MachineVerifier.cpp revision 245431
1//===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Pass to verify generated machine code. The following is checked:
11//
12// Operand counts: All explicit operands must be present.
13//
14// Register classes: All physical and virtual register operands must be
15// compatible with the register class required by the instruction descriptor.
16//
17// Register live intervals: Registers must be defined only once, and must be
18// defined before use.
19//
20// The machine code verifier is enabled from LLVMTargetMachine.cpp with the
21// command-line option -verify-machineinstrs, or by defining the environment
22// variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
23// the verifier errors.
24//===----------------------------------------------------------------------===//
25
26#include "llvm/BasicBlock.h"
27#include "llvm/InlineAsm.h"
28#include "llvm/Instructions.h"
29#include "llvm/CodeGen/LiveIntervalAnalysis.h"
30#include "llvm/CodeGen/LiveVariables.h"
31#include "llvm/CodeGen/LiveStackAnalysis.h"
32#include "llvm/CodeGen/MachineInstrBundle.h"
33#include "llvm/CodeGen/MachineFunctionPass.h"
34#include "llvm/CodeGen/MachineFrameInfo.h"
35#include "llvm/CodeGen/MachineMemOperand.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/Passes.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/Target/TargetMachine.h"
40#include "llvm/Target/TargetRegisterInfo.h"
41#include "llvm/Target/TargetInstrInfo.h"
42#include "llvm/ADT/DenseSet.h"
43#include "llvm/ADT/SetOperations.h"
44#include "llvm/ADT/SmallVector.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/ErrorHandling.h"
47#include "llvm/Support/raw_ostream.h"
48using namespace llvm;
49
50namespace {
51  struct MachineVerifier {
52
53    MachineVerifier(Pass *pass, const char *b) :
54      PASS(pass),
55      Banner(b),
56      OutFileName(getenv("LLVM_VERIFY_MACHINEINSTRS"))
57      {}
58
59    bool runOnMachineFunction(MachineFunction &MF);
60
61    Pass *const PASS;
62    const char *Banner;
63    const char *const OutFileName;
64    raw_ostream *OS;
65    const MachineFunction *MF;
66    const TargetMachine *TM;
67    const TargetInstrInfo *TII;
68    const TargetRegisterInfo *TRI;
69    const MachineRegisterInfo *MRI;
70
71    unsigned foundErrors;
72
73    typedef SmallVector<unsigned, 16> RegVector;
74    typedef SmallVector<const uint32_t*, 4> RegMaskVector;
75    typedef DenseSet<unsigned> RegSet;
76    typedef DenseMap<unsigned, const MachineInstr*> RegMap;
77    typedef SmallPtrSet<const MachineBasicBlock*, 8> BlockSet;
78
79    const MachineInstr *FirstTerminator;
80    BlockSet FunctionBlocks;
81
82    BitVector regsReserved;
83    RegSet regsLive;
84    RegVector regsDefined, regsDead, regsKilled;
85    RegMaskVector regMasks;
86    RegSet regsLiveInButUnused;
87
88    SlotIndex lastIndex;
89
90    // Add Reg and any sub-registers to RV
91    void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
92      RV.push_back(Reg);
93      if (TargetRegisterInfo::isPhysicalRegister(Reg))
94        for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
95          RV.push_back(*SubRegs);
96    }
97
98    struct BBInfo {
99      // Is this MBB reachable from the MF entry point?
100      bool reachable;
101
102      // Vregs that must be live in because they are used without being
103      // defined. Map value is the user.
104      RegMap vregsLiveIn;
105
106      // Regs killed in MBB. They may be defined again, and will then be in both
107      // regsKilled and regsLiveOut.
108      RegSet regsKilled;
109
110      // Regs defined in MBB and live out. Note that vregs passing through may
111      // be live out without being mentioned here.
112      RegSet regsLiveOut;
113
114      // Vregs that pass through MBB untouched. This set is disjoint from
115      // regsKilled and regsLiveOut.
116      RegSet vregsPassed;
117
118      // Vregs that must pass through MBB because they are needed by a successor
119      // block. This set is disjoint from regsLiveOut.
120      RegSet vregsRequired;
121
122      // Set versions of block's predecessor and successor lists.
123      BlockSet Preds, Succs;
124
125      BBInfo() : reachable(false) {}
126
127      // Add register to vregsPassed if it belongs there. Return true if
128      // anything changed.
129      bool addPassed(unsigned Reg) {
130        if (!TargetRegisterInfo::isVirtualRegister(Reg))
131          return false;
132        if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
133          return false;
134        return vregsPassed.insert(Reg).second;
135      }
136
137      // Same for a full set.
138      bool addPassed(const RegSet &RS) {
139        bool changed = false;
140        for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
141          if (addPassed(*I))
142            changed = true;
143        return changed;
144      }
145
146      // Add register to vregsRequired if it belongs there. Return true if
147      // anything changed.
148      bool addRequired(unsigned Reg) {
149        if (!TargetRegisterInfo::isVirtualRegister(Reg))
150          return false;
151        if (regsLiveOut.count(Reg))
152          return false;
153        return vregsRequired.insert(Reg).second;
154      }
155
156      // Same for a full set.
157      bool addRequired(const RegSet &RS) {
158        bool changed = false;
159        for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
160          if (addRequired(*I))
161            changed = true;
162        return changed;
163      }
164
165      // Same for a full map.
166      bool addRequired(const RegMap &RM) {
167        bool changed = false;
168        for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
169          if (addRequired(I->first))
170            changed = true;
171        return changed;
172      }
173
174      // Live-out registers are either in regsLiveOut or vregsPassed.
175      bool isLiveOut(unsigned Reg) const {
176        return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
177      }
178    };
179
180    // Extra register info per MBB.
181    DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
182
183    bool isReserved(unsigned Reg) {
184      return Reg < regsReserved.size() && regsReserved.test(Reg);
185    }
186
187    bool isAllocatable(unsigned Reg) {
188      return Reg < TRI->getNumRegs() && MRI->isAllocatable(Reg);
189    }
190
191    // Analysis information if available
192    LiveVariables *LiveVars;
193    LiveIntervals *LiveInts;
194    LiveStacks *LiveStks;
195    SlotIndexes *Indexes;
196
197    void visitMachineFunctionBefore();
198    void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
199    void visitMachineBundleBefore(const MachineInstr *MI);
200    void visitMachineInstrBefore(const MachineInstr *MI);
201    void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
202    void visitMachineInstrAfter(const MachineInstr *MI);
203    void visitMachineBundleAfter(const MachineInstr *MI);
204    void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
205    void visitMachineFunctionAfter();
206
207    void report(const char *msg, const MachineFunction *MF);
208    void report(const char *msg, const MachineBasicBlock *MBB);
209    void report(const char *msg, const MachineInstr *MI);
210    void report(const char *msg, const MachineOperand *MO, unsigned MONum);
211    void report(const char *msg, const MachineFunction *MF,
212                const LiveInterval &LI);
213    void report(const char *msg, const MachineBasicBlock *MBB,
214                const LiveInterval &LI);
215
216    void verifyInlineAsm(const MachineInstr *MI);
217
218    void checkLiveness(const MachineOperand *MO, unsigned MONum);
219    void markReachable(const MachineBasicBlock *MBB);
220    void calcRegsPassed();
221    void checkPHIOps(const MachineBasicBlock *MBB);
222
223    void calcRegsRequired();
224    void verifyLiveVariables();
225    void verifyLiveIntervals();
226    void verifyLiveInterval(const LiveInterval&);
227    void verifyLiveIntervalValue(const LiveInterval&, VNInfo*);
228    void verifyLiveIntervalSegment(const LiveInterval&,
229                                   LiveInterval::const_iterator);
230  };
231
232  struct MachineVerifierPass : public MachineFunctionPass {
233    static char ID; // Pass ID, replacement for typeid
234    const char *const Banner;
235
236    MachineVerifierPass(const char *b = 0)
237      : MachineFunctionPass(ID), Banner(b) {
238        initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
239      }
240
241    void getAnalysisUsage(AnalysisUsage &AU) const {
242      AU.setPreservesAll();
243      MachineFunctionPass::getAnalysisUsage(AU);
244    }
245
246    bool runOnMachineFunction(MachineFunction &MF) {
247      MF.verify(this, Banner);
248      return false;
249    }
250  };
251
252}
253
254char MachineVerifierPass::ID = 0;
255INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
256                "Verify generated machine code", false, false)
257
258FunctionPass *llvm::createMachineVerifierPass(const char *Banner) {
259  return new MachineVerifierPass(Banner);
260}
261
262void MachineFunction::verify(Pass *p, const char *Banner) const {
263  MachineVerifier(p, Banner)
264    .runOnMachineFunction(const_cast<MachineFunction&>(*this));
265}
266
267bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) {
268  raw_ostream *OutFile = 0;
269  if (OutFileName) {
270    std::string ErrorInfo;
271    OutFile = new raw_fd_ostream(OutFileName, ErrorInfo,
272                                 raw_fd_ostream::F_Append);
273    if (!ErrorInfo.empty()) {
274      errs() << "Error opening '" << OutFileName << "': " << ErrorInfo << '\n';
275      exit(1);
276    }
277
278    OS = OutFile;
279  } else {
280    OS = &errs();
281  }
282
283  foundErrors = 0;
284
285  this->MF = &MF;
286  TM = &MF.getTarget();
287  TII = TM->getInstrInfo();
288  TRI = TM->getRegisterInfo();
289  MRI = &MF.getRegInfo();
290
291  LiveVars = NULL;
292  LiveInts = NULL;
293  LiveStks = NULL;
294  Indexes = NULL;
295  if (PASS) {
296    LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
297    // We don't want to verify LiveVariables if LiveIntervals is available.
298    if (!LiveInts)
299      LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
300    LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
301    Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
302  }
303
304  visitMachineFunctionBefore();
305  for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
306       MFI!=MFE; ++MFI) {
307    visitMachineBasicBlockBefore(MFI);
308    // Keep track of the current bundle header.
309    const MachineInstr *CurBundle = 0;
310    for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
311           MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
312      if (MBBI->getParent() != MFI) {
313        report("Bad instruction parent pointer", MFI);
314        *OS << "Instruction: " << *MBBI;
315        continue;
316      }
317      // Is this a bundle header?
318      if (!MBBI->isInsideBundle()) {
319        if (CurBundle)
320          visitMachineBundleAfter(CurBundle);
321        CurBundle = MBBI;
322        visitMachineBundleBefore(CurBundle);
323      } else if (!CurBundle)
324        report("No bundle header", MBBI);
325      visitMachineInstrBefore(MBBI);
326      for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I)
327        visitMachineOperand(&MBBI->getOperand(I), I);
328      visitMachineInstrAfter(MBBI);
329    }
330    if (CurBundle)
331      visitMachineBundleAfter(CurBundle);
332    visitMachineBasicBlockAfter(MFI);
333  }
334  visitMachineFunctionAfter();
335
336  if (OutFile)
337    delete OutFile;
338  else if (foundErrors)
339    report_fatal_error("Found "+Twine(foundErrors)+" machine code errors.");
340
341  // Clean up.
342  regsLive.clear();
343  regsDefined.clear();
344  regsDead.clear();
345  regsKilled.clear();
346  regMasks.clear();
347  regsLiveInButUnused.clear();
348  MBBInfoMap.clear();
349
350  return false;                 // no changes
351}
352
353void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
354  assert(MF);
355  *OS << '\n';
356  if (!foundErrors++) {
357    if (Banner)
358      *OS << "# " << Banner << '\n';
359    MF->print(*OS, Indexes);
360  }
361  *OS << "*** Bad machine code: " << msg << " ***\n"
362      << "- function:    " << MF->getName() << "\n";
363}
364
365void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
366  assert(MBB);
367  report(msg, MBB->getParent());
368  *OS << "- basic block: BB#" << MBB->getNumber()
369      << ' ' << MBB->getName()
370      << " (" << (const void*)MBB << ')';
371  if (Indexes)
372    *OS << " [" << Indexes->getMBBStartIdx(MBB)
373        << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
374  *OS << '\n';
375}
376
377void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
378  assert(MI);
379  report(msg, MI->getParent());
380  *OS << "- instruction: ";
381  if (Indexes && Indexes->hasIndex(MI))
382    *OS << Indexes->getInstructionIndex(MI) << '\t';
383  MI->print(*OS, TM);
384}
385
386void MachineVerifier::report(const char *msg,
387                             const MachineOperand *MO, unsigned MONum) {
388  assert(MO);
389  report(msg, MO->getParent());
390  *OS << "- operand " << MONum << ":   ";
391  MO->print(*OS, TM);
392  *OS << "\n";
393}
394
395void MachineVerifier::report(const char *msg, const MachineFunction *MF,
396                             const LiveInterval &LI) {
397  report(msg, MF);
398  *OS << "- interval:    ";
399  if (TargetRegisterInfo::isVirtualRegister(LI.reg))
400    *OS << PrintReg(LI.reg, TRI);
401  else
402    *OS << PrintRegUnit(LI.reg, TRI);
403  *OS << ' ' << LI << '\n';
404}
405
406void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB,
407                             const LiveInterval &LI) {
408  report(msg, MBB);
409  *OS << "- interval:    ";
410  if (TargetRegisterInfo::isVirtualRegister(LI.reg))
411    *OS << PrintReg(LI.reg, TRI);
412  else
413    *OS << PrintRegUnit(LI.reg, TRI);
414  *OS << ' ' << LI << '\n';
415}
416
417void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
418  BBInfo &MInfo = MBBInfoMap[MBB];
419  if (!MInfo.reachable) {
420    MInfo.reachable = true;
421    for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
422           SuE = MBB->succ_end(); SuI != SuE; ++SuI)
423      markReachable(*SuI);
424  }
425}
426
427void MachineVerifier::visitMachineFunctionBefore() {
428  lastIndex = SlotIndex();
429  regsReserved = MRI->getReservedRegs();
430
431  // A sub-register of a reserved register is also reserved
432  for (int Reg = regsReserved.find_first(); Reg>=0;
433       Reg = regsReserved.find_next(Reg)) {
434    for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
435      // FIXME: This should probably be:
436      // assert(regsReserved.test(*SubRegs) && "Non-reserved sub-register");
437      regsReserved.set(*SubRegs);
438    }
439  }
440
441  markReachable(&MF->front());
442
443  // Build a set of the basic blocks in the function.
444  FunctionBlocks.clear();
445  for (MachineFunction::const_iterator
446       I = MF->begin(), E = MF->end(); I != E; ++I) {
447    FunctionBlocks.insert(I);
448    BBInfo &MInfo = MBBInfoMap[I];
449
450    MInfo.Preds.insert(I->pred_begin(), I->pred_end());
451    if (MInfo.Preds.size() != I->pred_size())
452      report("MBB has duplicate entries in its predecessor list.", I);
453
454    MInfo.Succs.insert(I->succ_begin(), I->succ_end());
455    if (MInfo.Succs.size() != I->succ_size())
456      report("MBB has duplicate entries in its successor list.", I);
457  }
458}
459
460// Does iterator point to a and b as the first two elements?
461static bool matchPair(MachineBasicBlock::const_succ_iterator i,
462                      const MachineBasicBlock *a, const MachineBasicBlock *b) {
463  if (*i == a)
464    return *++i == b;
465  if (*i == b)
466    return *++i == a;
467  return false;
468}
469
470void
471MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
472  FirstTerminator = 0;
473
474  if (MRI->isSSA()) {
475    // If this block has allocatable physical registers live-in, check that
476    // it is an entry block or landing pad.
477    for (MachineBasicBlock::livein_iterator LI = MBB->livein_begin(),
478           LE = MBB->livein_end();
479         LI != LE; ++LI) {
480      unsigned reg = *LI;
481      if (isAllocatable(reg) && !MBB->isLandingPad() &&
482          MBB != MBB->getParent()->begin()) {
483        report("MBB has allocable live-in, but isn't entry or landing-pad.", MBB);
484      }
485    }
486  }
487
488  // Count the number of landing pad successors.
489  SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
490  for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
491       E = MBB->succ_end(); I != E; ++I) {
492    if ((*I)->isLandingPad())
493      LandingPadSuccs.insert(*I);
494    if (!FunctionBlocks.count(*I))
495      report("MBB has successor that isn't part of the function.", MBB);
496    if (!MBBInfoMap[*I].Preds.count(MBB)) {
497      report("Inconsistent CFG", MBB);
498      *OS << "MBB is not in the predecessor list of the successor BB#"
499          << (*I)->getNumber() << ".\n";
500    }
501  }
502
503  // Check the predecessor list.
504  for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
505       E = MBB->pred_end(); I != E; ++I) {
506    if (!FunctionBlocks.count(*I))
507      report("MBB has predecessor that isn't part of the function.", MBB);
508    if (!MBBInfoMap[*I].Succs.count(MBB)) {
509      report("Inconsistent CFG", MBB);
510      *OS << "MBB is not in the successor list of the predecessor BB#"
511          << (*I)->getNumber() << ".\n";
512    }
513  }
514
515  const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
516  const BasicBlock *BB = MBB->getBasicBlock();
517  if (LandingPadSuccs.size() > 1 &&
518      !(AsmInfo &&
519        AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
520        BB && isa<SwitchInst>(BB->getTerminator())))
521    report("MBB has more than one landing pad successor", MBB);
522
523  // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
524  MachineBasicBlock *TBB = 0, *FBB = 0;
525  SmallVector<MachineOperand, 4> Cond;
526  if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB),
527                          TBB, FBB, Cond)) {
528    // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
529    // check whether its answers match up with reality.
530    if (!TBB && !FBB) {
531      // Block falls through to its successor.
532      MachineFunction::const_iterator MBBI = MBB;
533      ++MBBI;
534      if (MBBI == MF->end()) {
535        // It's possible that the block legitimately ends with a noreturn
536        // call or an unreachable, in which case it won't actually fall
537        // out the bottom of the function.
538      } else if (MBB->succ_size() == LandingPadSuccs.size()) {
539        // It's possible that the block legitimately ends with a noreturn
540        // call or an unreachable, in which case it won't actuall fall
541        // out of the block.
542      } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
543        report("MBB exits via unconditional fall-through but doesn't have "
544               "exactly one CFG successor!", MBB);
545      } else if (!MBB->isSuccessor(MBBI)) {
546        report("MBB exits via unconditional fall-through but its successor "
547               "differs from its CFG successor!", MBB);
548      }
549      if (!MBB->empty() && getBundleStart(&MBB->back())->isBarrier() &&
550          !TII->isPredicated(getBundleStart(&MBB->back()))) {
551        report("MBB exits via unconditional fall-through but ends with a "
552               "barrier instruction!", MBB);
553      }
554      if (!Cond.empty()) {
555        report("MBB exits via unconditional fall-through but has a condition!",
556               MBB);
557      }
558    } else if (TBB && !FBB && Cond.empty()) {
559      // Block unconditionally branches somewhere.
560      if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
561        report("MBB exits via unconditional branch but doesn't have "
562               "exactly one CFG successor!", MBB);
563      } else if (!MBB->isSuccessor(TBB)) {
564        report("MBB exits via unconditional branch but the CFG "
565               "successor doesn't match the actual successor!", MBB);
566      }
567      if (MBB->empty()) {
568        report("MBB exits via unconditional branch but doesn't contain "
569               "any instructions!", MBB);
570      } else if (!getBundleStart(&MBB->back())->isBarrier()) {
571        report("MBB exits via unconditional branch but doesn't end with a "
572               "barrier instruction!", MBB);
573      } else if (!getBundleStart(&MBB->back())->isTerminator()) {
574        report("MBB exits via unconditional branch but the branch isn't a "
575               "terminator instruction!", MBB);
576      }
577    } else if (TBB && !FBB && !Cond.empty()) {
578      // Block conditionally branches somewhere, otherwise falls through.
579      MachineFunction::const_iterator MBBI = MBB;
580      ++MBBI;
581      if (MBBI == MF->end()) {
582        report("MBB conditionally falls through out of function!", MBB);
583      } if (MBB->succ_size() == 1) {
584        // A conditional branch with only one successor is weird, but allowed.
585        if (&*MBBI != TBB)
586          report("MBB exits via conditional branch/fall-through but only has "
587                 "one CFG successor!", MBB);
588        else if (TBB != *MBB->succ_begin())
589          report("MBB exits via conditional branch/fall-through but the CFG "
590                 "successor don't match the actual successor!", MBB);
591      } else if (MBB->succ_size() != 2) {
592        report("MBB exits via conditional branch/fall-through but doesn't have "
593               "exactly two CFG successors!", MBB);
594      } else if (!matchPair(MBB->succ_begin(), TBB, MBBI)) {
595        report("MBB exits via conditional branch/fall-through but the CFG "
596               "successors don't match the actual successors!", MBB);
597      }
598      if (MBB->empty()) {
599        report("MBB exits via conditional branch/fall-through but doesn't "
600               "contain any instructions!", MBB);
601      } else if (getBundleStart(&MBB->back())->isBarrier()) {
602        report("MBB exits via conditional branch/fall-through but ends with a "
603               "barrier instruction!", MBB);
604      } else if (!getBundleStart(&MBB->back())->isTerminator()) {
605        report("MBB exits via conditional branch/fall-through but the branch "
606               "isn't a terminator instruction!", MBB);
607      }
608    } else if (TBB && FBB) {
609      // Block conditionally branches somewhere, otherwise branches
610      // somewhere else.
611      if (MBB->succ_size() == 1) {
612        // A conditional branch with only one successor is weird, but allowed.
613        if (FBB != TBB)
614          report("MBB exits via conditional branch/branch through but only has "
615                 "one CFG successor!", MBB);
616        else if (TBB != *MBB->succ_begin())
617          report("MBB exits via conditional branch/branch through but the CFG "
618                 "successor don't match the actual successor!", MBB);
619      } else if (MBB->succ_size() != 2) {
620        report("MBB exits via conditional branch/branch but doesn't have "
621               "exactly two CFG successors!", MBB);
622      } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
623        report("MBB exits via conditional branch/branch but the CFG "
624               "successors don't match the actual successors!", MBB);
625      }
626      if (MBB->empty()) {
627        report("MBB exits via conditional branch/branch but doesn't "
628               "contain any instructions!", MBB);
629      } else if (!getBundleStart(&MBB->back())->isBarrier()) {
630        report("MBB exits via conditional branch/branch but doesn't end with a "
631               "barrier instruction!", MBB);
632      } else if (!getBundleStart(&MBB->back())->isTerminator()) {
633        report("MBB exits via conditional branch/branch but the branch "
634               "isn't a terminator instruction!", MBB);
635      }
636      if (Cond.empty()) {
637        report("MBB exits via conditinal branch/branch but there's no "
638               "condition!", MBB);
639      }
640    } else {
641      report("AnalyzeBranch returned invalid data!", MBB);
642    }
643  }
644
645  regsLive.clear();
646  for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
647         E = MBB->livein_end(); I != E; ++I) {
648    if (!TargetRegisterInfo::isPhysicalRegister(*I)) {
649      report("MBB live-in list contains non-physical register", MBB);
650      continue;
651    }
652    regsLive.insert(*I);
653    for (MCSubRegIterator SubRegs(*I, TRI); SubRegs.isValid(); ++SubRegs)
654      regsLive.insert(*SubRegs);
655  }
656  regsLiveInButUnused = regsLive;
657
658  const MachineFrameInfo *MFI = MF->getFrameInfo();
659  assert(MFI && "Function has no frame info");
660  BitVector PR = MFI->getPristineRegs(MBB);
661  for (int I = PR.find_first(); I>0; I = PR.find_next(I)) {
662    regsLive.insert(I);
663    for (MCSubRegIterator SubRegs(I, TRI); SubRegs.isValid(); ++SubRegs)
664      regsLive.insert(*SubRegs);
665  }
666
667  regsKilled.clear();
668  regsDefined.clear();
669
670  if (Indexes)
671    lastIndex = Indexes->getMBBStartIdx(MBB);
672}
673
674// This function gets called for all bundle headers, including normal
675// stand-alone unbundled instructions.
676void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
677  if (Indexes && Indexes->hasIndex(MI)) {
678    SlotIndex idx = Indexes->getInstructionIndex(MI);
679    if (!(idx > lastIndex)) {
680      report("Instruction index out of order", MI);
681      *OS << "Last instruction was at " << lastIndex << '\n';
682    }
683    lastIndex = idx;
684  }
685
686  // Ensure non-terminators don't follow terminators.
687  // Ignore predicated terminators formed by if conversion.
688  // FIXME: If conversion shouldn't need to violate this rule.
689  if (MI->isTerminator() && !TII->isPredicated(MI)) {
690    if (!FirstTerminator)
691      FirstTerminator = MI;
692  } else if (FirstTerminator) {
693    report("Non-terminator instruction after the first terminator", MI);
694    *OS << "First terminator was:\t" << *FirstTerminator;
695  }
696}
697
698// The operands on an INLINEASM instruction must follow a template.
699// Verify that the flag operands make sense.
700void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
701  // The first two operands on INLINEASM are the asm string and global flags.
702  if (MI->getNumOperands() < 2) {
703    report("Too few operands on inline asm", MI);
704    return;
705  }
706  if (!MI->getOperand(0).isSymbol())
707    report("Asm string must be an external symbol", MI);
708  if (!MI->getOperand(1).isImm())
709    report("Asm flags must be an immediate", MI);
710  // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
711  // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16.
712  if (!isUInt<5>(MI->getOperand(1).getImm()))
713    report("Unknown asm flags", &MI->getOperand(1), 1);
714
715  assert(InlineAsm::MIOp_FirstOperand == 2 && "Asm format changed");
716
717  unsigned OpNo = InlineAsm::MIOp_FirstOperand;
718  unsigned NumOps;
719  for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
720    const MachineOperand &MO = MI->getOperand(OpNo);
721    // There may be implicit ops after the fixed operands.
722    if (!MO.isImm())
723      break;
724    NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
725  }
726
727  if (OpNo > MI->getNumOperands())
728    report("Missing operands in last group", MI);
729
730  // An optional MDNode follows the groups.
731  if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
732    ++OpNo;
733
734  // All trailing operands must be implicit registers.
735  for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
736    const MachineOperand &MO = MI->getOperand(OpNo);
737    if (!MO.isReg() || !MO.isImplicit())
738      report("Expected implicit register after groups", &MO, OpNo);
739  }
740}
741
742void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
743  const MCInstrDesc &MCID = MI->getDesc();
744  if (MI->getNumOperands() < MCID.getNumOperands()) {
745    report("Too few operands", MI);
746    *OS << MCID.getNumOperands() << " operands expected, but "
747        << MI->getNumExplicitOperands() << " given.\n";
748  }
749
750  // Check the tied operands.
751  if (MI->isInlineAsm())
752    verifyInlineAsm(MI);
753
754  // Check the MachineMemOperands for basic consistency.
755  for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
756       E = MI->memoperands_end(); I != E; ++I) {
757    if ((*I)->isLoad() && !MI->mayLoad())
758      report("Missing mayLoad flag", MI);
759    if ((*I)->isStore() && !MI->mayStore())
760      report("Missing mayStore flag", MI);
761  }
762
763  // Debug values must not have a slot index.
764  // Other instructions must have one, unless they are inside a bundle.
765  if (LiveInts) {
766    bool mapped = !LiveInts->isNotInMIMap(MI);
767    if (MI->isDebugValue()) {
768      if (mapped)
769        report("Debug instruction has a slot index", MI);
770    } else if (MI->isInsideBundle()) {
771      if (mapped)
772        report("Instruction inside bundle has a slot index", MI);
773    } else {
774      if (!mapped)
775        report("Missing slot index", MI);
776    }
777  }
778
779  StringRef ErrorInfo;
780  if (!TII->verifyInstruction(MI, ErrorInfo))
781    report(ErrorInfo.data(), MI);
782}
783
784void
785MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
786  const MachineInstr *MI = MO->getParent();
787  const MCInstrDesc &MCID = MI->getDesc();
788
789  // The first MCID.NumDefs operands must be explicit register defines
790  if (MONum < MCID.getNumDefs()) {
791    const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
792    if (!MO->isReg())
793      report("Explicit definition must be a register", MO, MONum);
794    else if (!MO->isDef() && !MCOI.isOptionalDef())
795      report("Explicit definition marked as use", MO, MONum);
796    else if (MO->isImplicit())
797      report("Explicit definition marked as implicit", MO, MONum);
798  } else if (MONum < MCID.getNumOperands()) {
799    const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
800    // Don't check if it's the last operand in a variadic instruction. See,
801    // e.g., LDM_RET in the arm back end.
802    if (MO->isReg() &&
803        !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) {
804      if (MO->isDef() && !MCOI.isOptionalDef())
805          report("Explicit operand marked as def", MO, MONum);
806      if (MO->isImplicit())
807        report("Explicit operand marked as implicit", MO, MONum);
808    }
809
810    int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
811    if (TiedTo != -1) {
812      if (!MO->isReg())
813        report("Tied use must be a register", MO, MONum);
814      else if (!MO->isTied())
815        report("Operand should be tied", MO, MONum);
816      else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
817        report("Tied def doesn't match MCInstrDesc", MO, MONum);
818    } else if (MO->isReg() && MO->isTied())
819      report("Explicit operand should not be tied", MO, MONum);
820  } else {
821    // ARM adds %reg0 operands to indicate predicates. We'll allow that.
822    if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
823      report("Extra explicit operand on non-variadic instruction", MO, MONum);
824  }
825
826  switch (MO->getType()) {
827  case MachineOperand::MO_Register: {
828    const unsigned Reg = MO->getReg();
829    if (!Reg)
830      return;
831    if (MRI->tracksLiveness() && !MI->isDebugValue())
832      checkLiveness(MO, MONum);
833
834    // Verify the consistency of tied operands.
835    if (MO->isTied()) {
836      unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
837      const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
838      if (!OtherMO.isReg())
839        report("Must be tied to a register", MO, MONum);
840      if (!OtherMO.isTied())
841        report("Missing tie flags on tied operand", MO, MONum);
842      if (MI->findTiedOperandIdx(OtherIdx) != MONum)
843        report("Inconsistent tie links", MO, MONum);
844      if (MONum < MCID.getNumDefs()) {
845        if (OtherIdx < MCID.getNumOperands()) {
846          if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
847            report("Explicit def tied to explicit use without tie constraint",
848                   MO, MONum);
849        } else {
850          if (!OtherMO.isImplicit())
851            report("Explicit def should be tied to implicit use", MO, MONum);
852        }
853      }
854    }
855
856    // Verify two-address constraints after leaving SSA form.
857    unsigned DefIdx;
858    if (!MRI->isSSA() && MO->isUse() &&
859        MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
860        Reg != MI->getOperand(DefIdx).getReg())
861      report("Two-address instruction operands must be identical", MO, MONum);
862
863    // Check register classes.
864    if (MONum < MCID.getNumOperands() && !MO->isImplicit()) {
865      unsigned SubIdx = MO->getSubReg();
866
867      if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
868        if (SubIdx) {
869          report("Illegal subregister index for physical register", MO, MONum);
870          return;
871        }
872        if (const TargetRegisterClass *DRC =
873              TII->getRegClass(MCID, MONum, TRI, *MF)) {
874          if (!DRC->contains(Reg)) {
875            report("Illegal physical register for instruction", MO, MONum);
876            *OS << TRI->getName(Reg) << " is not a "
877                << DRC->getName() << " register.\n";
878          }
879        }
880      } else {
881        // Virtual register.
882        const TargetRegisterClass *RC = MRI->getRegClass(Reg);
883        if (SubIdx) {
884          const TargetRegisterClass *SRC =
885            TRI->getSubClassWithSubReg(RC, SubIdx);
886          if (!SRC) {
887            report("Invalid subregister index for virtual register", MO, MONum);
888            *OS << "Register class " << RC->getName()
889                << " does not support subreg index " << SubIdx << "\n";
890            return;
891          }
892          if (RC != SRC) {
893            report("Invalid register class for subregister index", MO, MONum);
894            *OS << "Register class " << RC->getName()
895                << " does not fully support subreg index " << SubIdx << "\n";
896            return;
897          }
898        }
899        if (const TargetRegisterClass *DRC =
900              TII->getRegClass(MCID, MONum, TRI, *MF)) {
901          if (SubIdx) {
902            const TargetRegisterClass *SuperRC =
903              TRI->getLargestLegalSuperClass(RC);
904            if (!SuperRC) {
905              report("No largest legal super class exists.", MO, MONum);
906              return;
907            }
908            DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
909            if (!DRC) {
910              report("No matching super-reg register class.", MO, MONum);
911              return;
912            }
913          }
914          if (!RC->hasSuperClassEq(DRC)) {
915            report("Illegal virtual register for instruction", MO, MONum);
916            *OS << "Expected a " << DRC->getName() << " register, but got a "
917                << RC->getName() << " register\n";
918          }
919        }
920      }
921    }
922    break;
923  }
924
925  case MachineOperand::MO_RegisterMask:
926    regMasks.push_back(MO->getRegMask());
927    break;
928
929  case MachineOperand::MO_MachineBasicBlock:
930    if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
931      report("PHI operand is not in the CFG", MO, MONum);
932    break;
933
934  case MachineOperand::MO_FrameIndex:
935    if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
936        LiveInts && !LiveInts->isNotInMIMap(MI)) {
937      LiveInterval &LI = LiveStks->getInterval(MO->getIndex());
938      SlotIndex Idx = LiveInts->getInstructionIndex(MI);
939      if (MI->mayLoad() && !LI.liveAt(Idx.getRegSlot(true))) {
940        report("Instruction loads from dead spill slot", MO, MONum);
941        *OS << "Live stack: " << LI << '\n';
942      }
943      if (MI->mayStore() && !LI.liveAt(Idx.getRegSlot())) {
944        report("Instruction stores to dead spill slot", MO, MONum);
945        *OS << "Live stack: " << LI << '\n';
946      }
947    }
948    break;
949
950  default:
951    break;
952  }
953}
954
955void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
956  const MachineInstr *MI = MO->getParent();
957  const unsigned Reg = MO->getReg();
958
959  // Both use and def operands can read a register.
960  if (MO->readsReg()) {
961    regsLiveInButUnused.erase(Reg);
962
963    if (MO->isKill())
964      addRegWithSubRegs(regsKilled, Reg);
965
966    // Check that LiveVars knows this kill.
967    if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
968        MO->isKill()) {
969      LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
970      if (std::find(VI.Kills.begin(), VI.Kills.end(), MI) == VI.Kills.end())
971        report("Kill missing from LiveVariables", MO, MONum);
972    }
973
974    // Check LiveInts liveness and kill.
975    if (LiveInts && !LiveInts->isNotInMIMap(MI)) {
976      SlotIndex UseIdx = LiveInts->getInstructionIndex(MI);
977      // Check the cached regunit intervals.
978      if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) {
979        for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
980          if (const LiveInterval *LI = LiveInts->getCachedRegUnit(*Units)) {
981            LiveRangeQuery LRQ(*LI, UseIdx);
982            if (!LRQ.valueIn()) {
983              report("No live range at use", MO, MONum);
984              *OS << UseIdx << " is not live in " << PrintRegUnit(*Units, TRI)
985                  << ' ' << *LI << '\n';
986            }
987            if (MO->isKill() && !LRQ.isKill()) {
988              report("Live range continues after kill flag", MO, MONum);
989              *OS << PrintRegUnit(*Units, TRI) << ' ' << *LI << '\n';
990            }
991          }
992        }
993      }
994
995      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
996        if (LiveInts->hasInterval(Reg)) {
997          // This is a virtual register interval.
998          const LiveInterval &LI = LiveInts->getInterval(Reg);
999          LiveRangeQuery LRQ(LI, UseIdx);
1000          if (!LRQ.valueIn()) {
1001            report("No live range at use", MO, MONum);
1002            *OS << UseIdx << " is not live in " << LI << '\n';
1003          }
1004          // Check for extra kill flags.
1005          // Note that we allow missing kill flags for now.
1006          if (MO->isKill() && !LRQ.isKill()) {
1007            report("Live range continues after kill flag", MO, MONum);
1008            *OS << "Live range: " << LI << '\n';
1009          }
1010        } else {
1011          report("Virtual register has no live interval", MO, MONum);
1012        }
1013      }
1014    }
1015
1016    // Use of a dead register.
1017    if (!regsLive.count(Reg)) {
1018      if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1019        // Reserved registers may be used even when 'dead'.
1020        if (!isReserved(Reg))
1021          report("Using an undefined physical register", MO, MONum);
1022      } else if (MRI->def_empty(Reg)) {
1023        report("Reading virtual register without a def", MO, MONum);
1024      } else {
1025        BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1026        // We don't know which virtual registers are live in, so only complain
1027        // if vreg was killed in this MBB. Otherwise keep track of vregs that
1028        // must be live in. PHI instructions are handled separately.
1029        if (MInfo.regsKilled.count(Reg))
1030          report("Using a killed virtual register", MO, MONum);
1031        else if (!MI->isPHI())
1032          MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
1033      }
1034    }
1035  }
1036
1037  if (MO->isDef()) {
1038    // Register defined.
1039    // TODO: verify that earlyclobber ops are not used.
1040    if (MO->isDead())
1041      addRegWithSubRegs(regsDead, Reg);
1042    else
1043      addRegWithSubRegs(regsDefined, Reg);
1044
1045    // Verify SSA form.
1046    if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) &&
1047        llvm::next(MRI->def_begin(Reg)) != MRI->def_end())
1048      report("Multiple virtual register defs in SSA form", MO, MONum);
1049
1050    // Check LiveInts for a live range, but only for virtual registers.
1051    if (LiveInts && TargetRegisterInfo::isVirtualRegister(Reg) &&
1052        !LiveInts->isNotInMIMap(MI)) {
1053      SlotIndex DefIdx = LiveInts->getInstructionIndex(MI);
1054      DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
1055      if (LiveInts->hasInterval(Reg)) {
1056        const LiveInterval &LI = LiveInts->getInterval(Reg);
1057        if (const VNInfo *VNI = LI.getVNInfoAt(DefIdx)) {
1058          assert(VNI && "NULL valno is not allowed");
1059          if (VNI->def != DefIdx) {
1060            report("Inconsistent valno->def", MO, MONum);
1061            *OS << "Valno " << VNI->id << " is not defined at "
1062              << DefIdx << " in " << LI << '\n';
1063          }
1064        } else {
1065          report("No live range at def", MO, MONum);
1066          *OS << DefIdx << " is not live in " << LI << '\n';
1067        }
1068      } else {
1069        report("Virtual register has no Live interval", MO, MONum);
1070      }
1071    }
1072  }
1073}
1074
1075void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {
1076}
1077
1078// This function gets called after visiting all instructions in a bundle. The
1079// argument points to the bundle header.
1080// Normal stand-alone instructions are also considered 'bundles', and this
1081// function is called for all of them.
1082void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
1083  BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1084  set_union(MInfo.regsKilled, regsKilled);
1085  set_subtract(regsLive, regsKilled); regsKilled.clear();
1086  // Kill any masked registers.
1087  while (!regMasks.empty()) {
1088    const uint32_t *Mask = regMasks.pop_back_val();
1089    for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
1090      if (TargetRegisterInfo::isPhysicalRegister(*I) &&
1091          MachineOperand::clobbersPhysReg(Mask, *I))
1092        regsDead.push_back(*I);
1093  }
1094  set_subtract(regsLive, regsDead);   regsDead.clear();
1095  set_union(regsLive, regsDefined);   regsDefined.clear();
1096}
1097
1098void
1099MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
1100  MBBInfoMap[MBB].regsLiveOut = regsLive;
1101  regsLive.clear();
1102
1103  if (Indexes) {
1104    SlotIndex stop = Indexes->getMBBEndIdx(MBB);
1105    if (!(stop > lastIndex)) {
1106      report("Block ends before last instruction index", MBB);
1107      *OS << "Block ends at " << stop
1108          << " last instruction was at " << lastIndex << '\n';
1109    }
1110    lastIndex = stop;
1111  }
1112}
1113
1114// Calculate the largest possible vregsPassed sets. These are the registers that
1115// can pass through an MBB live, but may not be live every time. It is assumed
1116// that all vregsPassed sets are empty before the call.
1117void MachineVerifier::calcRegsPassed() {
1118  // First push live-out regs to successors' vregsPassed. Remember the MBBs that
1119  // have any vregsPassed.
1120  SmallPtrSet<const MachineBasicBlock*, 8> todo;
1121  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
1122       MFI != MFE; ++MFI) {
1123    const MachineBasicBlock &MBB(*MFI);
1124    BBInfo &MInfo = MBBInfoMap[&MBB];
1125    if (!MInfo.reachable)
1126      continue;
1127    for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
1128           SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
1129      BBInfo &SInfo = MBBInfoMap[*SuI];
1130      if (SInfo.addPassed(MInfo.regsLiveOut))
1131        todo.insert(*SuI);
1132    }
1133  }
1134
1135  // Iteratively push vregsPassed to successors. This will converge to the same
1136  // final state regardless of DenseSet iteration order.
1137  while (!todo.empty()) {
1138    const MachineBasicBlock *MBB = *todo.begin();
1139    todo.erase(MBB);
1140    BBInfo &MInfo = MBBInfoMap[MBB];
1141    for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
1142           SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
1143      if (*SuI == MBB)
1144        continue;
1145      BBInfo &SInfo = MBBInfoMap[*SuI];
1146      if (SInfo.addPassed(MInfo.vregsPassed))
1147        todo.insert(*SuI);
1148    }
1149  }
1150}
1151
1152// Calculate the set of virtual registers that must be passed through each basic
1153// block in order to satisfy the requirements of successor blocks. This is very
1154// similar to calcRegsPassed, only backwards.
1155void MachineVerifier::calcRegsRequired() {
1156  // First push live-in regs to predecessors' vregsRequired.
1157  SmallPtrSet<const MachineBasicBlock*, 8> todo;
1158  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
1159       MFI != MFE; ++MFI) {
1160    const MachineBasicBlock &MBB(*MFI);
1161    BBInfo &MInfo = MBBInfoMap[&MBB];
1162    for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
1163           PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
1164      BBInfo &PInfo = MBBInfoMap[*PrI];
1165      if (PInfo.addRequired(MInfo.vregsLiveIn))
1166        todo.insert(*PrI);
1167    }
1168  }
1169
1170  // Iteratively push vregsRequired to predecessors. This will converge to the
1171  // same final state regardless of DenseSet iteration order.
1172  while (!todo.empty()) {
1173    const MachineBasicBlock *MBB = *todo.begin();
1174    todo.erase(MBB);
1175    BBInfo &MInfo = MBBInfoMap[MBB];
1176    for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
1177           PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
1178      if (*PrI == MBB)
1179        continue;
1180      BBInfo &SInfo = MBBInfoMap[*PrI];
1181      if (SInfo.addRequired(MInfo.vregsRequired))
1182        todo.insert(*PrI);
1183    }
1184  }
1185}
1186
1187// Check PHI instructions at the beginning of MBB. It is assumed that
1188// calcRegsPassed has been run so BBInfo::isLiveOut is valid.
1189void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) {
1190  SmallPtrSet<const MachineBasicBlock*, 8> seen;
1191  for (MachineBasicBlock::const_iterator BBI = MBB->begin(), BBE = MBB->end();
1192       BBI != BBE && BBI->isPHI(); ++BBI) {
1193    seen.clear();
1194
1195    for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
1196      unsigned Reg = BBI->getOperand(i).getReg();
1197      const MachineBasicBlock *Pre = BBI->getOperand(i + 1).getMBB();
1198      if (!Pre->isSuccessor(MBB))
1199        continue;
1200      seen.insert(Pre);
1201      BBInfo &PrInfo = MBBInfoMap[Pre];
1202      if (PrInfo.reachable && !PrInfo.isLiveOut(Reg))
1203        report("PHI operand is not live-out from predecessor",
1204               &BBI->getOperand(i), i);
1205    }
1206
1207    // Did we see all predecessors?
1208    for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
1209           PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
1210      if (!seen.count(*PrI)) {
1211        report("Missing PHI operand", BBI);
1212        *OS << "BB#" << (*PrI)->getNumber()
1213            << " is a predecessor according to the CFG.\n";
1214      }
1215    }
1216  }
1217}
1218
1219void MachineVerifier::visitMachineFunctionAfter() {
1220  calcRegsPassed();
1221
1222  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
1223       MFI != MFE; ++MFI) {
1224    BBInfo &MInfo = MBBInfoMap[MFI];
1225
1226    // Skip unreachable MBBs.
1227    if (!MInfo.reachable)
1228      continue;
1229
1230    checkPHIOps(MFI);
1231  }
1232
1233  // Now check liveness info if available
1234  calcRegsRequired();
1235
1236  // Check for killed virtual registers that should be live out.
1237  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
1238       MFI != MFE; ++MFI) {
1239    BBInfo &MInfo = MBBInfoMap[MFI];
1240    for (RegSet::iterator
1241         I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1242         ++I)
1243      if (MInfo.regsKilled.count(*I)) {
1244        report("Virtual register killed in block, but needed live out.", MFI);
1245        *OS << "Virtual register " << PrintReg(*I)
1246            << " is used after the block.\n";
1247      }
1248  }
1249
1250  if (!MF->empty()) {
1251    BBInfo &MInfo = MBBInfoMap[&MF->front()];
1252    for (RegSet::iterator
1253         I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1254         ++I)
1255      report("Virtual register def doesn't dominate all uses.",
1256             MRI->getVRegDef(*I));
1257  }
1258
1259  if (LiveVars)
1260    verifyLiveVariables();
1261  if (LiveInts)
1262    verifyLiveIntervals();
1263}
1264
1265void MachineVerifier::verifyLiveVariables() {
1266  assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
1267  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1268    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1269    LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1270    for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
1271         MFI != MFE; ++MFI) {
1272      BBInfo &MInfo = MBBInfoMap[MFI];
1273
1274      // Our vregsRequired should be identical to LiveVariables' AliveBlocks
1275      if (MInfo.vregsRequired.count(Reg)) {
1276        if (!VI.AliveBlocks.test(MFI->getNumber())) {
1277          report("LiveVariables: Block missing from AliveBlocks", MFI);
1278          *OS << "Virtual register " << PrintReg(Reg)
1279              << " must be live through the block.\n";
1280        }
1281      } else {
1282        if (VI.AliveBlocks.test(MFI->getNumber())) {
1283          report("LiveVariables: Block should not be in AliveBlocks", MFI);
1284          *OS << "Virtual register " << PrintReg(Reg)
1285              << " is not needed live through the block.\n";
1286        }
1287      }
1288    }
1289  }
1290}
1291
1292void MachineVerifier::verifyLiveIntervals() {
1293  assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
1294  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1295    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1296
1297    // Spilling and splitting may leave unused registers around. Skip them.
1298    if (MRI->reg_nodbg_empty(Reg))
1299      continue;
1300
1301    if (!LiveInts->hasInterval(Reg)) {
1302      report("Missing live interval for virtual register", MF);
1303      *OS << PrintReg(Reg, TRI) << " still has defs or uses\n";
1304      continue;
1305    }
1306
1307    const LiveInterval &LI = LiveInts->getInterval(Reg);
1308    assert(Reg == LI.reg && "Invalid reg to interval mapping");
1309    verifyLiveInterval(LI);
1310  }
1311
1312  // Verify all the cached regunit intervals.
1313  for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
1314    if (const LiveInterval *LI = LiveInts->getCachedRegUnit(i))
1315      verifyLiveInterval(*LI);
1316}
1317
1318void MachineVerifier::verifyLiveIntervalValue(const LiveInterval &LI,
1319                                              VNInfo *VNI) {
1320  if (VNI->isUnused())
1321    return;
1322
1323  const VNInfo *DefVNI = LI.getVNInfoAt(VNI->def);
1324
1325  if (!DefVNI) {
1326    report("Valno not live at def and not marked unused", MF, LI);
1327    *OS << "Valno #" << VNI->id << '\n';
1328    return;
1329  }
1330
1331  if (DefVNI != VNI) {
1332    report("Live range at def has different valno", MF, LI);
1333    *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
1334        << " where valno #" << DefVNI->id << " is live\n";
1335    return;
1336  }
1337
1338  const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
1339  if (!MBB) {
1340    report("Invalid definition index", MF, LI);
1341    *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
1342        << " in " << LI << '\n';
1343    return;
1344  }
1345
1346  if (VNI->isPHIDef()) {
1347    if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
1348      report("PHIDef value is not defined at MBB start", MBB, LI);
1349      *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
1350          << ", not at the beginning of BB#" << MBB->getNumber() << '\n';
1351    }
1352    return;
1353  }
1354
1355  // Non-PHI def.
1356  const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
1357  if (!MI) {
1358    report("No instruction at def index", MBB, LI);
1359    *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n';
1360    return;
1361  }
1362
1363  bool hasDef = false;
1364  bool isEarlyClobber = false;
1365  for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) {
1366    if (!MOI->isReg() || !MOI->isDef())
1367      continue;
1368    if (TargetRegisterInfo::isVirtualRegister(LI.reg)) {
1369      if (MOI->getReg() != LI.reg)
1370        continue;
1371    } else {
1372      if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) ||
1373          !TRI->hasRegUnit(MOI->getReg(), LI.reg))
1374        continue;
1375    }
1376    hasDef = true;
1377    if (MOI->isEarlyClobber())
1378      isEarlyClobber = true;
1379  }
1380
1381  if (!hasDef) {
1382    report("Defining instruction does not modify register", MI);
1383    *OS << "Valno #" << VNI->id << " in " << LI << '\n';
1384  }
1385
1386  // Early clobber defs begin at USE slots, but other defs must begin at
1387  // DEF slots.
1388  if (isEarlyClobber) {
1389    if (!VNI->def.isEarlyClobber()) {
1390      report("Early clobber def must be at an early-clobber slot", MBB, LI);
1391      *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n';
1392    }
1393  } else if (!VNI->def.isRegister()) {
1394    report("Non-PHI, non-early clobber def must be at a register slot",
1395           MBB, LI);
1396    *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n';
1397  }
1398}
1399
1400void
1401MachineVerifier::verifyLiveIntervalSegment(const LiveInterval &LI,
1402                                           LiveInterval::const_iterator I) {
1403  const VNInfo *VNI = I->valno;
1404  assert(VNI && "Live range has no valno");
1405
1406  if (VNI->id >= LI.getNumValNums() || VNI != LI.getValNumInfo(VNI->id)) {
1407    report("Foreign valno in live range", MF, LI);
1408    *OS << *I << " has a bad valno\n";
1409  }
1410
1411  if (VNI->isUnused()) {
1412    report("Live range valno is marked unused", MF, LI);
1413    *OS << *I << '\n';
1414  }
1415
1416  const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(I->start);
1417  if (!MBB) {
1418    report("Bad start of live segment, no basic block", MF, LI);
1419    *OS << *I << '\n';
1420    return;
1421  }
1422  SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
1423  if (I->start != MBBStartIdx && I->start != VNI->def) {
1424    report("Live segment must begin at MBB entry or valno def", MBB, LI);
1425    *OS << *I << '\n';
1426  }
1427
1428  const MachineBasicBlock *EndMBB =
1429    LiveInts->getMBBFromIndex(I->end.getPrevSlot());
1430  if (!EndMBB) {
1431    report("Bad end of live segment, no basic block", MF, LI);
1432    *OS << *I << '\n';
1433    return;
1434  }
1435
1436  // No more checks for live-out segments.
1437  if (I->end == LiveInts->getMBBEndIdx(EndMBB))
1438    return;
1439
1440  // RegUnit intervals are allowed dead phis.
1441  if (!TargetRegisterInfo::isVirtualRegister(LI.reg) && VNI->isPHIDef() &&
1442      I->start == VNI->def && I->end == VNI->def.getDeadSlot())
1443    return;
1444
1445  // The live segment is ending inside EndMBB
1446  const MachineInstr *MI =
1447    LiveInts->getInstructionFromIndex(I->end.getPrevSlot());
1448  if (!MI) {
1449    report("Live segment doesn't end at a valid instruction", EndMBB, LI);
1450    *OS << *I << '\n';
1451    return;
1452  }
1453
1454  // The block slot must refer to a basic block boundary.
1455  if (I->end.isBlock()) {
1456    report("Live segment ends at B slot of an instruction", EndMBB, LI);
1457    *OS << *I << '\n';
1458  }
1459
1460  if (I->end.isDead()) {
1461    // Segment ends on the dead slot.
1462    // That means there must be a dead def.
1463    if (!SlotIndex::isSameInstr(I->start, I->end)) {
1464      report("Live segment ending at dead slot spans instructions", EndMBB, LI);
1465      *OS << *I << '\n';
1466    }
1467  }
1468
1469  // A live segment can only end at an early-clobber slot if it is being
1470  // redefined by an early-clobber def.
1471  if (I->end.isEarlyClobber()) {
1472    if (I+1 == LI.end() || (I+1)->start != I->end) {
1473      report("Live segment ending at early clobber slot must be "
1474             "redefined by an EC def in the same instruction", EndMBB, LI);
1475      *OS << *I << '\n';
1476    }
1477  }
1478
1479  // The following checks only apply to virtual registers. Physreg liveness
1480  // is too weird to check.
1481  if (TargetRegisterInfo::isVirtualRegister(LI.reg)) {
1482    // A live range can end with either a redefinition, a kill flag on a
1483    // use, or a dead flag on a def.
1484    bool hasRead = false;
1485    bool hasDeadDef = false;
1486    for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) {
1487      if (!MOI->isReg() || MOI->getReg() != LI.reg)
1488        continue;
1489      if (MOI->readsReg())
1490        hasRead = true;
1491      if (MOI->isDef() && MOI->isDead())
1492        hasDeadDef = true;
1493    }
1494
1495    if (I->end.isDead()) {
1496      if (!hasDeadDef) {
1497        report("Instruction doesn't have a dead def operand", MI);
1498        I->print(*OS);
1499        *OS << " in " << LI << '\n';
1500      }
1501    } else {
1502      if (!hasRead) {
1503        report("Instruction ending live range doesn't read the register", MI);
1504        *OS << *I << " in " << LI << '\n';
1505      }
1506    }
1507  }
1508
1509  // Now check all the basic blocks in this live segment.
1510  MachineFunction::const_iterator MFI = MBB;
1511  // Is this live range the beginning of a non-PHIDef VN?
1512  if (I->start == VNI->def && !VNI->isPHIDef()) {
1513    // Not live-in to any blocks.
1514    if (MBB == EndMBB)
1515      return;
1516    // Skip this block.
1517    ++MFI;
1518  }
1519  for (;;) {
1520    assert(LiveInts->isLiveInToMBB(LI, MFI));
1521    // We don't know how to track physregs into a landing pad.
1522    if (!TargetRegisterInfo::isVirtualRegister(LI.reg) &&
1523        MFI->isLandingPad()) {
1524      if (&*MFI == EndMBB)
1525        break;
1526      ++MFI;
1527      continue;
1528    }
1529
1530    // Is VNI a PHI-def in the current block?
1531    bool IsPHI = VNI->isPHIDef() &&
1532      VNI->def == LiveInts->getMBBStartIdx(MFI);
1533
1534    // Check that VNI is live-out of all predecessors.
1535    for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
1536         PE = MFI->pred_end(); PI != PE; ++PI) {
1537      SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
1538      const VNInfo *PVNI = LI.getVNInfoBefore(PEnd);
1539
1540      // All predecessors must have a live-out value.
1541      if (!PVNI) {
1542        report("Register not marked live out of predecessor", *PI, LI);
1543        *OS << "Valno #" << VNI->id << " live into BB#" << MFI->getNumber()
1544            << '@' << LiveInts->getMBBStartIdx(MFI) << ", not live before "
1545            << PEnd << '\n';
1546        continue;
1547      }
1548
1549      // Only PHI-defs can take different predecessor values.
1550      if (!IsPHI && PVNI != VNI) {
1551        report("Different value live out of predecessor", *PI, LI);
1552        *OS << "Valno #" << PVNI->id << " live out of BB#"
1553            << (*PI)->getNumber() << '@' << PEnd
1554            << "\nValno #" << VNI->id << " live into BB#" << MFI->getNumber()
1555            << '@' << LiveInts->getMBBStartIdx(MFI) << '\n';
1556      }
1557    }
1558    if (&*MFI == EndMBB)
1559      break;
1560    ++MFI;
1561  }
1562}
1563
1564void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
1565  for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end();
1566       I!=E; ++I)
1567    verifyLiveIntervalValue(LI, *I);
1568
1569  for (LiveInterval::const_iterator I = LI.begin(), E = LI.end(); I!=E; ++I)
1570    verifyLiveIntervalSegment(LI, I);
1571
1572  // Check the LI only has one connected component.
1573  if (TargetRegisterInfo::isVirtualRegister(LI.reg)) {
1574    ConnectedVNInfoEqClasses ConEQ(*LiveInts);
1575    unsigned NumComp = ConEQ.Classify(&LI);
1576    if (NumComp > 1) {
1577      report("Multiple connected components in live interval", MF, LI);
1578      for (unsigned comp = 0; comp != NumComp; ++comp) {
1579        *OS << comp << ": valnos";
1580        for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
1581             E = LI.vni_end(); I!=E; ++I)
1582          if (comp == ConEQ.getEqClass(*I))
1583            *OS << ' ' << (*I)->id;
1584        *OS << '\n';
1585      }
1586    }
1587  }
1588}
1589