MachineVerifier.cpp revision 235633
1//===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Pass to verify generated machine code. The following is checked:
11//
12// Operand counts: All explicit operands must be present.
13//
14// Register classes: All physical and virtual register operands must be
15// compatible with the register class required by the instruction descriptor.
16//
17// Register live intervals: Registers must be defined only once, and must be
18// defined before use.
19//
20// The machine code verifier is enabled from LLVMTargetMachine.cpp with the
21// command-line option -verify-machineinstrs, or by defining the environment
22// variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
23// the verifier errors.
24//===----------------------------------------------------------------------===//
25
26#include "llvm/Instructions.h"
27#include "llvm/Function.h"
28#include "llvm/CodeGen/LiveIntervalAnalysis.h"
29#include "llvm/CodeGen/LiveVariables.h"
30#include "llvm/CodeGen/LiveStackAnalysis.h"
31#include "llvm/CodeGen/MachineInstrBundle.h"
32#include "llvm/CodeGen/MachineFunctionPass.h"
33#include "llvm/CodeGen/MachineFrameInfo.h"
34#include "llvm/CodeGen/MachineMemOperand.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/Passes.h"
37#include "llvm/MC/MCAsmInfo.h"
38#include "llvm/Target/TargetMachine.h"
39#include "llvm/Target/TargetRegisterInfo.h"
40#include "llvm/Target/TargetInstrInfo.h"
41#include "llvm/ADT/DenseSet.h"
42#include "llvm/ADT/SetOperations.h"
43#include "llvm/ADT/SmallVector.h"
44#include "llvm/Support/Debug.h"
45#include "llvm/Support/ErrorHandling.h"
46#include "llvm/Support/raw_ostream.h"
47using namespace llvm;
48
49namespace {
50  struct MachineVerifier {
51
52    MachineVerifier(Pass *pass, const char *b) :
53      PASS(pass),
54      Banner(b),
55      OutFileName(getenv("LLVM_VERIFY_MACHINEINSTRS"))
56      {}
57
58    bool runOnMachineFunction(MachineFunction &MF);
59
60    Pass *const PASS;
61    const char *Banner;
62    const char *const OutFileName;
63    raw_ostream *OS;
64    const MachineFunction *MF;
65    const TargetMachine *TM;
66    const TargetInstrInfo *TII;
67    const TargetRegisterInfo *TRI;
68    const MachineRegisterInfo *MRI;
69
70    unsigned foundErrors;
71
72    typedef SmallVector<unsigned, 16> RegVector;
73    typedef SmallVector<const uint32_t*, 4> RegMaskVector;
74    typedef DenseSet<unsigned> RegSet;
75    typedef DenseMap<unsigned, const MachineInstr*> RegMap;
76
77    const MachineInstr *FirstTerminator;
78
79    BitVector regsReserved;
80    BitVector regsAllocatable;
81    RegSet regsLive;
82    RegVector regsDefined, regsDead, regsKilled;
83    RegMaskVector regMasks;
84    RegSet regsLiveInButUnused;
85
86    SlotIndex lastIndex;
87
88    // Add Reg and any sub-registers to RV
89    void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
90      RV.push_back(Reg);
91      if (TargetRegisterInfo::isPhysicalRegister(Reg))
92        for (const uint16_t *R = TRI->getSubRegisters(Reg); *R; R++)
93          RV.push_back(*R);
94    }
95
96    struct BBInfo {
97      // Is this MBB reachable from the MF entry point?
98      bool reachable;
99
100      // Vregs that must be live in because they are used without being
101      // defined. Map value is the user.
102      RegMap vregsLiveIn;
103
104      // Regs killed in MBB. They may be defined again, and will then be in both
105      // regsKilled and regsLiveOut.
106      RegSet regsKilled;
107
108      // Regs defined in MBB and live out. Note that vregs passing through may
109      // be live out without being mentioned here.
110      RegSet regsLiveOut;
111
112      // Vregs that pass through MBB untouched. This set is disjoint from
113      // regsKilled and regsLiveOut.
114      RegSet vregsPassed;
115
116      // Vregs that must pass through MBB because they are needed by a successor
117      // block. This set is disjoint from regsLiveOut.
118      RegSet vregsRequired;
119
120      BBInfo() : reachable(false) {}
121
122      // Add register to vregsPassed if it belongs there. Return true if
123      // anything changed.
124      bool addPassed(unsigned Reg) {
125        if (!TargetRegisterInfo::isVirtualRegister(Reg))
126          return false;
127        if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
128          return false;
129        return vregsPassed.insert(Reg).second;
130      }
131
132      // Same for a full set.
133      bool addPassed(const RegSet &RS) {
134        bool changed = false;
135        for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
136          if (addPassed(*I))
137            changed = true;
138        return changed;
139      }
140
141      // Add register to vregsRequired if it belongs there. Return true if
142      // anything changed.
143      bool addRequired(unsigned Reg) {
144        if (!TargetRegisterInfo::isVirtualRegister(Reg))
145          return false;
146        if (regsLiveOut.count(Reg))
147          return false;
148        return vregsRequired.insert(Reg).second;
149      }
150
151      // Same for a full set.
152      bool addRequired(const RegSet &RS) {
153        bool changed = false;
154        for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
155          if (addRequired(*I))
156            changed = true;
157        return changed;
158      }
159
160      // Same for a full map.
161      bool addRequired(const RegMap &RM) {
162        bool changed = false;
163        for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
164          if (addRequired(I->first))
165            changed = true;
166        return changed;
167      }
168
169      // Live-out registers are either in regsLiveOut or vregsPassed.
170      bool isLiveOut(unsigned Reg) const {
171        return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
172      }
173    };
174
175    // Extra register info per MBB.
176    DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
177
178    bool isReserved(unsigned Reg) {
179      return Reg < regsReserved.size() && regsReserved.test(Reg);
180    }
181
182    bool isAllocatable(unsigned Reg) {
183      return Reg < regsAllocatable.size() && regsAllocatable.test(Reg);
184    }
185
186    // Analysis information if available
187    LiveVariables *LiveVars;
188    LiveIntervals *LiveInts;
189    LiveStacks *LiveStks;
190    SlotIndexes *Indexes;
191
192    void visitMachineFunctionBefore();
193    void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
194    void visitMachineInstrBefore(const MachineInstr *MI);
195    void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
196    void visitMachineInstrAfter(const MachineInstr *MI);
197    void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
198    void visitMachineFunctionAfter();
199
200    void report(const char *msg, const MachineFunction *MF);
201    void report(const char *msg, const MachineBasicBlock *MBB);
202    void report(const char *msg, const MachineInstr *MI);
203    void report(const char *msg, const MachineOperand *MO, unsigned MONum);
204
205    void checkLiveness(const MachineOperand *MO, unsigned MONum);
206    void markReachable(const MachineBasicBlock *MBB);
207    void calcRegsPassed();
208    void checkPHIOps(const MachineBasicBlock *MBB);
209
210    void calcRegsRequired();
211    void verifyLiveVariables();
212    void verifyLiveIntervals();
213  };
214
215  struct MachineVerifierPass : public MachineFunctionPass {
216    static char ID; // Pass ID, replacement for typeid
217    const char *const Banner;
218
219    MachineVerifierPass(const char *b = 0)
220      : MachineFunctionPass(ID), Banner(b) {
221        initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
222      }
223
224    void getAnalysisUsage(AnalysisUsage &AU) const {
225      AU.setPreservesAll();
226      MachineFunctionPass::getAnalysisUsage(AU);
227    }
228
229    bool runOnMachineFunction(MachineFunction &MF) {
230      MF.verify(this, Banner);
231      return false;
232    }
233  };
234
235}
236
237char MachineVerifierPass::ID = 0;
238INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
239                "Verify generated machine code", false, false)
240
241FunctionPass *llvm::createMachineVerifierPass(const char *Banner) {
242  return new MachineVerifierPass(Banner);
243}
244
245void MachineFunction::verify(Pass *p, const char *Banner) const {
246  MachineVerifier(p, Banner)
247    .runOnMachineFunction(const_cast<MachineFunction&>(*this));
248}
249
250bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) {
251  raw_ostream *OutFile = 0;
252  if (OutFileName) {
253    std::string ErrorInfo;
254    OutFile = new raw_fd_ostream(OutFileName, ErrorInfo,
255                                 raw_fd_ostream::F_Append);
256    if (!ErrorInfo.empty()) {
257      errs() << "Error opening '" << OutFileName << "': " << ErrorInfo << '\n';
258      exit(1);
259    }
260
261    OS = OutFile;
262  } else {
263    OS = &errs();
264  }
265
266  foundErrors = 0;
267
268  this->MF = &MF;
269  TM = &MF.getTarget();
270  TII = TM->getInstrInfo();
271  TRI = TM->getRegisterInfo();
272  MRI = &MF.getRegInfo();
273
274  LiveVars = NULL;
275  LiveInts = NULL;
276  LiveStks = NULL;
277  Indexes = NULL;
278  if (PASS) {
279    LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
280    // We don't want to verify LiveVariables if LiveIntervals is available.
281    if (!LiveInts)
282      LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
283    LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
284    Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
285  }
286
287  visitMachineFunctionBefore();
288  for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
289       MFI!=MFE; ++MFI) {
290    visitMachineBasicBlockBefore(MFI);
291    for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
292           MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
293      if (MBBI->getParent() != MFI) {
294        report("Bad instruction parent pointer", MFI);
295        *OS << "Instruction: " << *MBBI;
296        continue;
297      }
298      // Skip BUNDLE instruction for now. FIXME: We should add code to verify
299      // the BUNDLE's specifically.
300      if (MBBI->isBundle())
301        continue;
302      visitMachineInstrBefore(MBBI);
303      for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I)
304        visitMachineOperand(&MBBI->getOperand(I), I);
305      visitMachineInstrAfter(MBBI);
306    }
307    visitMachineBasicBlockAfter(MFI);
308  }
309  visitMachineFunctionAfter();
310
311  if (OutFile)
312    delete OutFile;
313  else if (foundErrors)
314    report_fatal_error("Found "+Twine(foundErrors)+" machine code errors.");
315
316  // Clean up.
317  regsLive.clear();
318  regsDefined.clear();
319  regsDead.clear();
320  regsKilled.clear();
321  regMasks.clear();
322  regsLiveInButUnused.clear();
323  MBBInfoMap.clear();
324
325  return false;                 // no changes
326}
327
328void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
329  assert(MF);
330  *OS << '\n';
331  if (!foundErrors++) {
332    if (Banner)
333      *OS << "# " << Banner << '\n';
334    MF->print(*OS, Indexes);
335  }
336  *OS << "*** Bad machine code: " << msg << " ***\n"
337      << "- function:    " << MF->getFunction()->getName() << "\n";
338}
339
340void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
341  assert(MBB);
342  report(msg, MBB->getParent());
343  *OS << "- basic block: " << MBB->getName()
344      << " " << (void*)MBB
345      << " (BB#" << MBB->getNumber() << ")";
346  if (Indexes)
347    *OS << " [" << Indexes->getMBBStartIdx(MBB)
348        << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
349  *OS << '\n';
350}
351
352void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
353  assert(MI);
354  report(msg, MI->getParent());
355  *OS << "- instruction: ";
356  if (Indexes && Indexes->hasIndex(MI))
357    *OS << Indexes->getInstructionIndex(MI) << '\t';
358  MI->print(*OS, TM);
359}
360
361void MachineVerifier::report(const char *msg,
362                             const MachineOperand *MO, unsigned MONum) {
363  assert(MO);
364  report(msg, MO->getParent());
365  *OS << "- operand " << MONum << ":   ";
366  MO->print(*OS, TM);
367  *OS << "\n";
368}
369
370void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
371  BBInfo &MInfo = MBBInfoMap[MBB];
372  if (!MInfo.reachable) {
373    MInfo.reachable = true;
374    for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
375           SuE = MBB->succ_end(); SuI != SuE; ++SuI)
376      markReachable(*SuI);
377  }
378}
379
380void MachineVerifier::visitMachineFunctionBefore() {
381  lastIndex = SlotIndex();
382  regsReserved = TRI->getReservedRegs(*MF);
383
384  // A sub-register of a reserved register is also reserved
385  for (int Reg = regsReserved.find_first(); Reg>=0;
386       Reg = regsReserved.find_next(Reg)) {
387    for (const uint16_t *Sub = TRI->getSubRegisters(Reg); *Sub; ++Sub) {
388      // FIXME: This should probably be:
389      // assert(regsReserved.test(*Sub) && "Non-reserved sub-register");
390      regsReserved.set(*Sub);
391    }
392  }
393
394  regsAllocatable = TRI->getAllocatableSet(*MF);
395
396  markReachable(&MF->front());
397}
398
399// Does iterator point to a and b as the first two elements?
400static bool matchPair(MachineBasicBlock::const_succ_iterator i,
401                      const MachineBasicBlock *a, const MachineBasicBlock *b) {
402  if (*i == a)
403    return *++i == b;
404  if (*i == b)
405    return *++i == a;
406  return false;
407}
408
409void
410MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
411  FirstTerminator = 0;
412
413  if (MRI->isSSA()) {
414    // If this block has allocatable physical registers live-in, check that
415    // it is an entry block or landing pad.
416    for (MachineBasicBlock::livein_iterator LI = MBB->livein_begin(),
417           LE = MBB->livein_end();
418         LI != LE; ++LI) {
419      unsigned reg = *LI;
420      if (isAllocatable(reg) && !MBB->isLandingPad() &&
421          MBB != MBB->getParent()->begin()) {
422        report("MBB has allocable live-in, but isn't entry or landing-pad.", MBB);
423      }
424    }
425  }
426
427  // Count the number of landing pad successors.
428  SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
429  for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
430       E = MBB->succ_end(); I != E; ++I) {
431    if ((*I)->isLandingPad())
432      LandingPadSuccs.insert(*I);
433  }
434
435  const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
436  const BasicBlock *BB = MBB->getBasicBlock();
437  if (LandingPadSuccs.size() > 1 &&
438      !(AsmInfo &&
439        AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
440        BB && isa<SwitchInst>(BB->getTerminator())))
441    report("MBB has more than one landing pad successor", MBB);
442
443  // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
444  MachineBasicBlock *TBB = 0, *FBB = 0;
445  SmallVector<MachineOperand, 4> Cond;
446  if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB),
447                          TBB, FBB, Cond)) {
448    // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
449    // check whether its answers match up with reality.
450    if (!TBB && !FBB) {
451      // Block falls through to its successor.
452      MachineFunction::const_iterator MBBI = MBB;
453      ++MBBI;
454      if (MBBI == MF->end()) {
455        // It's possible that the block legitimately ends with a noreturn
456        // call or an unreachable, in which case it won't actually fall
457        // out the bottom of the function.
458      } else if (MBB->succ_size() == LandingPadSuccs.size()) {
459        // It's possible that the block legitimately ends with a noreturn
460        // call or an unreachable, in which case it won't actuall fall
461        // out of the block.
462      } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
463        report("MBB exits via unconditional fall-through but doesn't have "
464               "exactly one CFG successor!", MBB);
465      } else if (!MBB->isSuccessor(MBBI)) {
466        report("MBB exits via unconditional fall-through but its successor "
467               "differs from its CFG successor!", MBB);
468      }
469      if (!MBB->empty() && MBB->back().isBarrier() &&
470          !TII->isPredicated(&MBB->back())) {
471        report("MBB exits via unconditional fall-through but ends with a "
472               "barrier instruction!", MBB);
473      }
474      if (!Cond.empty()) {
475        report("MBB exits via unconditional fall-through but has a condition!",
476               MBB);
477      }
478    } else if (TBB && !FBB && Cond.empty()) {
479      // Block unconditionally branches somewhere.
480      if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
481        report("MBB exits via unconditional branch but doesn't have "
482               "exactly one CFG successor!", MBB);
483      } else if (!MBB->isSuccessor(TBB)) {
484        report("MBB exits via unconditional branch but the CFG "
485               "successor doesn't match the actual successor!", MBB);
486      }
487      if (MBB->empty()) {
488        report("MBB exits via unconditional branch but doesn't contain "
489               "any instructions!", MBB);
490      } else if (!MBB->back().isBarrier()) {
491        report("MBB exits via unconditional branch but doesn't end with a "
492               "barrier instruction!", MBB);
493      } else if (!MBB->back().isTerminator()) {
494        report("MBB exits via unconditional branch but the branch isn't a "
495               "terminator instruction!", MBB);
496      }
497    } else if (TBB && !FBB && !Cond.empty()) {
498      // Block conditionally branches somewhere, otherwise falls through.
499      MachineFunction::const_iterator MBBI = MBB;
500      ++MBBI;
501      if (MBBI == MF->end()) {
502        report("MBB conditionally falls through out of function!", MBB);
503      } if (MBB->succ_size() != 2) {
504        report("MBB exits via conditional branch/fall-through but doesn't have "
505               "exactly two CFG successors!", MBB);
506      } else if (!matchPair(MBB->succ_begin(), TBB, MBBI)) {
507        report("MBB exits via conditional branch/fall-through but the CFG "
508               "successors don't match the actual successors!", MBB);
509      }
510      if (MBB->empty()) {
511        report("MBB exits via conditional branch/fall-through but doesn't "
512               "contain any instructions!", MBB);
513      } else if (MBB->back().isBarrier()) {
514        report("MBB exits via conditional branch/fall-through but ends with a "
515               "barrier instruction!", MBB);
516      } else if (!MBB->back().isTerminator()) {
517        report("MBB exits via conditional branch/fall-through but the branch "
518               "isn't a terminator instruction!", MBB);
519      }
520    } else if (TBB && FBB) {
521      // Block conditionally branches somewhere, otherwise branches
522      // somewhere else.
523      if (MBB->succ_size() != 2) {
524        report("MBB exits via conditional branch/branch but doesn't have "
525               "exactly two CFG successors!", MBB);
526      } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
527        report("MBB exits via conditional branch/branch but the CFG "
528               "successors don't match the actual successors!", MBB);
529      }
530      if (MBB->empty()) {
531        report("MBB exits via conditional branch/branch but doesn't "
532               "contain any instructions!", MBB);
533      } else if (!MBB->back().isBarrier()) {
534        report("MBB exits via conditional branch/branch but doesn't end with a "
535               "barrier instruction!", MBB);
536      } else if (!MBB->back().isTerminator()) {
537        report("MBB exits via conditional branch/branch but the branch "
538               "isn't a terminator instruction!", MBB);
539      }
540      if (Cond.empty()) {
541        report("MBB exits via conditinal branch/branch but there's no "
542               "condition!", MBB);
543      }
544    } else {
545      report("AnalyzeBranch returned invalid data!", MBB);
546    }
547  }
548
549  regsLive.clear();
550  for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
551         E = MBB->livein_end(); I != E; ++I) {
552    if (!TargetRegisterInfo::isPhysicalRegister(*I)) {
553      report("MBB live-in list contains non-physical register", MBB);
554      continue;
555    }
556    regsLive.insert(*I);
557    for (const uint16_t *R = TRI->getSubRegisters(*I); *R; R++)
558      regsLive.insert(*R);
559  }
560  regsLiveInButUnused = regsLive;
561
562  const MachineFrameInfo *MFI = MF->getFrameInfo();
563  assert(MFI && "Function has no frame info");
564  BitVector PR = MFI->getPristineRegs(MBB);
565  for (int I = PR.find_first(); I>0; I = PR.find_next(I)) {
566    regsLive.insert(I);
567    for (const uint16_t *R = TRI->getSubRegisters(I); *R; R++)
568      regsLive.insert(*R);
569  }
570
571  regsKilled.clear();
572  regsDefined.clear();
573
574  if (Indexes)
575    lastIndex = Indexes->getMBBStartIdx(MBB);
576}
577
578void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
579  const MCInstrDesc &MCID = MI->getDesc();
580  if (MI->getNumOperands() < MCID.getNumOperands()) {
581    report("Too few operands", MI);
582    *OS << MCID.getNumOperands() << " operands expected, but "
583        << MI->getNumExplicitOperands() << " given.\n";
584  }
585
586  // Check the MachineMemOperands for basic consistency.
587  for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
588       E = MI->memoperands_end(); I != E; ++I) {
589    if ((*I)->isLoad() && !MI->mayLoad())
590      report("Missing mayLoad flag", MI);
591    if ((*I)->isStore() && !MI->mayStore())
592      report("Missing mayStore flag", MI);
593  }
594
595  // Debug values must not have a slot index.
596  // Other instructions must have one, unless they are inside a bundle.
597  if (LiveInts) {
598    bool mapped = !LiveInts->isNotInMIMap(MI);
599    if (MI->isDebugValue()) {
600      if (mapped)
601        report("Debug instruction has a slot index", MI);
602    } else if (MI->isInsideBundle()) {
603      if (mapped)
604        report("Instruction inside bundle has a slot index", MI);
605    } else {
606      if (!mapped)
607        report("Missing slot index", MI);
608    }
609  }
610
611  // Ensure non-terminators don't follow terminators.
612  // Ignore predicated terminators formed by if conversion.
613  // FIXME: If conversion shouldn't need to violate this rule.
614  if (MI->isTerminator() && !TII->isPredicated(MI)) {
615    if (!FirstTerminator)
616      FirstTerminator = MI;
617  } else if (FirstTerminator) {
618    report("Non-terminator instruction after the first terminator", MI);
619    *OS << "First terminator was:\t" << *FirstTerminator;
620  }
621
622  StringRef ErrorInfo;
623  if (!TII->verifyInstruction(MI, ErrorInfo))
624    report(ErrorInfo.data(), MI);
625}
626
627void
628MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
629  const MachineInstr *MI = MO->getParent();
630  const MCInstrDesc &MCID = MI->getDesc();
631  const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
632
633  // The first MCID.NumDefs operands must be explicit register defines
634  if (MONum < MCID.getNumDefs()) {
635    if (!MO->isReg())
636      report("Explicit definition must be a register", MO, MONum);
637    else if (!MO->isDef())
638      report("Explicit definition marked as use", MO, MONum);
639    else if (MO->isImplicit())
640      report("Explicit definition marked as implicit", MO, MONum);
641  } else if (MONum < MCID.getNumOperands()) {
642    // Don't check if it's the last operand in a variadic instruction. See,
643    // e.g., LDM_RET in the arm back end.
644    if (MO->isReg() &&
645        !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) {
646      if (MO->isDef() && !MCOI.isOptionalDef())
647          report("Explicit operand marked as def", MO, MONum);
648      if (MO->isImplicit())
649        report("Explicit operand marked as implicit", MO, MONum);
650    }
651  } else {
652    // ARM adds %reg0 operands to indicate predicates. We'll allow that.
653    if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
654      report("Extra explicit operand on non-variadic instruction", MO, MONum);
655  }
656
657  switch (MO->getType()) {
658  case MachineOperand::MO_Register: {
659    const unsigned Reg = MO->getReg();
660    if (!Reg)
661      return;
662    if (MRI->tracksLiveness() && !MI->isDebugValue())
663      checkLiveness(MO, MONum);
664
665
666    // Check register classes.
667    if (MONum < MCID.getNumOperands() && !MO->isImplicit()) {
668      unsigned SubIdx = MO->getSubReg();
669
670      if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
671        if (SubIdx) {
672          report("Illegal subregister index for physical register", MO, MONum);
673          return;
674        }
675        if (const TargetRegisterClass *DRC = TII->getRegClass(MCID,MONum,TRI)) {
676          if (!DRC->contains(Reg)) {
677            report("Illegal physical register for instruction", MO, MONum);
678            *OS << TRI->getName(Reg) << " is not a "
679                << DRC->getName() << " register.\n";
680          }
681        }
682      } else {
683        // Virtual register.
684        const TargetRegisterClass *RC = MRI->getRegClass(Reg);
685        if (SubIdx) {
686          const TargetRegisterClass *SRC =
687            TRI->getSubClassWithSubReg(RC, SubIdx);
688          if (!SRC) {
689            report("Invalid subregister index for virtual register", MO, MONum);
690            *OS << "Register class " << RC->getName()
691                << " does not support subreg index " << SubIdx << "\n";
692            return;
693          }
694          if (RC != SRC) {
695            report("Invalid register class for subregister index", MO, MONum);
696            *OS << "Register class " << RC->getName()
697                << " does not fully support subreg index " << SubIdx << "\n";
698            return;
699          }
700        }
701        if (const TargetRegisterClass *DRC = TII->getRegClass(MCID,MONum,TRI)) {
702          if (SubIdx) {
703            const TargetRegisterClass *SuperRC =
704              TRI->getLargestLegalSuperClass(RC);
705            if (!SuperRC) {
706              report("No largest legal super class exists.", MO, MONum);
707              return;
708            }
709            DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
710            if (!DRC) {
711              report("No matching super-reg register class.", MO, MONum);
712              return;
713            }
714          }
715          if (!RC->hasSuperClassEq(DRC)) {
716            report("Illegal virtual register for instruction", MO, MONum);
717            *OS << "Expected a " << DRC->getName() << " register, but got a "
718                << RC->getName() << " register\n";
719          }
720        }
721      }
722    }
723    break;
724  }
725
726  case MachineOperand::MO_RegisterMask:
727    regMasks.push_back(MO->getRegMask());
728    break;
729
730  case MachineOperand::MO_MachineBasicBlock:
731    if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
732      report("PHI operand is not in the CFG", MO, MONum);
733    break;
734
735  case MachineOperand::MO_FrameIndex:
736    if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
737        LiveInts && !LiveInts->isNotInMIMap(MI)) {
738      LiveInterval &LI = LiveStks->getInterval(MO->getIndex());
739      SlotIndex Idx = LiveInts->getInstructionIndex(MI);
740      if (MI->mayLoad() && !LI.liveAt(Idx.getRegSlot(true))) {
741        report("Instruction loads from dead spill slot", MO, MONum);
742        *OS << "Live stack: " << LI << '\n';
743      }
744      if (MI->mayStore() && !LI.liveAt(Idx.getRegSlot())) {
745        report("Instruction stores to dead spill slot", MO, MONum);
746        *OS << "Live stack: " << LI << '\n';
747      }
748    }
749    break;
750
751  default:
752    break;
753  }
754}
755
756void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
757  const MachineInstr *MI = MO->getParent();
758  const unsigned Reg = MO->getReg();
759
760  // Both use and def operands can read a register.
761  if (MO->readsReg()) {
762    regsLiveInButUnused.erase(Reg);
763
764    bool isKill = false;
765    unsigned defIdx;
766    if (MI->isRegTiedToDefOperand(MONum, &defIdx)) {
767      // A two-addr use counts as a kill if use and def are the same.
768      unsigned DefReg = MI->getOperand(defIdx).getReg();
769      if (Reg == DefReg)
770        isKill = true;
771      else if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
772        report("Two-address instruction operands must be identical", MO, MONum);
773      }
774    } else
775      isKill = MO->isKill();
776
777    if (isKill)
778      addRegWithSubRegs(regsKilled, Reg);
779
780    // Check that LiveVars knows this kill.
781    if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
782        MO->isKill()) {
783      LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
784      if (std::find(VI.Kills.begin(), VI.Kills.end(), MI) == VI.Kills.end())
785        report("Kill missing from LiveVariables", MO, MONum);
786    }
787
788    // Check LiveInts liveness and kill.
789    if (TargetRegisterInfo::isVirtualRegister(Reg) &&
790        LiveInts && !LiveInts->isNotInMIMap(MI)) {
791      SlotIndex UseIdx = LiveInts->getInstructionIndex(MI).getRegSlot(true);
792      if (LiveInts->hasInterval(Reg)) {
793        const LiveInterval &LI = LiveInts->getInterval(Reg);
794        if (!LI.liveAt(UseIdx)) {
795          report("No live range at use", MO, MONum);
796          *OS << UseIdx << " is not live in " << LI << '\n';
797        }
798        // Check for extra kill flags.
799        // Note that we allow missing kill flags for now.
800        if (MO->isKill() && !LI.killedAt(UseIdx.getRegSlot())) {
801          report("Live range continues after kill flag", MO, MONum);
802          *OS << "Live range: " << LI << '\n';
803        }
804      } else {
805        report("Virtual register has no Live interval", MO, MONum);
806      }
807    }
808
809    // Use of a dead register.
810    if (!regsLive.count(Reg)) {
811      if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
812        // Reserved registers may be used even when 'dead'.
813        if (!isReserved(Reg))
814          report("Using an undefined physical register", MO, MONum);
815      } else {
816        BBInfo &MInfo = MBBInfoMap[MI->getParent()];
817        // We don't know which virtual registers are live in, so only complain
818        // if vreg was killed in this MBB. Otherwise keep track of vregs that
819        // must be live in. PHI instructions are handled separately.
820        if (MInfo.regsKilled.count(Reg))
821          report("Using a killed virtual register", MO, MONum);
822        else if (!MI->isPHI())
823          MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
824      }
825    }
826  }
827
828  if (MO->isDef()) {
829    // Register defined.
830    // TODO: verify that earlyclobber ops are not used.
831    if (MO->isDead())
832      addRegWithSubRegs(regsDead, Reg);
833    else
834      addRegWithSubRegs(regsDefined, Reg);
835
836    // Verify SSA form.
837    if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) &&
838        llvm::next(MRI->def_begin(Reg)) != MRI->def_end())
839      report("Multiple virtual register defs in SSA form", MO, MONum);
840
841    // Check LiveInts for a live range, but only for virtual registers.
842    if (LiveInts && TargetRegisterInfo::isVirtualRegister(Reg) &&
843        !LiveInts->isNotInMIMap(MI)) {
844      SlotIndex DefIdx = LiveInts->getInstructionIndex(MI).getRegSlot();
845      if (LiveInts->hasInterval(Reg)) {
846        const LiveInterval &LI = LiveInts->getInterval(Reg);
847        if (const VNInfo *VNI = LI.getVNInfoAt(DefIdx)) {
848          assert(VNI && "NULL valno is not allowed");
849          if (VNI->def != DefIdx && !MO->isEarlyClobber()) {
850            report("Inconsistent valno->def", MO, MONum);
851            *OS << "Valno " << VNI->id << " is not defined at "
852              << DefIdx << " in " << LI << '\n';
853          }
854        } else {
855          report("No live range at def", MO, MONum);
856          *OS << DefIdx << " is not live in " << LI << '\n';
857        }
858      } else {
859        report("Virtual register has no Live interval", MO, MONum);
860      }
861    }
862  }
863}
864
865void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {
866  BBInfo &MInfo = MBBInfoMap[MI->getParent()];
867  set_union(MInfo.regsKilled, regsKilled);
868  set_subtract(regsLive, regsKilled); regsKilled.clear();
869  // Kill any masked registers.
870  while (!regMasks.empty()) {
871    const uint32_t *Mask = regMasks.pop_back_val();
872    for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
873      if (TargetRegisterInfo::isPhysicalRegister(*I) &&
874          MachineOperand::clobbersPhysReg(Mask, *I))
875        regsDead.push_back(*I);
876  }
877  set_subtract(regsLive, regsDead);   regsDead.clear();
878  set_union(regsLive, regsDefined);   regsDefined.clear();
879
880  if (Indexes && Indexes->hasIndex(MI)) {
881    SlotIndex idx = Indexes->getInstructionIndex(MI);
882    if (!(idx > lastIndex)) {
883      report("Instruction index out of order", MI);
884      *OS << "Last instruction was at " << lastIndex << '\n';
885    }
886    lastIndex = idx;
887  }
888}
889
890void
891MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
892  MBBInfoMap[MBB].regsLiveOut = regsLive;
893  regsLive.clear();
894
895  if (Indexes) {
896    SlotIndex stop = Indexes->getMBBEndIdx(MBB);
897    if (!(stop > lastIndex)) {
898      report("Block ends before last instruction index", MBB);
899      *OS << "Block ends at " << stop
900          << " last instruction was at " << lastIndex << '\n';
901    }
902    lastIndex = stop;
903  }
904}
905
906// Calculate the largest possible vregsPassed sets. These are the registers that
907// can pass through an MBB live, but may not be live every time. It is assumed
908// that all vregsPassed sets are empty before the call.
909void MachineVerifier::calcRegsPassed() {
910  // First push live-out regs to successors' vregsPassed. Remember the MBBs that
911  // have any vregsPassed.
912  SmallPtrSet<const MachineBasicBlock*, 8> todo;
913  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
914       MFI != MFE; ++MFI) {
915    const MachineBasicBlock &MBB(*MFI);
916    BBInfo &MInfo = MBBInfoMap[&MBB];
917    if (!MInfo.reachable)
918      continue;
919    for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
920           SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
921      BBInfo &SInfo = MBBInfoMap[*SuI];
922      if (SInfo.addPassed(MInfo.regsLiveOut))
923        todo.insert(*SuI);
924    }
925  }
926
927  // Iteratively push vregsPassed to successors. This will converge to the same
928  // final state regardless of DenseSet iteration order.
929  while (!todo.empty()) {
930    const MachineBasicBlock *MBB = *todo.begin();
931    todo.erase(MBB);
932    BBInfo &MInfo = MBBInfoMap[MBB];
933    for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
934           SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
935      if (*SuI == MBB)
936        continue;
937      BBInfo &SInfo = MBBInfoMap[*SuI];
938      if (SInfo.addPassed(MInfo.vregsPassed))
939        todo.insert(*SuI);
940    }
941  }
942}
943
944// Calculate the set of virtual registers that must be passed through each basic
945// block in order to satisfy the requirements of successor blocks. This is very
946// similar to calcRegsPassed, only backwards.
947void MachineVerifier::calcRegsRequired() {
948  // First push live-in regs to predecessors' vregsRequired.
949  SmallPtrSet<const MachineBasicBlock*, 8> todo;
950  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
951       MFI != MFE; ++MFI) {
952    const MachineBasicBlock &MBB(*MFI);
953    BBInfo &MInfo = MBBInfoMap[&MBB];
954    for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
955           PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
956      BBInfo &PInfo = MBBInfoMap[*PrI];
957      if (PInfo.addRequired(MInfo.vregsLiveIn))
958        todo.insert(*PrI);
959    }
960  }
961
962  // Iteratively push vregsRequired to predecessors. This will converge to the
963  // same final state regardless of DenseSet iteration order.
964  while (!todo.empty()) {
965    const MachineBasicBlock *MBB = *todo.begin();
966    todo.erase(MBB);
967    BBInfo &MInfo = MBBInfoMap[MBB];
968    for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
969           PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
970      if (*PrI == MBB)
971        continue;
972      BBInfo &SInfo = MBBInfoMap[*PrI];
973      if (SInfo.addRequired(MInfo.vregsRequired))
974        todo.insert(*PrI);
975    }
976  }
977}
978
979// Check PHI instructions at the beginning of MBB. It is assumed that
980// calcRegsPassed has been run so BBInfo::isLiveOut is valid.
981void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) {
982  SmallPtrSet<const MachineBasicBlock*, 8> seen;
983  for (MachineBasicBlock::const_iterator BBI = MBB->begin(), BBE = MBB->end();
984       BBI != BBE && BBI->isPHI(); ++BBI) {
985    seen.clear();
986
987    for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
988      unsigned Reg = BBI->getOperand(i).getReg();
989      const MachineBasicBlock *Pre = BBI->getOperand(i + 1).getMBB();
990      if (!Pre->isSuccessor(MBB))
991        continue;
992      seen.insert(Pre);
993      BBInfo &PrInfo = MBBInfoMap[Pre];
994      if (PrInfo.reachable && !PrInfo.isLiveOut(Reg))
995        report("PHI operand is not live-out from predecessor",
996               &BBI->getOperand(i), i);
997    }
998
999    // Did we see all predecessors?
1000    for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
1001           PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
1002      if (!seen.count(*PrI)) {
1003        report("Missing PHI operand", BBI);
1004        *OS << "BB#" << (*PrI)->getNumber()
1005            << " is a predecessor according to the CFG.\n";
1006      }
1007    }
1008  }
1009}
1010
1011void MachineVerifier::visitMachineFunctionAfter() {
1012  calcRegsPassed();
1013
1014  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
1015       MFI != MFE; ++MFI) {
1016    BBInfo &MInfo = MBBInfoMap[MFI];
1017
1018    // Skip unreachable MBBs.
1019    if (!MInfo.reachable)
1020      continue;
1021
1022    checkPHIOps(MFI);
1023  }
1024
1025  // Now check liveness info if available
1026  calcRegsRequired();
1027
1028  if (MRI->isSSA() && !MF->empty()) {
1029    BBInfo &MInfo = MBBInfoMap[&MF->front()];
1030    for (RegSet::iterator
1031         I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1032         ++I)
1033      report("Virtual register def doesn't dominate all uses.",
1034             MRI->getVRegDef(*I));
1035  }
1036
1037  if (LiveVars)
1038    verifyLiveVariables();
1039  if (LiveInts)
1040    verifyLiveIntervals();
1041}
1042
1043void MachineVerifier::verifyLiveVariables() {
1044  assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
1045  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1046    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1047    LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1048    for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
1049         MFI != MFE; ++MFI) {
1050      BBInfo &MInfo = MBBInfoMap[MFI];
1051
1052      // Our vregsRequired should be identical to LiveVariables' AliveBlocks
1053      if (MInfo.vregsRequired.count(Reg)) {
1054        if (!VI.AliveBlocks.test(MFI->getNumber())) {
1055          report("LiveVariables: Block missing from AliveBlocks", MFI);
1056          *OS << "Virtual register " << PrintReg(Reg)
1057              << " must be live through the block.\n";
1058        }
1059      } else {
1060        if (VI.AliveBlocks.test(MFI->getNumber())) {
1061          report("LiveVariables: Block should not be in AliveBlocks", MFI);
1062          *OS << "Virtual register " << PrintReg(Reg)
1063              << " is not needed live through the block.\n";
1064        }
1065      }
1066    }
1067  }
1068}
1069
1070void MachineVerifier::verifyLiveIntervals() {
1071  assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
1072  for (LiveIntervals::const_iterator LVI = LiveInts->begin(),
1073       LVE = LiveInts->end(); LVI != LVE; ++LVI) {
1074    const LiveInterval &LI = *LVI->second;
1075
1076    // Spilling and splitting may leave unused registers around. Skip them.
1077    if (MRI->use_empty(LI.reg))
1078      continue;
1079
1080    // Physical registers have much weirdness going on, mostly from coalescing.
1081    // We should probably fix it, but for now just ignore them.
1082    if (TargetRegisterInfo::isPhysicalRegister(LI.reg))
1083      continue;
1084
1085    assert(LVI->first == LI.reg && "Invalid reg to interval mapping");
1086
1087    for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end();
1088         I!=E; ++I) {
1089      VNInfo *VNI = *I;
1090      const VNInfo *DefVNI = LI.getVNInfoAt(VNI->def);
1091
1092      if (!DefVNI) {
1093        if (!VNI->isUnused()) {
1094          report("Valno not live at def and not marked unused", MF);
1095          *OS << "Valno #" << VNI->id << " in " << LI << '\n';
1096        }
1097        continue;
1098      }
1099
1100      if (VNI->isUnused())
1101        continue;
1102
1103      if (DefVNI != VNI) {
1104        report("Live range at def has different valno", MF);
1105        *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
1106            << " where valno #" << DefVNI->id << " is live in " << LI << '\n';
1107        continue;
1108      }
1109
1110      const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
1111      if (!MBB) {
1112        report("Invalid definition index", MF);
1113        *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
1114            << " in " << LI << '\n';
1115        continue;
1116      }
1117
1118      if (VNI->isPHIDef()) {
1119        if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
1120          report("PHIDef value is not defined at MBB start", MF);
1121          *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
1122              << ", not at the beginning of BB#" << MBB->getNumber()
1123              << " in " << LI << '\n';
1124        }
1125      } else {
1126        // Non-PHI def.
1127        const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
1128        if (!MI) {
1129          report("No instruction at def index", MF);
1130          *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
1131              << " in " << LI << '\n';
1132          continue;
1133        }
1134
1135        bool hasDef = false;
1136        bool isEarlyClobber = false;
1137        for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) {
1138          if (!MOI->isReg() || !MOI->isDef())
1139            continue;
1140          if (TargetRegisterInfo::isVirtualRegister(LI.reg)) {
1141            if (MOI->getReg() != LI.reg)
1142              continue;
1143          } else {
1144            if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) ||
1145                !TRI->regsOverlap(LI.reg, MOI->getReg()))
1146              continue;
1147          }
1148          hasDef = true;
1149          if (MOI->isEarlyClobber())
1150            isEarlyClobber = true;
1151        }
1152
1153        if (!hasDef) {
1154          report("Defining instruction does not modify register", MI);
1155          *OS << "Valno #" << VNI->id << " in " << LI << '\n';
1156        }
1157
1158        // Early clobber defs begin at USE slots, but other defs must begin at
1159        // DEF slots.
1160        if (isEarlyClobber) {
1161          if (!VNI->def.isEarlyClobber()) {
1162            report("Early clobber def must be at an early-clobber slot", MF);
1163            *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
1164                << " in " << LI << '\n';
1165          }
1166        } else if (!VNI->def.isRegister()) {
1167          report("Non-PHI, non-early clobber def must be at a register slot",
1168                 MF);
1169          *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
1170              << " in " << LI << '\n';
1171        }
1172      }
1173    }
1174
1175    for (LiveInterval::const_iterator I = LI.begin(), E = LI.end(); I!=E; ++I) {
1176      const VNInfo *VNI = I->valno;
1177      assert(VNI && "Live range has no valno");
1178
1179      if (VNI->id >= LI.getNumValNums() || VNI != LI.getValNumInfo(VNI->id)) {
1180        report("Foreign valno in live range", MF);
1181        I->print(*OS);
1182        *OS << " has a valno not in " << LI << '\n';
1183      }
1184
1185      if (VNI->isUnused()) {
1186        report("Live range valno is marked unused", MF);
1187        I->print(*OS);
1188        *OS << " in " << LI << '\n';
1189      }
1190
1191      const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(I->start);
1192      if (!MBB) {
1193        report("Bad start of live segment, no basic block", MF);
1194        I->print(*OS);
1195        *OS << " in " << LI << '\n';
1196        continue;
1197      }
1198      SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
1199      if (I->start != MBBStartIdx && I->start != VNI->def) {
1200        report("Live segment must begin at MBB entry or valno def", MBB);
1201        I->print(*OS);
1202        *OS << " in " << LI << '\n' << "Basic block starts at "
1203            << MBBStartIdx << '\n';
1204      }
1205
1206      const MachineBasicBlock *EndMBB =
1207                                LiveInts->getMBBFromIndex(I->end.getPrevSlot());
1208      if (!EndMBB) {
1209        report("Bad end of live segment, no basic block", MF);
1210        I->print(*OS);
1211        *OS << " in " << LI << '\n';
1212        continue;
1213      }
1214
1215      // No more checks for live-out segments.
1216      if (I->end == LiveInts->getMBBEndIdx(EndMBB))
1217        continue;
1218
1219      // The live segment is ending inside EndMBB
1220      const MachineInstr *MI =
1221        LiveInts->getInstructionFromIndex(I->end.getPrevSlot());
1222      if (!MI) {
1223        report("Live segment doesn't end at a valid instruction", EndMBB);
1224        I->print(*OS);
1225        *OS << " in " << LI << '\n' << "Basic block starts at "
1226          << MBBStartIdx << '\n';
1227        continue;
1228      }
1229
1230      // The block slot must refer to a basic block boundary.
1231      if (I->end.isBlock()) {
1232        report("Live segment ends at B slot of an instruction", MI);
1233        I->print(*OS);
1234        *OS << " in " << LI << '\n';
1235      }
1236
1237      if (I->end.isDead()) {
1238        // Segment ends on the dead slot.
1239        // That means there must be a dead def.
1240        if (!SlotIndex::isSameInstr(I->start, I->end)) {
1241          report("Live segment ending at dead slot spans instructions", MI);
1242          I->print(*OS);
1243          *OS << " in " << LI << '\n';
1244        }
1245      }
1246
1247      // A live segment can only end at an early-clobber slot if it is being
1248      // redefined by an early-clobber def.
1249      if (I->end.isEarlyClobber()) {
1250        if (I+1 == E || (I+1)->start != I->end) {
1251          report("Live segment ending at early clobber slot must be "
1252                 "redefined by an EC def in the same instruction", MI);
1253          I->print(*OS);
1254          *OS << " in " << LI << '\n';
1255        }
1256      }
1257
1258      // The following checks only apply to virtual registers. Physreg liveness
1259      // is too weird to check.
1260      if (TargetRegisterInfo::isVirtualRegister(LI.reg)) {
1261        // A live range can end with either a redefinition, a kill flag on a
1262        // use, or a dead flag on a def.
1263        bool hasRead = false;
1264        bool hasDeadDef = false;
1265        for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) {
1266          if (!MOI->isReg() || MOI->getReg() != LI.reg)
1267            continue;
1268          if (MOI->readsReg())
1269            hasRead = true;
1270          if (MOI->isDef() && MOI->isDead())
1271            hasDeadDef = true;
1272        }
1273
1274        if (I->end.isDead()) {
1275          if (!hasDeadDef) {
1276            report("Instruction doesn't have a dead def operand", MI);
1277            I->print(*OS);
1278            *OS << " in " << LI << '\n';
1279          }
1280        } else {
1281          if (!hasRead) {
1282            report("Instruction ending live range doesn't read the register",
1283                   MI);
1284            I->print(*OS);
1285            *OS << " in " << LI << '\n';
1286          }
1287        }
1288      }
1289
1290      // Now check all the basic blocks in this live segment.
1291      MachineFunction::const_iterator MFI = MBB;
1292      // Is this live range the beginning of a non-PHIDef VN?
1293      if (I->start == VNI->def && !VNI->isPHIDef()) {
1294        // Not live-in to any blocks.
1295        if (MBB == EndMBB)
1296          continue;
1297        // Skip this block.
1298        ++MFI;
1299      }
1300      for (;;) {
1301        assert(LiveInts->isLiveInToMBB(LI, MFI));
1302        // We don't know how to track physregs into a landing pad.
1303        if (TargetRegisterInfo::isPhysicalRegister(LI.reg) &&
1304            MFI->isLandingPad()) {
1305          if (&*MFI == EndMBB)
1306            break;
1307          ++MFI;
1308          continue;
1309        }
1310        // Check that VNI is live-out of all predecessors.
1311        for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
1312             PE = MFI->pred_end(); PI != PE; ++PI) {
1313          SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
1314          const VNInfo *PVNI = LI.getVNInfoBefore(PEnd);
1315
1316          if (VNI->isPHIDef() && VNI->def == LiveInts->getMBBStartIdx(MFI))
1317            continue;
1318
1319          if (!PVNI) {
1320            report("Register not marked live out of predecessor", *PI);
1321            *OS << "Valno #" << VNI->id << " live into BB#" << MFI->getNumber()
1322                << '@' << LiveInts->getMBBStartIdx(MFI) << ", not live before "
1323                << PEnd << " in " << LI << '\n';
1324            continue;
1325          }
1326
1327          if (PVNI != VNI) {
1328            report("Different value live out of predecessor", *PI);
1329            *OS << "Valno #" << PVNI->id << " live out of BB#"
1330                << (*PI)->getNumber() << '@' << PEnd
1331                << "\nValno #" << VNI->id << " live into BB#" << MFI->getNumber()
1332                << '@' << LiveInts->getMBBStartIdx(MFI) << " in " << LI << '\n';
1333          }
1334        }
1335        if (&*MFI == EndMBB)
1336          break;
1337        ++MFI;
1338      }
1339    }
1340
1341    // Check the LI only has one connected component.
1342    if (TargetRegisterInfo::isVirtualRegister(LI.reg)) {
1343      ConnectedVNInfoEqClasses ConEQ(*LiveInts);
1344      unsigned NumComp = ConEQ.Classify(&LI);
1345      if (NumComp > 1) {
1346        report("Multiple connected components in live interval", MF);
1347        *OS << NumComp << " components in " << LI << '\n';
1348        for (unsigned comp = 0; comp != NumComp; ++comp) {
1349          *OS << comp << ": valnos";
1350          for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
1351               E = LI.vni_end(); I!=E; ++I)
1352            if (comp == ConEQ.getEqClass(*I))
1353              *OS << ' ' << (*I)->id;
1354          *OS << '\n';
1355        }
1356      }
1357    }
1358  }
1359}
1360
1361