RegAllocFast.cpp revision 252723
1//===-- RegAllocFast.cpp - A fast register allocator for debug code -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This register allocator allocates registers to a basic block at a time,
11// attempting to keep values in registers and reusing registers as appropriate.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "regalloc"
16#include "llvm/CodeGen/Passes.h"
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/IndexedMap.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SmallSet.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/SparseSet.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineFunctionPass.h"
26#include "llvm/CodeGen/MachineInstr.h"
27#include "llvm/CodeGen/MachineInstrBuilder.h"
28#include "llvm/CodeGen/MachineRegisterInfo.h"
29#include "llvm/CodeGen/RegAllocRegistry.h"
30#include "llvm/CodeGen/RegisterClassInfo.h"
31#include "llvm/IR/BasicBlock.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/ErrorHandling.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/Target/TargetInstrInfo.h"
37#include "llvm/Target/TargetMachine.h"
38#include <algorithm>
39using namespace llvm;
40
41STATISTIC(NumStores, "Number of stores added");
42STATISTIC(NumLoads , "Number of loads added");
43STATISTIC(NumCopies, "Number of copies coalesced");
44
45static RegisterRegAlloc
46  fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator);
47
48namespace {
49  class RAFast : public MachineFunctionPass {
50  public:
51    static char ID;
52    RAFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1),
53               isBulkSpilling(false) {}
54  private:
55    const TargetMachine *TM;
56    MachineFunction *MF;
57    MachineRegisterInfo *MRI;
58    const TargetRegisterInfo *TRI;
59    const TargetInstrInfo *TII;
60    RegisterClassInfo RegClassInfo;
61
62    // Basic block currently being allocated.
63    MachineBasicBlock *MBB;
64
65    // StackSlotForVirtReg - Maps virtual regs to the frame index where these
66    // values are spilled.
67    IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;
68
69    // Everything we know about a live virtual register.
70    struct LiveReg {
71      MachineInstr *LastUse;    // Last instr to use reg.
72      unsigned VirtReg;         // Virtual register number.
73      unsigned PhysReg;         // Currently held here.
74      unsigned short LastOpNum; // OpNum on LastUse.
75      bool Dirty;               // Register needs spill.
76
77      explicit LiveReg(unsigned v)
78        : LastUse(0), VirtReg(v), PhysReg(0), LastOpNum(0), Dirty(false) {}
79
80      unsigned getSparseSetIndex() const {
81        return TargetRegisterInfo::virtReg2Index(VirtReg);
82      }
83    };
84
85    typedef SparseSet<LiveReg> LiveRegMap;
86
87    // LiveVirtRegs - This map contains entries for each virtual register
88    // that is currently available in a physical register.
89    LiveRegMap LiveVirtRegs;
90
91    DenseMap<unsigned, SmallVector<MachineInstr *, 4> > LiveDbgValueMap;
92
93    // RegState - Track the state of a physical register.
94    enum RegState {
95      // A disabled register is not available for allocation, but an alias may
96      // be in use. A register can only be moved out of the disabled state if
97      // all aliases are disabled.
98      regDisabled,
99
100      // A free register is not currently in use and can be allocated
101      // immediately without checking aliases.
102      regFree,
103
104      // A reserved register has been assigned explicitly (e.g., setting up a
105      // call parameter), and it remains reserved until it is used.
106      regReserved
107
108      // A register state may also be a virtual register number, indication that
109      // the physical register is currently allocated to a virtual register. In
110      // that case, LiveVirtRegs contains the inverse mapping.
111    };
112
113    // PhysRegState - One of the RegState enums, or a virtreg.
114    std::vector<unsigned> PhysRegState;
115
116    // Set of register units.
117    typedef SparseSet<unsigned> UsedInInstrSet;
118
119    // Set of register units that are used in the current instruction, and so
120    // cannot be allocated.
121    UsedInInstrSet UsedInInstr;
122
123    // Mark a physreg as used in this instruction.
124    void markRegUsedInInstr(unsigned PhysReg) {
125      for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
126        UsedInInstr.insert(*Units);
127    }
128
129    // Check if a physreg or any of its aliases are used in this instruction.
130    bool isRegUsedInInstr(unsigned PhysReg) const {
131      for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
132        if (UsedInInstr.count(*Units))
133          return true;
134      return false;
135    }
136
137    // SkippedInstrs - Descriptors of instructions whose clobber list was
138    // ignored because all registers were spilled. It is still necessary to
139    // mark all the clobbered registers as used by the function.
140    SmallPtrSet<const MCInstrDesc*, 4> SkippedInstrs;
141
142    // isBulkSpilling - This flag is set when LiveRegMap will be cleared
143    // completely after spilling all live registers. LiveRegMap entries should
144    // not be erased.
145    bool isBulkSpilling;
146
147    enum {
148      spillClean = 1,
149      spillDirty = 100,
150      spillImpossible = ~0u
151    };
152  public:
153    virtual const char *getPassName() const {
154      return "Fast Register Allocator";
155    }
156
157    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
158      AU.setPreservesCFG();
159      MachineFunctionPass::getAnalysisUsage(AU);
160    }
161
162  private:
163    bool runOnMachineFunction(MachineFunction &Fn);
164    void AllocateBasicBlock();
165    void handleThroughOperands(MachineInstr *MI,
166                               SmallVectorImpl<unsigned> &VirtDead);
167    int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC);
168    bool isLastUseOfLocalReg(MachineOperand&);
169
170    void addKillFlag(const LiveReg&);
171    void killVirtReg(LiveRegMap::iterator);
172    void killVirtReg(unsigned VirtReg);
173    void spillVirtReg(MachineBasicBlock::iterator MI, LiveRegMap::iterator);
174    void spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg);
175
176    void usePhysReg(MachineOperand&);
177    void definePhysReg(MachineInstr *MI, unsigned PhysReg, RegState NewState);
178    unsigned calcSpillCost(unsigned PhysReg) const;
179    void assignVirtToPhysReg(LiveReg&, unsigned PhysReg);
180    LiveRegMap::iterator findLiveVirtReg(unsigned VirtReg) {
181      return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg));
182    }
183    LiveRegMap::const_iterator findLiveVirtReg(unsigned VirtReg) const {
184      return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg));
185    }
186    LiveRegMap::iterator assignVirtToPhysReg(unsigned VReg, unsigned PhysReg);
187    LiveRegMap::iterator allocVirtReg(MachineInstr *MI, LiveRegMap::iterator,
188                                      unsigned Hint);
189    LiveRegMap::iterator defineVirtReg(MachineInstr *MI, unsigned OpNum,
190                                       unsigned VirtReg, unsigned Hint);
191    LiveRegMap::iterator reloadVirtReg(MachineInstr *MI, unsigned OpNum,
192                                       unsigned VirtReg, unsigned Hint);
193    void spillAll(MachineBasicBlock::iterator MI);
194    bool setPhysReg(MachineInstr *MI, unsigned OpNum, unsigned PhysReg);
195  };
196  char RAFast::ID = 0;
197}
198
199/// getStackSpaceFor - This allocates space for the specified virtual register
200/// to be held on the stack.
201int RAFast::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) {
202  // Find the location Reg would belong...
203  int SS = StackSlotForVirtReg[VirtReg];
204  if (SS != -1)
205    return SS;          // Already has space allocated?
206
207  // Allocate a new stack object for this spill location...
208  int FrameIdx = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(),
209                                                            RC->getAlignment());
210
211  // Assign the slot.
212  StackSlotForVirtReg[VirtReg] = FrameIdx;
213  return FrameIdx;
214}
215
216/// isLastUseOfLocalReg - Return true if MO is the only remaining reference to
217/// its virtual register, and it is guaranteed to be a block-local register.
218///
219bool RAFast::isLastUseOfLocalReg(MachineOperand &MO) {
220  // If the register has ever been spilled or reloaded, we conservatively assume
221  // it is a global register used in multiple blocks.
222  if (StackSlotForVirtReg[MO.getReg()] != -1)
223    return false;
224
225  // Check that the use/def chain has exactly one operand - MO.
226  MachineRegisterInfo::reg_nodbg_iterator I = MRI->reg_nodbg_begin(MO.getReg());
227  if (&I.getOperand() != &MO)
228    return false;
229  return ++I == MRI->reg_nodbg_end();
230}
231
232/// addKillFlag - Set kill flags on last use of a virtual register.
233void RAFast::addKillFlag(const LiveReg &LR) {
234  if (!LR.LastUse) return;
235  MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum);
236  if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) {
237    if (MO.getReg() == LR.PhysReg)
238      MO.setIsKill();
239    else
240      LR.LastUse->addRegisterKilled(LR.PhysReg, TRI, true);
241  }
242}
243
244/// killVirtReg - Mark virtreg as no longer available.
245void RAFast::killVirtReg(LiveRegMap::iterator LRI) {
246  addKillFlag(*LRI);
247  assert(PhysRegState[LRI->PhysReg] == LRI->VirtReg &&
248         "Broken RegState mapping");
249  PhysRegState[LRI->PhysReg] = regFree;
250  // Erase from LiveVirtRegs unless we're spilling in bulk.
251  if (!isBulkSpilling)
252    LiveVirtRegs.erase(LRI);
253}
254
255/// killVirtReg - Mark virtreg as no longer available.
256void RAFast::killVirtReg(unsigned VirtReg) {
257  assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
258         "killVirtReg needs a virtual register");
259  LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
260  if (LRI != LiveVirtRegs.end())
261    killVirtReg(LRI);
262}
263
264/// spillVirtReg - This method spills the value specified by VirtReg into the
265/// corresponding stack slot if needed.
266void RAFast::spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg) {
267  assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
268         "Spilling a physical register is illegal!");
269  LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
270  assert(LRI != LiveVirtRegs.end() && "Spilling unmapped virtual register");
271  spillVirtReg(MI, LRI);
272}
273
274/// spillVirtReg - Do the actual work of spilling.
275void RAFast::spillVirtReg(MachineBasicBlock::iterator MI,
276                          LiveRegMap::iterator LRI) {
277  LiveReg &LR = *LRI;
278  assert(PhysRegState[LR.PhysReg] == LRI->VirtReg && "Broken RegState mapping");
279
280  if (LR.Dirty) {
281    // If this physreg is used by the instruction, we want to kill it on the
282    // instruction, not on the spill.
283    bool SpillKill = LR.LastUse != MI;
284    LR.Dirty = false;
285    DEBUG(dbgs() << "Spilling " << PrintReg(LRI->VirtReg, TRI)
286                 << " in " << PrintReg(LR.PhysReg, TRI));
287    const TargetRegisterClass *RC = MRI->getRegClass(LRI->VirtReg);
288    int FI = getStackSpaceFor(LRI->VirtReg, RC);
289    DEBUG(dbgs() << " to stack slot #" << FI << "\n");
290    TII->storeRegToStackSlot(*MBB, MI, LR.PhysReg, SpillKill, FI, RC, TRI);
291    ++NumStores;   // Update statistics
292
293    // If this register is used by DBG_VALUE then insert new DBG_VALUE to
294    // identify spilled location as the place to find corresponding variable's
295    // value.
296    SmallVector<MachineInstr *, 4> &LRIDbgValues =
297      LiveDbgValueMap[LRI->VirtReg];
298    for (unsigned li = 0, le = LRIDbgValues.size(); li != le; ++li) {
299      MachineInstr *DBG = LRIDbgValues[li];
300      const MDNode *MDPtr =
301        DBG->getOperand(DBG->getNumOperands()-1).getMetadata();
302      int64_t Offset = 0;
303      if (DBG->getOperand(1).isImm())
304        Offset = DBG->getOperand(1).getImm();
305      DebugLoc DL;
306      if (MI == MBB->end()) {
307        // If MI is at basic block end then use last instruction's location.
308        MachineBasicBlock::iterator EI = MI;
309        DL = (--EI)->getDebugLoc();
310      }
311      else
312        DL = MI->getDebugLoc();
313      if (MachineInstr *NewDV =
314          TII->emitFrameIndexDebugValue(*MF, FI, Offset, MDPtr, DL)) {
315        MachineBasicBlock *MBB = DBG->getParent();
316        MBB->insert(MI, NewDV);
317        DEBUG(dbgs() << "Inserting debug info due to spill:" << "\n" << *NewDV);
318      }
319    }
320    // Now this register is spilled there is should not be any DBG_VALUE
321    // pointing to this register because they are all pointing to spilled value
322    // now.
323    LRIDbgValues.clear();
324    if (SpillKill)
325      LR.LastUse = 0; // Don't kill register again
326  }
327  killVirtReg(LRI);
328}
329
330/// spillAll - Spill all dirty virtregs without killing them.
331void RAFast::spillAll(MachineBasicBlock::iterator MI) {
332  if (LiveVirtRegs.empty()) return;
333  isBulkSpilling = true;
334  // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order
335  // of spilling here is deterministic, if arbitrary.
336  for (LiveRegMap::iterator i = LiveVirtRegs.begin(), e = LiveVirtRegs.end();
337       i != e; ++i)
338    spillVirtReg(MI, i);
339  LiveVirtRegs.clear();
340  isBulkSpilling = false;
341}
342
343/// usePhysReg - Handle the direct use of a physical register.
344/// Check that the register is not used by a virtreg.
345/// Kill the physreg, marking it free.
346/// This may add implicit kills to MO->getParent() and invalidate MO.
347void RAFast::usePhysReg(MachineOperand &MO) {
348  unsigned PhysReg = MO.getReg();
349  assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
350         "Bad usePhysReg operand");
351  markRegUsedInInstr(PhysReg);
352  switch (PhysRegState[PhysReg]) {
353  case regDisabled:
354    break;
355  case regReserved:
356    PhysRegState[PhysReg] = regFree;
357    // Fall through
358  case regFree:
359    MO.setIsKill();
360    return;
361  default:
362    // The physreg was allocated to a virtual register. That means the value we
363    // wanted has been clobbered.
364    llvm_unreachable("Instruction uses an allocated register");
365  }
366
367  // Maybe a superregister is reserved?
368  for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
369    unsigned Alias = *AI;
370    switch (PhysRegState[Alias]) {
371    case regDisabled:
372      break;
373    case regReserved:
374      assert(TRI->isSuperRegister(PhysReg, Alias) &&
375             "Instruction is not using a subregister of a reserved register");
376      // Leave the superregister in the working set.
377      PhysRegState[Alias] = regFree;
378      MO.getParent()->addRegisterKilled(Alias, TRI, true);
379      return;
380    case regFree:
381      if (TRI->isSuperRegister(PhysReg, Alias)) {
382        // Leave the superregister in the working set.
383        MO.getParent()->addRegisterKilled(Alias, TRI, true);
384        return;
385      }
386      // Some other alias was in the working set - clear it.
387      PhysRegState[Alias] = regDisabled;
388      break;
389    default:
390      llvm_unreachable("Instruction uses an alias of an allocated register");
391    }
392  }
393
394  // All aliases are disabled, bring register into working set.
395  PhysRegState[PhysReg] = regFree;
396  MO.setIsKill();
397}
398
399/// definePhysReg - Mark PhysReg as reserved or free after spilling any
400/// virtregs. This is very similar to defineVirtReg except the physreg is
401/// reserved instead of allocated.
402void RAFast::definePhysReg(MachineInstr *MI, unsigned PhysReg,
403                           RegState NewState) {
404  markRegUsedInInstr(PhysReg);
405  switch (unsigned VirtReg = PhysRegState[PhysReg]) {
406  case regDisabled:
407    break;
408  default:
409    spillVirtReg(MI, VirtReg);
410    // Fall through.
411  case regFree:
412  case regReserved:
413    PhysRegState[PhysReg] = NewState;
414    return;
415  }
416
417  // This is a disabled register, disable all aliases.
418  PhysRegState[PhysReg] = NewState;
419  for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
420    unsigned Alias = *AI;
421    switch (unsigned VirtReg = PhysRegState[Alias]) {
422    case regDisabled:
423      break;
424    default:
425      spillVirtReg(MI, VirtReg);
426      // Fall through.
427    case regFree:
428    case regReserved:
429      PhysRegState[Alias] = regDisabled;
430      if (TRI->isSuperRegister(PhysReg, Alias))
431        return;
432      break;
433    }
434  }
435}
436
437
438// calcSpillCost - Return the cost of spilling clearing out PhysReg and
439// aliases so it is free for allocation.
440// Returns 0 when PhysReg is free or disabled with all aliases disabled - it
441// can be allocated directly.
442// Returns spillImpossible when PhysReg or an alias can't be spilled.
443unsigned RAFast::calcSpillCost(unsigned PhysReg) const {
444  if (isRegUsedInInstr(PhysReg)) {
445    DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is already used in instr.\n");
446    return spillImpossible;
447  }
448  switch (unsigned VirtReg = PhysRegState[PhysReg]) {
449  case regDisabled:
450    break;
451  case regFree:
452    return 0;
453  case regReserved:
454    DEBUG(dbgs() << PrintReg(VirtReg, TRI) << " corresponding "
455                 << PrintReg(PhysReg, TRI) << " is reserved already.\n");
456    return spillImpossible;
457  default: {
458    LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg);
459    assert(I != LiveVirtRegs.end() && "Missing VirtReg entry");
460    return I->Dirty ? spillDirty : spillClean;
461  }
462  }
463
464  // This is a disabled register, add up cost of aliases.
465  DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is disabled.\n");
466  unsigned Cost = 0;
467  for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
468    unsigned Alias = *AI;
469    switch (unsigned VirtReg = PhysRegState[Alias]) {
470    case regDisabled:
471      break;
472    case regFree:
473      ++Cost;
474      break;
475    case regReserved:
476      return spillImpossible;
477    default: {
478      LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg);
479      assert(I != LiveVirtRegs.end() && "Missing VirtReg entry");
480      Cost += I->Dirty ? spillDirty : spillClean;
481      break;
482    }
483    }
484  }
485  return Cost;
486}
487
488
489/// assignVirtToPhysReg - This method updates local state so that we know
490/// that PhysReg is the proper container for VirtReg now.  The physical
491/// register must not be used for anything else when this is called.
492///
493void RAFast::assignVirtToPhysReg(LiveReg &LR, unsigned PhysReg) {
494  DEBUG(dbgs() << "Assigning " << PrintReg(LR.VirtReg, TRI) << " to "
495               << PrintReg(PhysReg, TRI) << "\n");
496  PhysRegState[PhysReg] = LR.VirtReg;
497  assert(!LR.PhysReg && "Already assigned a physreg");
498  LR.PhysReg = PhysReg;
499}
500
501RAFast::LiveRegMap::iterator
502RAFast::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) {
503  LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
504  assert(LRI != LiveVirtRegs.end() && "VirtReg disappeared");
505  assignVirtToPhysReg(*LRI, PhysReg);
506  return LRI;
507}
508
509/// allocVirtReg - Allocate a physical register for VirtReg.
510RAFast::LiveRegMap::iterator RAFast::allocVirtReg(MachineInstr *MI,
511                                                  LiveRegMap::iterator LRI,
512                                                  unsigned Hint) {
513  const unsigned VirtReg = LRI->VirtReg;
514
515  assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
516         "Can only allocate virtual registers");
517
518  const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
519
520  // Ignore invalid hints.
521  if (Hint && (!TargetRegisterInfo::isPhysicalRegister(Hint) ||
522               !RC->contains(Hint) || !MRI->isAllocatable(Hint)))
523    Hint = 0;
524
525  // Take hint when possible.
526  if (Hint) {
527    // Ignore the hint if we would have to spill a dirty register.
528    unsigned Cost = calcSpillCost(Hint);
529    if (Cost < spillDirty) {
530      if (Cost)
531        definePhysReg(MI, Hint, regFree);
532      // definePhysReg may kill virtual registers and modify LiveVirtRegs.
533      // That invalidates LRI, so run a new lookup for VirtReg.
534      return assignVirtToPhysReg(VirtReg, Hint);
535    }
536  }
537
538  ArrayRef<MCPhysReg> AO = RegClassInfo.getOrder(RC);
539
540  // First try to find a completely free register.
541  for (ArrayRef<MCPhysReg>::iterator I = AO.begin(), E = AO.end(); I != E; ++I){
542    unsigned PhysReg = *I;
543    if (PhysRegState[PhysReg] == regFree && !isRegUsedInInstr(PhysReg)) {
544      assignVirtToPhysReg(*LRI, PhysReg);
545      return LRI;
546    }
547  }
548
549  DEBUG(dbgs() << "Allocating " << PrintReg(VirtReg) << " from "
550               << RC->getName() << "\n");
551
552  unsigned BestReg = 0, BestCost = spillImpossible;
553  for (ArrayRef<MCPhysReg>::iterator I = AO.begin(), E = AO.end(); I != E; ++I){
554    unsigned Cost = calcSpillCost(*I);
555    DEBUG(dbgs() << "\tRegister: " << PrintReg(*I, TRI) << "\n");
556    DEBUG(dbgs() << "\tCost: " << Cost << "\n");
557    DEBUG(dbgs() << "\tBestCost: " << BestCost << "\n");
558    // Cost is 0 when all aliases are already disabled.
559    if (Cost == 0) {
560      assignVirtToPhysReg(*LRI, *I);
561      return LRI;
562    }
563    if (Cost < BestCost)
564      BestReg = *I, BestCost = Cost;
565  }
566
567  if (BestReg) {
568    definePhysReg(MI, BestReg, regFree);
569    // definePhysReg may kill virtual registers and modify LiveVirtRegs.
570    // That invalidates LRI, so run a new lookup for VirtReg.
571    return assignVirtToPhysReg(VirtReg, BestReg);
572  }
573
574  // Nothing we can do. Report an error and keep going with a bad allocation.
575  MI->emitError("ran out of registers during register allocation");
576  definePhysReg(MI, *AO.begin(), regFree);
577  return assignVirtToPhysReg(VirtReg, *AO.begin());
578}
579
580/// defineVirtReg - Allocate a register for VirtReg and mark it as dirty.
581RAFast::LiveRegMap::iterator
582RAFast::defineVirtReg(MachineInstr *MI, unsigned OpNum,
583                      unsigned VirtReg, unsigned Hint) {
584  assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
585         "Not a virtual register");
586  LiveRegMap::iterator LRI;
587  bool New;
588  tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
589  if (New) {
590    // If there is no hint, peek at the only use of this register.
591    if ((!Hint || !TargetRegisterInfo::isPhysicalRegister(Hint)) &&
592        MRI->hasOneNonDBGUse(VirtReg)) {
593      const MachineInstr &UseMI = *MRI->use_nodbg_begin(VirtReg);
594      // It's a copy, use the destination register as a hint.
595      if (UseMI.isCopyLike())
596        Hint = UseMI.getOperand(0).getReg();
597    }
598    LRI = allocVirtReg(MI, LRI, Hint);
599  } else if (LRI->LastUse) {
600    // Redefining a live register - kill at the last use, unless it is this
601    // instruction defining VirtReg multiple times.
602    if (LRI->LastUse != MI || LRI->LastUse->getOperand(LRI->LastOpNum).isUse())
603      addKillFlag(*LRI);
604  }
605  assert(LRI->PhysReg && "Register not assigned");
606  LRI->LastUse = MI;
607  LRI->LastOpNum = OpNum;
608  LRI->Dirty = true;
609  markRegUsedInInstr(LRI->PhysReg);
610  return LRI;
611}
612
613/// reloadVirtReg - Make sure VirtReg is available in a physreg and return it.
614RAFast::LiveRegMap::iterator
615RAFast::reloadVirtReg(MachineInstr *MI, unsigned OpNum,
616                      unsigned VirtReg, unsigned Hint) {
617  assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
618         "Not a virtual register");
619  LiveRegMap::iterator LRI;
620  bool New;
621  tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
622  MachineOperand &MO = MI->getOperand(OpNum);
623  if (New) {
624    LRI = allocVirtReg(MI, LRI, Hint);
625    const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
626    int FrameIndex = getStackSpaceFor(VirtReg, RC);
627    DEBUG(dbgs() << "Reloading " << PrintReg(VirtReg, TRI) << " into "
628                 << PrintReg(LRI->PhysReg, TRI) << "\n");
629    TII->loadRegFromStackSlot(*MBB, MI, LRI->PhysReg, FrameIndex, RC, TRI);
630    ++NumLoads;
631  } else if (LRI->Dirty) {
632    if (isLastUseOfLocalReg(MO)) {
633      DEBUG(dbgs() << "Killing last use: " << MO << "\n");
634      if (MO.isUse())
635        MO.setIsKill();
636      else
637        MO.setIsDead();
638    } else if (MO.isKill()) {
639      DEBUG(dbgs() << "Clearing dubious kill: " << MO << "\n");
640      MO.setIsKill(false);
641    } else if (MO.isDead()) {
642      DEBUG(dbgs() << "Clearing dubious dead: " << MO << "\n");
643      MO.setIsDead(false);
644    }
645  } else if (MO.isKill()) {
646    // We must remove kill flags from uses of reloaded registers because the
647    // register would be killed immediately, and there might be a second use:
648    //   %foo = OR %x<kill>, %x
649    // This would cause a second reload of %x into a different register.
650    DEBUG(dbgs() << "Clearing clean kill: " << MO << "\n");
651    MO.setIsKill(false);
652  } else if (MO.isDead()) {
653    DEBUG(dbgs() << "Clearing clean dead: " << MO << "\n");
654    MO.setIsDead(false);
655  }
656  assert(LRI->PhysReg && "Register not assigned");
657  LRI->LastUse = MI;
658  LRI->LastOpNum = OpNum;
659  markRegUsedInInstr(LRI->PhysReg);
660  return LRI;
661}
662
663// setPhysReg - Change operand OpNum in MI the refer the PhysReg, considering
664// subregs. This may invalidate any operand pointers.
665// Return true if the operand kills its register.
666bool RAFast::setPhysReg(MachineInstr *MI, unsigned OpNum, unsigned PhysReg) {
667  MachineOperand &MO = MI->getOperand(OpNum);
668  bool Dead = MO.isDead();
669  if (!MO.getSubReg()) {
670    MO.setReg(PhysReg);
671    return MO.isKill() || Dead;
672  }
673
674  // Handle subregister index.
675  MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : 0);
676  MO.setSubReg(0);
677
678  // A kill flag implies killing the full register. Add corresponding super
679  // register kill.
680  if (MO.isKill()) {
681    MI->addRegisterKilled(PhysReg, TRI, true);
682    return true;
683  }
684
685  // A <def,read-undef> of a sub-register requires an implicit def of the full
686  // register.
687  if (MO.isDef() && MO.isUndef())
688    MI->addRegisterDefined(PhysReg, TRI);
689
690  return Dead;
691}
692
693// Handle special instruction operand like early clobbers and tied ops when
694// there are additional physreg defines.
695void RAFast::handleThroughOperands(MachineInstr *MI,
696                                   SmallVectorImpl<unsigned> &VirtDead) {
697  DEBUG(dbgs() << "Scanning for through registers:");
698  SmallSet<unsigned, 8> ThroughRegs;
699  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
700    MachineOperand &MO = MI->getOperand(i);
701    if (!MO.isReg()) continue;
702    unsigned Reg = MO.getReg();
703    if (!TargetRegisterInfo::isVirtualRegister(Reg))
704      continue;
705    if (MO.isEarlyClobber() || MI->isRegTiedToDefOperand(i) ||
706        (MO.getSubReg() && MI->readsVirtualRegister(Reg))) {
707      if (ThroughRegs.insert(Reg))
708        DEBUG(dbgs() << ' ' << PrintReg(Reg));
709    }
710  }
711
712  // If any physreg defines collide with preallocated through registers,
713  // we must spill and reallocate.
714  DEBUG(dbgs() << "\nChecking for physdef collisions.\n");
715  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
716    MachineOperand &MO = MI->getOperand(i);
717    if (!MO.isReg() || !MO.isDef()) continue;
718    unsigned Reg = MO.getReg();
719    if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
720    markRegUsedInInstr(Reg);
721    for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
722      if (ThroughRegs.count(PhysRegState[*AI]))
723        definePhysReg(MI, *AI, regFree);
724    }
725  }
726
727  SmallVector<unsigned, 8> PartialDefs;
728  DEBUG(dbgs() << "Allocating tied uses.\n");
729  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
730    MachineOperand &MO = MI->getOperand(i);
731    if (!MO.isReg()) continue;
732    unsigned Reg = MO.getReg();
733    if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
734    if (MO.isUse()) {
735      unsigned DefIdx = 0;
736      if (!MI->isRegTiedToDefOperand(i, &DefIdx)) continue;
737      DEBUG(dbgs() << "Operand " << i << "("<< MO << ") is tied to operand "
738        << DefIdx << ".\n");
739      LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, 0);
740      unsigned PhysReg = LRI->PhysReg;
741      setPhysReg(MI, i, PhysReg);
742      // Note: we don't update the def operand yet. That would cause the normal
743      // def-scan to attempt spilling.
744    } else if (MO.getSubReg() && MI->readsVirtualRegister(Reg)) {
745      DEBUG(dbgs() << "Partial redefine: " << MO << "\n");
746      // Reload the register, but don't assign to the operand just yet.
747      // That would confuse the later phys-def processing pass.
748      LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, 0);
749      PartialDefs.push_back(LRI->PhysReg);
750    }
751  }
752
753  DEBUG(dbgs() << "Allocating early clobbers.\n");
754  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
755    MachineOperand &MO = MI->getOperand(i);
756    if (!MO.isReg()) continue;
757    unsigned Reg = MO.getReg();
758    if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
759    if (!MO.isEarlyClobber())
760      continue;
761    // Note: defineVirtReg may invalidate MO.
762    LiveRegMap::iterator LRI = defineVirtReg(MI, i, Reg, 0);
763    unsigned PhysReg = LRI->PhysReg;
764    if (setPhysReg(MI, i, PhysReg))
765      VirtDead.push_back(Reg);
766  }
767
768  // Restore UsedInInstr to a state usable for allocating normal virtual uses.
769  UsedInInstr.clear();
770  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
771    MachineOperand &MO = MI->getOperand(i);
772    if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue;
773    unsigned Reg = MO.getReg();
774    if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
775    DEBUG(dbgs() << "\tSetting " << PrintReg(Reg, TRI)
776                 << " as used in instr\n");
777    markRegUsedInInstr(Reg);
778  }
779
780  // Also mark PartialDefs as used to avoid reallocation.
781  for (unsigned i = 0, e = PartialDefs.size(); i != e; ++i)
782    markRegUsedInInstr(PartialDefs[i]);
783}
784
785void RAFast::AllocateBasicBlock() {
786  DEBUG(dbgs() << "\nAllocating " << *MBB);
787
788  PhysRegState.assign(TRI->getNumRegs(), regDisabled);
789  assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?");
790
791  MachineBasicBlock::iterator MII = MBB->begin();
792
793  // Add live-in registers as live.
794  for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
795         E = MBB->livein_end(); I != E; ++I)
796    if (MRI->isAllocatable(*I))
797      definePhysReg(MII, *I, regReserved);
798
799  SmallVector<unsigned, 8> VirtDead;
800  SmallVector<MachineInstr*, 32> Coalesced;
801
802  // Otherwise, sequentially allocate each instruction in the MBB.
803  while (MII != MBB->end()) {
804    MachineInstr *MI = MII++;
805    const MCInstrDesc &MCID = MI->getDesc();
806    DEBUG({
807        dbgs() << "\n>> " << *MI << "Regs:";
808        for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) {
809          if (PhysRegState[Reg] == regDisabled) continue;
810          dbgs() << " " << TRI->getName(Reg);
811          switch(PhysRegState[Reg]) {
812          case regFree:
813            break;
814          case regReserved:
815            dbgs() << "*";
816            break;
817          default: {
818            dbgs() << '=' << PrintReg(PhysRegState[Reg]);
819            LiveRegMap::iterator I = findLiveVirtReg(PhysRegState[Reg]);
820            assert(I != LiveVirtRegs.end() && "Missing VirtReg entry");
821            if (I->Dirty)
822              dbgs() << "*";
823            assert(I->PhysReg == Reg && "Bad inverse map");
824            break;
825          }
826          }
827        }
828        dbgs() << '\n';
829        // Check that LiveVirtRegs is the inverse.
830        for (LiveRegMap::iterator i = LiveVirtRegs.begin(),
831             e = LiveVirtRegs.end(); i != e; ++i) {
832           assert(TargetRegisterInfo::isVirtualRegister(i->VirtReg) &&
833                  "Bad map key");
834           assert(TargetRegisterInfo::isPhysicalRegister(i->PhysReg) &&
835                  "Bad map value");
836           assert(PhysRegState[i->PhysReg] == i->VirtReg && "Bad inverse map");
837        }
838      });
839
840    // Debug values are not allowed to change codegen in any way.
841    if (MI->isDebugValue()) {
842      bool ScanDbgValue = true;
843      while (ScanDbgValue) {
844        ScanDbgValue = false;
845        for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
846          MachineOperand &MO = MI->getOperand(i);
847          if (!MO.isReg()) continue;
848          unsigned Reg = MO.getReg();
849          if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
850          LiveRegMap::iterator LRI = findLiveVirtReg(Reg);
851          if (LRI != LiveVirtRegs.end())
852            setPhysReg(MI, i, LRI->PhysReg);
853          else {
854            int SS = StackSlotForVirtReg[Reg];
855            if (SS == -1) {
856              // We can't allocate a physreg for a DebugValue, sorry!
857              DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE");
858              MO.setReg(0);
859            }
860            else {
861              // Modify DBG_VALUE now that the value is in a spill slot.
862              int64_t Offset = MI->getOperand(1).getImm();
863              const MDNode *MDPtr =
864                MI->getOperand(MI->getNumOperands()-1).getMetadata();
865              DebugLoc DL = MI->getDebugLoc();
866              if (MachineInstr *NewDV =
867                  TII->emitFrameIndexDebugValue(*MF, SS, Offset, MDPtr, DL)) {
868                DEBUG(dbgs() << "Modifying debug info due to spill:" <<
869                      "\t" << *MI);
870                MachineBasicBlock *MBB = MI->getParent();
871                MBB->insert(MBB->erase(MI), NewDV);
872                // Scan NewDV operands from the beginning.
873                MI = NewDV;
874                ScanDbgValue = true;
875                break;
876              } else {
877                // We can't allocate a physreg for a DebugValue; sorry!
878                DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE");
879                MO.setReg(0);
880              }
881            }
882          }
883          LiveDbgValueMap[Reg].push_back(MI);
884        }
885      }
886      // Next instruction.
887      continue;
888    }
889
890    // If this is a copy, we may be able to coalesce.
891    unsigned CopySrc = 0, CopyDst = 0, CopySrcSub = 0, CopyDstSub = 0;
892    if (MI->isCopy()) {
893      CopyDst = MI->getOperand(0).getReg();
894      CopySrc = MI->getOperand(1).getReg();
895      CopyDstSub = MI->getOperand(0).getSubReg();
896      CopySrcSub = MI->getOperand(1).getSubReg();
897    }
898
899    // Track registers used by instruction.
900    UsedInInstr.clear();
901
902    // First scan.
903    // Mark physreg uses and early clobbers as used.
904    // Find the end of the virtreg operands
905    unsigned VirtOpEnd = 0;
906    bool hasTiedOps = false;
907    bool hasEarlyClobbers = false;
908    bool hasPartialRedefs = false;
909    bool hasPhysDefs = false;
910    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
911      MachineOperand &MO = MI->getOperand(i);
912      // Make sure MRI knows about registers clobbered by regmasks.
913      if (MO.isRegMask()) {
914        MRI->addPhysRegsUsedFromRegMask(MO.getRegMask());
915        continue;
916      }
917      if (!MO.isReg()) continue;
918      unsigned Reg = MO.getReg();
919      if (!Reg) continue;
920      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
921        VirtOpEnd = i+1;
922        if (MO.isUse()) {
923          hasTiedOps = hasTiedOps ||
924                              MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1;
925        } else {
926          if (MO.isEarlyClobber())
927            hasEarlyClobbers = true;
928          if (MO.getSubReg() && MI->readsVirtualRegister(Reg))
929            hasPartialRedefs = true;
930        }
931        continue;
932      }
933      if (!MRI->isAllocatable(Reg)) continue;
934      if (MO.isUse()) {
935        usePhysReg(MO);
936      } else if (MO.isEarlyClobber()) {
937        definePhysReg(MI, Reg, (MO.isImplicit() || MO.isDead()) ?
938                               regFree : regReserved);
939        hasEarlyClobbers = true;
940      } else
941        hasPhysDefs = true;
942    }
943
944    // The instruction may have virtual register operands that must be allocated
945    // the same register at use-time and def-time: early clobbers and tied
946    // operands. If there are also physical defs, these registers must avoid
947    // both physical defs and uses, making them more constrained than normal
948    // operands.
949    // Similarly, if there are multiple defs and tied operands, we must make
950    // sure the same register is allocated to uses and defs.
951    // We didn't detect inline asm tied operands above, so just make this extra
952    // pass for all inline asm.
953    if (MI->isInlineAsm() || hasEarlyClobbers || hasPartialRedefs ||
954        (hasTiedOps && (hasPhysDefs || MCID.getNumDefs() > 1))) {
955      handleThroughOperands(MI, VirtDead);
956      // Don't attempt coalescing when we have funny stuff going on.
957      CopyDst = 0;
958      // Pretend we have early clobbers so the use operands get marked below.
959      // This is not necessary for the common case of a single tied use.
960      hasEarlyClobbers = true;
961    }
962
963    // Second scan.
964    // Allocate virtreg uses.
965    for (unsigned i = 0; i != VirtOpEnd; ++i) {
966      MachineOperand &MO = MI->getOperand(i);
967      if (!MO.isReg()) continue;
968      unsigned Reg = MO.getReg();
969      if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
970      if (MO.isUse()) {
971        LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, CopyDst);
972        unsigned PhysReg = LRI->PhysReg;
973        CopySrc = (CopySrc == Reg || CopySrc == PhysReg) ? PhysReg : 0;
974        if (setPhysReg(MI, i, PhysReg))
975          killVirtReg(LRI);
976      }
977    }
978
979    for (UsedInInstrSet::iterator
980         I = UsedInInstr.begin(), E = UsedInInstr.end(); I != E; ++I)
981      MRI->setRegUnitUsed(*I);
982
983    // Track registers defined by instruction - early clobbers and tied uses at
984    // this point.
985    UsedInInstr.clear();
986    if (hasEarlyClobbers) {
987      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
988        MachineOperand &MO = MI->getOperand(i);
989        if (!MO.isReg()) continue;
990        unsigned Reg = MO.getReg();
991        if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
992        // Look for physreg defs and tied uses.
993        if (!MO.isDef() && !MI->isRegTiedToDefOperand(i)) continue;
994        markRegUsedInInstr(Reg);
995      }
996    }
997
998    unsigned DefOpEnd = MI->getNumOperands();
999    if (MI->isCall()) {
1000      // Spill all virtregs before a call. This serves two purposes: 1. If an
1001      // exception is thrown, the landing pad is going to expect to find
1002      // registers in their spill slots, and 2. we don't have to wade through
1003      // all the <imp-def> operands on the call instruction.
1004      DefOpEnd = VirtOpEnd;
1005      DEBUG(dbgs() << "  Spilling remaining registers before call.\n");
1006      spillAll(MI);
1007
1008      // The imp-defs are skipped below, but we still need to mark those
1009      // registers as used by the function.
1010      SkippedInstrs.insert(&MCID);
1011    }
1012
1013    // Third scan.
1014    // Allocate defs and collect dead defs.
1015    for (unsigned i = 0; i != DefOpEnd; ++i) {
1016      MachineOperand &MO = MI->getOperand(i);
1017      if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber())
1018        continue;
1019      unsigned Reg = MO.getReg();
1020
1021      if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1022        if (!MRI->isAllocatable(Reg)) continue;
1023        definePhysReg(MI, Reg, (MO.isImplicit() || MO.isDead()) ?
1024                               regFree : regReserved);
1025        continue;
1026      }
1027      LiveRegMap::iterator LRI = defineVirtReg(MI, i, Reg, CopySrc);
1028      unsigned PhysReg = LRI->PhysReg;
1029      if (setPhysReg(MI, i, PhysReg)) {
1030        VirtDead.push_back(Reg);
1031        CopyDst = 0; // cancel coalescing;
1032      } else
1033        CopyDst = (CopyDst == Reg || CopyDst == PhysReg) ? PhysReg : 0;
1034    }
1035
1036    // Kill dead defs after the scan to ensure that multiple defs of the same
1037    // register are allocated identically. We didn't need to do this for uses
1038    // because we are crerating our own kill flags, and they are always at the
1039    // last use.
1040    for (unsigned i = 0, e = VirtDead.size(); i != e; ++i)
1041      killVirtReg(VirtDead[i]);
1042    VirtDead.clear();
1043
1044    for (UsedInInstrSet::iterator
1045         I = UsedInInstr.begin(), E = UsedInInstr.end(); I != E; ++I)
1046      MRI->setRegUnitUsed(*I);
1047
1048    if (CopyDst && CopyDst == CopySrc && CopyDstSub == CopySrcSub) {
1049      DEBUG(dbgs() << "-- coalescing: " << *MI);
1050      Coalesced.push_back(MI);
1051    } else {
1052      DEBUG(dbgs() << "<< " << *MI);
1053    }
1054  }
1055
1056  // Spill all physical registers holding virtual registers now.
1057  DEBUG(dbgs() << "Spilling live registers at end of block.\n");
1058  spillAll(MBB->getFirstTerminator());
1059
1060  // Erase all the coalesced copies. We are delaying it until now because
1061  // LiveVirtRegs might refer to the instrs.
1062  for (unsigned i = 0, e = Coalesced.size(); i != e; ++i)
1063    MBB->erase(Coalesced[i]);
1064  NumCopies += Coalesced.size();
1065
1066  DEBUG(MBB->dump());
1067}
1068
1069/// runOnMachineFunction - Register allocate the whole function
1070///
1071bool RAFast::runOnMachineFunction(MachineFunction &Fn) {
1072  DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n"
1073               << "********** Function: " << Fn.getName() << '\n');
1074  MF = &Fn;
1075  MRI = &MF->getRegInfo();
1076  TM = &Fn.getTarget();
1077  TRI = TM->getRegisterInfo();
1078  TII = TM->getInstrInfo();
1079  MRI->freezeReservedRegs(Fn);
1080  RegClassInfo.runOnMachineFunction(Fn);
1081  UsedInInstr.clear();
1082  UsedInInstr.setUniverse(TRI->getNumRegUnits());
1083
1084  assert(!MRI->isSSA() && "regalloc requires leaving SSA");
1085
1086  // initialize the virtual->physical register map to have a 'null'
1087  // mapping for all virtual registers
1088  StackSlotForVirtReg.resize(MRI->getNumVirtRegs());
1089  LiveVirtRegs.setUniverse(MRI->getNumVirtRegs());
1090
1091  // Loop over all of the basic blocks, eliminating virtual register references
1092  for (MachineFunction::iterator MBBi = Fn.begin(), MBBe = Fn.end();
1093       MBBi != MBBe; ++MBBi) {
1094    MBB = &*MBBi;
1095    AllocateBasicBlock();
1096  }
1097
1098  // Add the clobber lists for all the instructions we skipped earlier.
1099  for (SmallPtrSet<const MCInstrDesc*, 4>::const_iterator
1100       I = SkippedInstrs.begin(), E = SkippedInstrs.end(); I != E; ++I)
1101    if (const uint16_t *Defs = (*I)->getImplicitDefs())
1102      while (*Defs)
1103        MRI->setPhysRegUsed(*Defs++);
1104
1105  // All machine operands and other references to virtual registers have been
1106  // replaced. Remove the virtual registers.
1107  MRI->clearVirtRegs();
1108
1109  SkippedInstrs.clear();
1110  StackSlotForVirtReg.clear();
1111  LiveDbgValueMap.clear();
1112  return true;
1113}
1114
1115FunctionPass *llvm::createFastRegisterAllocator() {
1116  return new RAFast();
1117}
1118