MachineVerifier.cpp revision 199481
1//===-- MachineVerifier.cpp - Machine Code Verifier -------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Pass to verify generated machine code. The following is checked:
11//
12// Operand counts: All explicit operands must be present.
13//
14// Register classes: All physical and virtual register operands must be
15// compatible with the register class required by the instruction descriptor.
16//
17// Register live intervals: Registers must be defined only once, and must be
18// defined before use.
19//
20// The machine code verifier is enabled from LLVMTargetMachine.cpp with the
21// command-line option -verify-machineinstrs, or by defining the environment
22// variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
23// the verifier errors.
24//===----------------------------------------------------------------------===//
25
26#include "llvm/Function.h"
27#include "llvm/CodeGen/LiveVariables.h"
28#include "llvm/CodeGen/MachineFunctionPass.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineMemOperand.h"
31#include "llvm/CodeGen/MachineRegisterInfo.h"
32#include "llvm/CodeGen/Passes.h"
33#include "llvm/Target/TargetMachine.h"
34#include "llvm/Target/TargetRegisterInfo.h"
35#include "llvm/Target/TargetInstrInfo.h"
36#include "llvm/ADT/DenseSet.h"
37#include "llvm/ADT/SetOperations.h"
38#include "llvm/ADT/SmallVector.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/raw_ostream.h"
42using namespace llvm;
43
44namespace {
45  struct MachineVerifier : public MachineFunctionPass {
46    static char ID; // Pass ID, replacement for typeid
47
48    MachineVerifier(bool allowDoubleDefs = false) :
49      MachineFunctionPass(&ID),
50      allowVirtDoubleDefs(allowDoubleDefs),
51      allowPhysDoubleDefs(allowDoubleDefs),
52      OutFileName(getenv("LLVM_VERIFY_MACHINEINSTRS"))
53        {}
54
55    void getAnalysisUsage(AnalysisUsage &AU) const {
56      AU.setPreservesAll();
57      MachineFunctionPass::getAnalysisUsage(AU);
58    }
59
60    bool runOnMachineFunction(MachineFunction &MF);
61
62    const bool allowVirtDoubleDefs;
63    const bool allowPhysDoubleDefs;
64
65    const char *const OutFileName;
66    raw_ostream *OS;
67    const MachineFunction *MF;
68    const TargetMachine *TM;
69    const TargetRegisterInfo *TRI;
70    const MachineRegisterInfo *MRI;
71
72    unsigned foundErrors;
73
74    typedef SmallVector<unsigned, 16> RegVector;
75    typedef DenseSet<unsigned> RegSet;
76    typedef DenseMap<unsigned, const MachineInstr*> RegMap;
77
78    BitVector regsReserved;
79    RegSet regsLive;
80    RegVector regsDefined, regsDead, regsKilled;
81    RegSet regsLiveInButUnused;
82
83    // Add Reg and any sub-registers to RV
84    void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
85      RV.push_back(Reg);
86      if (TargetRegisterInfo::isPhysicalRegister(Reg))
87        for (const unsigned *R = TRI->getSubRegisters(Reg); *R; R++)
88          RV.push_back(*R);
89    }
90
91    struct BBInfo {
92      // Is this MBB reachable from the MF entry point?
93      bool reachable;
94
95      // Vregs that must be live in because they are used without being
96      // defined. Map value is the user.
97      RegMap vregsLiveIn;
98
99      // Vregs that must be dead in because they are defined without being
100      // killed first. Map value is the defining instruction.
101      RegMap vregsDeadIn;
102
103      // Regs killed in MBB. They may be defined again, and will then be in both
104      // regsKilled and regsLiveOut.
105      RegSet regsKilled;
106
107      // Regs defined in MBB and live out. Note that vregs passing through may
108      // be live out without being mentioned here.
109      RegSet regsLiveOut;
110
111      // Vregs that pass through MBB untouched. This set is disjoint from
112      // regsKilled and regsLiveOut.
113      RegSet vregsPassed;
114
115      BBInfo() : reachable(false) {}
116
117      // Add register to vregsPassed if it belongs there. Return true if
118      // anything changed.
119      bool addPassed(unsigned Reg) {
120        if (!TargetRegisterInfo::isVirtualRegister(Reg))
121          return false;
122        if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
123          return false;
124        return vregsPassed.insert(Reg).second;
125      }
126
127      // Same for a full set.
128      bool addPassed(const RegSet &RS) {
129        bool changed = false;
130        for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
131          if (addPassed(*I))
132            changed = true;
133        return changed;
134      }
135
136      // Live-out registers are either in regsLiveOut or vregsPassed.
137      bool isLiveOut(unsigned Reg) const {
138        return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
139      }
140    };
141
142    // Extra register info per MBB.
143    DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
144
145    bool isReserved(unsigned Reg) {
146      return Reg < regsReserved.size() && regsReserved.test(Reg);
147    }
148
149    void visitMachineFunctionBefore();
150    void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
151    void visitMachineInstrBefore(const MachineInstr *MI);
152    void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
153    void visitMachineInstrAfter(const MachineInstr *MI);
154    void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
155    void visitMachineFunctionAfter();
156
157    void report(const char *msg, const MachineFunction *MF);
158    void report(const char *msg, const MachineBasicBlock *MBB);
159    void report(const char *msg, const MachineInstr *MI);
160    void report(const char *msg, const MachineOperand *MO, unsigned MONum);
161
162    void markReachable(const MachineBasicBlock *MBB);
163    void calcMaxRegsPassed();
164    void calcMinRegsPassed();
165    void checkPHIOps(const MachineBasicBlock *MBB);
166  };
167}
168
169char MachineVerifier::ID = 0;
170static RegisterPass<MachineVerifier>
171MachineVer("machineverifier", "Verify generated machine code");
172static const PassInfo *const MachineVerifyID = &MachineVer;
173
174FunctionPass *llvm::createMachineVerifierPass(bool allowPhysDoubleDefs) {
175  return new MachineVerifier(allowPhysDoubleDefs);
176}
177
178void MachineFunction::verify() const {
179  MachineVerifier().runOnMachineFunction(const_cast<MachineFunction&>(*this));
180}
181
182bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) {
183  raw_ostream *OutFile = 0;
184  if (OutFileName) {
185    std::string ErrorInfo;
186    OutFile = new raw_fd_ostream(OutFileName, ErrorInfo,
187                                 raw_fd_ostream::F_Append);
188    if (!ErrorInfo.empty()) {
189      errs() << "Error opening '" << OutFileName << "': " << ErrorInfo << '\n';
190      exit(1);
191    }
192
193    OS = OutFile;
194  } else {
195    OS = &errs();
196  }
197
198  foundErrors = 0;
199
200  this->MF = &MF;
201  TM = &MF.getTarget();
202  TRI = TM->getRegisterInfo();
203  MRI = &MF.getRegInfo();
204
205  visitMachineFunctionBefore();
206  for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
207       MFI!=MFE; ++MFI) {
208    visitMachineBasicBlockBefore(MFI);
209    for (MachineBasicBlock::const_iterator MBBI = MFI->begin(),
210           MBBE = MFI->end(); MBBI != MBBE; ++MBBI) {
211      visitMachineInstrBefore(MBBI);
212      for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I)
213        visitMachineOperand(&MBBI->getOperand(I), I);
214      visitMachineInstrAfter(MBBI);
215    }
216    visitMachineBasicBlockAfter(MFI);
217  }
218  visitMachineFunctionAfter();
219
220  if (OutFile)
221    delete OutFile;
222  else if (foundErrors)
223    llvm_report_error("Found "+Twine(foundErrors)+" machine code errors.");
224
225  // Clean up.
226  regsLive.clear();
227  regsDefined.clear();
228  regsDead.clear();
229  regsKilled.clear();
230  regsLiveInButUnused.clear();
231  MBBInfoMap.clear();
232
233  return false;                 // no changes
234}
235
236void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
237  assert(MF);
238  *OS << '\n';
239  if (!foundErrors++)
240    MF->print(*OS);
241  *OS << "*** Bad machine code: " << msg << " ***\n"
242      << "- function:    " << MF->getFunction()->getNameStr() << "\n";
243}
244
245void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
246  assert(MBB);
247  report(msg, MBB->getParent());
248  *OS << "- basic block: " << MBB->getBasicBlock()->getNameStr()
249      << " " << (void*)MBB
250      << " (BB#" << MBB->getNumber() << ")\n";
251}
252
253void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
254  assert(MI);
255  report(msg, MI->getParent());
256  *OS << "- instruction: ";
257  MI->print(*OS, TM);
258}
259
260void MachineVerifier::report(const char *msg,
261                             const MachineOperand *MO, unsigned MONum) {
262  assert(MO);
263  report(msg, MO->getParent());
264  *OS << "- operand " << MONum << ":   ";
265  MO->print(*OS, TM);
266  *OS << "\n";
267}
268
269void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
270  BBInfo &MInfo = MBBInfoMap[MBB];
271  if (!MInfo.reachable) {
272    MInfo.reachable = true;
273    for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
274           SuE = MBB->succ_end(); SuI != SuE; ++SuI)
275      markReachable(*SuI);
276  }
277}
278
279void MachineVerifier::visitMachineFunctionBefore() {
280  regsReserved = TRI->getReservedRegs(*MF);
281
282  // A sub-register of a reserved register is also reserved
283  for (int Reg = regsReserved.find_first(); Reg>=0;
284       Reg = regsReserved.find_next(Reg)) {
285    for (const unsigned *Sub = TRI->getSubRegisters(Reg); *Sub; ++Sub) {
286      // FIXME: This should probably be:
287      // assert(regsReserved.test(*Sub) && "Non-reserved sub-register");
288      regsReserved.set(*Sub);
289    }
290  }
291  markReachable(&MF->front());
292}
293
294// Does iterator point to a and b as the first two elements?
295bool matchPair(MachineBasicBlock::const_succ_iterator i,
296               const MachineBasicBlock *a, const MachineBasicBlock *b) {
297  if (*i == a)
298    return *++i == b;
299  if (*i == b)
300    return *++i == a;
301  return false;
302}
303
304void
305MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
306  const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
307
308  // Start with minimal CFG sanity checks.
309  MachineFunction::const_iterator MBBI = MBB;
310  ++MBBI;
311  if (MBBI != MF->end()) {
312    // Block is not last in function.
313    if (!MBB->isSuccessor(MBBI)) {
314      // Block does not fall through.
315      if (MBB->empty()) {
316        report("MBB doesn't fall through but is empty!", MBB);
317      }
318    }
319    if (TII->BlockHasNoFallThrough(*MBB)) {
320      if (MBB->empty()) {
321        report("TargetInstrInfo says the block has no fall through, but the "
322               "block is empty!", MBB);
323      } else if (!MBB->back().getDesc().isBarrier()) {
324        report("TargetInstrInfo says the block has no fall through, but the "
325               "block does not end in a barrier!", MBB);
326      }
327    }
328  } else {
329    // Block is last in function.
330    if (MBB->empty()) {
331      report("MBB is last in function but is empty!", MBB);
332    }
333  }
334
335  // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
336  MachineBasicBlock *TBB = 0, *FBB = 0;
337  SmallVector<MachineOperand, 4> Cond;
338  if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB),
339                          TBB, FBB, Cond)) {
340    // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
341    // check whether its answers match up with reality.
342    if (!TBB && !FBB) {
343      // Block falls through to its successor.
344      MachineFunction::const_iterator MBBI = MBB;
345      ++MBBI;
346      if (MBBI == MF->end()) {
347        // It's possible that the block legitimately ends with a noreturn
348        // call or an unreachable, in which case it won't actually fall
349        // out the bottom of the function.
350      } else if (MBB->succ_empty()) {
351        // It's possible that the block legitimately ends with a noreturn
352        // call or an unreachable, in which case it won't actuall fall
353        // out of the block.
354      } else if (MBB->succ_size() != 1) {
355        report("MBB exits via unconditional fall-through but doesn't have "
356               "exactly one CFG successor!", MBB);
357      } else if (MBB->succ_begin()[0] != MBBI) {
358        report("MBB exits via unconditional fall-through but its successor "
359               "differs from its CFG successor!", MBB);
360      }
361      if (!MBB->empty() && MBB->back().getDesc().isBarrier()) {
362        report("MBB exits via unconditional fall-through but ends with a "
363               "barrier instruction!", MBB);
364      }
365      if (!Cond.empty()) {
366        report("MBB exits via unconditional fall-through but has a condition!",
367               MBB);
368      }
369    } else if (TBB && !FBB && Cond.empty()) {
370      // Block unconditionally branches somewhere.
371      if (MBB->succ_size() != 1) {
372        report("MBB exits via unconditional branch but doesn't have "
373               "exactly one CFG successor!", MBB);
374      } else if (MBB->succ_begin()[0] != TBB) {
375        report("MBB exits via unconditional branch but the CFG "
376               "successor doesn't match the actual successor!", MBB);
377      }
378      if (MBB->empty()) {
379        report("MBB exits via unconditional branch but doesn't contain "
380               "any instructions!", MBB);
381      } else if (!MBB->back().getDesc().isBarrier()) {
382        report("MBB exits via unconditional branch but doesn't end with a "
383               "barrier instruction!", MBB);
384      } else if (!MBB->back().getDesc().isTerminator()) {
385        report("MBB exits via unconditional branch but the branch isn't a "
386               "terminator instruction!", MBB);
387      }
388    } else if (TBB && !FBB && !Cond.empty()) {
389      // Block conditionally branches somewhere, otherwise falls through.
390      MachineFunction::const_iterator MBBI = MBB;
391      ++MBBI;
392      if (MBBI == MF->end()) {
393        report("MBB conditionally falls through out of function!", MBB);
394      } if (MBB->succ_size() != 2) {
395        report("MBB exits via conditional branch/fall-through but doesn't have "
396               "exactly two CFG successors!", MBB);
397      } else if (!matchPair(MBB->succ_begin(), TBB, MBBI)) {
398        report("MBB exits via conditional branch/fall-through but the CFG "
399               "successors don't match the actual successors!", MBB);
400      }
401      if (MBB->empty()) {
402        report("MBB exits via conditional branch/fall-through but doesn't "
403               "contain any instructions!", MBB);
404      } else if (MBB->back().getDesc().isBarrier()) {
405        report("MBB exits via conditional branch/fall-through but ends with a "
406               "barrier instruction!", MBB);
407      } else if (!MBB->back().getDesc().isTerminator()) {
408        report("MBB exits via conditional branch/fall-through but the branch "
409               "isn't a terminator instruction!", MBB);
410      }
411    } else if (TBB && FBB) {
412      // Block conditionally branches somewhere, otherwise branches
413      // somewhere else.
414      if (MBB->succ_size() != 2) {
415        report("MBB exits via conditional branch/branch but doesn't have "
416               "exactly two CFG successors!", MBB);
417      } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
418        report("MBB exits via conditional branch/branch but the CFG "
419               "successors don't match the actual successors!", MBB);
420      }
421      if (MBB->empty()) {
422        report("MBB exits via conditional branch/branch but doesn't "
423               "contain any instructions!", MBB);
424      } else if (!MBB->back().getDesc().isBarrier()) {
425        report("MBB exits via conditional branch/branch but doesn't end with a "
426               "barrier instruction!", MBB);
427      } else if (!MBB->back().getDesc().isTerminator()) {
428        report("MBB exits via conditional branch/branch but the branch "
429               "isn't a terminator instruction!", MBB);
430      }
431      if (Cond.empty()) {
432        report("MBB exits via conditinal branch/branch but there's no "
433               "condition!", MBB);
434      }
435    } else {
436      report("AnalyzeBranch returned invalid data!", MBB);
437    }
438  }
439
440  regsLive.clear();
441  for (MachineBasicBlock::const_livein_iterator I = MBB->livein_begin(),
442         E = MBB->livein_end(); I != E; ++I) {
443    if (!TargetRegisterInfo::isPhysicalRegister(*I)) {
444      report("MBB live-in list contains non-physical register", MBB);
445      continue;
446    }
447    regsLive.insert(*I);
448    for (const unsigned *R = TRI->getSubRegisters(*I); *R; R++)
449      regsLive.insert(*R);
450  }
451  regsLiveInButUnused = regsLive;
452
453  const MachineFrameInfo *MFI = MF->getFrameInfo();
454  assert(MFI && "Function has no frame info");
455  BitVector PR = MFI->getPristineRegs(MBB);
456  for (int I = PR.find_first(); I>0; I = PR.find_next(I)) {
457    regsLive.insert(I);
458    for (const unsigned *R = TRI->getSubRegisters(I); *R; R++)
459      regsLive.insert(*R);
460  }
461
462  regsKilled.clear();
463  regsDefined.clear();
464}
465
466void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
467  const TargetInstrDesc &TI = MI->getDesc();
468  if (MI->getNumOperands() < TI.getNumOperands()) {
469    report("Too few operands", MI);
470    *OS << TI.getNumOperands() << " operands expected, but "
471        << MI->getNumExplicitOperands() << " given.\n";
472  }
473
474  // Check the MachineMemOperands for basic consistency.
475  for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
476       E = MI->memoperands_end(); I != E; ++I) {
477    if ((*I)->isLoad() && !TI.mayLoad())
478      report("Missing mayLoad flag", MI);
479    if ((*I)->isStore() && !TI.mayStore())
480      report("Missing mayStore flag", MI);
481  }
482}
483
484void
485MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
486  const MachineInstr *MI = MO->getParent();
487  const TargetInstrDesc &TI = MI->getDesc();
488
489  // The first TI.NumDefs operands must be explicit register defines
490  if (MONum < TI.getNumDefs()) {
491    if (!MO->isReg())
492      report("Explicit definition must be a register", MO, MONum);
493    else if (!MO->isDef())
494      report("Explicit definition marked as use", MO, MONum);
495    else if (MO->isImplicit())
496      report("Explicit definition marked as implicit", MO, MONum);
497  } else if (MONum < TI.getNumOperands()) {
498    if (MO->isReg()) {
499      if (MO->isDef())
500        report("Explicit operand marked as def", MO, MONum);
501      if (MO->isImplicit())
502        report("Explicit operand marked as implicit", MO, MONum);
503    }
504  } else {
505    if (MO->isReg() && !MO->isImplicit() && !TI.isVariadic())
506      report("Extra explicit operand on non-variadic instruction", MO, MONum);
507  }
508
509  switch (MO->getType()) {
510  case MachineOperand::MO_Register: {
511    const unsigned Reg = MO->getReg();
512    if (!Reg)
513      return;
514
515    // Check Live Variables.
516    if (MO->isUndef()) {
517      // An <undef> doesn't refer to any register, so just skip it.
518    } else if (MO->isUse()) {
519      regsLiveInButUnused.erase(Reg);
520
521      if (MO->isKill()) {
522        addRegWithSubRegs(regsKilled, Reg);
523        // Tied operands on two-address instuctions MUST NOT have a <kill> flag.
524        if (MI->isRegTiedToDefOperand(MONum))
525            report("Illegal kill flag on two-address instruction operand",
526                   MO, MONum);
527      } else {
528        // TwoAddress instr modifying a reg is treated as kill+def.
529        unsigned defIdx;
530        if (MI->isRegTiedToDefOperand(MONum, &defIdx) &&
531            MI->getOperand(defIdx).getReg() == Reg)
532          addRegWithSubRegs(regsKilled, Reg);
533      }
534      // Use of a dead register.
535      if (!regsLive.count(Reg)) {
536        if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
537          // Reserved registers may be used even when 'dead'.
538          if (!isReserved(Reg))
539            report("Using an undefined physical register", MO, MONum);
540        } else {
541          BBInfo &MInfo = MBBInfoMap[MI->getParent()];
542          // We don't know which virtual registers are live in, so only complain
543          // if vreg was killed in this MBB. Otherwise keep track of vregs that
544          // must be live in. PHI instructions are handled separately.
545          if (MInfo.regsKilled.count(Reg))
546            report("Using a killed virtual register", MO, MONum);
547          else if (MI->getOpcode() != TargetInstrInfo::PHI)
548            MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
549        }
550      }
551    } else {
552      assert(MO->isDef());
553      // Register defined.
554      // TODO: verify that earlyclobber ops are not used.
555      if (MO->isDead())
556        addRegWithSubRegs(regsDead, Reg);
557      else
558        addRegWithSubRegs(regsDefined, Reg);
559    }
560
561    // Check register classes.
562    if (MONum < TI.getNumOperands() && !MO->isImplicit()) {
563      const TargetOperandInfo &TOI = TI.OpInfo[MONum];
564      unsigned SubIdx = MO->getSubReg();
565
566      if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
567        unsigned sr = Reg;
568        if (SubIdx) {
569          unsigned s = TRI->getSubReg(Reg, SubIdx);
570          if (!s) {
571            report("Invalid subregister index for physical register",
572                   MO, MONum);
573            return;
574          }
575          sr = s;
576        }
577        if (const TargetRegisterClass *DRC = TOI.getRegClass(TRI)) {
578          if (!DRC->contains(sr)) {
579            report("Illegal physical register for instruction", MO, MONum);
580            *OS << TRI->getName(sr) << " is not a "
581                << DRC->getName() << " register.\n";
582          }
583        }
584      } else {
585        // Virtual register.
586        const TargetRegisterClass *RC = MRI->getRegClass(Reg);
587        if (SubIdx) {
588          if (RC->subregclasses_begin()+SubIdx >= RC->subregclasses_end()) {
589            report("Invalid subregister index for virtual register", MO, MONum);
590            return;
591          }
592          RC = *(RC->subregclasses_begin()+SubIdx);
593        }
594        if (const TargetRegisterClass *DRC = TOI.getRegClass(TRI)) {
595          if (RC != DRC && !RC->hasSuperClass(DRC)) {
596            report("Illegal virtual register for instruction", MO, MONum);
597            *OS << "Expected a " << DRC->getName() << " register, but got a "
598                << RC->getName() << " register\n";
599          }
600        }
601      }
602    }
603    break;
604  }
605
606  case MachineOperand::MO_MachineBasicBlock:
607    if (MI->getOpcode() == TargetInstrInfo::PHI) {
608      if (!MO->getMBB()->isSuccessor(MI->getParent()))
609        report("PHI operand is not in the CFG", MO, MONum);
610    }
611    break;
612
613  default:
614    break;
615  }
616}
617
618void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {
619  BBInfo &MInfo = MBBInfoMap[MI->getParent()];
620  set_union(MInfo.regsKilled, regsKilled);
621  set_subtract(regsLive, regsKilled);
622  regsKilled.clear();
623
624  // Verify that both <def> and <def,dead> operands refer to dead registers.
625  RegVector defs(regsDefined);
626  defs.append(regsDead.begin(), regsDead.end());
627
628  for (RegVector::const_iterator I = defs.begin(), E = defs.end();
629       I != E; ++I) {
630    if (regsLive.count(*I)) {
631      if (TargetRegisterInfo::isPhysicalRegister(*I)) {
632        if (!allowPhysDoubleDefs && !isReserved(*I) &&
633            !regsLiveInButUnused.count(*I)) {
634          report("Redefining a live physical register", MI);
635          *OS << "Register " << TRI->getName(*I)
636              << " was defined but already live.\n";
637        }
638      } else {
639        if (!allowVirtDoubleDefs) {
640          report("Redefining a live virtual register", MI);
641          *OS << "Virtual register %reg" << *I
642              << " was defined but already live.\n";
643        }
644      }
645    } else if (TargetRegisterInfo::isVirtualRegister(*I) &&
646               !MInfo.regsKilled.count(*I)) {
647      // Virtual register defined without being killed first must be dead on
648      // entry.
649      MInfo.vregsDeadIn.insert(std::make_pair(*I, MI));
650    }
651  }
652
653  set_subtract(regsLive, regsDead); regsDead.clear();
654  set_union(regsLive, regsDefined); regsDefined.clear();
655}
656
657void
658MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
659  MBBInfoMap[MBB].regsLiveOut = regsLive;
660  regsLive.clear();
661}
662
663// Calculate the largest possible vregsPassed sets. These are the registers that
664// can pass through an MBB live, but may not be live every time. It is assumed
665// that all vregsPassed sets are empty before the call.
666void MachineVerifier::calcMaxRegsPassed() {
667  // First push live-out regs to successors' vregsPassed. Remember the MBBs that
668  // have any vregsPassed.
669  DenseSet<const MachineBasicBlock*> todo;
670  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
671       MFI != MFE; ++MFI) {
672    const MachineBasicBlock &MBB(*MFI);
673    BBInfo &MInfo = MBBInfoMap[&MBB];
674    if (!MInfo.reachable)
675      continue;
676    for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
677           SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
678      BBInfo &SInfo = MBBInfoMap[*SuI];
679      if (SInfo.addPassed(MInfo.regsLiveOut))
680        todo.insert(*SuI);
681    }
682  }
683
684  // Iteratively push vregsPassed to successors. This will converge to the same
685  // final state regardless of DenseSet iteration order.
686  while (!todo.empty()) {
687    const MachineBasicBlock *MBB = *todo.begin();
688    todo.erase(MBB);
689    BBInfo &MInfo = MBBInfoMap[MBB];
690    for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
691           SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
692      if (*SuI == MBB)
693        continue;
694      BBInfo &SInfo = MBBInfoMap[*SuI];
695      if (SInfo.addPassed(MInfo.vregsPassed))
696        todo.insert(*SuI);
697    }
698  }
699}
700
701// Calculate the minimum vregsPassed set. These are the registers that always
702// pass live through an MBB. The calculation assumes that calcMaxRegsPassed has
703// been called earlier.
704void MachineVerifier::calcMinRegsPassed() {
705  DenseSet<const MachineBasicBlock*> todo;
706  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
707       MFI != MFE; ++MFI)
708    todo.insert(MFI);
709
710  while (!todo.empty()) {
711    const MachineBasicBlock *MBB = *todo.begin();
712    todo.erase(MBB);
713    BBInfo &MInfo = MBBInfoMap[MBB];
714
715    // Remove entries from vRegsPassed that are not live out from all
716    // reachable predecessors.
717    RegSet dead;
718    for (RegSet::iterator I = MInfo.vregsPassed.begin(),
719           E = MInfo.vregsPassed.end(); I != E; ++I) {
720      for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
721             PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
722        BBInfo &PrInfo = MBBInfoMap[*PrI];
723        if (PrInfo.reachable && !PrInfo.isLiveOut(*I)) {
724          dead.insert(*I);
725          break;
726        }
727      }
728    }
729    // If any regs removed, we need to recheck successors.
730    if (!dead.empty()) {
731      set_subtract(MInfo.vregsPassed, dead);
732      todo.insert(MBB->succ_begin(), MBB->succ_end());
733    }
734  }
735}
736
737// Check PHI instructions at the beginning of MBB. It is assumed that
738// calcMinRegsPassed has been run so BBInfo::isLiveOut is valid.
739void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) {
740  for (MachineBasicBlock::const_iterator BBI = MBB->begin(), BBE = MBB->end();
741       BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI) {
742    DenseSet<const MachineBasicBlock*> seen;
743
744    for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
745      unsigned Reg = BBI->getOperand(i).getReg();
746      const MachineBasicBlock *Pre = BBI->getOperand(i + 1).getMBB();
747      if (!Pre->isSuccessor(MBB))
748        continue;
749      seen.insert(Pre);
750      BBInfo &PrInfo = MBBInfoMap[Pre];
751      if (PrInfo.reachable && !PrInfo.isLiveOut(Reg))
752        report("PHI operand is not live-out from predecessor",
753               &BBI->getOperand(i), i);
754    }
755
756    // Did we see all predecessors?
757    for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
758           PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
759      if (!seen.count(*PrI)) {
760        report("Missing PHI operand", BBI);
761        *OS << "BB#" << (*PrI)->getNumber()
762            << " is a predecessor according to the CFG.\n";
763      }
764    }
765  }
766}
767
768void MachineVerifier::visitMachineFunctionAfter() {
769  calcMaxRegsPassed();
770
771  // With the maximal set of vregsPassed we can verify dead-in registers.
772  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
773       MFI != MFE; ++MFI) {
774    BBInfo &MInfo = MBBInfoMap[MFI];
775
776    // Skip unreachable MBBs.
777    if (!MInfo.reachable)
778      continue;
779
780    for (MachineBasicBlock::const_pred_iterator PrI = MFI->pred_begin(),
781           PrE = MFI->pred_end(); PrI != PrE; ++PrI) {
782      BBInfo &PrInfo = MBBInfoMap[*PrI];
783      if (!PrInfo.reachable)
784        continue;
785
786      // Verify physical live-ins. EH landing pads have magic live-ins so we
787      // ignore them.
788      if (!MFI->isLandingPad()) {
789        for (MachineBasicBlock::const_livein_iterator I = MFI->livein_begin(),
790               E = MFI->livein_end(); I != E; ++I) {
791          if (TargetRegisterInfo::isPhysicalRegister(*I) &&
792              !isReserved (*I) && !PrInfo.isLiveOut(*I)) {
793            report("Live-in physical register is not live-out from predecessor",
794                   MFI);
795            *OS << "Register " << TRI->getName(*I)
796                << " is not live-out from BB#" << (*PrI)->getNumber()
797                << ".\n";
798          }
799        }
800      }
801
802
803      // Verify dead-in virtual registers.
804      if (!allowVirtDoubleDefs) {
805        for (RegMap::iterator I = MInfo.vregsDeadIn.begin(),
806               E = MInfo.vregsDeadIn.end(); I != E; ++I) {
807          // DeadIn register must be in neither regsLiveOut or vregsPassed of
808          // any predecessor.
809          if (PrInfo.isLiveOut(I->first)) {
810            report("Live-in virtual register redefined", I->second);
811            *OS << "Register %reg" << I->first
812                << " was live-out from predecessor MBB #"
813                << (*PrI)->getNumber() << ".\n";
814          }
815        }
816      }
817    }
818  }
819
820  calcMinRegsPassed();
821
822  // With the minimal set of vregsPassed we can verify live-in virtual
823  // registers, including PHI instructions.
824  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
825       MFI != MFE; ++MFI) {
826    BBInfo &MInfo = MBBInfoMap[MFI];
827
828    // Skip unreachable MBBs.
829    if (!MInfo.reachable)
830      continue;
831
832    checkPHIOps(MFI);
833
834    for (MachineBasicBlock::const_pred_iterator PrI = MFI->pred_begin(),
835           PrE = MFI->pred_end(); PrI != PrE; ++PrI) {
836      BBInfo &PrInfo = MBBInfoMap[*PrI];
837      if (!PrInfo.reachable)
838        continue;
839
840      for (RegMap::iterator I = MInfo.vregsLiveIn.begin(),
841             E = MInfo.vregsLiveIn.end(); I != E; ++I) {
842        if (!PrInfo.isLiveOut(I->first)) {
843          report("Used virtual register is not live-in", I->second);
844          *OS << "Register %reg" << I->first
845              << " is not live-out from predecessor MBB #"
846              << (*PrI)->getNumber()
847              << ".\n";
848        }
849      }
850    }
851  }
852}
853