LiveIntervalAnalysis.cpp revision 235633
1//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveInterval analysis pass which is used
11// by the Linear Scan Register allocator. This pass linearizes the
12// basic blocks of the function in DFS order and uses the
13// LiveVariables pass to conservatively compute live intervals for
14// each virtual and physical register.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "regalloc"
19#include "llvm/CodeGen/LiveIntervalAnalysis.h"
20#include "llvm/Value.h"
21#include "llvm/Analysis/AliasAnalysis.h"
22#include "llvm/CodeGen/LiveVariables.h"
23#include "llvm/CodeGen/MachineInstr.h"
24#include "llvm/CodeGen/MachineRegisterInfo.h"
25#include "llvm/CodeGen/Passes.h"
26#include "llvm/Target/TargetRegisterInfo.h"
27#include "llvm/Target/TargetInstrInfo.h"
28#include "llvm/Target/TargetMachine.h"
29#include "llvm/Support/CommandLine.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/raw_ostream.h"
33#include "llvm/ADT/DenseSet.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/ADT/STLExtras.h"
36#include <algorithm>
37#include <limits>
38#include <cmath>
39using namespace llvm;
40
41// Hidden options for help debugging.
42static cl::opt<bool> DisableReMat("disable-rematerialization",
43                                  cl::init(false), cl::Hidden);
44
45STATISTIC(numIntervals , "Number of original intervals");
46
47char LiveIntervals::ID = 0;
48INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals",
49                "Live Interval Analysis", false, false)
50INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
51INITIALIZE_PASS_DEPENDENCY(LiveVariables)
52INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
53INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
54INITIALIZE_PASS_END(LiveIntervals, "liveintervals",
55                "Live Interval Analysis", false, false)
56
57void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
58  AU.setPreservesCFG();
59  AU.addRequired<AliasAnalysis>();
60  AU.addPreserved<AliasAnalysis>();
61  AU.addRequired<LiveVariables>();
62  AU.addPreserved<LiveVariables>();
63  AU.addPreservedID(MachineLoopInfoID);
64  AU.addPreservedID(MachineDominatorsID);
65  AU.addPreserved<SlotIndexes>();
66  AU.addRequiredTransitive<SlotIndexes>();
67  MachineFunctionPass::getAnalysisUsage(AU);
68}
69
70void LiveIntervals::releaseMemory() {
71  // Free the live intervals themselves.
72  for (DenseMap<unsigned, LiveInterval*>::iterator I = r2iMap_.begin(),
73       E = r2iMap_.end(); I != E; ++I)
74    delete I->second;
75
76  r2iMap_.clear();
77  RegMaskSlots.clear();
78  RegMaskBits.clear();
79  RegMaskBlocks.clear();
80
81  // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
82  VNInfoAllocator.Reset();
83}
84
85/// runOnMachineFunction - Register allocate the whole function
86///
87bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
88  mf_ = &fn;
89  mri_ = &mf_->getRegInfo();
90  tm_ = &fn.getTarget();
91  tri_ = tm_->getRegisterInfo();
92  tii_ = tm_->getInstrInfo();
93  aa_ = &getAnalysis<AliasAnalysis>();
94  lv_ = &getAnalysis<LiveVariables>();
95  indexes_ = &getAnalysis<SlotIndexes>();
96  allocatableRegs_ = tri_->getAllocatableSet(fn);
97  reservedRegs_ = tri_->getReservedRegs(fn);
98
99  computeIntervals();
100
101  numIntervals += getNumIntervals();
102
103  DEBUG(dump());
104  return true;
105}
106
107/// print - Implement the dump method.
108void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
109  OS << "********** INTERVALS **********\n";
110
111  // Dump the physregs.
112  for (unsigned Reg = 1, RegE = tri_->getNumRegs(); Reg != RegE; ++Reg)
113    if (const LiveInterval *LI = r2iMap_.lookup(Reg)) {
114      LI->print(OS, tri_);
115      OS << '\n';
116    }
117
118  // Dump the virtregs.
119  for (unsigned Reg = 0, RegE = mri_->getNumVirtRegs(); Reg != RegE; ++Reg)
120    if (const LiveInterval *LI =
121        r2iMap_.lookup(TargetRegisterInfo::index2VirtReg(Reg))) {
122      LI->print(OS, tri_);
123      OS << '\n';
124    }
125
126  printInstrs(OS);
127}
128
129void LiveIntervals::printInstrs(raw_ostream &OS) const {
130  OS << "********** MACHINEINSTRS **********\n";
131  mf_->print(OS, indexes_);
132}
133
134void LiveIntervals::dumpInstrs() const {
135  printInstrs(dbgs());
136}
137
138static
139bool MultipleDefsBySameMI(const MachineInstr &MI, unsigned MOIdx) {
140  unsigned Reg = MI.getOperand(MOIdx).getReg();
141  for (unsigned i = MOIdx+1, e = MI.getNumOperands(); i < e; ++i) {
142    const MachineOperand &MO = MI.getOperand(i);
143    if (!MO.isReg())
144      continue;
145    if (MO.getReg() == Reg && MO.isDef()) {
146      assert(MI.getOperand(MOIdx).getSubReg() != MO.getSubReg() &&
147             MI.getOperand(MOIdx).getSubReg() &&
148             (MO.getSubReg() || MO.isImplicit()));
149      return true;
150    }
151  }
152  return false;
153}
154
155/// isPartialRedef - Return true if the specified def at the specific index is
156/// partially re-defining the specified live interval. A common case of this is
157/// a definition of the sub-register.
158bool LiveIntervals::isPartialRedef(SlotIndex MIIdx, MachineOperand &MO,
159                                   LiveInterval &interval) {
160  if (!MO.getSubReg() || MO.isEarlyClobber())
161    return false;
162
163  SlotIndex RedefIndex = MIIdx.getRegSlot();
164  const LiveRange *OldLR =
165    interval.getLiveRangeContaining(RedefIndex.getRegSlot(true));
166  MachineInstr *DefMI = getInstructionFromIndex(OldLR->valno->def);
167  if (DefMI != 0) {
168    return DefMI->findRegisterDefOperandIdx(interval.reg) != -1;
169  }
170  return false;
171}
172
173void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
174                                             MachineBasicBlock::iterator mi,
175                                             SlotIndex MIIdx,
176                                             MachineOperand& MO,
177                                             unsigned MOIdx,
178                                             LiveInterval &interval) {
179  DEBUG(dbgs() << "\t\tregister: " << PrintReg(interval.reg, tri_));
180
181  // Virtual registers may be defined multiple times (due to phi
182  // elimination and 2-addr elimination).  Much of what we do only has to be
183  // done once for the vreg.  We use an empty interval to detect the first
184  // time we see a vreg.
185  LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
186  if (interval.empty()) {
187    // Get the Idx of the defining instructions.
188    SlotIndex defIndex = MIIdx.getRegSlot(MO.isEarlyClobber());
189
190    // Make sure the first definition is not a partial redefinition.
191    assert(!MO.readsReg() && "First def cannot also read virtual register "
192           "missing <undef> flag?");
193
194    VNInfo *ValNo = interval.getNextValue(defIndex, VNInfoAllocator);
195    assert(ValNo->id == 0 && "First value in interval is not 0?");
196
197    // Loop over all of the blocks that the vreg is defined in.  There are
198    // two cases we have to handle here.  The most common case is a vreg
199    // whose lifetime is contained within a basic block.  In this case there
200    // will be a single kill, in MBB, which comes after the definition.
201    if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
202      // FIXME: what about dead vars?
203      SlotIndex killIdx;
204      if (vi.Kills[0] != mi)
205        killIdx = getInstructionIndex(vi.Kills[0]).getRegSlot();
206      else
207        killIdx = defIndex.getDeadSlot();
208
209      // If the kill happens after the definition, we have an intra-block
210      // live range.
211      if (killIdx > defIndex) {
212        assert(vi.AliveBlocks.empty() &&
213               "Shouldn't be alive across any blocks!");
214        LiveRange LR(defIndex, killIdx, ValNo);
215        interval.addRange(LR);
216        DEBUG(dbgs() << " +" << LR << "\n");
217        return;
218      }
219    }
220
221    // The other case we handle is when a virtual register lives to the end
222    // of the defining block, potentially live across some blocks, then is
223    // live into some number of blocks, but gets killed.  Start by adding a
224    // range that goes from this definition to the end of the defining block.
225    LiveRange NewLR(defIndex, getMBBEndIdx(mbb), ValNo);
226    DEBUG(dbgs() << " +" << NewLR);
227    interval.addRange(NewLR);
228
229    bool PHIJoin = lv_->isPHIJoin(interval.reg);
230
231    if (PHIJoin) {
232      // A phi join register is killed at the end of the MBB and revived as a new
233      // valno in the killing blocks.
234      assert(vi.AliveBlocks.empty() && "Phi join can't pass through blocks");
235      DEBUG(dbgs() << " phi-join");
236      ValNo->setHasPHIKill(true);
237    } else {
238      // Iterate over all of the blocks that the variable is completely
239      // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
240      // live interval.
241      for (SparseBitVector<>::iterator I = vi.AliveBlocks.begin(),
242               E = vi.AliveBlocks.end(); I != E; ++I) {
243        MachineBasicBlock *aliveBlock = mf_->getBlockNumbered(*I);
244        LiveRange LR(getMBBStartIdx(aliveBlock), getMBBEndIdx(aliveBlock), ValNo);
245        interval.addRange(LR);
246        DEBUG(dbgs() << " +" << LR);
247      }
248    }
249
250    // Finally, this virtual register is live from the start of any killing
251    // block to the 'use' slot of the killing instruction.
252    for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
253      MachineInstr *Kill = vi.Kills[i];
254      SlotIndex Start = getMBBStartIdx(Kill->getParent());
255      SlotIndex killIdx = getInstructionIndex(Kill).getRegSlot();
256
257      // Create interval with one of a NEW value number.  Note that this value
258      // number isn't actually defined by an instruction, weird huh? :)
259      if (PHIJoin) {
260        assert(getInstructionFromIndex(Start) == 0 &&
261               "PHI def index points at actual instruction.");
262        ValNo = interval.getNextValue(Start, VNInfoAllocator);
263        ValNo->setIsPHIDef(true);
264      }
265      LiveRange LR(Start, killIdx, ValNo);
266      interval.addRange(LR);
267      DEBUG(dbgs() << " +" << LR);
268    }
269
270  } else {
271    if (MultipleDefsBySameMI(*mi, MOIdx))
272      // Multiple defs of the same virtual register by the same instruction.
273      // e.g. %reg1031:5<def>, %reg1031:6<def> = VLD1q16 %reg1024<kill>, ...
274      // This is likely due to elimination of REG_SEQUENCE instructions. Return
275      // here since there is nothing to do.
276      return;
277
278    // If this is the second time we see a virtual register definition, it
279    // must be due to phi elimination or two addr elimination.  If this is
280    // the result of two address elimination, then the vreg is one of the
281    // def-and-use register operand.
282
283    // It may also be partial redef like this:
284    // 80  %reg1041:6<def> = VSHRNv4i16 %reg1034<kill>, 12, pred:14, pred:%reg0
285    // 120 %reg1041:5<def> = VSHRNv4i16 %reg1039<kill>, 12, pred:14, pred:%reg0
286    bool PartReDef = isPartialRedef(MIIdx, MO, interval);
287    if (PartReDef || mi->isRegTiedToUseOperand(MOIdx)) {
288      // If this is a two-address definition, then we have already processed
289      // the live range.  The only problem is that we didn't realize there
290      // are actually two values in the live interval.  Because of this we
291      // need to take the LiveRegion that defines this register and split it
292      // into two values.
293      SlotIndex RedefIndex = MIIdx.getRegSlot(MO.isEarlyClobber());
294
295      const LiveRange *OldLR =
296        interval.getLiveRangeContaining(RedefIndex.getRegSlot(true));
297      VNInfo *OldValNo = OldLR->valno;
298      SlotIndex DefIndex = OldValNo->def.getRegSlot();
299
300      // Delete the previous value, which should be short and continuous,
301      // because the 2-addr copy must be in the same MBB as the redef.
302      interval.removeRange(DefIndex, RedefIndex);
303
304      // The new value number (#1) is defined by the instruction we claimed
305      // defined value #0.
306      VNInfo *ValNo = interval.createValueCopy(OldValNo, VNInfoAllocator);
307
308      // Value#0 is now defined by the 2-addr instruction.
309      OldValNo->def = RedefIndex;
310
311      // Add the new live interval which replaces the range for the input copy.
312      LiveRange LR(DefIndex, RedefIndex, ValNo);
313      DEBUG(dbgs() << " replace range with " << LR);
314      interval.addRange(LR);
315
316      // If this redefinition is dead, we need to add a dummy unit live
317      // range covering the def slot.
318      if (MO.isDead())
319        interval.addRange(LiveRange(RedefIndex, RedefIndex.getDeadSlot(),
320                                    OldValNo));
321
322      DEBUG({
323          dbgs() << " RESULT: ";
324          interval.print(dbgs(), tri_);
325        });
326    } else if (lv_->isPHIJoin(interval.reg)) {
327      // In the case of PHI elimination, each variable definition is only
328      // live until the end of the block.  We've already taken care of the
329      // rest of the live range.
330
331      SlotIndex defIndex = MIIdx.getRegSlot();
332      if (MO.isEarlyClobber())
333        defIndex = MIIdx.getRegSlot(true);
334
335      VNInfo *ValNo = interval.getNextValue(defIndex, VNInfoAllocator);
336
337      SlotIndex killIndex = getMBBEndIdx(mbb);
338      LiveRange LR(defIndex, killIndex, ValNo);
339      interval.addRange(LR);
340      ValNo->setHasPHIKill(true);
341      DEBUG(dbgs() << " phi-join +" << LR);
342    } else {
343      llvm_unreachable("Multiply defined register");
344    }
345  }
346
347  DEBUG(dbgs() << '\n');
348}
349
350static bool isRegLiveIntoSuccessor(const MachineBasicBlock *MBB, unsigned Reg) {
351  for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
352                                              SE = MBB->succ_end();
353       SI != SE; ++SI) {
354    const MachineBasicBlock* succ = *SI;
355    if (succ->isLiveIn(Reg))
356      return true;
357  }
358  return false;
359}
360
361void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
362                                              MachineBasicBlock::iterator mi,
363                                              SlotIndex MIIdx,
364                                              MachineOperand& MO,
365                                              LiveInterval &interval) {
366  DEBUG(dbgs() << "\t\tregister: " << PrintReg(interval.reg, tri_));
367
368  SlotIndex baseIndex = MIIdx;
369  SlotIndex start = baseIndex.getRegSlot(MO.isEarlyClobber());
370  SlotIndex end = start;
371
372  // If it is not used after definition, it is considered dead at
373  // the instruction defining it. Hence its interval is:
374  // [defSlot(def), defSlot(def)+1)
375  // For earlyclobbers, the defSlot was pushed back one; the extra
376  // advance below compensates.
377  if (MO.isDead()) {
378    DEBUG(dbgs() << " dead");
379    end = start.getDeadSlot();
380    goto exit;
381  }
382
383  // If it is not dead on definition, it must be killed by a
384  // subsequent instruction. Hence its interval is:
385  // [defSlot(def), useSlot(kill)+1)
386  baseIndex = baseIndex.getNextIndex();
387  while (++mi != MBB->end()) {
388
389    if (mi->isDebugValue())
390      continue;
391    if (getInstructionFromIndex(baseIndex) == 0)
392      baseIndex = indexes_->getNextNonNullIndex(baseIndex);
393
394    if (mi->killsRegister(interval.reg, tri_)) {
395      DEBUG(dbgs() << " killed");
396      end = baseIndex.getRegSlot();
397      goto exit;
398    } else {
399      int DefIdx = mi->findRegisterDefOperandIdx(interval.reg,false,false,tri_);
400      if (DefIdx != -1) {
401        if (mi->isRegTiedToUseOperand(DefIdx)) {
402          // Two-address instruction.
403          end = baseIndex.getRegSlot(mi->getOperand(DefIdx).isEarlyClobber());
404        } else {
405          // Another instruction redefines the register before it is ever read.
406          // Then the register is essentially dead at the instruction that
407          // defines it. Hence its interval is:
408          // [defSlot(def), defSlot(def)+1)
409          DEBUG(dbgs() << " dead");
410          end = start.getDeadSlot();
411        }
412        goto exit;
413      }
414    }
415
416    baseIndex = baseIndex.getNextIndex();
417  }
418
419  // If we get here the register *should* be live out.
420  assert(!isAllocatable(interval.reg) && "Physregs shouldn't be live out!");
421
422  // FIXME: We need saner rules for reserved regs.
423  if (isReserved(interval.reg)) {
424    end = start.getDeadSlot();
425  } else {
426    // Unreserved, unallocable registers like EFLAGS can be live across basic
427    // block boundaries.
428    assert(isRegLiveIntoSuccessor(MBB, interval.reg) &&
429           "Unreserved reg not live-out?");
430    end = getMBBEndIdx(MBB);
431  }
432exit:
433  assert(start < end && "did not find end of interval?");
434
435  // Already exists? Extend old live interval.
436  VNInfo *ValNo = interval.getVNInfoAt(start);
437  bool Extend = ValNo != 0;
438  if (!Extend)
439    ValNo = interval.getNextValue(start, VNInfoAllocator);
440  LiveRange LR(start, end, ValNo);
441  interval.addRange(LR);
442  DEBUG(dbgs() << " +" << LR << '\n');
443}
444
445void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
446                                      MachineBasicBlock::iterator MI,
447                                      SlotIndex MIIdx,
448                                      MachineOperand& MO,
449                                      unsigned MOIdx) {
450  if (TargetRegisterInfo::isVirtualRegister(MO.getReg()))
451    handleVirtualRegisterDef(MBB, MI, MIIdx, MO, MOIdx,
452                             getOrCreateInterval(MO.getReg()));
453  else
454    handlePhysicalRegisterDef(MBB, MI, MIIdx, MO,
455                              getOrCreateInterval(MO.getReg()));
456}
457
458void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB,
459                                         SlotIndex MIIdx,
460                                         LiveInterval &interval) {
461  assert(TargetRegisterInfo::isPhysicalRegister(interval.reg) &&
462         "Only physical registers can be live in.");
463  assert((!isAllocatable(interval.reg) || MBB->getParent()->begin() ||
464          MBB->isLandingPad()) &&
465          "Allocatable live-ins only valid for entry blocks and landing pads.");
466
467  DEBUG(dbgs() << "\t\tlivein register: " << PrintReg(interval.reg, tri_));
468
469  // Look for kills, if it reaches a def before it's killed, then it shouldn't
470  // be considered a livein.
471  MachineBasicBlock::iterator mi = MBB->begin();
472  MachineBasicBlock::iterator E = MBB->end();
473  // Skip over DBG_VALUE at the start of the MBB.
474  if (mi != E && mi->isDebugValue()) {
475    while (++mi != E && mi->isDebugValue())
476      ;
477    if (mi == E)
478      // MBB is empty except for DBG_VALUE's.
479      return;
480  }
481
482  SlotIndex baseIndex = MIIdx;
483  SlotIndex start = baseIndex;
484  if (getInstructionFromIndex(baseIndex) == 0)
485    baseIndex = indexes_->getNextNonNullIndex(baseIndex);
486
487  SlotIndex end = baseIndex;
488  bool SeenDefUse = false;
489
490  while (mi != E) {
491    if (mi->killsRegister(interval.reg, tri_)) {
492      DEBUG(dbgs() << " killed");
493      end = baseIndex.getRegSlot();
494      SeenDefUse = true;
495      break;
496    } else if (mi->modifiesRegister(interval.reg, tri_)) {
497      // Another instruction redefines the register before it is ever read.
498      // Then the register is essentially dead at the instruction that defines
499      // it. Hence its interval is:
500      // [defSlot(def), defSlot(def)+1)
501      DEBUG(dbgs() << " dead");
502      end = start.getDeadSlot();
503      SeenDefUse = true;
504      break;
505    }
506
507    while (++mi != E && mi->isDebugValue())
508      // Skip over DBG_VALUE.
509      ;
510    if (mi != E)
511      baseIndex = indexes_->getNextNonNullIndex(baseIndex);
512  }
513
514  // Live-in register might not be used at all.
515  if (!SeenDefUse) {
516    if (isAllocatable(interval.reg) ||
517        !isRegLiveIntoSuccessor(MBB, interval.reg)) {
518      // Allocatable registers are never live through.
519      // Non-allocatable registers that aren't live into any successors also
520      // aren't live through.
521      DEBUG(dbgs() << " dead");
522      return;
523    } else {
524      // If we get here the register is non-allocatable and live into some
525      // successor. We'll conservatively assume it's live-through.
526      DEBUG(dbgs() << " live through");
527      end = getMBBEndIdx(MBB);
528    }
529  }
530
531  SlotIndex defIdx = getMBBStartIdx(MBB);
532  assert(getInstructionFromIndex(defIdx) == 0 &&
533         "PHI def index points at actual instruction.");
534  VNInfo *vni = interval.getNextValue(defIdx, VNInfoAllocator);
535  vni->setIsPHIDef(true);
536  LiveRange LR(start, end, vni);
537
538  interval.addRange(LR);
539  DEBUG(dbgs() << " +" << LR << '\n');
540}
541
542/// computeIntervals - computes the live intervals for virtual
543/// registers. for some ordering of the machine instructions [1,N] a
544/// live interval is an interval [i, j) where 1 <= i <= j < N for
545/// which a variable is live
546void LiveIntervals::computeIntervals() {
547  DEBUG(dbgs() << "********** COMPUTING LIVE INTERVALS **********\n"
548               << "********** Function: "
549               << ((Value*)mf_->getFunction())->getName() << '\n');
550
551  RegMaskBlocks.resize(mf_->getNumBlockIDs());
552
553  SmallVector<unsigned, 8> UndefUses;
554  for (MachineFunction::iterator MBBI = mf_->begin(), E = mf_->end();
555       MBBI != E; ++MBBI) {
556    MachineBasicBlock *MBB = MBBI;
557    RegMaskBlocks[MBB->getNumber()].first = RegMaskSlots.size();
558
559    if (MBB->empty())
560      continue;
561
562    // Track the index of the current machine instr.
563    SlotIndex MIIndex = getMBBStartIdx(MBB);
564    DEBUG(dbgs() << "BB#" << MBB->getNumber()
565          << ":\t\t# derived from " << MBB->getName() << "\n");
566
567    // Create intervals for live-ins to this BB first.
568    for (MachineBasicBlock::livein_iterator LI = MBB->livein_begin(),
569           LE = MBB->livein_end(); LI != LE; ++LI) {
570      handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*LI));
571    }
572
573    // Skip over empty initial indices.
574    if (getInstructionFromIndex(MIIndex) == 0)
575      MIIndex = indexes_->getNextNonNullIndex(MIIndex);
576
577    for (MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end();
578         MI != miEnd; ++MI) {
579      DEBUG(dbgs() << MIIndex << "\t" << *MI);
580      if (MI->isDebugValue())
581        continue;
582      assert(indexes_->getInstructionFromIndex(MIIndex) == MI &&
583             "Lost SlotIndex synchronization");
584
585      // Handle defs.
586      for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
587        MachineOperand &MO = MI->getOperand(i);
588
589        // Collect register masks.
590        if (MO.isRegMask()) {
591          RegMaskSlots.push_back(MIIndex.getRegSlot());
592          RegMaskBits.push_back(MO.getRegMask());
593          continue;
594        }
595
596        if (!MO.isReg() || !MO.getReg())
597          continue;
598
599        // handle register defs - build intervals
600        if (MO.isDef())
601          handleRegisterDef(MBB, MI, MIIndex, MO, i);
602        else if (MO.isUndef())
603          UndefUses.push_back(MO.getReg());
604      }
605
606      // Move to the next instr slot.
607      MIIndex = indexes_->getNextNonNullIndex(MIIndex);
608    }
609
610    // Compute the number of register mask instructions in this block.
611    std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB->getNumber()];
612    RMB.second = RegMaskSlots.size() - RMB.first;;
613  }
614
615  // Create empty intervals for registers defined by implicit_def's (except
616  // for those implicit_def that define values which are liveout of their
617  // blocks.
618  for (unsigned i = 0, e = UndefUses.size(); i != e; ++i) {
619    unsigned UndefReg = UndefUses[i];
620    (void)getOrCreateInterval(UndefReg);
621  }
622}
623
624LiveInterval* LiveIntervals::createInterval(unsigned reg) {
625  float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ? HUGE_VALF : 0.0F;
626  return new LiveInterval(reg, Weight);
627}
628
629/// dupInterval - Duplicate a live interval. The caller is responsible for
630/// managing the allocated memory.
631LiveInterval* LiveIntervals::dupInterval(LiveInterval *li) {
632  LiveInterval *NewLI = createInterval(li->reg);
633  NewLI->Copy(*li, mri_, getVNInfoAllocator());
634  return NewLI;
635}
636
637/// shrinkToUses - After removing some uses of a register, shrink its live
638/// range to just the remaining uses. This method does not compute reaching
639/// defs for new uses, and it doesn't remove dead defs.
640bool LiveIntervals::shrinkToUses(LiveInterval *li,
641                                 SmallVectorImpl<MachineInstr*> *dead) {
642  DEBUG(dbgs() << "Shrink: " << *li << '\n');
643  assert(TargetRegisterInfo::isVirtualRegister(li->reg)
644         && "Can only shrink virtual registers");
645  // Find all the values used, including PHI kills.
646  SmallVector<std::pair<SlotIndex, VNInfo*>, 16> WorkList;
647
648  // Blocks that have already been added to WorkList as live-out.
649  SmallPtrSet<MachineBasicBlock*, 16> LiveOut;
650
651  // Visit all instructions reading li->reg.
652  for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(li->reg);
653       MachineInstr *UseMI = I.skipInstruction();) {
654    if (UseMI->isDebugValue() || !UseMI->readsVirtualRegister(li->reg))
655      continue;
656    SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
657    // Note: This intentionally picks up the wrong VNI in case of an EC redef.
658    // See below.
659    VNInfo *VNI = li->getVNInfoBefore(Idx);
660    if (!VNI) {
661      // This shouldn't happen: readsVirtualRegister returns true, but there is
662      // no live value. It is likely caused by a target getting <undef> flags
663      // wrong.
664      DEBUG(dbgs() << Idx << '\t' << *UseMI
665                   << "Warning: Instr claims to read non-existent value in "
666                    << *li << '\n');
667      continue;
668    }
669    // Special case: An early-clobber tied operand reads and writes the
670    // register one slot early.  The getVNInfoBefore call above would have
671    // picked up the value defined by UseMI.  Adjust the kill slot and value.
672    if (SlotIndex::isSameInstr(VNI->def, Idx)) {
673      Idx = VNI->def;
674      VNI = li->getVNInfoBefore(Idx);
675      assert(VNI && "Early-clobber tied value not available");
676    }
677    WorkList.push_back(std::make_pair(Idx, VNI));
678  }
679
680  // Create a new live interval with only minimal live segments per def.
681  LiveInterval NewLI(li->reg, 0);
682  for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end();
683       I != E; ++I) {
684    VNInfo *VNI = *I;
685    if (VNI->isUnused())
686      continue;
687    NewLI.addRange(LiveRange(VNI->def, VNI->def.getDeadSlot(), VNI));
688  }
689
690  // Keep track of the PHIs that are in use.
691  SmallPtrSet<VNInfo*, 8> UsedPHIs;
692
693  // Extend intervals to reach all uses in WorkList.
694  while (!WorkList.empty()) {
695    SlotIndex Idx = WorkList.back().first;
696    VNInfo *VNI = WorkList.back().second;
697    WorkList.pop_back();
698    const MachineBasicBlock *MBB = getMBBFromIndex(Idx.getPrevSlot());
699    SlotIndex BlockStart = getMBBStartIdx(MBB);
700
701    // Extend the live range for VNI to be live at Idx.
702    if (VNInfo *ExtVNI = NewLI.extendInBlock(BlockStart, Idx)) {
703      (void)ExtVNI;
704      assert(ExtVNI == VNI && "Unexpected existing value number");
705      // Is this a PHIDef we haven't seen before?
706      if (!VNI->isPHIDef() || VNI->def != BlockStart || !UsedPHIs.insert(VNI))
707        continue;
708      // The PHI is live, make sure the predecessors are live-out.
709      for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
710           PE = MBB->pred_end(); PI != PE; ++PI) {
711        if (!LiveOut.insert(*PI))
712          continue;
713        SlotIndex Stop = getMBBEndIdx(*PI);
714        // A predecessor is not required to have a live-out value for a PHI.
715        if (VNInfo *PVNI = li->getVNInfoBefore(Stop))
716          WorkList.push_back(std::make_pair(Stop, PVNI));
717      }
718      continue;
719    }
720
721    // VNI is live-in to MBB.
722    DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
723    NewLI.addRange(LiveRange(BlockStart, Idx, VNI));
724
725    // Make sure VNI is live-out from the predecessors.
726    for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
727         PE = MBB->pred_end(); PI != PE; ++PI) {
728      if (!LiveOut.insert(*PI))
729        continue;
730      SlotIndex Stop = getMBBEndIdx(*PI);
731      assert(li->getVNInfoBefore(Stop) == VNI &&
732             "Wrong value out of predecessor");
733      WorkList.push_back(std::make_pair(Stop, VNI));
734    }
735  }
736
737  // Handle dead values.
738  bool CanSeparate = false;
739  for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end();
740       I != E; ++I) {
741    VNInfo *VNI = *I;
742    if (VNI->isUnused())
743      continue;
744    LiveInterval::iterator LII = NewLI.FindLiveRangeContaining(VNI->def);
745    assert(LII != NewLI.end() && "Missing live range for PHI");
746    if (LII->end != VNI->def.getDeadSlot())
747      continue;
748    if (VNI->isPHIDef()) {
749      // This is a dead PHI. Remove it.
750      VNI->setIsUnused(true);
751      NewLI.removeRange(*LII);
752      DEBUG(dbgs() << "Dead PHI at " << VNI->def << " may separate interval\n");
753      CanSeparate = true;
754    } else {
755      // This is a dead def. Make sure the instruction knows.
756      MachineInstr *MI = getInstructionFromIndex(VNI->def);
757      assert(MI && "No instruction defining live value");
758      MI->addRegisterDead(li->reg, tri_);
759      if (dead && MI->allDefsAreDead()) {
760        DEBUG(dbgs() << "All defs dead: " << VNI->def << '\t' << *MI);
761        dead->push_back(MI);
762      }
763    }
764  }
765
766  // Move the trimmed ranges back.
767  li->ranges.swap(NewLI.ranges);
768  DEBUG(dbgs() << "Shrunk: " << *li << '\n');
769  return CanSeparate;
770}
771
772
773//===----------------------------------------------------------------------===//
774// Register allocator hooks.
775//
776
777void LiveIntervals::addKillFlags() {
778  for (iterator I = begin(), E = end(); I != E; ++I) {
779    unsigned Reg = I->first;
780    if (TargetRegisterInfo::isPhysicalRegister(Reg))
781      continue;
782    if (mri_->reg_nodbg_empty(Reg))
783      continue;
784    LiveInterval *LI = I->second;
785
786    // Every instruction that kills Reg corresponds to a live range end point.
787    for (LiveInterval::iterator RI = LI->begin(), RE = LI->end(); RI != RE;
788         ++RI) {
789      // A block index indicates an MBB edge.
790      if (RI->end.isBlock())
791        continue;
792      MachineInstr *MI = getInstructionFromIndex(RI->end);
793      if (!MI)
794        continue;
795      MI->addRegisterKilled(Reg, NULL);
796    }
797  }
798}
799
800/// getReMatImplicitUse - If the remat definition MI has one (for now, we only
801/// allow one) virtual register operand, then its uses are implicitly using
802/// the register. Returns the virtual register.
803unsigned LiveIntervals::getReMatImplicitUse(const LiveInterval &li,
804                                            MachineInstr *MI) const {
805  unsigned RegOp = 0;
806  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
807    MachineOperand &MO = MI->getOperand(i);
808    if (!MO.isReg() || !MO.isUse())
809      continue;
810    unsigned Reg = MO.getReg();
811    if (Reg == 0 || Reg == li.reg)
812      continue;
813
814    if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isAllocatable(Reg))
815      continue;
816    RegOp = MO.getReg();
817    break; // Found vreg operand - leave the loop.
818  }
819  return RegOp;
820}
821
822/// isValNoAvailableAt - Return true if the val# of the specified interval
823/// which reaches the given instruction also reaches the specified use index.
824bool LiveIntervals::isValNoAvailableAt(const LiveInterval &li, MachineInstr *MI,
825                                       SlotIndex UseIdx) const {
826  VNInfo *UValNo = li.getVNInfoAt(UseIdx);
827  return UValNo && UValNo == li.getVNInfoAt(getInstructionIndex(MI));
828}
829
830/// isReMaterializable - Returns true if the definition MI of the specified
831/// val# of the specified interval is re-materializable.
832bool
833LiveIntervals::isReMaterializable(const LiveInterval &li,
834                                  const VNInfo *ValNo, MachineInstr *MI,
835                                  const SmallVectorImpl<LiveInterval*> *SpillIs,
836                                  bool &isLoad) {
837  if (DisableReMat)
838    return false;
839
840  if (!tii_->isTriviallyReMaterializable(MI, aa_))
841    return false;
842
843  // Target-specific code can mark an instruction as being rematerializable
844  // if it has one virtual reg use, though it had better be something like
845  // a PIC base register which is likely to be live everywhere.
846  unsigned ImpUse = getReMatImplicitUse(li, MI);
847  if (ImpUse) {
848    const LiveInterval &ImpLi = getInterval(ImpUse);
849    for (MachineRegisterInfo::use_nodbg_iterator
850           ri = mri_->use_nodbg_begin(li.reg), re = mri_->use_nodbg_end();
851         ri != re; ++ri) {
852      MachineInstr *UseMI = &*ri;
853      SlotIndex UseIdx = getInstructionIndex(UseMI);
854      if (li.getVNInfoAt(UseIdx) != ValNo)
855        continue;
856      if (!isValNoAvailableAt(ImpLi, MI, UseIdx))
857        return false;
858    }
859
860    // If a register operand of the re-materialized instruction is going to
861    // be spilled next, then it's not legal to re-materialize this instruction.
862    if (SpillIs)
863      for (unsigned i = 0, e = SpillIs->size(); i != e; ++i)
864        if (ImpUse == (*SpillIs)[i]->reg)
865          return false;
866  }
867  return true;
868}
869
870/// isReMaterializable - Returns true if every definition of MI of every
871/// val# of the specified interval is re-materializable.
872bool
873LiveIntervals::isReMaterializable(const LiveInterval &li,
874                                  const SmallVectorImpl<LiveInterval*> *SpillIs,
875                                  bool &isLoad) {
876  isLoad = false;
877  for (LiveInterval::const_vni_iterator i = li.vni_begin(), e = li.vni_end();
878       i != e; ++i) {
879    const VNInfo *VNI = *i;
880    if (VNI->isUnused())
881      continue; // Dead val#.
882    // Is the def for the val# rematerializable?
883    MachineInstr *ReMatDefMI = getInstructionFromIndex(VNI->def);
884    if (!ReMatDefMI)
885      return false;
886    bool DefIsLoad = false;
887    if (!ReMatDefMI ||
888        !isReMaterializable(li, VNI, ReMatDefMI, SpillIs, DefIsLoad))
889      return false;
890    isLoad |= DefIsLoad;
891  }
892  return true;
893}
894
895MachineBasicBlock*
896LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
897  // A local live range must be fully contained inside the block, meaning it is
898  // defined and killed at instructions, not at block boundaries. It is not
899  // live in or or out of any block.
900  //
901  // It is technically possible to have a PHI-defined live range identical to a
902  // single block, but we are going to return false in that case.
903
904  SlotIndex Start = LI.beginIndex();
905  if (Start.isBlock())
906    return NULL;
907
908  SlotIndex Stop = LI.endIndex();
909  if (Stop.isBlock())
910    return NULL;
911
912  // getMBBFromIndex doesn't need to search the MBB table when both indexes
913  // belong to proper instructions.
914  MachineBasicBlock *MBB1 = indexes_->getMBBFromIndex(Start);
915  MachineBasicBlock *MBB2 = indexes_->getMBBFromIndex(Stop);
916  return MBB1 == MBB2 ? MBB1 : NULL;
917}
918
919float
920LiveIntervals::getSpillWeight(bool isDef, bool isUse, unsigned loopDepth) {
921  // Limit the loop depth ridiculousness.
922  if (loopDepth > 200)
923    loopDepth = 200;
924
925  // The loop depth is used to roughly estimate the number of times the
926  // instruction is executed. Something like 10^d is simple, but will quickly
927  // overflow a float. This expression behaves like 10^d for small d, but is
928  // more tempered for large d. At d=200 we get 6.7e33 which leaves a bit of
929  // headroom before overflow.
930  // By the way, powf() might be unavailable here. For consistency,
931  // We may take pow(double,double).
932  float lc = std::pow(1 + (100.0 / (loopDepth + 10)), (double)loopDepth);
933
934  return (isDef + isUse) * lc;
935}
936
937LiveRange LiveIntervals::addLiveRangeToEndOfBlock(unsigned reg,
938                                                  MachineInstr* startInst) {
939  LiveInterval& Interval = getOrCreateInterval(reg);
940  VNInfo* VN = Interval.getNextValue(
941    SlotIndex(getInstructionIndex(startInst).getRegSlot()),
942    getVNInfoAllocator());
943  VN->setHasPHIKill(true);
944  LiveRange LR(
945     SlotIndex(getInstructionIndex(startInst).getRegSlot()),
946     getMBBEndIdx(startInst->getParent()), VN);
947  Interval.addRange(LR);
948
949  return LR;
950}
951
952
953//===----------------------------------------------------------------------===//
954//                          Register mask functions
955//===----------------------------------------------------------------------===//
956
957bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI,
958                                             BitVector &UsableRegs) {
959  if (LI.empty())
960    return false;
961  LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end();
962
963  // Use a smaller arrays for local live ranges.
964  ArrayRef<SlotIndex> Slots;
965  ArrayRef<const uint32_t*> Bits;
966  if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) {
967    Slots = getRegMaskSlotsInBlock(MBB->getNumber());
968    Bits = getRegMaskBitsInBlock(MBB->getNumber());
969  } else {
970    Slots = getRegMaskSlots();
971    Bits = getRegMaskBits();
972  }
973
974  // We are going to enumerate all the register mask slots contained in LI.
975  // Start with a binary search of RegMaskSlots to find a starting point.
976  ArrayRef<SlotIndex>::iterator SlotI =
977    std::lower_bound(Slots.begin(), Slots.end(), LiveI->start);
978  ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
979
980  // No slots in range, LI begins after the last call.
981  if (SlotI == SlotE)
982    return false;
983
984  bool Found = false;
985  for (;;) {
986    assert(*SlotI >= LiveI->start);
987    // Loop over all slots overlapping this segment.
988    while (*SlotI < LiveI->end) {
989      // *SlotI overlaps LI. Collect mask bits.
990      if (!Found) {
991        // This is the first overlap. Initialize UsableRegs to all ones.
992        UsableRegs.clear();
993        UsableRegs.resize(tri_->getNumRegs(), true);
994        Found = true;
995      }
996      // Remove usable registers clobbered by this mask.
997      UsableRegs.clearBitsNotInMask(Bits[SlotI-Slots.begin()]);
998      if (++SlotI == SlotE)
999        return Found;
1000    }
1001    // *SlotI is beyond the current LI segment.
1002    LiveI = LI.advanceTo(LiveI, *SlotI);
1003    if (LiveI == LiveE)
1004      return Found;
1005    // Advance SlotI until it overlaps.
1006    while (*SlotI < LiveI->start)
1007      if (++SlotI == SlotE)
1008        return Found;
1009  }
1010}
1011
1012//===----------------------------------------------------------------------===//
1013//                         IntervalUpdate class.
1014//===----------------------------------------------------------------------===//
1015
1016// HMEditor is a toolkit used by handleMove to trim or extend live intervals.
1017class LiveIntervals::HMEditor {
1018private:
1019  LiveIntervals& LIS;
1020  const MachineRegisterInfo& MRI;
1021  const TargetRegisterInfo& TRI;
1022  SlotIndex NewIdx;
1023
1024  typedef std::pair<LiveInterval*, LiveRange*> IntRangePair;
1025  typedef DenseSet<IntRangePair> RangeSet;
1026
1027  struct RegRanges {
1028    LiveRange* Use;
1029    LiveRange* EC;
1030    LiveRange* Dead;
1031    LiveRange* Def;
1032    RegRanges() : Use(0), EC(0), Dead(0), Def(0) {}
1033  };
1034  typedef DenseMap<unsigned, RegRanges> BundleRanges;
1035
1036public:
1037  HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI,
1038           const TargetRegisterInfo& TRI, SlotIndex NewIdx)
1039    : LIS(LIS), MRI(MRI), TRI(TRI), NewIdx(NewIdx) {}
1040
1041  // Update intervals for all operands of MI from OldIdx to NewIdx.
1042  // This assumes that MI used to be at OldIdx, and now resides at
1043  // NewIdx.
1044  void moveAllRangesFrom(MachineInstr* MI, SlotIndex OldIdx) {
1045    assert(NewIdx != OldIdx && "No-op move? That's a bit strange.");
1046
1047    // Collect the operands.
1048    RangeSet Entering, Internal, Exiting;
1049    bool hasRegMaskOp = false;
1050    collectRanges(MI, Entering, Internal, Exiting, hasRegMaskOp, OldIdx);
1051
1052    // To keep the LiveRanges valid within an interval, move the ranges closest
1053    // to the destination first. This prevents ranges from overlapping, to that
1054    // APIs like removeRange still work.
1055    if (NewIdx < OldIdx) {
1056      moveAllEnteringFrom(OldIdx, Entering);
1057      moveAllInternalFrom(OldIdx, Internal);
1058      moveAllExitingFrom(OldIdx, Exiting);
1059    }
1060    else {
1061      moveAllExitingFrom(OldIdx, Exiting);
1062      moveAllInternalFrom(OldIdx, Internal);
1063      moveAllEnteringFrom(OldIdx, Entering);
1064    }
1065
1066    if (hasRegMaskOp)
1067      updateRegMaskSlots(OldIdx);
1068
1069#ifndef NDEBUG
1070    LIValidator validator;
1071    validator = std::for_each(Entering.begin(), Entering.end(), validator);
1072    validator = std::for_each(Internal.begin(), Internal.end(), validator);
1073    validator = std::for_each(Exiting.begin(), Exiting.end(), validator);
1074    assert(validator.rangesOk() && "moveAllOperandsFrom broke liveness.");
1075#endif
1076
1077  }
1078
1079  // Update intervals for all operands of MI to refer to BundleStart's
1080  // SlotIndex.
1081  void moveAllRangesInto(MachineInstr* MI, MachineInstr* BundleStart) {
1082    if (MI == BundleStart)
1083      return; // Bundling instr with itself - nothing to do.
1084
1085    SlotIndex OldIdx = LIS.getSlotIndexes()->getInstructionIndex(MI);
1086    assert(LIS.getSlotIndexes()->getInstructionFromIndex(OldIdx) == MI &&
1087           "SlotIndex <-> Instruction mapping broken for MI");
1088
1089    // Collect all ranges already in the bundle.
1090    MachineBasicBlock::instr_iterator BII(BundleStart);
1091    RangeSet Entering, Internal, Exiting;
1092    bool hasRegMaskOp = false;
1093    collectRanges(BII, Entering, Internal, Exiting, hasRegMaskOp, NewIdx);
1094    assert(!hasRegMaskOp && "Can't have RegMask operand in bundle.");
1095    for (++BII; &*BII == MI || BII->isInsideBundle(); ++BII) {
1096      if (&*BII == MI)
1097        continue;
1098      collectRanges(BII, Entering, Internal, Exiting, hasRegMaskOp, NewIdx);
1099      assert(!hasRegMaskOp && "Can't have RegMask operand in bundle.");
1100    }
1101
1102    BundleRanges BR = createBundleRanges(Entering, Internal, Exiting);
1103
1104    collectRanges(MI, Entering, Internal, Exiting, hasRegMaskOp, OldIdx);
1105    assert(!hasRegMaskOp && "Can't have RegMask operand in bundle.");
1106
1107    DEBUG(dbgs() << "Entering: " << Entering.size() << "\n");
1108    DEBUG(dbgs() << "Internal: " << Internal.size() << "\n");
1109    DEBUG(dbgs() << "Exiting: " << Exiting.size() << "\n");
1110
1111    moveAllEnteringFromInto(OldIdx, Entering, BR);
1112    moveAllInternalFromInto(OldIdx, Internal, BR);
1113    moveAllExitingFromInto(OldIdx, Exiting, BR);
1114
1115
1116#ifndef NDEBUG
1117    LIValidator validator;
1118    validator = std::for_each(Entering.begin(), Entering.end(), validator);
1119    validator = std::for_each(Internal.begin(), Internal.end(), validator);
1120    validator = std::for_each(Exiting.begin(), Exiting.end(), validator);
1121    assert(validator.rangesOk() && "moveAllOperandsInto broke liveness.");
1122#endif
1123  }
1124
1125private:
1126
1127#ifndef NDEBUG
1128  class LIValidator {
1129  private:
1130    DenseSet<const LiveInterval*> Checked, Bogus;
1131  public:
1132    void operator()(const IntRangePair& P) {
1133      const LiveInterval* LI = P.first;
1134      if (Checked.count(LI))
1135        return;
1136      Checked.insert(LI);
1137      if (LI->empty())
1138        return;
1139      SlotIndex LastEnd = LI->begin()->start;
1140      for (LiveInterval::const_iterator LRI = LI->begin(), LRE = LI->end();
1141           LRI != LRE; ++LRI) {
1142        const LiveRange& LR = *LRI;
1143        if (LastEnd > LR.start || LR.start >= LR.end)
1144          Bogus.insert(LI);
1145        LastEnd = LR.end;
1146      }
1147    }
1148
1149    bool rangesOk() const {
1150      return Bogus.empty();
1151    }
1152  };
1153#endif
1154
1155  // Collect IntRangePairs for all operands of MI that may need fixing.
1156  // Treat's MI's index as OldIdx (regardless of what it is in SlotIndexes'
1157  // maps).
1158  void collectRanges(MachineInstr* MI, RangeSet& Entering, RangeSet& Internal,
1159                     RangeSet& Exiting, bool& hasRegMaskOp, SlotIndex OldIdx) {
1160    hasRegMaskOp = false;
1161    for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
1162                                    MOE = MI->operands_end();
1163         MOI != MOE; ++MOI) {
1164      const MachineOperand& MO = *MOI;
1165
1166      if (MO.isRegMask()) {
1167        hasRegMaskOp = true;
1168        continue;
1169      }
1170
1171      if (!MO.isReg() || MO.getReg() == 0)
1172        continue;
1173
1174      unsigned Reg = MO.getReg();
1175
1176      // TODO: Currently we're skipping uses that are reserved or have no
1177      // interval, but we're not updating their kills. This should be
1178      // fixed.
1179      if (!LIS.hasInterval(Reg) ||
1180          (TargetRegisterInfo::isPhysicalRegister(Reg) && LIS.isReserved(Reg)))
1181        continue;
1182
1183      LiveInterval* LI = &LIS.getInterval(Reg);
1184
1185      if (MO.readsReg()) {
1186        LiveRange* LR = LI->getLiveRangeContaining(OldIdx);
1187        if (LR != 0)
1188          Entering.insert(std::make_pair(LI, LR));
1189      }
1190      if (MO.isDef()) {
1191        if (MO.isEarlyClobber()) {
1192          LiveRange* LR = LI->getLiveRangeContaining(OldIdx.getRegSlot(true));
1193          assert(LR != 0 && "No EC range?");
1194          if (LR->end > OldIdx.getDeadSlot())
1195            Exiting.insert(std::make_pair(LI, LR));
1196          else
1197            Internal.insert(std::make_pair(LI, LR));
1198        } else if (MO.isDead()) {
1199          LiveRange* LR = LI->getLiveRangeContaining(OldIdx.getRegSlot());
1200          assert(LR != 0 && "No dead-def range?");
1201          Internal.insert(std::make_pair(LI, LR));
1202        } else {
1203          LiveRange* LR = LI->getLiveRangeContaining(OldIdx.getDeadSlot());
1204          assert(LR && LR->end > OldIdx.getDeadSlot() &&
1205                 "Non-dead-def should have live range exiting.");
1206          Exiting.insert(std::make_pair(LI, LR));
1207        }
1208      }
1209    }
1210  }
1211
1212  // Collect IntRangePairs for all operands of MI that may need fixing.
1213  void collectRangesInBundle(MachineInstr* MI, RangeSet& Entering,
1214                             RangeSet& Exiting, SlotIndex MIStartIdx,
1215                             SlotIndex MIEndIdx) {
1216    for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
1217                                    MOE = MI->operands_end();
1218         MOI != MOE; ++MOI) {
1219      const MachineOperand& MO = *MOI;
1220      assert(!MO.isRegMask() && "Can't have RegMasks in bundles.");
1221      if (!MO.isReg() || MO.getReg() == 0)
1222        continue;
1223
1224      unsigned Reg = MO.getReg();
1225
1226      // TODO: Currently we're skipping uses that are reserved or have no
1227      // interval, but we're not updating their kills. This should be
1228      // fixed.
1229      if (!LIS.hasInterval(Reg) ||
1230          (TargetRegisterInfo::isPhysicalRegister(Reg) && LIS.isReserved(Reg)))
1231        continue;
1232
1233      LiveInterval* LI = &LIS.getInterval(Reg);
1234
1235      if (MO.readsReg()) {
1236        LiveRange* LR = LI->getLiveRangeContaining(MIStartIdx);
1237        if (LR != 0)
1238          Entering.insert(std::make_pair(LI, LR));
1239      }
1240      if (MO.isDef()) {
1241        assert(!MO.isEarlyClobber() && "Early clobbers not allowed in bundles.");
1242        assert(!MO.isDead() && "Dead-defs not allowed in bundles.");
1243        LiveRange* LR = LI->getLiveRangeContaining(MIEndIdx.getDeadSlot());
1244        assert(LR != 0 && "Internal ranges not allowed in bundles.");
1245        Exiting.insert(std::make_pair(LI, LR));
1246      }
1247    }
1248  }
1249
1250  BundleRanges createBundleRanges(RangeSet& Entering, RangeSet& Internal, RangeSet& Exiting) {
1251    BundleRanges BR;
1252
1253    for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end();
1254         EI != EE; ++EI) {
1255      LiveInterval* LI = EI->first;
1256      LiveRange* LR = EI->second;
1257      BR[LI->reg].Use = LR;
1258    }
1259
1260    for (RangeSet::iterator II = Internal.begin(), IE = Internal.end();
1261         II != IE; ++II) {
1262      LiveInterval* LI = II->first;
1263      LiveRange* LR = II->second;
1264      if (LR->end.isDead()) {
1265        BR[LI->reg].Dead = LR;
1266      } else {
1267        BR[LI->reg].EC = LR;
1268      }
1269    }
1270
1271    for (RangeSet::iterator EI = Exiting.begin(), EE = Exiting.end();
1272         EI != EE; ++EI) {
1273      LiveInterval* LI = EI->first;
1274      LiveRange* LR = EI->second;
1275      BR[LI->reg].Def = LR;
1276    }
1277
1278    return BR;
1279  }
1280
1281  void moveKillFlags(unsigned reg, SlotIndex OldIdx, SlotIndex newKillIdx) {
1282    MachineInstr* OldKillMI = LIS.getInstructionFromIndex(OldIdx);
1283    if (!OldKillMI->killsRegister(reg))
1284      return; // Bail out if we don't have kill flags on the old register.
1285    MachineInstr* NewKillMI = LIS.getInstructionFromIndex(newKillIdx);
1286    assert(OldKillMI->killsRegister(reg) && "Old 'kill' instr isn't a kill.");
1287    assert(!NewKillMI->killsRegister(reg) && "New kill instr is already a kill.");
1288    OldKillMI->clearRegisterKills(reg, &TRI);
1289    NewKillMI->addRegisterKilled(reg, &TRI);
1290  }
1291
1292  void updateRegMaskSlots(SlotIndex OldIdx) {
1293    SmallVectorImpl<SlotIndex>::iterator RI =
1294      std::lower_bound(LIS.RegMaskSlots.begin(), LIS.RegMaskSlots.end(),
1295                       OldIdx);
1296    assert(*RI == OldIdx && "No RegMask at OldIdx.");
1297    *RI = NewIdx;
1298    assert(*prior(RI) < *RI && *RI < *next(RI) &&
1299           "RegSlots out of order. Did you move one call across another?");
1300  }
1301
1302  // Return the last use of reg between NewIdx and OldIdx.
1303  SlotIndex findLastUseBefore(unsigned Reg, SlotIndex OldIdx) {
1304    SlotIndex LastUse = NewIdx;
1305    for (MachineRegisterInfo::use_nodbg_iterator
1306           UI = MRI.use_nodbg_begin(Reg),
1307           UE = MRI.use_nodbg_end();
1308         UI != UE; UI.skipInstruction()) {
1309      const MachineInstr* MI = &*UI;
1310      SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI);
1311      if (InstSlot > LastUse && InstSlot < OldIdx)
1312        LastUse = InstSlot;
1313    }
1314    return LastUse;
1315  }
1316
1317  void moveEnteringUpFrom(SlotIndex OldIdx, IntRangePair& P) {
1318    LiveInterval* LI = P.first;
1319    LiveRange* LR = P.second;
1320    bool LiveThrough = LR->end > OldIdx.getRegSlot();
1321    if (LiveThrough)
1322      return;
1323    SlotIndex LastUse = findLastUseBefore(LI->reg, OldIdx);
1324    if (LastUse != NewIdx)
1325      moveKillFlags(LI->reg, NewIdx, LastUse);
1326    LR->end = LastUse.getRegSlot();
1327  }
1328
1329  void moveEnteringDownFrom(SlotIndex OldIdx, IntRangePair& P) {
1330    LiveInterval* LI = P.first;
1331    LiveRange* LR = P.second;
1332    // Extend the LiveRange if NewIdx is past the end.
1333    if (NewIdx > LR->end) {
1334      // Move kill flags if OldIdx was not originally the end
1335      // (otherwise LR->end points to an invalid slot).
1336      if (LR->end.getRegSlot() != OldIdx.getRegSlot()) {
1337        assert(LR->end > OldIdx && "LiveRange does not cover original slot");
1338        moveKillFlags(LI->reg, LR->end, NewIdx);
1339      }
1340      LR->end = NewIdx.getRegSlot();
1341    }
1342  }
1343
1344  void moveAllEnteringFrom(SlotIndex OldIdx, RangeSet& Entering) {
1345    bool GoingUp = NewIdx < OldIdx;
1346
1347    if (GoingUp) {
1348      for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end();
1349           EI != EE; ++EI)
1350        moveEnteringUpFrom(OldIdx, *EI);
1351    } else {
1352      for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end();
1353           EI != EE; ++EI)
1354        moveEnteringDownFrom(OldIdx, *EI);
1355    }
1356  }
1357
1358  void moveInternalFrom(SlotIndex OldIdx, IntRangePair& P) {
1359    LiveInterval* LI = P.first;
1360    LiveRange* LR = P.second;
1361    assert(OldIdx < LR->start && LR->start < OldIdx.getDeadSlot() &&
1362           LR->end <= OldIdx.getDeadSlot() &&
1363           "Range should be internal to OldIdx.");
1364    LiveRange Tmp(*LR);
1365    Tmp.start = NewIdx.getRegSlot(LR->start.isEarlyClobber());
1366    Tmp.valno->def = Tmp.start;
1367    Tmp.end = LR->end.isDead() ? NewIdx.getDeadSlot() : NewIdx.getRegSlot();
1368    LI->removeRange(*LR);
1369    LI->addRange(Tmp);
1370  }
1371
1372  void moveAllInternalFrom(SlotIndex OldIdx, RangeSet& Internal) {
1373    for (RangeSet::iterator II = Internal.begin(), IE = Internal.end();
1374         II != IE; ++II)
1375      moveInternalFrom(OldIdx, *II);
1376  }
1377
1378  void moveExitingFrom(SlotIndex OldIdx, IntRangePair& P) {
1379    LiveRange* LR = P.second;
1380    assert(OldIdx < LR->start && LR->start < OldIdx.getDeadSlot() &&
1381           "Range should start in OldIdx.");
1382    assert(LR->end > OldIdx.getDeadSlot() && "Range should exit OldIdx.");
1383    SlotIndex NewStart = NewIdx.getRegSlot(LR->start.isEarlyClobber());
1384    LR->start = NewStart;
1385    LR->valno->def = NewStart;
1386  }
1387
1388  void moveAllExitingFrom(SlotIndex OldIdx, RangeSet& Exiting) {
1389    for (RangeSet::iterator EI = Exiting.begin(), EE = Exiting.end();
1390         EI != EE; ++EI)
1391      moveExitingFrom(OldIdx, *EI);
1392  }
1393
1394  void moveEnteringUpFromInto(SlotIndex OldIdx, IntRangePair& P,
1395                              BundleRanges& BR) {
1396    LiveInterval* LI = P.first;
1397    LiveRange* LR = P.second;
1398    bool LiveThrough = LR->end > OldIdx.getRegSlot();
1399    if (LiveThrough) {
1400      assert((LR->start < NewIdx || BR[LI->reg].Def == LR) &&
1401             "Def in bundle should be def range.");
1402      assert((BR[LI->reg].Use == 0 || BR[LI->reg].Use == LR) &&
1403             "If bundle has use for this reg it should be LR.");
1404      BR[LI->reg].Use = LR;
1405      return;
1406    }
1407
1408    SlotIndex LastUse = findLastUseBefore(LI->reg, OldIdx);
1409    moveKillFlags(LI->reg, OldIdx, LastUse);
1410
1411    if (LR->start < NewIdx) {
1412      // Becoming a new entering range.
1413      assert(BR[LI->reg].Dead == 0 && BR[LI->reg].Def == 0 &&
1414             "Bundle shouldn't be re-defining reg mid-range.");
1415      assert((BR[LI->reg].Use == 0 || BR[LI->reg].Use == LR) &&
1416             "Bundle shouldn't have different use range for same reg.");
1417      LR->end = LastUse.getRegSlot();
1418      BR[LI->reg].Use = LR;
1419    } else {
1420      // Becoming a new Dead-def.
1421      assert(LR->start == NewIdx.getRegSlot(LR->start.isEarlyClobber()) &&
1422             "Live range starting at unexpected slot.");
1423      assert(BR[LI->reg].Def == LR && "Reg should have def range.");
1424      assert(BR[LI->reg].Dead == 0 &&
1425               "Can't have def and dead def of same reg in a bundle.");
1426      LR->end = LastUse.getDeadSlot();
1427      BR[LI->reg].Dead = BR[LI->reg].Def;
1428      BR[LI->reg].Def = 0;
1429    }
1430  }
1431
1432  void moveEnteringDownFromInto(SlotIndex OldIdx, IntRangePair& P,
1433                                BundleRanges& BR) {
1434    LiveInterval* LI = P.first;
1435    LiveRange* LR = P.second;
1436    if (NewIdx > LR->end) {
1437      // Range extended to bundle. Add to bundle uses.
1438      // Note: Currently adds kill flags to bundle start.
1439      assert(BR[LI->reg].Use == 0 &&
1440             "Bundle already has use range for reg.");
1441      moveKillFlags(LI->reg, LR->end, NewIdx);
1442      LR->end = NewIdx.getRegSlot();
1443      BR[LI->reg].Use = LR;
1444    } else {
1445      assert(BR[LI->reg].Use != 0 &&
1446             "Bundle should already have a use range for reg.");
1447    }
1448  }
1449
1450  void moveAllEnteringFromInto(SlotIndex OldIdx, RangeSet& Entering,
1451                               BundleRanges& BR) {
1452    bool GoingUp = NewIdx < OldIdx;
1453
1454    if (GoingUp) {
1455      for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end();
1456           EI != EE; ++EI)
1457        moveEnteringUpFromInto(OldIdx, *EI, BR);
1458    } else {
1459      for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end();
1460           EI != EE; ++EI)
1461        moveEnteringDownFromInto(OldIdx, *EI, BR);
1462    }
1463  }
1464
1465  void moveInternalFromInto(SlotIndex OldIdx, IntRangePair& P,
1466                            BundleRanges& BR) {
1467    // TODO: Sane rules for moving ranges into bundles.
1468  }
1469
1470  void moveAllInternalFromInto(SlotIndex OldIdx, RangeSet& Internal,
1471                               BundleRanges& BR) {
1472    for (RangeSet::iterator II = Internal.begin(), IE = Internal.end();
1473         II != IE; ++II)
1474      moveInternalFromInto(OldIdx, *II, BR);
1475  }
1476
1477  void moveExitingFromInto(SlotIndex OldIdx, IntRangePair& P,
1478                           BundleRanges& BR) {
1479    LiveInterval* LI = P.first;
1480    LiveRange* LR = P.second;
1481
1482    assert(LR->start.isRegister() &&
1483           "Don't know how to merge exiting ECs into bundles yet.");
1484
1485    if (LR->end > NewIdx.getDeadSlot()) {
1486      // This range is becoming an exiting range on the bundle.
1487      // If there was an old dead-def of this reg, delete it.
1488      if (BR[LI->reg].Dead != 0) {
1489        LI->removeRange(*BR[LI->reg].Dead);
1490        BR[LI->reg].Dead = 0;
1491      }
1492      assert(BR[LI->reg].Def == 0 &&
1493             "Can't have two defs for the same variable exiting a bundle.");
1494      LR->start = NewIdx.getRegSlot();
1495      LR->valno->def = LR->start;
1496      BR[LI->reg].Def = LR;
1497    } else {
1498      // This range is becoming internal to the bundle.
1499      assert(LR->end == NewIdx.getRegSlot() &&
1500             "Can't bundle def whose kill is before the bundle");
1501      if (BR[LI->reg].Dead || BR[LI->reg].Def) {
1502        // Already have a def for this. Just delete range.
1503        LI->removeRange(*LR);
1504      } else {
1505        // Make range dead, record.
1506        LR->end = NewIdx.getDeadSlot();
1507        BR[LI->reg].Dead = LR;
1508        assert(BR[LI->reg].Use == LR &&
1509               "Range becoming dead should currently be use.");
1510      }
1511      // In both cases the range is no longer a use on the bundle.
1512      BR[LI->reg].Use = 0;
1513    }
1514  }
1515
1516  void moveAllExitingFromInto(SlotIndex OldIdx, RangeSet& Exiting,
1517                              BundleRanges& BR) {
1518    for (RangeSet::iterator EI = Exiting.begin(), EE = Exiting.end();
1519         EI != EE; ++EI)
1520      moveExitingFromInto(OldIdx, *EI, BR);
1521  }
1522
1523};
1524
1525void LiveIntervals::handleMove(MachineInstr* MI) {
1526  SlotIndex OldIndex = indexes_->getInstructionIndex(MI);
1527  indexes_->removeMachineInstrFromMaps(MI);
1528  SlotIndex NewIndex = MI->isInsideBundle() ?
1529                        indexes_->getInstructionIndex(MI) :
1530                        indexes_->insertMachineInstrInMaps(MI);
1531  assert(getMBBStartIdx(MI->getParent()) <= OldIndex &&
1532         OldIndex < getMBBEndIdx(MI->getParent()) &&
1533         "Cannot handle moves across basic block boundaries.");
1534  assert(!MI->isBundled() && "Can't handle bundled instructions yet.");
1535
1536  HMEditor HME(*this, *mri_, *tri_, NewIndex);
1537  HME.moveAllRangesFrom(MI, OldIndex);
1538}
1539
1540void LiveIntervals::handleMoveIntoBundle(MachineInstr* MI, MachineInstr* BundleStart) {
1541  SlotIndex NewIndex = indexes_->getInstructionIndex(BundleStart);
1542  HMEditor HME(*this, *mri_, *tri_, NewIndex);
1543  HME.moveAllRangesInto(MI, BundleStart);
1544}
1545