516  int BestGenerality = -1;
2517
2518  // Loop over the options, keeping track of the most general one.
2519  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2520    TargetLowering::ConstraintType CType =
2521      TLI.getConstraintType(OpInfo.Codes[i]);
2522
2523    // If this is an 'other' constraint, see if the operand is valid for it.
2524    // For example, on X86 we might have an 'rI' constraint.  If the operand
2525    // is an integer in the range [0..31] we want to use I (saving a load
2526    // of a register), otherwise we must use 'r'.
2527    if (CType == TargetLowering::C_Other && Op.getNode()) {
2528      assert(OpInfo.Codes[i].size() == 1 &&
2529             "Unhandled multi-letter 'other' constraint");
2530      std::vector<SDValue> ResultOps;
2531      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0], hasMemory,
2532                                       ResultOps, *DAG);
2533      if (!ResultOps.empty()) {
2534        BestType = CType;
2535        BestIdx = i;
2536        break;
2537      }
2538    }
2539
2540    // This constraint letter is more general than the previous one, use it.
2541    int Generality = getConstraintGenerality(CType);
2542    if (Generality > BestGenerality) {
2543      BestType = CType;
2544      BestIdx = i;
2545      BestGenerality = Generality;
2546    }
2547  }
2548
2549  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2550  OpInfo.ConstraintType = BestType;
2551}
2552
2553/// ComputeConstraintToUse - Determines the constraint code and constraint
2554/// type to use for the specific AsmOperandInfo, setting
2555/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
2556void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2557                                            SDValue Op,
2558                                            bool hasMemory,
2559                                            SelectionDAG *DAG) const {
2560  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2561
2562  // Single-letter constraints ('r') are very common.
2563  if (OpInfo.Codes.size() == 1) {
2564    OpInfo.ConstraintCode = OpInfo.Codes[0];
2565    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2566  } else {
2567    ChooseConstraint(OpInfo, hasMemory, *this, Op, DAG);
2568  }
2569
2570  // 'X' matches anything.
2571  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2572    // Labels and constants are handled elsewhere ('X' is the only thing
2573    // that matches labels).  For Functions, the type here is the type of
2574    // the result, which is not what we want to look at; leave them alone.
2575    Value *v = OpInfo.CallOperandVal;
2576    if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
2577      OpInfo.CallOperandVal = v;
2578      return;
2579    }
2580
2581    // Otherwise, try to resolve it to something we know about by looking at
2582    // the actual operand type.
2583    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2584      OpInfo.ConstraintCode = Repl;
2585      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2586    }
2587  }
2588}
2589
2590//===----------------------------------------------------------------------===//
2591//  Loop Strength Reduction hooks
2592//===----------------------------------------------------------------------===//
2593
2594/// isLegalAddressingMode - Return true if the addressing mode represented
2595/// by AM is legal for this target, for a load/store of the specified type.
2596bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
2597                                           const Type *Ty) const {
2598  // The default implementation of this implements a conservative RISCy, r+r and
2599  // r+i addr mode.
2600
2601  // Allows a sign-extended 16-bit immediate field.
2602  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
2603    return false;
2604
2605  // No global is ever allowed as a base.
2606  if (AM.BaseGV)
2607    return false;
2608
2609  // Only support r+r,
2610  switch (AM.Scale) {
2611  case 0:  // "r+i" or just "i", depending on HasBaseReg.
2612    break;
2613  case 1:
2614    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
2615      return false;
2616    // Otherwise we have r+r or r+i.
2617    break;
2618  case 2:
2619    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
2620      return false;
2621    // Allow 2*r as r+r.
2622    break;
2623  }
2624
2625  return true;
2626}
2627
2628/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
2629/// return a DAG expression to select that will generate the same value by
2630/// multiplying by a magic number.  See:
2631/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2632SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
2633                                  std::vector<SDNode*>* Created) const {
2634  EVT VT = N->getValueType(0);
2635  DebugLoc dl= N->getDebugLoc();
2636
2637  // Check to see if we can do this.
2638  // FIXME: We should be more aggressive here.
2639  if (!isTypeLegal(VT))
2640    return SDValue();
2641
2642  APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
2643  APInt::ms magics = d.magic();
2644
2645  // Multiply the numerator (operand 0) by the magic value
2646  // FIXME: We should support doing a MUL in a wider type
2647  SDValue Q;
2648  if (isOperationLegalOrCustom(ISD::MULHS, VT))
2649    Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
2650                    DAG.getConstant(magics.m, VT));
2651  else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
2652    Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
2653                              N->getOperand(0),
2654                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2655  else
2656    return SDValue();       // No mulhs or equvialent
2657  // If d > 0 and m < 0, add the numerator
2658  if (d.isStrictlyPositive() && magics.m.isNegative()) {
2659    Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
2660    if (Created)
2661      Created->push_back(Q.getNode());
2662  }
2663  // If d < 0 and m > 0, subtract the numerator.
2664  if (d.isNegative() && magics.m.isStrictlyPositive()) {
2665    Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
2666    if (Created)
2667      Created->push_back(Q.getNode());
2668  }
2669  // Shift right algebraic if shift value is nonzero
2670  if (magics.s > 0) {
2671    Q = DAG.getNode(ISD::SRA, dl, VT, Q,
2672                    DAG.getConstant(magics.s, getShiftAmountTy()));
2673    if (Created)
2674      Created->push_back(Q.getNode());
2675  }
2676  // Extract the sign bit and add it to the quotient
2677  SDValue T =
2678    DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
2679                                                 getShiftAmountTy()));
2680  if (Created)
2681    Created->push_back(T.getNode());
2682  return DAG.getNode(ISD::ADD, dl, VT, Q, T);
2683}
2684
2685/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
2686/// return a DAG expression to select that will generate the same value by
2687/// multiplying by a magic number.  See:
2688/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2689SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
2690                                  std::vector<SDNode*>* Created) const {
2691  EVT VT = N->getValueType(0);
2692  DebugLoc dl = N->getDebugLoc();
2693
2694  // Check to see if we can do this.
2695  // FIXME: We should be more aggressive here.
2696  if (!isTypeLegal(VT))
2697    return SDValue();
2698
2699  // FIXME: We should use a narrower constant when the upper
2700  // bits are known to be zero.
2701  ConstantSDNode *N1C = cast<ConstantSDNode>(N->getOperand(1));
2702  APInt::mu magics = N1C->getAPIntValue().magicu();
2703
2704  // Multiply the numerator (operand 0) by the magic value
2705  // FIXME: We should support doing a MUL in a wider type
2706  SDValue Q;
2707  if (isOperationLegalOrCustom(ISD::MULHU, VT))
2708    Q = DAG.getNode(ISD::MULHU, dl, VT, N->getOperand(0),
2709                    DAG.getConstant(magics.m, VT));
2710  else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
2711    Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT),
2712                              N->getOperand(0),
2713                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2714  else
2715    return SDValue();       // No mulhu or equvialent
2716  if (Created)
2717    Created->push_back(Q.getNode());
2718
2719  if (magics.a == 0) {
2720    assert(magics.s < N1C->getAPIntValue().getBitWidth() &&
2721           "We shouldn't generate an undefined shift!");
2722    return DAG.getNode(ISD::SRL, dl, VT, Q,
2723                       DAG.getConstant(magics.s, getShiftAmountTy()));
2724  } else {
2725    SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
2726    if (Created)
2727      Created->push_back(NPQ.getNode());
2728    NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
2729                      DAG.getConstant(1, getShiftAmountTy()));
2730    if (Created)
2731      Created->push_back(NPQ.getNode());
2732    NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
2733    if (Created)
2734      Created->push_back(NPQ.getNode());
2735    return DAG.getNode(ISD::SRL, dl, VT, NPQ,
2736                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
2737  }
2738}
2739