MachineVerifier.cpp revision 202375
1//===-- MachineVerifier.cpp - Machine Code Verifier -------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Pass to verify generated machine code. The following is checked:
11//
12// Operand counts: All explicit operands must be present.
13//
14// Register classes: All physical and virtual register operands must be
15// compatible with the register class required by the instruction descriptor.
16//
17// Register live intervals: Registers must be defined only once, and must be
18// defined before use.
19//
20// The machine code verifier is enabled from LLVMTargetMachine.cpp with the
21// command-line option -verify-machineinstrs, or by defining the environment
22// variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
23// the verifier errors.
24//===----------------------------------------------------------------------===//
25
26#include "llvm/Function.h"
27#include "llvm/CodeGen/LiveVariables.h"
28#include "llvm/CodeGen/MachineFunctionPass.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineMemOperand.h"
31#include "llvm/CodeGen/MachineRegisterInfo.h"
32#include "llvm/CodeGen/Passes.h"
33#include "llvm/Target/TargetMachine.h"
34#include "llvm/Target/TargetRegisterInfo.h"
35#include "llvm/Target/TargetInstrInfo.h"
36#include "llvm/ADT/DenseSet.h"
37#include "llvm/ADT/SetOperations.h"
38#include "llvm/ADT/SmallVector.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/raw_ostream.h"
42using namespace llvm;
43
44namespace {
45  struct MachineVerifier {
46
47    MachineVerifier(Pass *pass, bool allowDoubleDefs) :
48      PASS(pass),
49      allowVirtDoubleDefs(allowDoubleDefs),
50      allowPhysDoubleDefs(allowDoubleDefs),
51      OutFileName(getenv("LLVM_VERIFY_MACHINEINSTRS"))
52      {}
53
54    bool runOnMachineFunction(MachineFunction &MF);
55
56    Pass *const PASS;
57    const bool allowVirtDoubleDefs;
58    const bool allowPhysDoubleDefs;
59
60    const char *const OutFileName;
61    raw_ostream *OS;
62    const MachineFunction *MF;
63    const TargetMachine *TM;
64    const TargetRegisterInfo *TRI;
65    const MachineRegisterInfo *MRI;
66
67    unsigned foundErrors;
68
69    typedef SmallVector<unsigned, 16> RegVector;
70    typedef DenseSet<unsigned> RegSet;
71    typedef DenseMap<unsigned, const MachineInstr*> RegMap;
72
73    BitVector regsReserved;
74    RegSet regsLive;
75    RegVector regsDefined, regsDead, regsKilled;
76    RegSet regsLiveInButUnused;
77
78    // Add Reg and any sub-registers to RV
79    void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
80      RV.push_back(Reg);
81      if (TargetRegisterInfo::isPhysicalRegister(Reg))
82        for (const unsigned *R = TRI->getSubRegisters(Reg); *R; R++)
83          RV.push_back(*R);
84    }
85
86    struct BBInfo {
87      // Is this MBB reachable from the MF entry point?
88      bool reachable;
89
90      // Vregs that must be live in because they are used without being
91      // defined. Map value is the user.
92      RegMap vregsLiveIn;
93
94      // Vregs that must be dead in because they are defined without being
95      // killed first. Map value is the defining instruction.
96      RegMap vregsDeadIn;
97
98      // Regs killed in MBB. They may be defined again, and will then be in both
99      // regsKilled and regsLiveOut.
100      RegSet regsKilled;
101
102      // Regs defined in MBB and live out. Note that vregs passing through may
103      // be live out without being mentioned here.
104      RegSet regsLiveOut;
105
106      // Vregs that pass through MBB untouched. This set is disjoint from
107      // regsKilled and regsLiveOut.
108      RegSet vregsPassed;
109
110      // Vregs that must pass through MBB because they are needed by a successor
111      // block. This set is disjoint from regsLiveOut.
112      RegSet vregsRequired;
113
114      BBInfo() : reachable(false) {}
115
116      // Add register to vregsPassed if it belongs there. Return true if
117      // anything changed.
118      bool addPassed(unsigned Reg) {
119        if (!TargetRegisterInfo::isVirtualRegister(Reg))
120          return false;
121        if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
122          return false;
123        return vregsPassed.insert(Reg).second;
124      }
125
126      // Same for a full set.
127      bool addPassed(const RegSet &RS) {
128        bool changed = false;
129        for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
130          if (addPassed(*I))
131            changed = true;
132        return changed;
133      }
134
135      // Add register to vregsRequired if it belongs there. Return true if
136      // anything changed.
137      bool addRequired(unsigned Reg) {
138        if (!TargetRegisterInfo::isVirtualRegister(Reg))
139          return false;
140        if (regsLiveOut.count(Reg))
141          return false;
142        return vregsRequired.insert(Reg).second;
143      }
144
145      // Same for a full set.
146      bool addRequired(const RegSet &RS) {
147        bool changed = false;
148        for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
149          if (addRequired(*I))
150            changed = true;
151        return changed;
152      }
153
154      // Same for a full map.
155      bool addRequired(const RegMap &RM) {
156        bool changed = false;
157        for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
158          if (addRequired(I->first))
159            changed = true;
160        return changed;
161      }
162
163      // Live-out registers are either in regsLiveOut or vregsPassed.
164      bool isLiveOut(unsigned Reg) const {
165        return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
166      }
167    };
168
169    // Extra register info per MBB.
170    DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
171
172    bool isReserved(unsigned Reg) {
173      return Reg < regsReserved.size() && regsReserved.test(Reg);
174    }
175
176    // Analysis information if available
177    LiveVariables *LiveVars;
178
179    void visitMachineFunctionBefore();
180    void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
181    void visitMachineInstrBefore(const MachineInstr *MI);
182    void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
183    void visitMachineInstrAfter(const MachineInstr *MI);
184    void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
185    void visitMachineFunctionAfter();
186
187    void report(const char *msg, const MachineFunction *MF);
188    void report(const char *msg, const MachineBasicBlock *MBB);
189    void report(const char *msg, const MachineInstr *MI);
190    void report(const char *msg, const MachineOperand *MO, unsigned MONum);
191
192    void markReachable(const MachineBasicBlock *MBB);
193    void calcRegsPassed();
194    void checkPHIOps(const MachineBasicBlock *MBB);
195
196    void calcRegsRequired();
197    void verifyLiveVariables();
198  };
199
200  struct MachineVerifierPass : public MachineFunctionPass {
201    static char ID; // Pass ID, replacement for typeid
202    bool AllowDoubleDefs;
203
204    explicit MachineVerifierPass(bool allowDoubleDefs = false)
205      : MachineFunctionPass(&ID),
206        AllowDoubleDefs(allowDoubleDefs) {}
207
208    void getAnalysisUsage(AnalysisUsage &AU) const {
209      AU.setPreservesAll();
210      MachineFunctionPass::getAnalysisUsage(AU);
211    }
212
213    bool runOnMachineFunction(MachineFunction &MF) {
214      MF.verify(this, AllowDoubleDefs);
215      return false;
216    }
217  };
218
219}
220
221char MachineVerifierPass::ID = 0;
222static RegisterPass<MachineVerifierPass>
223MachineVer("machineverifier", "Verify generated machine code");
224static const PassInfo *const MachineVerifyID = &MachineVer;
225
226FunctionPass *llvm::createMachineVerifierPass(bool allowPhysDoubleDefs) {
227  return new MachineVerifierPass(allowPhysDoubleDefs);
228}
229
230void MachineFunction::verify(Pass *p, bool allowDoubleDefs) const {
231  MachineVerifier(p, allowDoubleDefs)
232    .runOnMachineFunction(const_cast<MachineFunction&>(*this));
233}
234
235bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) {
236  raw_ostream *OutFile = 0;
237  if (OutFileName) {
238    std::string ErrorInfo;
239    OutFile = new raw_fd_ostream(OutFileName, ErrorInfo,
240                                 raw_fd_ostream::F_Append);
241    if (!ErrorInfo.empty()) {
242      errs() << "Error opening '" << OutFileName << "': " << ErrorInfo << '\n';
243      exit(1);
244    }
245
246    OS = OutFile;
247  } else {
248    OS = &errs();
249  }
250
251  foundErrors = 0;
252
253  this->MF = &MF;
254  TM = &MF.getTarget();
255  TRI = TM->getRegisterInfo();
256  MRI = &MF.getRegInfo();
257
258  if (PASS) {
259    LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
260  } else {
261    LiveVars = NULL;
262  }
263
264  visitMachineFunctionBefore();
265  for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
266       MFI!=MFE; ++MFI) {
267    visitMachineBasicBlockBefore(MFI);
268    for (MachineBasicBlock::const_iterator MBBI = MFI->begin(),
269           MBBE = MFI->end(); MBBI != MBBE; ++MBBI) {
270      visitMachineInstrBefore(MBBI);
271      for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I)
272        visitMachineOperand(&MBBI->getOperand(I), I);
273      visitMachineInstrAfter(MBBI);
274    }
275    visitMachineBasicBlockAfter(MFI);
276  }
277  visitMachineFunctionAfter();
278
279  if (OutFile)
280    delete OutFile;
281  else if (foundErrors)
282    llvm_report_error("Found "+Twine(foundErrors)+" machine code errors.");
283
284  // Clean up.
285  regsLive.clear();
286  regsDefined.clear();
287  regsDead.clear();
288  regsKilled.clear();
289  regsLiveInButUnused.clear();
290  MBBInfoMap.clear();
291
292  return false;                 // no changes
293}
294
295void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
296  assert(MF);
297  *OS << '\n';
298  if (!foundErrors++)
299    MF->print(*OS);
300  *OS << "*** Bad machine code: " << msg << " ***\n"
301      << "- function:    " << MF->getFunction()->getNameStr() << "\n";
302}
303
304void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
305  assert(MBB);
306  report(msg, MBB->getParent());
307  *OS << "- basic block: " << MBB->getName()
308      << " " << (void*)MBB
309      << " (BB#" << MBB->getNumber() << ")\n";
310}
311
312void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
313  assert(MI);
314  report(msg, MI->getParent());
315  *OS << "- instruction: ";
316  MI->print(*OS, TM);
317}
318
319void MachineVerifier::report(const char *msg,
320                             const MachineOperand *MO, unsigned MONum) {
321  assert(MO);
322  report(msg, MO->getParent());
323  *OS << "- operand " << MONum << ":   ";
324  MO->print(*OS, TM);
325  *OS << "\n";
326}
327
328void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
329  BBInfo &MInfo = MBBInfoMap[MBB];
330  if (!MInfo.reachable) {
331    MInfo.reachable = true;
332    for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
333           SuE = MBB->succ_end(); SuI != SuE; ++SuI)
334      markReachable(*SuI);
335  }
336}
337
338void MachineVerifier::visitMachineFunctionBefore() {
339  regsReserved = TRI->getReservedRegs(*MF);
340
341  // A sub-register of a reserved register is also reserved
342  for (int Reg = regsReserved.find_first(); Reg>=0;
343       Reg = regsReserved.find_next(Reg)) {
344    for (const unsigned *Sub = TRI->getSubRegisters(Reg); *Sub; ++Sub) {
345      // FIXME: This should probably be:
346      // assert(regsReserved.test(*Sub) && "Non-reserved sub-register");
347      regsReserved.set(*Sub);
348    }
349  }
350  markReachable(&MF->front());
351}
352
353// Does iterator point to a and b as the first two elements?
354bool matchPair(MachineBasicBlock::const_succ_iterator i,
355               const MachineBasicBlock *a, const MachineBasicBlock *b) {
356  if (*i == a)
357    return *++i == b;
358  if (*i == b)
359    return *++i == a;
360  return false;
361}
362
363void
364MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
365  const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
366
367  // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
368  MachineBasicBlock *TBB = 0, *FBB = 0;
369  SmallVector<MachineOperand, 4> Cond;
370  if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB),
371                          TBB, FBB, Cond)) {
372    // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
373    // check whether its answers match up with reality.
374    if (!TBB && !FBB) {
375      // Block falls through to its successor.
376      MachineFunction::const_iterator MBBI = MBB;
377      ++MBBI;
378      if (MBBI == MF->end()) {
379        // It's possible that the block legitimately ends with a noreturn
380        // call or an unreachable, in which case it won't actually fall
381        // out the bottom of the function.
382      } else if (MBB->succ_empty()) {
383        // It's possible that the block legitimately ends with a noreturn
384        // call or an unreachable, in which case it won't actuall fall
385        // out of the block.
386      } else if (MBB->succ_size() != 1) {
387        report("MBB exits via unconditional fall-through but doesn't have "
388               "exactly one CFG successor!", MBB);
389      } else if (MBB->succ_begin()[0] != MBBI) {
390        report("MBB exits via unconditional fall-through but its successor "
391               "differs from its CFG successor!", MBB);
392      }
393      if (!MBB->empty() && MBB->back().getDesc().isBarrier()) {
394        report("MBB exits via unconditional fall-through but ends with a "
395               "barrier instruction!", MBB);
396      }
397      if (!Cond.empty()) {
398        report("MBB exits via unconditional fall-through but has a condition!",
399               MBB);
400      }
401    } else if (TBB && !FBB && Cond.empty()) {
402      // Block unconditionally branches somewhere.
403      if (MBB->succ_size() != 1) {
404        report("MBB exits via unconditional branch but doesn't have "
405               "exactly one CFG successor!", MBB);
406      } else if (MBB->succ_begin()[0] != TBB) {
407        report("MBB exits via unconditional branch but the CFG "
408               "successor doesn't match the actual successor!", MBB);
409      }
410      if (MBB->empty()) {
411        report("MBB exits via unconditional branch but doesn't contain "
412               "any instructions!", MBB);
413      } else if (!MBB->back().getDesc().isBarrier()) {
414        report("MBB exits via unconditional branch but doesn't end with a "
415               "barrier instruction!", MBB);
416      } else if (!MBB->back().getDesc().isTerminator()) {
417        report("MBB exits via unconditional branch but the branch isn't a "
418               "terminator instruction!", MBB);
419      }
420    } else if (TBB && !FBB && !Cond.empty()) {
421      // Block conditionally branches somewhere, otherwise falls through.
422      MachineFunction::const_iterator MBBI = MBB;
423      ++MBBI;
424      if (MBBI == MF->end()) {
425        report("MBB conditionally falls through out of function!", MBB);
426      } if (MBB->succ_size() != 2) {
427        report("MBB exits via conditional branch/fall-through but doesn't have "
428               "exactly two CFG successors!", MBB);
429      } else if (!matchPair(MBB->succ_begin(), TBB, MBBI)) {
430        report("MBB exits via conditional branch/fall-through but the CFG "
431               "successors don't match the actual successors!", MBB);
432      }
433      if (MBB->empty()) {
434        report("MBB exits via conditional branch/fall-through but doesn't "
435               "contain any instructions!", MBB);
436      } else if (MBB->back().getDesc().isBarrier()) {
437        report("MBB exits via conditional branch/fall-through but ends with a "
438               "barrier instruction!", MBB);
439      } else if (!MBB->back().getDesc().isTerminator()) {
440        report("MBB exits via conditional branch/fall-through but the branch "
441               "isn't a terminator instruction!", MBB);
442      }
443    } else if (TBB && FBB) {
444      // Block conditionally branches somewhere, otherwise branches
445      // somewhere else.
446      if (MBB->succ_size() != 2) {
447        report("MBB exits via conditional branch/branch but doesn't have "
448               "exactly two CFG successors!", MBB);
449      } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
450        report("MBB exits via conditional branch/branch but the CFG "
451               "successors don't match the actual successors!", MBB);
452      }
453      if (MBB->empty()) {
454        report("MBB exits via conditional branch/branch but doesn't "
455               "contain any instructions!", MBB);
456      } else if (!MBB->back().getDesc().isBarrier()) {
457        report("MBB exits via conditional branch/branch but doesn't end with a "
458               "barrier instruction!", MBB);
459      } else if (!MBB->back().getDesc().isTerminator()) {
460        report("MBB exits via conditional branch/branch but the branch "
461               "isn't a terminator instruction!", MBB);
462      }
463      if (Cond.empty()) {
464        report("MBB exits via conditinal branch/branch but there's no "
465               "condition!", MBB);
466      }
467    } else {
468      report("AnalyzeBranch returned invalid data!", MBB);
469    }
470  }
471
472  regsLive.clear();
473  for (MachineBasicBlock::const_livein_iterator I = MBB->livein_begin(),
474         E = MBB->livein_end(); I != E; ++I) {
475    if (!TargetRegisterInfo::isPhysicalRegister(*I)) {
476      report("MBB live-in list contains non-physical register", MBB);
477      continue;
478    }
479    regsLive.insert(*I);
480    for (const unsigned *R = TRI->getSubRegisters(*I); *R; R++)
481      regsLive.insert(*R);
482  }
483  regsLiveInButUnused = regsLive;
484
485  const MachineFrameInfo *MFI = MF->getFrameInfo();
486  assert(MFI && "Function has no frame info");
487  BitVector PR = MFI->getPristineRegs(MBB);
488  for (int I = PR.find_first(); I>0; I = PR.find_next(I)) {
489    regsLive.insert(I);
490    for (const unsigned *R = TRI->getSubRegisters(I); *R; R++)
491      regsLive.insert(*R);
492  }
493
494  regsKilled.clear();
495  regsDefined.clear();
496}
497
498void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
499  const TargetInstrDesc &TI = MI->getDesc();
500  if (MI->getNumOperands() < TI.getNumOperands()) {
501    report("Too few operands", MI);
502    *OS << TI.getNumOperands() << " operands expected, but "
503        << MI->getNumExplicitOperands() << " given.\n";
504  }
505
506  // Check the MachineMemOperands for basic consistency.
507  for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
508       E = MI->memoperands_end(); I != E; ++I) {
509    if ((*I)->isLoad() && !TI.mayLoad())
510      report("Missing mayLoad flag", MI);
511    if ((*I)->isStore() && !TI.mayStore())
512      report("Missing mayStore flag", MI);
513  }
514}
515
516void
517MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
518  const MachineInstr *MI = MO->getParent();
519  const TargetInstrDesc &TI = MI->getDesc();
520
521  // The first TI.NumDefs operands must be explicit register defines
522  if (MONum < TI.getNumDefs()) {
523    if (!MO->isReg())
524      report("Explicit definition must be a register", MO, MONum);
525    else if (!MO->isDef())
526      report("Explicit definition marked as use", MO, MONum);
527    else if (MO->isImplicit())
528      report("Explicit definition marked as implicit", MO, MONum);
529  } else if (MONum < TI.getNumOperands()) {
530    if (MO->isReg()) {
531      if (MO->isDef())
532        report("Explicit operand marked as def", MO, MONum);
533      if (MO->isImplicit())
534        report("Explicit operand marked as implicit", MO, MONum);
535    }
536  } else {
537    // ARM adds %reg0 operands to indicate predicates. We'll allow that.
538    if (MO->isReg() && !MO->isImplicit() && !TI.isVariadic() && MO->getReg())
539      report("Extra explicit operand on non-variadic instruction", MO, MONum);
540  }
541
542  switch (MO->getType()) {
543  case MachineOperand::MO_Register: {
544    const unsigned Reg = MO->getReg();
545    if (!Reg)
546      return;
547
548    // Check Live Variables.
549    if (MO->isUndef()) {
550      // An <undef> doesn't refer to any register, so just skip it.
551    } else if (MO->isUse()) {
552      regsLiveInButUnused.erase(Reg);
553
554      bool isKill = false;
555      if (MO->isKill()) {
556        isKill = true;
557        // Tied operands on two-address instuctions MUST NOT have a <kill> flag.
558        if (MI->isRegTiedToDefOperand(MONum))
559            report("Illegal kill flag on two-address instruction operand",
560                   MO, MONum);
561      } else {
562        // TwoAddress instr modifying a reg is treated as kill+def.
563        unsigned defIdx;
564        if (MI->isRegTiedToDefOperand(MONum, &defIdx) &&
565            MI->getOperand(defIdx).getReg() == Reg)
566          isKill = true;
567      }
568      if (isKill) {
569        addRegWithSubRegs(regsKilled, Reg);
570
571        // Check that LiveVars knows this kill
572        if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg)) {
573          LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
574          if (std::find(VI.Kills.begin(),
575                        VI.Kills.end(), MI) == VI.Kills.end())
576            report("Kill missing from LiveVariables", MO, MONum);
577        }
578      }
579
580      // Use of a dead register.
581      if (!regsLive.count(Reg)) {
582        if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
583          // Reserved registers may be used even when 'dead'.
584          if (!isReserved(Reg))
585            report("Using an undefined physical register", MO, MONum);
586        } else {
587          BBInfo &MInfo = MBBInfoMap[MI->getParent()];
588          // We don't know which virtual registers are live in, so only complain
589          // if vreg was killed in this MBB. Otherwise keep track of vregs that
590          // must be live in. PHI instructions are handled separately.
591          if (MInfo.regsKilled.count(Reg))
592            report("Using a killed virtual register", MO, MONum);
593          else if (MI->getOpcode() != TargetInstrInfo::PHI)
594            MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
595        }
596      }
597    } else {
598      assert(MO->isDef());
599      // Register defined.
600      // TODO: verify that earlyclobber ops are not used.
601      if (MO->isDead())
602        addRegWithSubRegs(regsDead, Reg);
603      else
604        addRegWithSubRegs(regsDefined, Reg);
605    }
606
607    // Check register classes.
608    if (MONum < TI.getNumOperands() && !MO->isImplicit()) {
609      const TargetOperandInfo &TOI = TI.OpInfo[MONum];
610      unsigned SubIdx = MO->getSubReg();
611
612      if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
613        unsigned sr = Reg;
614        if (SubIdx) {
615          unsigned s = TRI->getSubReg(Reg, SubIdx);
616          if (!s) {
617            report("Invalid subregister index for physical register",
618                   MO, MONum);
619            return;
620          }
621          sr = s;
622        }
623        if (const TargetRegisterClass *DRC = TOI.getRegClass(TRI)) {
624          if (!DRC->contains(sr)) {
625            report("Illegal physical register for instruction", MO, MONum);
626            *OS << TRI->getName(sr) << " is not a "
627                << DRC->getName() << " register.\n";
628          }
629        }
630      } else {
631        // Virtual register.
632        const TargetRegisterClass *RC = MRI->getRegClass(Reg);
633        if (SubIdx) {
634          if (RC->subregclasses_begin()+SubIdx >= RC->subregclasses_end()) {
635            report("Invalid subregister index for virtual register", MO, MONum);
636            return;
637          }
638          RC = *(RC->subregclasses_begin()+SubIdx);
639        }
640        if (const TargetRegisterClass *DRC = TOI.getRegClass(TRI)) {
641          if (RC != DRC && !RC->hasSuperClass(DRC)) {
642            report("Illegal virtual register for instruction", MO, MONum);
643            *OS << "Expected a " << DRC->getName() << " register, but got a "
644                << RC->getName() << " register\n";
645          }
646        }
647      }
648    }
649    break;
650  }
651
652  case MachineOperand::MO_MachineBasicBlock:
653    if (MI->getOpcode() == TargetInstrInfo::PHI) {
654      if (!MO->getMBB()->isSuccessor(MI->getParent()))
655        report("PHI operand is not in the CFG", MO, MONum);
656    }
657    break;
658
659  default:
660    break;
661  }
662}
663
664void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {
665  BBInfo &MInfo = MBBInfoMap[MI->getParent()];
666  set_union(MInfo.regsKilled, regsKilled);
667  set_subtract(regsLive, regsKilled);
668  regsKilled.clear();
669
670  // Verify that both <def> and <def,dead> operands refer to dead registers.
671  RegVector defs(regsDefined);
672  defs.append(regsDead.begin(), regsDead.end());
673
674  for (RegVector::const_iterator I = defs.begin(), E = defs.end();
675       I != E; ++I) {
676    if (regsLive.count(*I)) {
677      if (TargetRegisterInfo::isPhysicalRegister(*I)) {
678        if (!allowPhysDoubleDefs && !isReserved(*I) &&
679            !regsLiveInButUnused.count(*I)) {
680          report("Redefining a live physical register", MI);
681          *OS << "Register " << TRI->getName(*I)
682              << " was defined but already live.\n";
683        }
684      } else {
685        if (!allowVirtDoubleDefs) {
686          report("Redefining a live virtual register", MI);
687          *OS << "Virtual register %reg" << *I
688              << " was defined but already live.\n";
689        }
690      }
691    } else if (TargetRegisterInfo::isVirtualRegister(*I) &&
692               !MInfo.regsKilled.count(*I)) {
693      // Virtual register defined without being killed first must be dead on
694      // entry.
695      MInfo.vregsDeadIn.insert(std::make_pair(*I, MI));
696    }
697  }
698
699  set_subtract(regsLive, regsDead); regsDead.clear();
700  set_union(regsLive, regsDefined); regsDefined.clear();
701}
702
703void
704MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
705  MBBInfoMap[MBB].regsLiveOut = regsLive;
706  regsLive.clear();
707}
708
709// Calculate the largest possible vregsPassed sets. These are the registers that
710// can pass through an MBB live, but may not be live every time. It is assumed
711// that all vregsPassed sets are empty before the call.
712void MachineVerifier::calcRegsPassed() {
713  // First push live-out regs to successors' vregsPassed. Remember the MBBs that
714  // have any vregsPassed.
715  DenseSet<const MachineBasicBlock*> todo;
716  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
717       MFI != MFE; ++MFI) {
718    const MachineBasicBlock &MBB(*MFI);
719    BBInfo &MInfo = MBBInfoMap[&MBB];
720    if (!MInfo.reachable)
721      continue;
722    for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
723           SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
724      BBInfo &SInfo = MBBInfoMap[*SuI];
725      if (SInfo.addPassed(MInfo.regsLiveOut))
726        todo.insert(*SuI);
727    }
728  }
729
730  // Iteratively push vregsPassed to successors. This will converge to the same
731  // final state regardless of DenseSet iteration order.
732  while (!todo.empty()) {
733    const MachineBasicBlock *MBB = *todo.begin();
734    todo.erase(MBB);
735    BBInfo &MInfo = MBBInfoMap[MBB];
736    for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
737           SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
738      if (*SuI == MBB)
739        continue;
740      BBInfo &SInfo = MBBInfoMap[*SuI];
741      if (SInfo.addPassed(MInfo.vregsPassed))
742        todo.insert(*SuI);
743    }
744  }
745}
746
747// Calculate the set of virtual registers that must be passed through each basic
748// block in order to satisfy the requirements of successor blocks. This is very
749// similar to calcRegsPassed, only backwards.
750void MachineVerifier::calcRegsRequired() {
751  // First push live-in regs to predecessors' vregsRequired.
752  DenseSet<const MachineBasicBlock*> todo;
753  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
754       MFI != MFE; ++MFI) {
755    const MachineBasicBlock &MBB(*MFI);
756    BBInfo &MInfo = MBBInfoMap[&MBB];
757    for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
758           PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
759      BBInfo &PInfo = MBBInfoMap[*PrI];
760      if (PInfo.addRequired(MInfo.vregsLiveIn))
761        todo.insert(*PrI);
762    }
763  }
764
765  // Iteratively push vregsRequired to predecessors. This will converge to the
766  // same final state regardless of DenseSet iteration order.
767  while (!todo.empty()) {
768    const MachineBasicBlock *MBB = *todo.begin();
769    todo.erase(MBB);
770    BBInfo &MInfo = MBBInfoMap[MBB];
771    for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
772           PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
773      if (*PrI == MBB)
774        continue;
775      BBInfo &SInfo = MBBInfoMap[*PrI];
776      if (SInfo.addRequired(MInfo.vregsRequired))
777        todo.insert(*PrI);
778    }
779  }
780}
781
782// Check PHI instructions at the beginning of MBB. It is assumed that
783// calcRegsPassed has been run so BBInfo::isLiveOut is valid.
784void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) {
785  for (MachineBasicBlock::const_iterator BBI = MBB->begin(), BBE = MBB->end();
786       BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI) {
787    DenseSet<const MachineBasicBlock*> seen;
788
789    for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
790      unsigned Reg = BBI->getOperand(i).getReg();
791      const MachineBasicBlock *Pre = BBI->getOperand(i + 1).getMBB();
792      if (!Pre->isSuccessor(MBB))
793        continue;
794      seen.insert(Pre);
795      BBInfo &PrInfo = MBBInfoMap[Pre];
796      if (PrInfo.reachable && !PrInfo.isLiveOut(Reg))
797        report("PHI operand is not live-out from predecessor",
798               &BBI->getOperand(i), i);
799    }
800
801    // Did we see all predecessors?
802    for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
803           PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
804      if (!seen.count(*PrI)) {
805        report("Missing PHI operand", BBI);
806        *OS << "BB#" << (*PrI)->getNumber()
807            << " is a predecessor according to the CFG.\n";
808      }
809    }
810  }
811}
812
813void MachineVerifier::visitMachineFunctionAfter() {
814  calcRegsPassed();
815
816  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
817       MFI != MFE; ++MFI) {
818    BBInfo &MInfo = MBBInfoMap[MFI];
819
820    // Skip unreachable MBBs.
821    if (!MInfo.reachable)
822      continue;
823
824    checkPHIOps(MFI);
825
826    // Verify dead-in virtual registers.
827    if (!allowVirtDoubleDefs) {
828      for (MachineBasicBlock::const_pred_iterator PrI = MFI->pred_begin(),
829             PrE = MFI->pred_end(); PrI != PrE; ++PrI) {
830        BBInfo &PrInfo = MBBInfoMap[*PrI];
831        if (!PrInfo.reachable)
832          continue;
833
834        for (RegMap::iterator I = MInfo.vregsDeadIn.begin(),
835               E = MInfo.vregsDeadIn.end(); I != E; ++I) {
836          // DeadIn register must be in neither regsLiveOut or vregsPassed of
837          // any predecessor.
838          if (PrInfo.isLiveOut(I->first)) {
839            report("Live-in virtual register redefined", I->second);
840            *OS << "Register %reg" << I->first
841                << " was live-out from predecessor MBB #"
842                << (*PrI)->getNumber() << ".\n";
843          }
844        }
845      }
846    }
847  }
848
849  // Now check LiveVariables info if available
850  if (LiveVars) {
851    calcRegsRequired();
852    verifyLiveVariables();
853  }
854}
855
856void MachineVerifier::verifyLiveVariables() {
857  assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
858  for (unsigned Reg = TargetRegisterInfo::FirstVirtualRegister,
859         RegE = MRI->getLastVirtReg()-1; Reg != RegE; ++Reg) {
860    LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
861    for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
862         MFI != MFE; ++MFI) {
863      BBInfo &MInfo = MBBInfoMap[MFI];
864
865      // Our vregsRequired should be identical to LiveVariables' AliveBlocks
866      if (MInfo.vregsRequired.count(Reg)) {
867        if (!VI.AliveBlocks.test(MFI->getNumber())) {
868          report("LiveVariables: Block missing from AliveBlocks", MFI);
869          *OS << "Virtual register %reg" << Reg
870              << " must be live through the block.\n";
871        }
872      } else {
873        if (VI.AliveBlocks.test(MFI->getNumber())) {
874          report("LiveVariables: Block should not be in AliveBlocks", MFI);
875          *OS << "Virtual register %reg" << Reg
876              << " is not needed live through the block.\n";
877        }
878      }
879    }
880  }
881}
882
883
884