BitcodeWriter.cpp revision 225736
1//===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Bitcode writer implementation.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Bitcode/ReaderWriter.h"
15#include "llvm/Bitcode/BitstreamWriter.h"
16#include "llvm/Bitcode/LLVMBitCodes.h"
17#include "ValueEnumerator.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/InlineAsm.h"
21#include "llvm/Instructions.h"
22#include "llvm/Module.h"
23#include "llvm/Operator.h"
24#include "llvm/ValueSymbolTable.h"
25#include "llvm/ADT/Triple.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/MathExtras.h"
28#include "llvm/Support/raw_ostream.h"
29#include "llvm/Support/Program.h"
30#include <cctype>
31#include <map>
32using namespace llvm;
33
34/// These are manifest constants used by the bitcode writer. They do not need to
35/// be kept in sync with the reader, but need to be consistent within this file.
36enum {
37  CurVersion = 0,
38
39  // VALUE_SYMTAB_BLOCK abbrev id's.
40  VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
41  VST_ENTRY_7_ABBREV,
42  VST_ENTRY_6_ABBREV,
43  VST_BBENTRY_6_ABBREV,
44
45  // CONSTANTS_BLOCK abbrev id's.
46  CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
47  CONSTANTS_INTEGER_ABBREV,
48  CONSTANTS_CE_CAST_Abbrev,
49  CONSTANTS_NULL_Abbrev,
50
51  // FUNCTION_BLOCK abbrev id's.
52  FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
53  FUNCTION_INST_BINOP_ABBREV,
54  FUNCTION_INST_BINOP_FLAGS_ABBREV,
55  FUNCTION_INST_CAST_ABBREV,
56  FUNCTION_INST_RET_VOID_ABBREV,
57  FUNCTION_INST_RET_VAL_ABBREV,
58  FUNCTION_INST_UNREACHABLE_ABBREV
59};
60
61
62static unsigned GetEncodedCastOpcode(unsigned Opcode) {
63  switch (Opcode) {
64  default: llvm_unreachable("Unknown cast instruction!");
65  case Instruction::Trunc   : return bitc::CAST_TRUNC;
66  case Instruction::ZExt    : return bitc::CAST_ZEXT;
67  case Instruction::SExt    : return bitc::CAST_SEXT;
68  case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
69  case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
70  case Instruction::UIToFP  : return bitc::CAST_UITOFP;
71  case Instruction::SIToFP  : return bitc::CAST_SITOFP;
72  case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
73  case Instruction::FPExt   : return bitc::CAST_FPEXT;
74  case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
75  case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
76  case Instruction::BitCast : return bitc::CAST_BITCAST;
77  }
78}
79
80static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
81  switch (Opcode) {
82  default: llvm_unreachable("Unknown binary instruction!");
83  case Instruction::Add:
84  case Instruction::FAdd: return bitc::BINOP_ADD;
85  case Instruction::Sub:
86  case Instruction::FSub: return bitc::BINOP_SUB;
87  case Instruction::Mul:
88  case Instruction::FMul: return bitc::BINOP_MUL;
89  case Instruction::UDiv: return bitc::BINOP_UDIV;
90  case Instruction::FDiv:
91  case Instruction::SDiv: return bitc::BINOP_SDIV;
92  case Instruction::URem: return bitc::BINOP_UREM;
93  case Instruction::FRem:
94  case Instruction::SRem: return bitc::BINOP_SREM;
95  case Instruction::Shl:  return bitc::BINOP_SHL;
96  case Instruction::LShr: return bitc::BINOP_LSHR;
97  case Instruction::AShr: return bitc::BINOP_ASHR;
98  case Instruction::And:  return bitc::BINOP_AND;
99  case Instruction::Or:   return bitc::BINOP_OR;
100  case Instruction::Xor:  return bitc::BINOP_XOR;
101  }
102}
103
104static void WriteStringRecord(unsigned Code, StringRef Str,
105                              unsigned AbbrevToUse, BitstreamWriter &Stream) {
106  SmallVector<unsigned, 64> Vals;
107
108  // Code: [strchar x N]
109  for (unsigned i = 0, e = Str.size(); i != e; ++i) {
110    if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
111      AbbrevToUse = 0;
112    Vals.push_back(Str[i]);
113  }
114
115  // Emit the finished record.
116  Stream.EmitRecord(Code, Vals, AbbrevToUse);
117}
118
119// Emit information about parameter attributes.
120static void WriteAttributeTable(const ValueEnumerator &VE,
121                                BitstreamWriter &Stream) {
122  const std::vector<AttrListPtr> &Attrs = VE.getAttributes();
123  if (Attrs.empty()) return;
124
125  Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
126
127  SmallVector<uint64_t, 64> Record;
128  for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
129    const AttrListPtr &A = Attrs[i];
130    for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
131      const AttributeWithIndex &PAWI = A.getSlot(i);
132      Record.push_back(PAWI.Index);
133
134      // FIXME: remove in LLVM 3.0
135      // Store the alignment in the bitcode as a 16-bit raw value instead of a
136      // 5-bit log2 encoded value. Shift the bits above the alignment up by
137      // 11 bits.
138      uint64_t FauxAttr = PAWI.Attrs & 0xffff;
139      if (PAWI.Attrs & Attribute::Alignment)
140        FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16);
141      FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11;
142
143      Record.push_back(FauxAttr);
144    }
145
146    Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
147    Record.clear();
148  }
149
150  Stream.ExitBlock();
151}
152
153/// WriteTypeTable - Write out the type table for a module.
154static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
155  const ValueEnumerator::TypeList &TypeList = VE.getTypes();
156
157  Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
158  SmallVector<uint64_t, 64> TypeVals;
159
160  // Abbrev for TYPE_CODE_POINTER.
161  BitCodeAbbrev *Abbv = new BitCodeAbbrev();
162  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
163  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
164                            Log2_32_Ceil(VE.getTypes().size()+1)));
165  Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
166  unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
167
168  // Abbrev for TYPE_CODE_FUNCTION.
169  Abbv = new BitCodeAbbrev();
170  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
171  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
172  Abbv->Add(BitCodeAbbrevOp(0));  // FIXME: DEAD value, remove in LLVM 3.0
173  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
174  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
175                            Log2_32_Ceil(VE.getTypes().size()+1)));
176  unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
177
178  // Abbrev for TYPE_CODE_STRUCT_ANON.
179  Abbv = new BitCodeAbbrev();
180  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
181  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
182  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
183  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
184                            Log2_32_Ceil(VE.getTypes().size()+1)));
185  unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
186
187  // Abbrev for TYPE_CODE_STRUCT_NAME.
188  Abbv = new BitCodeAbbrev();
189  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
190  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
191  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
192  unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
193
194  // Abbrev for TYPE_CODE_STRUCT_NAMED.
195  Abbv = new BitCodeAbbrev();
196  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
197  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
198  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
199  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
200                            Log2_32_Ceil(VE.getTypes().size()+1)));
201  unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
202
203
204  // Abbrev for TYPE_CODE_ARRAY.
205  Abbv = new BitCodeAbbrev();
206  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
207  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
208  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
209                            Log2_32_Ceil(VE.getTypes().size()+1)));
210  unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
211
212  // Emit an entry count so the reader can reserve space.
213  TypeVals.push_back(TypeList.size());
214  Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
215  TypeVals.clear();
216
217  // Loop over all of the types, emitting each in turn.
218  for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
219    const Type *T = TypeList[i];
220    int AbbrevToUse = 0;
221    unsigned Code = 0;
222
223    switch (T->getTypeID()) {
224    default: llvm_unreachable("Unknown type!");
225    case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;   break;
226    case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;  break;
227    case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE; break;
228    case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80; break;
229    case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128; break;
230    case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
231    case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;  break;
232    case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA; break;
233    case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX; break;
234    case Type::IntegerTyID:
235      // INTEGER: [width]
236      Code = bitc::TYPE_CODE_INTEGER;
237      TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
238      break;
239    case Type::PointerTyID: {
240      const PointerType *PTy = cast<PointerType>(T);
241      // POINTER: [pointee type, address space]
242      Code = bitc::TYPE_CODE_POINTER;
243      TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
244      unsigned AddressSpace = PTy->getAddressSpace();
245      TypeVals.push_back(AddressSpace);
246      if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
247      break;
248    }
249    case Type::FunctionTyID: {
250      const FunctionType *FT = cast<FunctionType>(T);
251      // FUNCTION: [isvararg, attrid, retty, paramty x N]
252      Code = bitc::TYPE_CODE_FUNCTION;
253      TypeVals.push_back(FT->isVarArg());
254      TypeVals.push_back(0);  // FIXME: DEAD: remove in llvm 3.0
255      TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
256      for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
257        TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
258      AbbrevToUse = FunctionAbbrev;
259      break;
260    }
261    case Type::StructTyID: {
262      const StructType *ST = cast<StructType>(T);
263      // STRUCT: [ispacked, eltty x N]
264      TypeVals.push_back(ST->isPacked());
265      // Output all of the element types.
266      for (StructType::element_iterator I = ST->element_begin(),
267           E = ST->element_end(); I != E; ++I)
268        TypeVals.push_back(VE.getTypeID(*I));
269
270      if (ST->isAnonymous()) {
271        Code = bitc::TYPE_CODE_STRUCT_ANON;
272        AbbrevToUse = StructAnonAbbrev;
273      } else {
274        if (ST->isOpaque()) {
275          Code = bitc::TYPE_CODE_OPAQUE;
276        } else {
277          Code = bitc::TYPE_CODE_STRUCT_NAMED;
278          AbbrevToUse = StructNamedAbbrev;
279        }
280
281        // Emit the name if it is present.
282        if (!ST->getName().empty())
283          WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
284                            StructNameAbbrev, Stream);
285      }
286      break;
287    }
288    case Type::ArrayTyID: {
289      const ArrayType *AT = cast<ArrayType>(T);
290      // ARRAY: [numelts, eltty]
291      Code = bitc::TYPE_CODE_ARRAY;
292      TypeVals.push_back(AT->getNumElements());
293      TypeVals.push_back(VE.getTypeID(AT->getElementType()));
294      AbbrevToUse = ArrayAbbrev;
295      break;
296    }
297    case Type::VectorTyID: {
298      const VectorType *VT = cast<VectorType>(T);
299      // VECTOR [numelts, eltty]
300      Code = bitc::TYPE_CODE_VECTOR;
301      TypeVals.push_back(VT->getNumElements());
302      TypeVals.push_back(VE.getTypeID(VT->getElementType()));
303      break;
304    }
305    }
306
307    // Emit the finished record.
308    Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
309    TypeVals.clear();
310  }
311
312  Stream.ExitBlock();
313}
314
315static unsigned getEncodedLinkage(const GlobalValue *GV) {
316  switch (GV->getLinkage()) {
317  default: llvm_unreachable("Invalid linkage!");
318  case GlobalValue::ExternalLinkage:                 return 0;
319  case GlobalValue::WeakAnyLinkage:                  return 1;
320  case GlobalValue::AppendingLinkage:                return 2;
321  case GlobalValue::InternalLinkage:                 return 3;
322  case GlobalValue::LinkOnceAnyLinkage:              return 4;
323  case GlobalValue::DLLImportLinkage:                return 5;
324  case GlobalValue::DLLExportLinkage:                return 6;
325  case GlobalValue::ExternalWeakLinkage:             return 7;
326  case GlobalValue::CommonLinkage:                   return 8;
327  case GlobalValue::PrivateLinkage:                  return 9;
328  case GlobalValue::WeakODRLinkage:                  return 10;
329  case GlobalValue::LinkOnceODRLinkage:              return 11;
330  case GlobalValue::AvailableExternallyLinkage:      return 12;
331  case GlobalValue::LinkerPrivateLinkage:            return 13;
332  case GlobalValue::LinkerPrivateWeakLinkage:        return 14;
333  case GlobalValue::LinkerPrivateWeakDefAutoLinkage: return 15;
334  }
335}
336
337static unsigned getEncodedVisibility(const GlobalValue *GV) {
338  switch (GV->getVisibility()) {
339  default: llvm_unreachable("Invalid visibility!");
340  case GlobalValue::DefaultVisibility:   return 0;
341  case GlobalValue::HiddenVisibility:    return 1;
342  case GlobalValue::ProtectedVisibility: return 2;
343  }
344}
345
346// Emit top-level description of module, including target triple, inline asm,
347// descriptors for global variables, and function prototype info.
348static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
349                            BitstreamWriter &Stream) {
350  // Emit the list of dependent libraries for the Module.
351  for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
352    WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
353
354  // Emit various pieces of data attached to a module.
355  if (!M->getTargetTriple().empty())
356    WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
357                      0/*TODO*/, Stream);
358  if (!M->getDataLayout().empty())
359    WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
360                      0/*TODO*/, Stream);
361  if (!M->getModuleInlineAsm().empty())
362    WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
363                      0/*TODO*/, Stream);
364
365  // Emit information about sections and GC, computing how many there are. Also
366  // compute the maximum alignment value.
367  std::map<std::string, unsigned> SectionMap;
368  std::map<std::string, unsigned> GCMap;
369  unsigned MaxAlignment = 0;
370  unsigned MaxGlobalType = 0;
371  for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
372       GV != E; ++GV) {
373    MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
374    MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
375
376    if (!GV->hasSection()) continue;
377    // Give section names unique ID's.
378    unsigned &Entry = SectionMap[GV->getSection()];
379    if (Entry != 0) continue;
380    WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
381                      0/*TODO*/, Stream);
382    Entry = SectionMap.size();
383  }
384  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
385    MaxAlignment = std::max(MaxAlignment, F->getAlignment());
386    if (F->hasSection()) {
387      // Give section names unique ID's.
388      unsigned &Entry = SectionMap[F->getSection()];
389      if (!Entry) {
390        WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
391                          0/*TODO*/, Stream);
392        Entry = SectionMap.size();
393      }
394    }
395    if (F->hasGC()) {
396      // Same for GC names.
397      unsigned &Entry = GCMap[F->getGC()];
398      if (!Entry) {
399        WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
400                          0/*TODO*/, Stream);
401        Entry = GCMap.size();
402      }
403    }
404  }
405
406  // Emit abbrev for globals, now that we know # sections and max alignment.
407  unsigned SimpleGVarAbbrev = 0;
408  if (!M->global_empty()) {
409    // Add an abbrev for common globals with no visibility or thread localness.
410    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
411    Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
412    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
413                              Log2_32_Ceil(MaxGlobalType+1)));
414    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
415    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
416    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
417    if (MaxAlignment == 0)                                      // Alignment.
418      Abbv->Add(BitCodeAbbrevOp(0));
419    else {
420      unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
421      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
422                               Log2_32_Ceil(MaxEncAlignment+1)));
423    }
424    if (SectionMap.empty())                                    // Section.
425      Abbv->Add(BitCodeAbbrevOp(0));
426    else
427      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
428                               Log2_32_Ceil(SectionMap.size()+1)));
429    // Don't bother emitting vis + thread local.
430    SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
431  }
432
433  // Emit the global variable information.
434  SmallVector<unsigned, 64> Vals;
435  for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
436       GV != E; ++GV) {
437    unsigned AbbrevToUse = 0;
438
439    // GLOBALVAR: [type, isconst, initid,
440    //             linkage, alignment, section, visibility, threadlocal,
441    //             unnamed_addr]
442    Vals.push_back(VE.getTypeID(GV->getType()));
443    Vals.push_back(GV->isConstant());
444    Vals.push_back(GV->isDeclaration() ? 0 :
445                   (VE.getValueID(GV->getInitializer()) + 1));
446    Vals.push_back(getEncodedLinkage(GV));
447    Vals.push_back(Log2_32(GV->getAlignment())+1);
448    Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
449    if (GV->isThreadLocal() ||
450        GV->getVisibility() != GlobalValue::DefaultVisibility ||
451        GV->hasUnnamedAddr()) {
452      Vals.push_back(getEncodedVisibility(GV));
453      Vals.push_back(GV->isThreadLocal());
454      Vals.push_back(GV->hasUnnamedAddr());
455    } else {
456      AbbrevToUse = SimpleGVarAbbrev;
457    }
458
459    Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
460    Vals.clear();
461  }
462
463  // Emit the function proto information.
464  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
465    // FUNCTION:  [type, callingconv, isproto, paramattr,
466    //             linkage, alignment, section, visibility, gc, unnamed_addr]
467    Vals.push_back(VE.getTypeID(F->getType()));
468    Vals.push_back(F->getCallingConv());
469    Vals.push_back(F->isDeclaration());
470    Vals.push_back(getEncodedLinkage(F));
471    Vals.push_back(VE.getAttributeID(F->getAttributes()));
472    Vals.push_back(Log2_32(F->getAlignment())+1);
473    Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
474    Vals.push_back(getEncodedVisibility(F));
475    Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
476    Vals.push_back(F->hasUnnamedAddr());
477
478    unsigned AbbrevToUse = 0;
479    Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
480    Vals.clear();
481  }
482
483  // Emit the alias information.
484  for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
485       AI != E; ++AI) {
486    Vals.push_back(VE.getTypeID(AI->getType()));
487    Vals.push_back(VE.getValueID(AI->getAliasee()));
488    Vals.push_back(getEncodedLinkage(AI));
489    Vals.push_back(getEncodedVisibility(AI));
490    unsigned AbbrevToUse = 0;
491    Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
492    Vals.clear();
493  }
494}
495
496static uint64_t GetOptimizationFlags(const Value *V) {
497  uint64_t Flags = 0;
498
499  if (const OverflowingBinaryOperator *OBO =
500        dyn_cast<OverflowingBinaryOperator>(V)) {
501    if (OBO->hasNoSignedWrap())
502      Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
503    if (OBO->hasNoUnsignedWrap())
504      Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
505  } else if (const PossiblyExactOperator *PEO =
506               dyn_cast<PossiblyExactOperator>(V)) {
507    if (PEO->isExact())
508      Flags |= 1 << bitc::PEO_EXACT;
509  }
510
511  return Flags;
512}
513
514static void WriteMDNode(const MDNode *N,
515                        const ValueEnumerator &VE,
516                        BitstreamWriter &Stream,
517                        SmallVector<uint64_t, 64> &Record) {
518  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
519    if (N->getOperand(i)) {
520      Record.push_back(VE.getTypeID(N->getOperand(i)->getType()));
521      Record.push_back(VE.getValueID(N->getOperand(i)));
522    } else {
523      Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext())));
524      Record.push_back(0);
525    }
526  }
527  unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE :
528                                           bitc::METADATA_NODE;
529  Stream.EmitRecord(MDCode, Record, 0);
530  Record.clear();
531}
532
533static void WriteModuleMetadata(const Module *M,
534                                const ValueEnumerator &VE,
535                                BitstreamWriter &Stream) {
536  const ValueEnumerator::ValueList &Vals = VE.getMDValues();
537  bool StartedMetadataBlock = false;
538  unsigned MDSAbbrev = 0;
539  SmallVector<uint64_t, 64> Record;
540  for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
541
542    if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
543      if (!N->isFunctionLocal() || !N->getFunction()) {
544        if (!StartedMetadataBlock) {
545          Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
546          StartedMetadataBlock = true;
547        }
548        WriteMDNode(N, VE, Stream, Record);
549      }
550    } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
551      if (!StartedMetadataBlock)  {
552        Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
553
554        // Abbrev for METADATA_STRING.
555        BitCodeAbbrev *Abbv = new BitCodeAbbrev();
556        Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
557        Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
558        Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
559        MDSAbbrev = Stream.EmitAbbrev(Abbv);
560        StartedMetadataBlock = true;
561      }
562
563      // Code: [strchar x N]
564      Record.append(MDS->begin(), MDS->end());
565
566      // Emit the finished record.
567      Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
568      Record.clear();
569    }
570  }
571
572  // Write named metadata.
573  for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
574       E = M->named_metadata_end(); I != E; ++I) {
575    const NamedMDNode *NMD = I;
576    if (!StartedMetadataBlock)  {
577      Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
578      StartedMetadataBlock = true;
579    }
580
581    // Write name.
582    StringRef Str = NMD->getName();
583    for (unsigned i = 0, e = Str.size(); i != e; ++i)
584      Record.push_back(Str[i]);
585    Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
586    Record.clear();
587
588    // Write named metadata operands.
589    for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
590      Record.push_back(VE.getValueID(NMD->getOperand(i)));
591    Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
592    Record.clear();
593  }
594
595  if (StartedMetadataBlock)
596    Stream.ExitBlock();
597}
598
599static void WriteFunctionLocalMetadata(const Function &F,
600                                       const ValueEnumerator &VE,
601                                       BitstreamWriter &Stream) {
602  bool StartedMetadataBlock = false;
603  SmallVector<uint64_t, 64> Record;
604  const SmallVector<const MDNode *, 8> &Vals = VE.getFunctionLocalMDValues();
605  for (unsigned i = 0, e = Vals.size(); i != e; ++i)
606    if (const MDNode *N = Vals[i])
607      if (N->isFunctionLocal() && N->getFunction() == &F) {
608        if (!StartedMetadataBlock) {
609          Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
610          StartedMetadataBlock = true;
611        }
612        WriteMDNode(N, VE, Stream, Record);
613      }
614
615  if (StartedMetadataBlock)
616    Stream.ExitBlock();
617}
618
619static void WriteMetadataAttachment(const Function &F,
620                                    const ValueEnumerator &VE,
621                                    BitstreamWriter &Stream) {
622  Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
623
624  SmallVector<uint64_t, 64> Record;
625
626  // Write metadata attachments
627  // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
628  SmallVector<std::pair<unsigned, MDNode*>, 4> MDs;
629
630  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
631    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
632         I != E; ++I) {
633      MDs.clear();
634      I->getAllMetadataOtherThanDebugLoc(MDs);
635
636      // If no metadata, ignore instruction.
637      if (MDs.empty()) continue;
638
639      Record.push_back(VE.getInstructionID(I));
640
641      for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
642        Record.push_back(MDs[i].first);
643        Record.push_back(VE.getValueID(MDs[i].second));
644      }
645      Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
646      Record.clear();
647    }
648
649  Stream.ExitBlock();
650}
651
652static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
653  SmallVector<uint64_t, 64> Record;
654
655  // Write metadata kinds
656  // METADATA_KIND - [n x [id, name]]
657  SmallVector<StringRef, 4> Names;
658  M->getMDKindNames(Names);
659
660  if (Names.empty()) return;
661
662  Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
663
664  for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
665    Record.push_back(MDKindID);
666    StringRef KName = Names[MDKindID];
667    Record.append(KName.begin(), KName.end());
668
669    Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
670    Record.clear();
671  }
672
673  Stream.ExitBlock();
674}
675
676static void WriteConstants(unsigned FirstVal, unsigned LastVal,
677                           const ValueEnumerator &VE,
678                           BitstreamWriter &Stream, bool isGlobal) {
679  if (FirstVal == LastVal) return;
680
681  Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
682
683  unsigned AggregateAbbrev = 0;
684  unsigned String8Abbrev = 0;
685  unsigned CString7Abbrev = 0;
686  unsigned CString6Abbrev = 0;
687  // If this is a constant pool for the module, emit module-specific abbrevs.
688  if (isGlobal) {
689    // Abbrev for CST_CODE_AGGREGATE.
690    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
691    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
692    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
693    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
694    AggregateAbbrev = Stream.EmitAbbrev(Abbv);
695
696    // Abbrev for CST_CODE_STRING.
697    Abbv = new BitCodeAbbrev();
698    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
699    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
700    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
701    String8Abbrev = Stream.EmitAbbrev(Abbv);
702    // Abbrev for CST_CODE_CSTRING.
703    Abbv = new BitCodeAbbrev();
704    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
705    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
706    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
707    CString7Abbrev = Stream.EmitAbbrev(Abbv);
708    // Abbrev for CST_CODE_CSTRING.
709    Abbv = new BitCodeAbbrev();
710    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
711    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
712    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
713    CString6Abbrev = Stream.EmitAbbrev(Abbv);
714  }
715
716  SmallVector<uint64_t, 64> Record;
717
718  const ValueEnumerator::ValueList &Vals = VE.getValues();
719  const Type *LastTy = 0;
720  for (unsigned i = FirstVal; i != LastVal; ++i) {
721    const Value *V = Vals[i].first;
722    // If we need to switch types, do so now.
723    if (V->getType() != LastTy) {
724      LastTy = V->getType();
725      Record.push_back(VE.getTypeID(LastTy));
726      Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
727                        CONSTANTS_SETTYPE_ABBREV);
728      Record.clear();
729    }
730
731    if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
732      Record.push_back(unsigned(IA->hasSideEffects()) |
733                       unsigned(IA->isAlignStack()) << 1);
734
735      // Add the asm string.
736      const std::string &AsmStr = IA->getAsmString();
737      Record.push_back(AsmStr.size());
738      for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
739        Record.push_back(AsmStr[i]);
740
741      // Add the constraint string.
742      const std::string &ConstraintStr = IA->getConstraintString();
743      Record.push_back(ConstraintStr.size());
744      for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
745        Record.push_back(ConstraintStr[i]);
746      Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
747      Record.clear();
748      continue;
749    }
750    const Constant *C = cast<Constant>(V);
751    unsigned Code = -1U;
752    unsigned AbbrevToUse = 0;
753    if (C->isNullValue()) {
754      Code = bitc::CST_CODE_NULL;
755    } else if (isa<UndefValue>(C)) {
756      Code = bitc::CST_CODE_UNDEF;
757    } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
758      if (IV->getBitWidth() <= 64) {
759        uint64_t V = IV->getSExtValue();
760        if ((int64_t)V >= 0)
761          Record.push_back(V << 1);
762        else
763          Record.push_back((-V << 1) | 1);
764        Code = bitc::CST_CODE_INTEGER;
765        AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
766      } else {                             // Wide integers, > 64 bits in size.
767        // We have an arbitrary precision integer value to write whose
768        // bit width is > 64. However, in canonical unsigned integer
769        // format it is likely that the high bits are going to be zero.
770        // So, we only write the number of active words.
771        unsigned NWords = IV->getValue().getActiveWords();
772        const uint64_t *RawWords = IV->getValue().getRawData();
773        for (unsigned i = 0; i != NWords; ++i) {
774          int64_t V = RawWords[i];
775          if (V >= 0)
776            Record.push_back(V << 1);
777          else
778            Record.push_back((-V << 1) | 1);
779        }
780        Code = bitc::CST_CODE_WIDE_INTEGER;
781      }
782    } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
783      Code = bitc::CST_CODE_FLOAT;
784      const Type *Ty = CFP->getType();
785      if (Ty->isFloatTy() || Ty->isDoubleTy()) {
786        Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
787      } else if (Ty->isX86_FP80Ty()) {
788        // api needed to prevent premature destruction
789        // bits are not in the same order as a normal i80 APInt, compensate.
790        APInt api = CFP->getValueAPF().bitcastToAPInt();
791        const uint64_t *p = api.getRawData();
792        Record.push_back((p[1] << 48) | (p[0] >> 16));
793        Record.push_back(p[0] & 0xffffLL);
794      } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
795        APInt api = CFP->getValueAPF().bitcastToAPInt();
796        const uint64_t *p = api.getRawData();
797        Record.push_back(p[0]);
798        Record.push_back(p[1]);
799      } else {
800        assert (0 && "Unknown FP type!");
801      }
802    } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
803      const ConstantArray *CA = cast<ConstantArray>(C);
804      // Emit constant strings specially.
805      unsigned NumOps = CA->getNumOperands();
806      // If this is a null-terminated string, use the denser CSTRING encoding.
807      if (CA->getOperand(NumOps-1)->isNullValue()) {
808        Code = bitc::CST_CODE_CSTRING;
809        --NumOps;  // Don't encode the null, which isn't allowed by char6.
810      } else {
811        Code = bitc::CST_CODE_STRING;
812        AbbrevToUse = String8Abbrev;
813      }
814      bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
815      bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
816      for (unsigned i = 0; i != NumOps; ++i) {
817        unsigned char V = cast<ConstantInt>(CA->getOperand(i))->getZExtValue();
818        Record.push_back(V);
819        isCStr7 &= (V & 128) == 0;
820        if (isCStrChar6)
821          isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
822      }
823
824      if (isCStrChar6)
825        AbbrevToUse = CString6Abbrev;
826      else if (isCStr7)
827        AbbrevToUse = CString7Abbrev;
828    } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
829               isa<ConstantVector>(V)) {
830      Code = bitc::CST_CODE_AGGREGATE;
831      for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
832        Record.push_back(VE.getValueID(C->getOperand(i)));
833      AbbrevToUse = AggregateAbbrev;
834    } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
835      switch (CE->getOpcode()) {
836      default:
837        if (Instruction::isCast(CE->getOpcode())) {
838          Code = bitc::CST_CODE_CE_CAST;
839          Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
840          Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
841          Record.push_back(VE.getValueID(C->getOperand(0)));
842          AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
843        } else {
844          assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
845          Code = bitc::CST_CODE_CE_BINOP;
846          Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
847          Record.push_back(VE.getValueID(C->getOperand(0)));
848          Record.push_back(VE.getValueID(C->getOperand(1)));
849          uint64_t Flags = GetOptimizationFlags(CE);
850          if (Flags != 0)
851            Record.push_back(Flags);
852        }
853        break;
854      case Instruction::GetElementPtr:
855        Code = bitc::CST_CODE_CE_GEP;
856        if (cast<GEPOperator>(C)->isInBounds())
857          Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
858        for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
859          Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
860          Record.push_back(VE.getValueID(C->getOperand(i)));
861        }
862        break;
863      case Instruction::Select:
864        Code = bitc::CST_CODE_CE_SELECT;
865        Record.push_back(VE.getValueID(C->getOperand(0)));
866        Record.push_back(VE.getValueID(C->getOperand(1)));
867        Record.push_back(VE.getValueID(C->getOperand(2)));
868        break;
869      case Instruction::ExtractElement:
870        Code = bitc::CST_CODE_CE_EXTRACTELT;
871        Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
872        Record.push_back(VE.getValueID(C->getOperand(0)));
873        Record.push_back(VE.getValueID(C->getOperand(1)));
874        break;
875      case Instruction::InsertElement:
876        Code = bitc::CST_CODE_CE_INSERTELT;
877        Record.push_back(VE.getValueID(C->getOperand(0)));
878        Record.push_back(VE.getValueID(C->getOperand(1)));
879        Record.push_back(VE.getValueID(C->getOperand(2)));
880        break;
881      case Instruction::ShuffleVector:
882        // If the return type and argument types are the same, this is a
883        // standard shufflevector instruction.  If the types are different,
884        // then the shuffle is widening or truncating the input vectors, and
885        // the argument type must also be encoded.
886        if (C->getType() == C->getOperand(0)->getType()) {
887          Code = bitc::CST_CODE_CE_SHUFFLEVEC;
888        } else {
889          Code = bitc::CST_CODE_CE_SHUFVEC_EX;
890          Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
891        }
892        Record.push_back(VE.getValueID(C->getOperand(0)));
893        Record.push_back(VE.getValueID(C->getOperand(1)));
894        Record.push_back(VE.getValueID(C->getOperand(2)));
895        break;
896      case Instruction::ICmp:
897      case Instruction::FCmp:
898        Code = bitc::CST_CODE_CE_CMP;
899        Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
900        Record.push_back(VE.getValueID(C->getOperand(0)));
901        Record.push_back(VE.getValueID(C->getOperand(1)));
902        Record.push_back(CE->getPredicate());
903        break;
904      }
905    } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
906      Code = bitc::CST_CODE_BLOCKADDRESS;
907      Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
908      Record.push_back(VE.getValueID(BA->getFunction()));
909      Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
910    } else {
911#ifndef NDEBUG
912      C->dump();
913#endif
914      llvm_unreachable("Unknown constant!");
915    }
916    Stream.EmitRecord(Code, Record, AbbrevToUse);
917    Record.clear();
918  }
919
920  Stream.ExitBlock();
921}
922
923static void WriteModuleConstants(const ValueEnumerator &VE,
924                                 BitstreamWriter &Stream) {
925  const ValueEnumerator::ValueList &Vals = VE.getValues();
926
927  // Find the first constant to emit, which is the first non-globalvalue value.
928  // We know globalvalues have been emitted by WriteModuleInfo.
929  for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
930    if (!isa<GlobalValue>(Vals[i].first)) {
931      WriteConstants(i, Vals.size(), VE, Stream, true);
932      return;
933    }
934  }
935}
936
937/// PushValueAndType - The file has to encode both the value and type id for
938/// many values, because we need to know what type to create for forward
939/// references.  However, most operands are not forward references, so this type
940/// field is not needed.
941///
942/// This function adds V's value ID to Vals.  If the value ID is higher than the
943/// instruction ID, then it is a forward reference, and it also includes the
944/// type ID.
945static bool PushValueAndType(const Value *V, unsigned InstID,
946                             SmallVector<unsigned, 64> &Vals,
947                             ValueEnumerator &VE) {
948  unsigned ValID = VE.getValueID(V);
949  Vals.push_back(ValID);
950  if (ValID >= InstID) {
951    Vals.push_back(VE.getTypeID(V->getType()));
952    return true;
953  }
954  return false;
955}
956
957/// WriteInstruction - Emit an instruction to the specified stream.
958static void WriteInstruction(const Instruction &I, unsigned InstID,
959                             ValueEnumerator &VE, BitstreamWriter &Stream,
960                             SmallVector<unsigned, 64> &Vals) {
961  unsigned Code = 0;
962  unsigned AbbrevToUse = 0;
963  VE.setInstructionID(&I);
964  switch (I.getOpcode()) {
965  default:
966    if (Instruction::isCast(I.getOpcode())) {
967      Code = bitc::FUNC_CODE_INST_CAST;
968      if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
969        AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
970      Vals.push_back(VE.getTypeID(I.getType()));
971      Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
972    } else {
973      assert(isa<BinaryOperator>(I) && "Unknown instruction!");
974      Code = bitc::FUNC_CODE_INST_BINOP;
975      if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
976        AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
977      Vals.push_back(VE.getValueID(I.getOperand(1)));
978      Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
979      uint64_t Flags = GetOptimizationFlags(&I);
980      if (Flags != 0) {
981        if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
982          AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
983        Vals.push_back(Flags);
984      }
985    }
986    break;
987
988  case Instruction::GetElementPtr:
989    Code = bitc::FUNC_CODE_INST_GEP;
990    if (cast<GEPOperator>(&I)->isInBounds())
991      Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
992    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
993      PushValueAndType(I.getOperand(i), InstID, Vals, VE);
994    break;
995  case Instruction::ExtractValue: {
996    Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
997    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
998    const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
999    for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1000      Vals.push_back(*i);
1001    break;
1002  }
1003  case Instruction::InsertValue: {
1004    Code = bitc::FUNC_CODE_INST_INSERTVAL;
1005    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1006    PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1007    const InsertValueInst *IVI = cast<InsertValueInst>(&I);
1008    for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1009      Vals.push_back(*i);
1010    break;
1011  }
1012  case Instruction::Select:
1013    Code = bitc::FUNC_CODE_INST_VSELECT;
1014    PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1015    Vals.push_back(VE.getValueID(I.getOperand(2)));
1016    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1017    break;
1018  case Instruction::ExtractElement:
1019    Code = bitc::FUNC_CODE_INST_EXTRACTELT;
1020    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1021    Vals.push_back(VE.getValueID(I.getOperand(1)));
1022    break;
1023  case Instruction::InsertElement:
1024    Code = bitc::FUNC_CODE_INST_INSERTELT;
1025    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1026    Vals.push_back(VE.getValueID(I.getOperand(1)));
1027    Vals.push_back(VE.getValueID(I.getOperand(2)));
1028    break;
1029  case Instruction::ShuffleVector:
1030    Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
1031    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1032    Vals.push_back(VE.getValueID(I.getOperand(1)));
1033    Vals.push_back(VE.getValueID(I.getOperand(2)));
1034    break;
1035  case Instruction::ICmp:
1036  case Instruction::FCmp:
1037    // compare returning Int1Ty or vector of Int1Ty
1038    Code = bitc::FUNC_CODE_INST_CMP2;
1039    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1040    Vals.push_back(VE.getValueID(I.getOperand(1)));
1041    Vals.push_back(cast<CmpInst>(I).getPredicate());
1042    break;
1043
1044  case Instruction::Ret:
1045    {
1046      Code = bitc::FUNC_CODE_INST_RET;
1047      unsigned NumOperands = I.getNumOperands();
1048      if (NumOperands == 0)
1049        AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
1050      else if (NumOperands == 1) {
1051        if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1052          AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
1053      } else {
1054        for (unsigned i = 0, e = NumOperands; i != e; ++i)
1055          PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1056      }
1057    }
1058    break;
1059  case Instruction::Br:
1060    {
1061      Code = bitc::FUNC_CODE_INST_BR;
1062      BranchInst &II = cast<BranchInst>(I);
1063      Vals.push_back(VE.getValueID(II.getSuccessor(0)));
1064      if (II.isConditional()) {
1065        Vals.push_back(VE.getValueID(II.getSuccessor(1)));
1066        Vals.push_back(VE.getValueID(II.getCondition()));
1067      }
1068    }
1069    break;
1070  case Instruction::Switch:
1071    Code = bitc::FUNC_CODE_INST_SWITCH;
1072    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1073    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1074      Vals.push_back(VE.getValueID(I.getOperand(i)));
1075    break;
1076  case Instruction::IndirectBr:
1077    Code = bitc::FUNC_CODE_INST_INDIRECTBR;
1078    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1079    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1080      Vals.push_back(VE.getValueID(I.getOperand(i)));
1081    break;
1082
1083  case Instruction::Invoke: {
1084    const InvokeInst *II = cast<InvokeInst>(&I);
1085    const Value *Callee(II->getCalledValue());
1086    const PointerType *PTy = cast<PointerType>(Callee->getType());
1087    const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1088    Code = bitc::FUNC_CODE_INST_INVOKE;
1089
1090    Vals.push_back(VE.getAttributeID(II->getAttributes()));
1091    Vals.push_back(II->getCallingConv());
1092    Vals.push_back(VE.getValueID(II->getNormalDest()));
1093    Vals.push_back(VE.getValueID(II->getUnwindDest()));
1094    PushValueAndType(Callee, InstID, Vals, VE);
1095
1096    // Emit value #'s for the fixed parameters.
1097    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1098      Vals.push_back(VE.getValueID(I.getOperand(i)));  // fixed param.
1099
1100    // Emit type/value pairs for varargs params.
1101    if (FTy->isVarArg()) {
1102      for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
1103           i != e; ++i)
1104        PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
1105    }
1106    break;
1107  }
1108  case Instruction::Unwind:
1109    Code = bitc::FUNC_CODE_INST_UNWIND;
1110    break;
1111  case Instruction::Unreachable:
1112    Code = bitc::FUNC_CODE_INST_UNREACHABLE;
1113    AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
1114    break;
1115
1116  case Instruction::PHI: {
1117    const PHINode &PN = cast<PHINode>(I);
1118    Code = bitc::FUNC_CODE_INST_PHI;
1119    Vals.push_back(VE.getTypeID(PN.getType()));
1120    for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1121      Vals.push_back(VE.getValueID(PN.getIncomingValue(i)));
1122      Vals.push_back(VE.getValueID(PN.getIncomingBlock(i)));
1123    }
1124    break;
1125  }
1126
1127  case Instruction::Alloca:
1128    Code = bitc::FUNC_CODE_INST_ALLOCA;
1129    Vals.push_back(VE.getTypeID(I.getType()));
1130    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1131    Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1132    Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
1133    break;
1134
1135  case Instruction::Load:
1136    Code = bitc::FUNC_CODE_INST_LOAD;
1137    if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
1138      AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1139
1140    Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1141    Vals.push_back(cast<LoadInst>(I).isVolatile());
1142    break;
1143  case Instruction::Store:
1144    Code = bitc::FUNC_CODE_INST_STORE;
1145    PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
1146    Vals.push_back(VE.getValueID(I.getOperand(0)));       // val.
1147    Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1148    Vals.push_back(cast<StoreInst>(I).isVolatile());
1149    break;
1150  case Instruction::Call: {
1151    const CallInst &CI = cast<CallInst>(I);
1152    const PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType());
1153    const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1154
1155    Code = bitc::FUNC_CODE_INST_CALL;
1156
1157    Vals.push_back(VE.getAttributeID(CI.getAttributes()));
1158    Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()));
1159    PushValueAndType(CI.getCalledValue(), InstID, Vals, VE);  // Callee
1160
1161    // Emit value #'s for the fixed parameters.
1162    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1163      Vals.push_back(VE.getValueID(CI.getArgOperand(i)));  // fixed param.
1164
1165    // Emit type/value pairs for varargs params.
1166    if (FTy->isVarArg()) {
1167      for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
1168           i != e; ++i)
1169        PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE);  // varargs
1170    }
1171    break;
1172  }
1173  case Instruction::VAArg:
1174    Code = bitc::FUNC_CODE_INST_VAARG;
1175    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
1176    Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
1177    Vals.push_back(VE.getTypeID(I.getType())); // restype.
1178    break;
1179  }
1180
1181  Stream.EmitRecord(Code, Vals, AbbrevToUse);
1182  Vals.clear();
1183}
1184
1185// Emit names for globals/functions etc.
1186static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1187                                  const ValueEnumerator &VE,
1188                                  BitstreamWriter &Stream) {
1189  if (VST.empty()) return;
1190  Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1191
1192  // FIXME: Set up the abbrev, we know how many values there are!
1193  // FIXME: We know if the type names can use 7-bit ascii.
1194  SmallVector<unsigned, 64> NameVals;
1195
1196  for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1197       SI != SE; ++SI) {
1198
1199    const ValueName &Name = *SI;
1200
1201    // Figure out the encoding to use for the name.
1202    bool is7Bit = true;
1203    bool isChar6 = true;
1204    for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1205         C != E; ++C) {
1206      if (isChar6)
1207        isChar6 = BitCodeAbbrevOp::isChar6(*C);
1208      if ((unsigned char)*C & 128) {
1209        is7Bit = false;
1210        break;  // don't bother scanning the rest.
1211      }
1212    }
1213
1214    unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1215
1216    // VST_ENTRY:   [valueid, namechar x N]
1217    // VST_BBENTRY: [bbid, namechar x N]
1218    unsigned Code;
1219    if (isa<BasicBlock>(SI->getValue())) {
1220      Code = bitc::VST_CODE_BBENTRY;
1221      if (isChar6)
1222        AbbrevToUse = VST_BBENTRY_6_ABBREV;
1223    } else {
1224      Code = bitc::VST_CODE_ENTRY;
1225      if (isChar6)
1226        AbbrevToUse = VST_ENTRY_6_ABBREV;
1227      else if (is7Bit)
1228        AbbrevToUse = VST_ENTRY_7_ABBREV;
1229    }
1230
1231    NameVals.push_back(VE.getValueID(SI->getValue()));
1232    for (const char *P = Name.getKeyData(),
1233         *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1234      NameVals.push_back((unsigned char)*P);
1235
1236    // Emit the finished record.
1237    Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1238    NameVals.clear();
1239  }
1240  Stream.ExitBlock();
1241}
1242
1243/// WriteFunction - Emit a function body to the module stream.
1244static void WriteFunction(const Function &F, ValueEnumerator &VE,
1245                          BitstreamWriter &Stream) {
1246  Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1247  VE.incorporateFunction(F);
1248
1249  SmallVector<unsigned, 64> Vals;
1250
1251  // Emit the number of basic blocks, so the reader can create them ahead of
1252  // time.
1253  Vals.push_back(VE.getBasicBlocks().size());
1254  Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1255  Vals.clear();
1256
1257  // If there are function-local constants, emit them now.
1258  unsigned CstStart, CstEnd;
1259  VE.getFunctionConstantRange(CstStart, CstEnd);
1260  WriteConstants(CstStart, CstEnd, VE, Stream, false);
1261
1262  // If there is function-local metadata, emit it now.
1263  WriteFunctionLocalMetadata(F, VE, Stream);
1264
1265  // Keep a running idea of what the instruction ID is.
1266  unsigned InstID = CstEnd;
1267
1268  bool NeedsMetadataAttachment = false;
1269
1270  DebugLoc LastDL;
1271
1272  // Finally, emit all the instructions, in order.
1273  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1274    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1275         I != E; ++I) {
1276      WriteInstruction(*I, InstID, VE, Stream, Vals);
1277
1278      if (!I->getType()->isVoidTy())
1279        ++InstID;
1280
1281      // If the instruction has metadata, write a metadata attachment later.
1282      NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
1283
1284      // If the instruction has a debug location, emit it.
1285      DebugLoc DL = I->getDebugLoc();
1286      if (DL.isUnknown()) {
1287        // nothing todo.
1288      } else if (DL == LastDL) {
1289        // Just repeat the same debug loc as last time.
1290        Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
1291      } else {
1292        MDNode *Scope, *IA;
1293        DL.getScopeAndInlinedAt(Scope, IA, I->getContext());
1294
1295        Vals.push_back(DL.getLine());
1296        Vals.push_back(DL.getCol());
1297        Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0);
1298        Vals.push_back(IA ? VE.getValueID(IA)+1 : 0);
1299        Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
1300        Vals.clear();
1301
1302        LastDL = DL;
1303      }
1304    }
1305
1306  // Emit names for all the instructions etc.
1307  WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1308
1309  if (NeedsMetadataAttachment)
1310    WriteMetadataAttachment(F, VE, Stream);
1311  VE.purgeFunction();
1312  Stream.ExitBlock();
1313}
1314
1315// Emit blockinfo, which defines the standard abbreviations etc.
1316static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
1317  // We only want to emit block info records for blocks that have multiple
1318  // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
1319  // blocks can defined their abbrevs inline.
1320  Stream.EnterBlockInfoBlock(2);
1321
1322  { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1323    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1324    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1325    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1326    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1327    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1328    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1329                                   Abbv) != VST_ENTRY_8_ABBREV)
1330      llvm_unreachable("Unexpected abbrev ordering!");
1331  }
1332
1333  { // 7-bit fixed width VST_ENTRY strings.
1334    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1335    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1336    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1337    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1338    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1339    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1340                                   Abbv) != VST_ENTRY_7_ABBREV)
1341      llvm_unreachable("Unexpected abbrev ordering!");
1342  }
1343  { // 6-bit char6 VST_ENTRY strings.
1344    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1345    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1346    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1347    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1348    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1349    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1350                                   Abbv) != VST_ENTRY_6_ABBREV)
1351      llvm_unreachable("Unexpected abbrev ordering!");
1352  }
1353  { // 6-bit char6 VST_BBENTRY strings.
1354    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1355    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1356    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1357    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1358    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1359    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1360                                   Abbv) != VST_BBENTRY_6_ABBREV)
1361      llvm_unreachable("Unexpected abbrev ordering!");
1362  }
1363
1364
1365
1366  { // SETTYPE abbrev for CONSTANTS_BLOCK.
1367    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1368    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1369    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1370                              Log2_32_Ceil(VE.getTypes().size()+1)));
1371    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1372                                   Abbv) != CONSTANTS_SETTYPE_ABBREV)
1373      llvm_unreachable("Unexpected abbrev ordering!");
1374  }
1375
1376  { // INTEGER abbrev for CONSTANTS_BLOCK.
1377    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1378    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1379    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1380    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1381                                   Abbv) != CONSTANTS_INTEGER_ABBREV)
1382      llvm_unreachable("Unexpected abbrev ordering!");
1383  }
1384
1385  { // CE_CAST abbrev for CONSTANTS_BLOCK.
1386    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1387    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1388    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1389    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1390                              Log2_32_Ceil(VE.getTypes().size()+1)));
1391    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1392
1393    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1394                                   Abbv) != CONSTANTS_CE_CAST_Abbrev)
1395      llvm_unreachable("Unexpected abbrev ordering!");
1396  }
1397  { // NULL abbrev for CONSTANTS_BLOCK.
1398    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1399    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1400    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1401                                   Abbv) != CONSTANTS_NULL_Abbrev)
1402      llvm_unreachable("Unexpected abbrev ordering!");
1403  }
1404
1405  // FIXME: This should only use space for first class types!
1406
1407  { // INST_LOAD abbrev for FUNCTION_BLOCK.
1408    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1409    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1410    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1411    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1412    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1413    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1414                                   Abbv) != FUNCTION_INST_LOAD_ABBREV)
1415      llvm_unreachable("Unexpected abbrev ordering!");
1416  }
1417  { // INST_BINOP abbrev for FUNCTION_BLOCK.
1418    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1419    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1420    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1421    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1422    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1423    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1424                                   Abbv) != FUNCTION_INST_BINOP_ABBREV)
1425      llvm_unreachable("Unexpected abbrev ordering!");
1426  }
1427  { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
1428    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1429    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1430    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1431    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1432    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1433    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
1434    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1435                                   Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
1436      llvm_unreachable("Unexpected abbrev ordering!");
1437  }
1438  { // INST_CAST abbrev for FUNCTION_BLOCK.
1439    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1440    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1441    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
1442    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
1443                              Log2_32_Ceil(VE.getTypes().size()+1)));
1444    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
1445    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1446                                   Abbv) != FUNCTION_INST_CAST_ABBREV)
1447      llvm_unreachable("Unexpected abbrev ordering!");
1448  }
1449
1450  { // INST_RET abbrev for FUNCTION_BLOCK.
1451    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1452    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1453    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1454                                   Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1455      llvm_unreachable("Unexpected abbrev ordering!");
1456  }
1457  { // INST_RET abbrev for FUNCTION_BLOCK.
1458    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1459    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1460    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1461    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1462                                   Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1463      llvm_unreachable("Unexpected abbrev ordering!");
1464  }
1465  { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1466    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1467    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1468    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1469                                   Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1470      llvm_unreachable("Unexpected abbrev ordering!");
1471  }
1472
1473  Stream.ExitBlock();
1474}
1475
1476
1477/// WriteModule - Emit the specified module to the bitstream.
1478static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1479  Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1480
1481  // Emit the version number if it is non-zero.
1482  if (CurVersion) {
1483    SmallVector<unsigned, 1> Vals;
1484    Vals.push_back(CurVersion);
1485    Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1486  }
1487
1488  // Analyze the module, enumerating globals, functions, etc.
1489  ValueEnumerator VE(M);
1490
1491  // Emit blockinfo, which defines the standard abbreviations etc.
1492  WriteBlockInfo(VE, Stream);
1493
1494  // Emit information about parameter attributes.
1495  WriteAttributeTable(VE, Stream);
1496
1497  // Emit information describing all of the types in the module.
1498  WriteTypeTable(VE, Stream);
1499
1500  // Emit top-level description of module, including target triple, inline asm,
1501  // descriptors for global variables, and function prototype info.
1502  WriteModuleInfo(M, VE, Stream);
1503
1504  // Emit constants.
1505  WriteModuleConstants(VE, Stream);
1506
1507  // Emit metadata.
1508  WriteModuleMetadata(M, VE, Stream);
1509
1510  // Emit function bodies.
1511  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
1512    if (!F->isDeclaration())
1513      WriteFunction(*F, VE, Stream);
1514
1515  // Emit metadata.
1516  WriteModuleMetadataStore(M, Stream);
1517
1518  // Emit names for globals/functions etc.
1519  WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1520
1521  Stream.ExitBlock();
1522}
1523
1524/// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1525/// header and trailer to make it compatible with the system archiver.  To do
1526/// this we emit the following header, and then emit a trailer that pads the
1527/// file out to be a multiple of 16 bytes.
1528///
1529/// struct bc_header {
1530///   uint32_t Magic;         // 0x0B17C0DE
1531///   uint32_t Version;       // Version, currently always 0.
1532///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1533///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
1534///   uint32_t CPUType;       // CPU specifier.
1535///   ... potentially more later ...
1536/// };
1537enum {
1538  DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
1539  DarwinBCHeaderSize = 5*4
1540};
1541
1542static void EmitDarwinBCHeader(BitstreamWriter &Stream, const Triple &TT) {
1543  unsigned CPUType = ~0U;
1544
1545  // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
1546  // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
1547  // number from /usr/include/mach/machine.h.  It is ok to reproduce the
1548  // specific constants here because they are implicitly part of the Darwin ABI.
1549  enum {
1550    DARWIN_CPU_ARCH_ABI64      = 0x01000000,
1551    DARWIN_CPU_TYPE_X86        = 7,
1552    DARWIN_CPU_TYPE_ARM        = 12,
1553    DARWIN_CPU_TYPE_POWERPC    = 18
1554  };
1555
1556  Triple::ArchType Arch = TT.getArch();
1557  if (Arch == Triple::x86_64)
1558    CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
1559  else if (Arch == Triple::x86)
1560    CPUType = DARWIN_CPU_TYPE_X86;
1561  else if (Arch == Triple::ppc)
1562    CPUType = DARWIN_CPU_TYPE_POWERPC;
1563  else if (Arch == Triple::ppc64)
1564    CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
1565  else if (Arch == Triple::arm || Arch == Triple::thumb)
1566    CPUType = DARWIN_CPU_TYPE_ARM;
1567
1568  // Traditional Bitcode starts after header.
1569  unsigned BCOffset = DarwinBCHeaderSize;
1570
1571  Stream.Emit(0x0B17C0DE, 32);
1572  Stream.Emit(0         , 32);  // Version.
1573  Stream.Emit(BCOffset  , 32);
1574  Stream.Emit(0         , 32);  // Filled in later.
1575  Stream.Emit(CPUType   , 32);
1576}
1577
1578/// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and
1579/// finalize the header.
1580static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) {
1581  // Update the size field in the header.
1582  Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize);
1583
1584  // If the file is not a multiple of 16 bytes, insert dummy padding.
1585  while (BufferSize & 15) {
1586    Stream.Emit(0, 8);
1587    ++BufferSize;
1588  }
1589}
1590
1591
1592/// WriteBitcodeToFile - Write the specified module to the specified output
1593/// stream.
1594void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
1595  std::vector<unsigned char> Buffer;
1596  BitstreamWriter Stream(Buffer);
1597
1598  Buffer.reserve(256*1024);
1599
1600  WriteBitcodeToStream( M, Stream );
1601
1602  // Write the generated bitstream to "Out".
1603  Out.write((char*)&Buffer.front(), Buffer.size());
1604}
1605
1606/// WriteBitcodeToStream - Write the specified module to the specified output
1607/// stream.
1608void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) {
1609  // If this is darwin or another generic macho target, emit a file header and
1610  // trailer if needed.
1611  Triple TT(M->getTargetTriple());
1612  if (TT.isOSDarwin())
1613    EmitDarwinBCHeader(Stream, TT);
1614
1615  // Emit the file header.
1616  Stream.Emit((unsigned)'B', 8);
1617  Stream.Emit((unsigned)'C', 8);
1618  Stream.Emit(0x0, 4);
1619  Stream.Emit(0xC, 4);
1620  Stream.Emit(0xE, 4);
1621  Stream.Emit(0xD, 4);
1622
1623  // Emit the module.
1624  WriteModule(M, Stream);
1625
1626  if (TT.isOSDarwin())
1627    EmitDarwinBCTrailer(Stream, Stream.getBuffer().size());
1628}
1629