• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/drivers/media/dvb/frontends/
BitcodeWriter.cpp revision 198396
1//===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Bitcode writer implementation.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Bitcode/ReaderWriter.h"
15#include "llvm/Bitcode/BitstreamWriter.h"
16#include "llvm/Bitcode/LLVMBitCodes.h"
17#include "ValueEnumerator.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/InlineAsm.h"
21#include "llvm/Instructions.h"
22#include "llvm/Metadata.h"
23#include "llvm/Module.h"
24#include "llvm/Operator.h"
25#include "llvm/TypeSymbolTable.h"
26#include "llvm/ValueSymbolTable.h"
27#include "llvm/Support/ErrorHandling.h"
28#include "llvm/Support/MathExtras.h"
29#include "llvm/Support/raw_ostream.h"
30#include "llvm/System/Program.h"
31using namespace llvm;
32
33/// These are manifest constants used by the bitcode writer. They do not need to
34/// be kept in sync with the reader, but need to be consistent within this file.
35enum {
36  CurVersion = 0,
37
38  // VALUE_SYMTAB_BLOCK abbrev id's.
39  VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
40  VST_ENTRY_7_ABBREV,
41  VST_ENTRY_6_ABBREV,
42  VST_BBENTRY_6_ABBREV,
43
44  // CONSTANTS_BLOCK abbrev id's.
45  CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
46  CONSTANTS_INTEGER_ABBREV,
47  CONSTANTS_CE_CAST_Abbrev,
48  CONSTANTS_NULL_Abbrev,
49
50  // FUNCTION_BLOCK abbrev id's.
51  FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
52  FUNCTION_INST_BINOP_ABBREV,
53  FUNCTION_INST_BINOP_FLAGS_ABBREV,
54  FUNCTION_INST_CAST_ABBREV,
55  FUNCTION_INST_RET_VOID_ABBREV,
56  FUNCTION_INST_RET_VAL_ABBREV,
57  FUNCTION_INST_UNREACHABLE_ABBREV
58};
59
60
61static unsigned GetEncodedCastOpcode(unsigned Opcode) {
62  switch (Opcode) {
63  default: llvm_unreachable("Unknown cast instruction!");
64  case Instruction::Trunc   : return bitc::CAST_TRUNC;
65  case Instruction::ZExt    : return bitc::CAST_ZEXT;
66  case Instruction::SExt    : return bitc::CAST_SEXT;
67  case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
68  case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
69  case Instruction::UIToFP  : return bitc::CAST_UITOFP;
70  case Instruction::SIToFP  : return bitc::CAST_SITOFP;
71  case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
72  case Instruction::FPExt   : return bitc::CAST_FPEXT;
73  case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
74  case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
75  case Instruction::BitCast : return bitc::CAST_BITCAST;
76  }
77}
78
79static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
80  switch (Opcode) {
81  default: llvm_unreachable("Unknown binary instruction!");
82  case Instruction::Add:
83  case Instruction::FAdd: return bitc::BINOP_ADD;
84  case Instruction::Sub:
85  case Instruction::FSub: return bitc::BINOP_SUB;
86  case Instruction::Mul:
87  case Instruction::FMul: return bitc::BINOP_MUL;
88  case Instruction::UDiv: return bitc::BINOP_UDIV;
89  case Instruction::FDiv:
90  case Instruction::SDiv: return bitc::BINOP_SDIV;
91  case Instruction::URem: return bitc::BINOP_UREM;
92  case Instruction::FRem:
93  case Instruction::SRem: return bitc::BINOP_SREM;
94  case Instruction::Shl:  return bitc::BINOP_SHL;
95  case Instruction::LShr: return bitc::BINOP_LSHR;
96  case Instruction::AShr: return bitc::BINOP_ASHR;
97  case Instruction::And:  return bitc::BINOP_AND;
98  case Instruction::Or:   return bitc::BINOP_OR;
99  case Instruction::Xor:  return bitc::BINOP_XOR;
100  }
101}
102
103
104
105static void WriteStringRecord(unsigned Code, const std::string &Str,
106                              unsigned AbbrevToUse, BitstreamWriter &Stream) {
107  SmallVector<unsigned, 64> Vals;
108
109  // Code: [strchar x N]
110  for (unsigned i = 0, e = Str.size(); i != e; ++i)
111    Vals.push_back(Str[i]);
112
113  // Emit the finished record.
114  Stream.EmitRecord(Code, Vals, AbbrevToUse);
115}
116
117// Emit information about parameter attributes.
118static void WriteAttributeTable(const ValueEnumerator &VE,
119                                BitstreamWriter &Stream) {
120  const std::vector<AttrListPtr> &Attrs = VE.getAttributes();
121  if (Attrs.empty()) return;
122
123  Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
124
125  SmallVector<uint64_t, 64> Record;
126  for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
127    const AttrListPtr &A = Attrs[i];
128    for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
129      const AttributeWithIndex &PAWI = A.getSlot(i);
130      Record.push_back(PAWI.Index);
131
132      // FIXME: remove in LLVM 3.0
133      // Store the alignment in the bitcode as a 16-bit raw value instead of a
134      // 5-bit log2 encoded value. Shift the bits above the alignment up by
135      // 11 bits.
136      uint64_t FauxAttr = PAWI.Attrs & 0xffff;
137      if (PAWI.Attrs & Attribute::Alignment)
138        FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16);
139      FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11;
140
141      Record.push_back(FauxAttr);
142    }
143
144    Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
145    Record.clear();
146  }
147
148  Stream.ExitBlock();
149}
150
151/// WriteTypeTable - Write out the type table for a module.
152static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
153  const ValueEnumerator::TypeList &TypeList = VE.getTypes();
154
155  Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
156  SmallVector<uint64_t, 64> TypeVals;
157
158  // Abbrev for TYPE_CODE_POINTER.
159  BitCodeAbbrev *Abbv = new BitCodeAbbrev();
160  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
161  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
162                            Log2_32_Ceil(VE.getTypes().size()+1)));
163  Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
164  unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
165
166  // Abbrev for TYPE_CODE_FUNCTION.
167  Abbv = new BitCodeAbbrev();
168  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
169  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
170  Abbv->Add(BitCodeAbbrevOp(0));  // FIXME: DEAD value, remove in LLVM 3.0
171  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
172  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
173                            Log2_32_Ceil(VE.getTypes().size()+1)));
174  unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
175
176  // Abbrev for TYPE_CODE_STRUCT.
177  Abbv = new BitCodeAbbrev();
178  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
179  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
180  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
181  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
182                            Log2_32_Ceil(VE.getTypes().size()+1)));
183  unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
184
185  // Abbrev for TYPE_CODE_ARRAY.
186  Abbv = new BitCodeAbbrev();
187  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
188  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
189  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
190                            Log2_32_Ceil(VE.getTypes().size()+1)));
191  unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
192
193  // Emit an entry count so the reader can reserve space.
194  TypeVals.push_back(TypeList.size());
195  Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
196  TypeVals.clear();
197
198  // Loop over all of the types, emitting each in turn.
199  for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
200    const Type *T = TypeList[i].first;
201    int AbbrevToUse = 0;
202    unsigned Code = 0;
203
204    switch (T->getTypeID()) {
205    default: llvm_unreachable("Unknown type!");
206    case Type::VoidTyID:   Code = bitc::TYPE_CODE_VOID;   break;
207    case Type::FloatTyID:  Code = bitc::TYPE_CODE_FLOAT;  break;
208    case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
209    case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
210    case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
211    case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
212    case Type::LabelTyID:  Code = bitc::TYPE_CODE_LABEL;  break;
213    case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
214    case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
215    case Type::IntegerTyID:
216      // INTEGER: [width]
217      Code = bitc::TYPE_CODE_INTEGER;
218      TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
219      break;
220    case Type::PointerTyID: {
221      const PointerType *PTy = cast<PointerType>(T);
222      // POINTER: [pointee type, address space]
223      Code = bitc::TYPE_CODE_POINTER;
224      TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
225      unsigned AddressSpace = PTy->getAddressSpace();
226      TypeVals.push_back(AddressSpace);
227      if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
228      break;
229    }
230    case Type::FunctionTyID: {
231      const FunctionType *FT = cast<FunctionType>(T);
232      // FUNCTION: [isvararg, attrid, retty, paramty x N]
233      Code = bitc::TYPE_CODE_FUNCTION;
234      TypeVals.push_back(FT->isVarArg());
235      TypeVals.push_back(0);  // FIXME: DEAD: remove in llvm 3.0
236      TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
237      for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
238        TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
239      AbbrevToUse = FunctionAbbrev;
240      break;
241    }
242    case Type::StructTyID: {
243      const StructType *ST = cast<StructType>(T);
244      // STRUCT: [ispacked, eltty x N]
245      Code = bitc::TYPE_CODE_STRUCT;
246      TypeVals.push_back(ST->isPacked());
247      // Output all of the element types.
248      for (StructType::element_iterator I = ST->element_begin(),
249           E = ST->element_end(); I != E; ++I)
250        TypeVals.push_back(VE.getTypeID(*I));
251      AbbrevToUse = StructAbbrev;
252      break;
253    }
254    case Type::ArrayTyID: {
255      const ArrayType *AT = cast<ArrayType>(T);
256      // ARRAY: [numelts, eltty]
257      Code = bitc::TYPE_CODE_ARRAY;
258      TypeVals.push_back(AT->getNumElements());
259      TypeVals.push_back(VE.getTypeID(AT->getElementType()));
260      AbbrevToUse = ArrayAbbrev;
261      break;
262    }
263    case Type::VectorTyID: {
264      const VectorType *VT = cast<VectorType>(T);
265      // VECTOR [numelts, eltty]
266      Code = bitc::TYPE_CODE_VECTOR;
267      TypeVals.push_back(VT->getNumElements());
268      TypeVals.push_back(VE.getTypeID(VT->getElementType()));
269      break;
270    }
271    }
272
273    // Emit the finished record.
274    Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
275    TypeVals.clear();
276  }
277
278  Stream.ExitBlock();
279}
280
281static unsigned getEncodedLinkage(const GlobalValue *GV) {
282  switch (GV->getLinkage()) {
283  default: llvm_unreachable("Invalid linkage!");
284  case GlobalValue::GhostLinkage:  // Map ghost linkage onto external.
285  case GlobalValue::ExternalLinkage:            return 0;
286  case GlobalValue::WeakAnyLinkage:             return 1;
287  case GlobalValue::AppendingLinkage:           return 2;
288  case GlobalValue::InternalLinkage:            return 3;
289  case GlobalValue::LinkOnceAnyLinkage:         return 4;
290  case GlobalValue::DLLImportLinkage:           return 5;
291  case GlobalValue::DLLExportLinkage:           return 6;
292  case GlobalValue::ExternalWeakLinkage:        return 7;
293  case GlobalValue::CommonLinkage:              return 8;
294  case GlobalValue::PrivateLinkage:             return 9;
295  case GlobalValue::WeakODRLinkage:             return 10;
296  case GlobalValue::LinkOnceODRLinkage:         return 11;
297  case GlobalValue::AvailableExternallyLinkage: return 12;
298  case GlobalValue::LinkerPrivateLinkage:       return 13;
299  }
300}
301
302static unsigned getEncodedVisibility(const GlobalValue *GV) {
303  switch (GV->getVisibility()) {
304  default: llvm_unreachable("Invalid visibility!");
305  case GlobalValue::DefaultVisibility:   return 0;
306  case GlobalValue::HiddenVisibility:    return 1;
307  case GlobalValue::ProtectedVisibility: return 2;
308  }
309}
310
311// Emit top-level description of module, including target triple, inline asm,
312// descriptors for global variables, and function prototype info.
313static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
314                            BitstreamWriter &Stream) {
315  // Emit the list of dependent libraries for the Module.
316  for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
317    WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
318
319  // Emit various pieces of data attached to a module.
320  if (!M->getTargetTriple().empty())
321    WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
322                      0/*TODO*/, Stream);
323  if (!M->getDataLayout().empty())
324    WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
325                      0/*TODO*/, Stream);
326  if (!M->getModuleInlineAsm().empty())
327    WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
328                      0/*TODO*/, Stream);
329
330  // Emit information about sections and GC, computing how many there are. Also
331  // compute the maximum alignment value.
332  std::map<std::string, unsigned> SectionMap;
333  std::map<std::string, unsigned> GCMap;
334  unsigned MaxAlignment = 0;
335  unsigned MaxGlobalType = 0;
336  for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
337       GV != E; ++GV) {
338    MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
339    MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
340
341    if (!GV->hasSection()) continue;
342    // Give section names unique ID's.
343    unsigned &Entry = SectionMap[GV->getSection()];
344    if (Entry != 0) continue;
345    WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
346                      0/*TODO*/, Stream);
347    Entry = SectionMap.size();
348  }
349  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
350    MaxAlignment = std::max(MaxAlignment, F->getAlignment());
351    if (F->hasSection()) {
352      // Give section names unique ID's.
353      unsigned &Entry = SectionMap[F->getSection()];
354      if (!Entry) {
355        WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
356                          0/*TODO*/, Stream);
357        Entry = SectionMap.size();
358      }
359    }
360    if (F->hasGC()) {
361      // Same for GC names.
362      unsigned &Entry = GCMap[F->getGC()];
363      if (!Entry) {
364        WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
365                          0/*TODO*/, Stream);
366        Entry = GCMap.size();
367      }
368    }
369  }
370
371  // Emit abbrev for globals, now that we know # sections and max alignment.
372  unsigned SimpleGVarAbbrev = 0;
373  if (!M->global_empty()) {
374    // Add an abbrev for common globals with no visibility or thread localness.
375    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
376    Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
377    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
378                              Log2_32_Ceil(MaxGlobalType+1)));
379    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
380    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
381    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
382    if (MaxAlignment == 0)                                      // Alignment.
383      Abbv->Add(BitCodeAbbrevOp(0));
384    else {
385      unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
386      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
387                               Log2_32_Ceil(MaxEncAlignment+1)));
388    }
389    if (SectionMap.empty())                                    // Section.
390      Abbv->Add(BitCodeAbbrevOp(0));
391    else
392      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
393                               Log2_32_Ceil(SectionMap.size()+1)));
394    // Don't bother emitting vis + thread local.
395    SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
396  }
397
398  // Emit the global variable information.
399  SmallVector<unsigned, 64> Vals;
400  for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
401       GV != E; ++GV) {
402    unsigned AbbrevToUse = 0;
403
404    // GLOBALVAR: [type, isconst, initid,
405    //             linkage, alignment, section, visibility, threadlocal]
406    Vals.push_back(VE.getTypeID(GV->getType()));
407    Vals.push_back(GV->isConstant());
408    Vals.push_back(GV->isDeclaration() ? 0 :
409                   (VE.getValueID(GV->getInitializer()) + 1));
410    Vals.push_back(getEncodedLinkage(GV));
411    Vals.push_back(Log2_32(GV->getAlignment())+1);
412    Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
413    if (GV->isThreadLocal() ||
414        GV->getVisibility() != GlobalValue::DefaultVisibility) {
415      Vals.push_back(getEncodedVisibility(GV));
416      Vals.push_back(GV->isThreadLocal());
417    } else {
418      AbbrevToUse = SimpleGVarAbbrev;
419    }
420
421    Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
422    Vals.clear();
423  }
424
425  // Emit the function proto information.
426  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
427    // FUNCTION:  [type, callingconv, isproto, paramattr,
428    //             linkage, alignment, section, visibility, gc]
429    Vals.push_back(VE.getTypeID(F->getType()));
430    Vals.push_back(F->getCallingConv());
431    Vals.push_back(F->isDeclaration());
432    Vals.push_back(getEncodedLinkage(F));
433    Vals.push_back(VE.getAttributeID(F->getAttributes()));
434    Vals.push_back(Log2_32(F->getAlignment())+1);
435    Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
436    Vals.push_back(getEncodedVisibility(F));
437    Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
438
439    unsigned AbbrevToUse = 0;
440    Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
441    Vals.clear();
442  }
443
444
445  // Emit the alias information.
446  for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
447       AI != E; ++AI) {
448    Vals.push_back(VE.getTypeID(AI->getType()));
449    Vals.push_back(VE.getValueID(AI->getAliasee()));
450    Vals.push_back(getEncodedLinkage(AI));
451    Vals.push_back(getEncodedVisibility(AI));
452    unsigned AbbrevToUse = 0;
453    Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
454    Vals.clear();
455  }
456}
457
458static uint64_t GetOptimizationFlags(const Value *V) {
459  uint64_t Flags = 0;
460
461  if (const OverflowingBinaryOperator *OBO =
462        dyn_cast<OverflowingBinaryOperator>(V)) {
463    if (OBO->hasNoSignedWrap())
464      Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
465    if (OBO->hasNoUnsignedWrap())
466      Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
467  } else if (const SDivOperator *Div = dyn_cast<SDivOperator>(V)) {
468    if (Div->isExact())
469      Flags |= 1 << bitc::SDIV_EXACT;
470  }
471
472  return Flags;
473}
474
475static void WriteMDNode(const MDNode *N,
476                        const ValueEnumerator &VE,
477                        BitstreamWriter &Stream,
478                        SmallVector<uint64_t, 64> &Record) {
479  for (unsigned i = 0, e = N->getNumElements(); i != e; ++i) {
480    if (N->getElement(i)) {
481      Record.push_back(VE.getTypeID(N->getElement(i)->getType()));
482      Record.push_back(VE.getValueID(N->getElement(i)));
483    } else {
484      Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext())));
485      Record.push_back(0);
486    }
487  }
488  Stream.EmitRecord(bitc::METADATA_NODE, Record, 0);
489  Record.clear();
490}
491
492static void WriteModuleMetadata(const ValueEnumerator &VE,
493                                BitstreamWriter &Stream) {
494  const ValueEnumerator::ValueList &Vals = VE.getMDValues();
495  bool StartedMetadataBlock = false;
496  unsigned MDSAbbrev = 0;
497  SmallVector<uint64_t, 64> Record;
498  for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
499
500    if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
501      if (!StartedMetadataBlock) {
502        Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
503        StartedMetadataBlock = true;
504      }
505      WriteMDNode(N, VE, Stream, Record);
506    } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
507      if (!StartedMetadataBlock)  {
508        Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
509
510        // Abbrev for METADATA_STRING.
511        BitCodeAbbrev *Abbv = new BitCodeAbbrev();
512        Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
513        Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
514        Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
515        MDSAbbrev = Stream.EmitAbbrev(Abbv);
516        StartedMetadataBlock = true;
517      }
518
519      // Code: [strchar x N]
520      Record.append(MDS->begin(), MDS->end());
521
522      // Emit the finished record.
523      Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
524      Record.clear();
525    } else if (const NamedMDNode *NMD = dyn_cast<NamedMDNode>(Vals[i].first)) {
526      if (!StartedMetadataBlock)  {
527        Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
528        StartedMetadataBlock = true;
529      }
530
531      // Write name.
532      std::string Str = NMD->getNameStr();
533      const char *StrBegin = Str.c_str();
534      for (unsigned i = 0, e = Str.length(); i != e; ++i)
535        Record.push_back(StrBegin[i]);
536      Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
537      Record.clear();
538
539      // Write named metadata elements.
540      for (unsigned i = 0, e = NMD->getNumElements(); i != e; ++i) {
541        if (NMD->getElement(i))
542          Record.push_back(VE.getValueID(NMD->getElement(i)));
543        else
544          Record.push_back(0);
545      }
546      Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
547      Record.clear();
548    }
549  }
550
551  if (StartedMetadataBlock)
552    Stream.ExitBlock();
553}
554
555static void WriteMetadataAttachment(const Function &F,
556                                    const ValueEnumerator &VE,
557                                    BitstreamWriter &Stream) {
558  bool StartedMetadataBlock = false;
559  SmallVector<uint64_t, 64> Record;
560
561  // Write metadata attachments
562  // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
563  MetadataContext &TheMetadata = F.getContext().getMetadata();
564  typedef SmallVector<std::pair<unsigned, TrackingVH<MDNode> >, 2> MDMapTy;
565  MDMapTy MDs;
566  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
567    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
568         I != E; ++I) {
569      MDs.clear();
570      TheMetadata.getMDs(I, MDs);
571      bool RecordedInstruction = false;
572      for (MDMapTy::const_iterator PI = MDs.begin(), PE = MDs.end();
573             PI != PE; ++PI) {
574        if (RecordedInstruction == false) {
575          Record.push_back(VE.getInstructionID(I));
576          RecordedInstruction = true;
577        }
578        Record.push_back(PI->first);
579        Record.push_back(VE.getValueID(PI->second));
580      }
581      if (!Record.empty()) {
582        if (!StartedMetadataBlock)  {
583          Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
584          StartedMetadataBlock = true;
585        }
586        Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
587        Record.clear();
588      }
589    }
590
591  if (StartedMetadataBlock)
592    Stream.ExitBlock();
593}
594
595static void WriteModuleMetadataStore(const Module *M,
596                                     const ValueEnumerator &VE,
597                                     BitstreamWriter &Stream) {
598
599  bool StartedMetadataBlock = false;
600  SmallVector<uint64_t, 64> Record;
601
602  // Write metadata kinds
603  // METADATA_KIND - [n x [id, name]]
604  MetadataContext &TheMetadata = M->getContext().getMetadata();
605  SmallVector<std::pair<unsigned, StringRef>, 4> Names;
606  TheMetadata.getHandlerNames(Names);
607  for (SmallVector<std::pair<unsigned, StringRef>, 4>::iterator
608         I = Names.begin(),
609         E = Names.end(); I != E; ++I) {
610    Record.push_back(I->first);
611    StringRef KName = I->second;
612    for (unsigned i = 0, e = KName.size(); i != e; ++i)
613      Record.push_back(KName[i]);
614    if (!StartedMetadataBlock)  {
615      Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
616      StartedMetadataBlock = true;
617    }
618    Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
619    Record.clear();
620  }
621
622  if (StartedMetadataBlock)
623    Stream.ExitBlock();
624}
625
626static void WriteConstants(unsigned FirstVal, unsigned LastVal,
627                           const ValueEnumerator &VE,
628                           BitstreamWriter &Stream, bool isGlobal) {
629  if (FirstVal == LastVal) return;
630
631  Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
632
633  unsigned AggregateAbbrev = 0;
634  unsigned String8Abbrev = 0;
635  unsigned CString7Abbrev = 0;
636  unsigned CString6Abbrev = 0;
637  // If this is a constant pool for the module, emit module-specific abbrevs.
638  if (isGlobal) {
639    // Abbrev for CST_CODE_AGGREGATE.
640    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
641    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
642    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
643    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
644    AggregateAbbrev = Stream.EmitAbbrev(Abbv);
645
646    // Abbrev for CST_CODE_STRING.
647    Abbv = new BitCodeAbbrev();
648    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
649    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
650    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
651    String8Abbrev = Stream.EmitAbbrev(Abbv);
652    // Abbrev for CST_CODE_CSTRING.
653    Abbv = new BitCodeAbbrev();
654    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
655    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
656    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
657    CString7Abbrev = Stream.EmitAbbrev(Abbv);
658    // Abbrev for CST_CODE_CSTRING.
659    Abbv = new BitCodeAbbrev();
660    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
661    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
662    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
663    CString6Abbrev = Stream.EmitAbbrev(Abbv);
664  }
665
666  SmallVector<uint64_t, 64> Record;
667
668  const ValueEnumerator::ValueList &Vals = VE.getValues();
669  const Type *LastTy = 0;
670  for (unsigned i = FirstVal; i != LastVal; ++i) {
671    const Value *V = Vals[i].first;
672    // If we need to switch types, do so now.
673    if (V->getType() != LastTy) {
674      LastTy = V->getType();
675      Record.push_back(VE.getTypeID(LastTy));
676      Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
677                        CONSTANTS_SETTYPE_ABBREV);
678      Record.clear();
679    }
680
681    if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
682      Record.push_back(unsigned(IA->hasSideEffects()) |
683                       unsigned(IA->isAlignStack()) << 1);
684
685      // Add the asm string.
686      const std::string &AsmStr = IA->getAsmString();
687      Record.push_back(AsmStr.size());
688      for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
689        Record.push_back(AsmStr[i]);
690
691      // Add the constraint string.
692      const std::string &ConstraintStr = IA->getConstraintString();
693      Record.push_back(ConstraintStr.size());
694      for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
695        Record.push_back(ConstraintStr[i]);
696      Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
697      Record.clear();
698      continue;
699    }
700    const Constant *C = cast<Constant>(V);
701    unsigned Code = -1U;
702    unsigned AbbrevToUse = 0;
703    if (C->isNullValue()) {
704      Code = bitc::CST_CODE_NULL;
705    } else if (isa<UndefValue>(C)) {
706      Code = bitc::CST_CODE_UNDEF;
707    } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
708      if (IV->getBitWidth() <= 64) {
709        int64_t V = IV->getSExtValue();
710        if (V >= 0)
711          Record.push_back(V << 1);
712        else
713          Record.push_back((-V << 1) | 1);
714        Code = bitc::CST_CODE_INTEGER;
715        AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
716      } else {                             // Wide integers, > 64 bits in size.
717        // We have an arbitrary precision integer value to write whose
718        // bit width is > 64. However, in canonical unsigned integer
719        // format it is likely that the high bits are going to be zero.
720        // So, we only write the number of active words.
721        unsigned NWords = IV->getValue().getActiveWords();
722        const uint64_t *RawWords = IV->getValue().getRawData();
723        for (unsigned i = 0; i != NWords; ++i) {
724          int64_t V = RawWords[i];
725          if (V >= 0)
726            Record.push_back(V << 1);
727          else
728            Record.push_back((-V << 1) | 1);
729        }
730        Code = bitc::CST_CODE_WIDE_INTEGER;
731      }
732    } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
733      Code = bitc::CST_CODE_FLOAT;
734      const Type *Ty = CFP->getType();
735      if (Ty->isFloatTy() || Ty->isDoubleTy()) {
736        Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
737      } else if (Ty->isX86_FP80Ty()) {
738        // api needed to prevent premature destruction
739        // bits are not in the same order as a normal i80 APInt, compensate.
740        APInt api = CFP->getValueAPF().bitcastToAPInt();
741        const uint64_t *p = api.getRawData();
742        Record.push_back((p[1] << 48) | (p[0] >> 16));
743        Record.push_back(p[0] & 0xffffLL);
744      } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
745        APInt api = CFP->getValueAPF().bitcastToAPInt();
746        const uint64_t *p = api.getRawData();
747        Record.push_back(p[0]);
748        Record.push_back(p[1]);
749      } else {
750        assert (0 && "Unknown FP type!");
751      }
752    } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
753      // Emit constant strings specially.
754      unsigned NumOps = C->getNumOperands();
755      // If this is a null-terminated string, use the denser CSTRING encoding.
756      if (C->getOperand(NumOps-1)->isNullValue()) {
757        Code = bitc::CST_CODE_CSTRING;
758        --NumOps;  // Don't encode the null, which isn't allowed by char6.
759      } else {
760        Code = bitc::CST_CODE_STRING;
761        AbbrevToUse = String8Abbrev;
762      }
763      bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
764      bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
765      for (unsigned i = 0; i != NumOps; ++i) {
766        unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue();
767        Record.push_back(V);
768        isCStr7 &= (V & 128) == 0;
769        if (isCStrChar6)
770          isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
771      }
772
773      if (isCStrChar6)
774        AbbrevToUse = CString6Abbrev;
775      else if (isCStr7)
776        AbbrevToUse = CString7Abbrev;
777    } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
778               isa<ConstantVector>(V)) {
779      Code = bitc::CST_CODE_AGGREGATE;
780      for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
781        Record.push_back(VE.getValueID(C->getOperand(i)));
782      AbbrevToUse = AggregateAbbrev;
783    } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
784      switch (CE->getOpcode()) {
785      default:
786        if (Instruction::isCast(CE->getOpcode())) {
787          Code = bitc::CST_CODE_CE_CAST;
788          Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
789          Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
790          Record.push_back(VE.getValueID(C->getOperand(0)));
791          AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
792        } else {
793          assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
794          Code = bitc::CST_CODE_CE_BINOP;
795          Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
796          Record.push_back(VE.getValueID(C->getOperand(0)));
797          Record.push_back(VE.getValueID(C->getOperand(1)));
798          uint64_t Flags = GetOptimizationFlags(CE);
799          if (Flags != 0)
800            Record.push_back(Flags);
801        }
802        break;
803      case Instruction::GetElementPtr:
804        Code = bitc::CST_CODE_CE_GEP;
805        if (cast<GEPOperator>(C)->isInBounds())
806          Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
807        for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
808          Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
809          Record.push_back(VE.getValueID(C->getOperand(i)));
810        }
811        break;
812      case Instruction::Select:
813        Code = bitc::CST_CODE_CE_SELECT;
814        Record.push_back(VE.getValueID(C->getOperand(0)));
815        Record.push_back(VE.getValueID(C->getOperand(1)));
816        Record.push_back(VE.getValueID(C->getOperand(2)));
817        break;
818      case Instruction::ExtractElement:
819        Code = bitc::CST_CODE_CE_EXTRACTELT;
820        Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
821        Record.push_back(VE.getValueID(C->getOperand(0)));
822        Record.push_back(VE.getValueID(C->getOperand(1)));
823        break;
824      case Instruction::InsertElement:
825        Code = bitc::CST_CODE_CE_INSERTELT;
826        Record.push_back(VE.getValueID(C->getOperand(0)));
827        Record.push_back(VE.getValueID(C->getOperand(1)));
828        Record.push_back(VE.getValueID(C->getOperand(2)));
829        break;
830      case Instruction::ShuffleVector:
831        // If the return type and argument types are the same, this is a
832        // standard shufflevector instruction.  If the types are different,
833        // then the shuffle is widening or truncating the input vectors, and
834        // the argument type must also be encoded.
835        if (C->getType() == C->getOperand(0)->getType()) {
836          Code = bitc::CST_CODE_CE_SHUFFLEVEC;
837        } else {
838          Code = bitc::CST_CODE_CE_SHUFVEC_EX;
839          Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
840        }
841        Record.push_back(VE.getValueID(C->getOperand(0)));
842        Record.push_back(VE.getValueID(C->getOperand(1)));
843        Record.push_back(VE.getValueID(C->getOperand(2)));
844        break;
845      case Instruction::ICmp:
846      case Instruction::FCmp:
847        Code = bitc::CST_CODE_CE_CMP;
848        Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
849        Record.push_back(VE.getValueID(C->getOperand(0)));
850        Record.push_back(VE.getValueID(C->getOperand(1)));
851        Record.push_back(CE->getPredicate());
852        break;
853      }
854    } else {
855      llvm_unreachable("Unknown constant!");
856    }
857    Stream.EmitRecord(Code, Record, AbbrevToUse);
858    Record.clear();
859  }
860
861  Stream.ExitBlock();
862}
863
864static void WriteModuleConstants(const ValueEnumerator &VE,
865                                 BitstreamWriter &Stream) {
866  const ValueEnumerator::ValueList &Vals = VE.getValues();
867
868  // Find the first constant to emit, which is the first non-globalvalue value.
869  // We know globalvalues have been emitted by WriteModuleInfo.
870  for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
871    if (!isa<GlobalValue>(Vals[i].first)) {
872      WriteConstants(i, Vals.size(), VE, Stream, true);
873      return;
874    }
875  }
876}
877
878/// PushValueAndType - The file has to encode both the value and type id for
879/// many values, because we need to know what type to create for forward
880/// references.  However, most operands are not forward references, so this type
881/// field is not needed.
882///
883/// This function adds V's value ID to Vals.  If the value ID is higher than the
884/// instruction ID, then it is a forward reference, and it also includes the
885/// type ID.
886static bool PushValueAndType(const Value *V, unsigned InstID,
887                             SmallVector<unsigned, 64> &Vals,
888                             ValueEnumerator &VE) {
889  unsigned ValID = VE.getValueID(V);
890  Vals.push_back(ValID);
891  if (ValID >= InstID) {
892    Vals.push_back(VE.getTypeID(V->getType()));
893    return true;
894  }
895  return false;
896}
897
898/// WriteInstruction - Emit an instruction to the specified stream.
899static void WriteInstruction(const Instruction &I, unsigned InstID,
900                             ValueEnumerator &VE, BitstreamWriter &Stream,
901                             SmallVector<unsigned, 64> &Vals) {
902  unsigned Code = 0;
903  unsigned AbbrevToUse = 0;
904  VE.setInstructionID(&I);
905  switch (I.getOpcode()) {
906  default:
907    if (Instruction::isCast(I.getOpcode())) {
908      Code = bitc::FUNC_CODE_INST_CAST;
909      if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
910        AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
911      Vals.push_back(VE.getTypeID(I.getType()));
912      Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
913    } else {
914      assert(isa<BinaryOperator>(I) && "Unknown instruction!");
915      Code = bitc::FUNC_CODE_INST_BINOP;
916      if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
917        AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
918      Vals.push_back(VE.getValueID(I.getOperand(1)));
919      Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
920      uint64_t Flags = GetOptimizationFlags(&I);
921      if (Flags != 0) {
922        if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
923          AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
924        Vals.push_back(Flags);
925      }
926    }
927    break;
928
929  case Instruction::GetElementPtr:
930    Code = bitc::FUNC_CODE_INST_GEP;
931    if (cast<GEPOperator>(&I)->isInBounds())
932      Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
933    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
934      PushValueAndType(I.getOperand(i), InstID, Vals, VE);
935    break;
936  case Instruction::ExtractValue: {
937    Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
938    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
939    const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
940    for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
941      Vals.push_back(*i);
942    break;
943  }
944  case Instruction::InsertValue: {
945    Code = bitc::FUNC_CODE_INST_INSERTVAL;
946    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
947    PushValueAndType(I.getOperand(1), InstID, Vals, VE);
948    const InsertValueInst *IVI = cast<InsertValueInst>(&I);
949    for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
950      Vals.push_back(*i);
951    break;
952  }
953  case Instruction::Select:
954    Code = bitc::FUNC_CODE_INST_VSELECT;
955    PushValueAndType(I.getOperand(1), InstID, Vals, VE);
956    Vals.push_back(VE.getValueID(I.getOperand(2)));
957    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
958    break;
959  case Instruction::ExtractElement:
960    Code = bitc::FUNC_CODE_INST_EXTRACTELT;
961    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
962    Vals.push_back(VE.getValueID(I.getOperand(1)));
963    break;
964  case Instruction::InsertElement:
965    Code = bitc::FUNC_CODE_INST_INSERTELT;
966    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
967    Vals.push_back(VE.getValueID(I.getOperand(1)));
968    Vals.push_back(VE.getValueID(I.getOperand(2)));
969    break;
970  case Instruction::ShuffleVector:
971    Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
972    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
973    Vals.push_back(VE.getValueID(I.getOperand(1)));
974    Vals.push_back(VE.getValueID(I.getOperand(2)));
975    break;
976  case Instruction::ICmp:
977  case Instruction::FCmp:
978    // compare returning Int1Ty or vector of Int1Ty
979    Code = bitc::FUNC_CODE_INST_CMP2;
980    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
981    Vals.push_back(VE.getValueID(I.getOperand(1)));
982    Vals.push_back(cast<CmpInst>(I).getPredicate());
983    break;
984
985  case Instruction::Ret:
986    {
987      Code = bitc::FUNC_CODE_INST_RET;
988      unsigned NumOperands = I.getNumOperands();
989      if (NumOperands == 0)
990        AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
991      else if (NumOperands == 1) {
992        if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
993          AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
994      } else {
995        for (unsigned i = 0, e = NumOperands; i != e; ++i)
996          PushValueAndType(I.getOperand(i), InstID, Vals, VE);
997      }
998    }
999    break;
1000  case Instruction::Br:
1001    {
1002      Code = bitc::FUNC_CODE_INST_BR;
1003      BranchInst &II(cast<BranchInst>(I));
1004      Vals.push_back(VE.getValueID(II.getSuccessor(0)));
1005      if (II.isConditional()) {
1006        Vals.push_back(VE.getValueID(II.getSuccessor(1)));
1007        Vals.push_back(VE.getValueID(II.getCondition()));
1008      }
1009    }
1010    break;
1011  case Instruction::Switch:
1012    Code = bitc::FUNC_CODE_INST_SWITCH;
1013    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1014    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1015      Vals.push_back(VE.getValueID(I.getOperand(i)));
1016    break;
1017  case Instruction::Invoke: {
1018    const InvokeInst *II = cast<InvokeInst>(&I);
1019    const Value *Callee(II->getCalledValue());
1020    const PointerType *PTy = cast<PointerType>(Callee->getType());
1021    const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1022    Code = bitc::FUNC_CODE_INST_INVOKE;
1023
1024    Vals.push_back(VE.getAttributeID(II->getAttributes()));
1025    Vals.push_back(II->getCallingConv());
1026    Vals.push_back(VE.getValueID(II->getNormalDest()));
1027    Vals.push_back(VE.getValueID(II->getUnwindDest()));
1028    PushValueAndType(Callee, InstID, Vals, VE);
1029
1030    // Emit value #'s for the fixed parameters.
1031    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1032      Vals.push_back(VE.getValueID(I.getOperand(i+3)));  // fixed param.
1033
1034    // Emit type/value pairs for varargs params.
1035    if (FTy->isVarArg()) {
1036      for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands();
1037           i != e; ++i)
1038        PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
1039    }
1040    break;
1041  }
1042  case Instruction::Unwind:
1043    Code = bitc::FUNC_CODE_INST_UNWIND;
1044    break;
1045  case Instruction::Unreachable:
1046    Code = bitc::FUNC_CODE_INST_UNREACHABLE;
1047    AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
1048    break;
1049
1050  case Instruction::PHI:
1051    Code = bitc::FUNC_CODE_INST_PHI;
1052    Vals.push_back(VE.getTypeID(I.getType()));
1053    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1054      Vals.push_back(VE.getValueID(I.getOperand(i)));
1055    break;
1056
1057  case Instruction::Free:
1058    Code = bitc::FUNC_CODE_INST_FREE;
1059    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1060    break;
1061
1062  case Instruction::Alloca:
1063    Code = bitc::FUNC_CODE_INST_ALLOCA;
1064    Vals.push_back(VE.getTypeID(I.getType()));
1065    Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1066    Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
1067    break;
1068
1069  case Instruction::Load:
1070    Code = bitc::FUNC_CODE_INST_LOAD;
1071    if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
1072      AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1073
1074    Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1075    Vals.push_back(cast<LoadInst>(I).isVolatile());
1076    break;
1077  case Instruction::Store:
1078    Code = bitc::FUNC_CODE_INST_STORE2;
1079    PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
1080    Vals.push_back(VE.getValueID(I.getOperand(0)));       // val.
1081    Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1082    Vals.push_back(cast<StoreInst>(I).isVolatile());
1083    break;
1084  case Instruction::Call: {
1085    const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
1086    const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1087
1088    Code = bitc::FUNC_CODE_INST_CALL;
1089
1090    const CallInst *CI = cast<CallInst>(&I);
1091    Vals.push_back(VE.getAttributeID(CI->getAttributes()));
1092    Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall()));
1093    PushValueAndType(CI->getOperand(0), InstID, Vals, VE);  // Callee
1094
1095    // Emit value #'s for the fixed parameters.
1096    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1097      Vals.push_back(VE.getValueID(I.getOperand(i+1)));  // fixed param.
1098
1099    // Emit type/value pairs for varargs params.
1100    if (FTy->isVarArg()) {
1101      unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams();
1102      for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands();
1103           i != e; ++i)
1104        PushValueAndType(I.getOperand(i), InstID, Vals, VE);  // varargs
1105    }
1106    break;
1107  }
1108  case Instruction::VAArg:
1109    Code = bitc::FUNC_CODE_INST_VAARG;
1110    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
1111    Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
1112    Vals.push_back(VE.getTypeID(I.getType())); // restype.
1113    break;
1114  }
1115
1116  Stream.EmitRecord(Code, Vals, AbbrevToUse);
1117  Vals.clear();
1118}
1119
1120// Emit names for globals/functions etc.
1121static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1122                                  const ValueEnumerator &VE,
1123                                  BitstreamWriter &Stream) {
1124  if (VST.empty()) return;
1125  Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1126
1127  // FIXME: Set up the abbrev, we know how many values there are!
1128  // FIXME: We know if the type names can use 7-bit ascii.
1129  SmallVector<unsigned, 64> NameVals;
1130
1131  for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1132       SI != SE; ++SI) {
1133
1134    const ValueName &Name = *SI;
1135
1136    // Figure out the encoding to use for the name.
1137    bool is7Bit = true;
1138    bool isChar6 = true;
1139    for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1140         C != E; ++C) {
1141      if (isChar6)
1142        isChar6 = BitCodeAbbrevOp::isChar6(*C);
1143      if ((unsigned char)*C & 128) {
1144        is7Bit = false;
1145        break;  // don't bother scanning the rest.
1146      }
1147    }
1148
1149    unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1150
1151    // VST_ENTRY:   [valueid, namechar x N]
1152    // VST_BBENTRY: [bbid, namechar x N]
1153    unsigned Code;
1154    if (isa<BasicBlock>(SI->getValue())) {
1155      Code = bitc::VST_CODE_BBENTRY;
1156      if (isChar6)
1157        AbbrevToUse = VST_BBENTRY_6_ABBREV;
1158    } else {
1159      Code = bitc::VST_CODE_ENTRY;
1160      if (isChar6)
1161        AbbrevToUse = VST_ENTRY_6_ABBREV;
1162      else if (is7Bit)
1163        AbbrevToUse = VST_ENTRY_7_ABBREV;
1164    }
1165
1166    NameVals.push_back(VE.getValueID(SI->getValue()));
1167    for (const char *P = Name.getKeyData(),
1168         *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1169      NameVals.push_back((unsigned char)*P);
1170
1171    // Emit the finished record.
1172    Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1173    NameVals.clear();
1174  }
1175  Stream.ExitBlock();
1176}
1177
1178/// WriteFunction - Emit a function body to the module stream.
1179static void WriteFunction(const Function &F, ValueEnumerator &VE,
1180                          BitstreamWriter &Stream) {
1181  Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1182  VE.incorporateFunction(F);
1183
1184  SmallVector<unsigned, 64> Vals;
1185
1186  // Emit the number of basic blocks, so the reader can create them ahead of
1187  // time.
1188  Vals.push_back(VE.getBasicBlocks().size());
1189  Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1190  Vals.clear();
1191
1192  // If there are function-local constants, emit them now.
1193  unsigned CstStart, CstEnd;
1194  VE.getFunctionConstantRange(CstStart, CstEnd);
1195  WriteConstants(CstStart, CstEnd, VE, Stream, false);
1196
1197  // Keep a running idea of what the instruction ID is.
1198  unsigned InstID = CstEnd;
1199
1200  // Finally, emit all the instructions, in order.
1201  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1202    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1203         I != E; ++I) {
1204      WriteInstruction(*I, InstID, VE, Stream, Vals);
1205      if (I->getType() != Type::getVoidTy(F.getContext()))
1206        ++InstID;
1207    }
1208
1209  // Emit names for all the instructions etc.
1210  WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1211
1212  WriteMetadataAttachment(F, VE, Stream);
1213  VE.purgeFunction();
1214  Stream.ExitBlock();
1215}
1216
1217/// WriteTypeSymbolTable - Emit a block for the specified type symtab.
1218static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
1219                                 const ValueEnumerator &VE,
1220                                 BitstreamWriter &Stream) {
1221  if (TST.empty()) return;
1222
1223  Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
1224
1225  // 7-bit fixed width VST_CODE_ENTRY strings.
1226  BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1227  Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1228  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1229                            Log2_32_Ceil(VE.getTypes().size()+1)));
1230  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1231  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1232  unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
1233
1234  SmallVector<unsigned, 64> NameVals;
1235
1236  for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
1237       TI != TE; ++TI) {
1238    // TST_ENTRY: [typeid, namechar x N]
1239    NameVals.push_back(VE.getTypeID(TI->second));
1240
1241    const std::string &Str = TI->first;
1242    bool is7Bit = true;
1243    for (unsigned i = 0, e = Str.size(); i != e; ++i) {
1244      NameVals.push_back((unsigned char)Str[i]);
1245      if (Str[i] & 128)
1246        is7Bit = false;
1247    }
1248
1249    // Emit the finished record.
1250    Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
1251    NameVals.clear();
1252  }
1253
1254  Stream.ExitBlock();
1255}
1256
1257// Emit blockinfo, which defines the standard abbreviations etc.
1258static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
1259  // We only want to emit block info records for blocks that have multiple
1260  // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
1261  // blocks can defined their abbrevs inline.
1262  Stream.EnterBlockInfoBlock(2);
1263
1264  { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1265    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1266    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1267    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1268    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1269    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1270    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1271                                   Abbv) != VST_ENTRY_8_ABBREV)
1272      llvm_unreachable("Unexpected abbrev ordering!");
1273  }
1274
1275  { // 7-bit fixed width VST_ENTRY strings.
1276    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1277    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1278    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1279    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1280    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1281    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1282                                   Abbv) != VST_ENTRY_7_ABBREV)
1283      llvm_unreachable("Unexpected abbrev ordering!");
1284  }
1285  { // 6-bit char6 VST_ENTRY strings.
1286    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1287    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1288    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1289    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1290    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1291    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1292                                   Abbv) != VST_ENTRY_6_ABBREV)
1293      llvm_unreachable("Unexpected abbrev ordering!");
1294  }
1295  { // 6-bit char6 VST_BBENTRY strings.
1296    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1297    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1298    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1299    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1300    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1301    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1302                                   Abbv) != VST_BBENTRY_6_ABBREV)
1303      llvm_unreachable("Unexpected abbrev ordering!");
1304  }
1305
1306
1307
1308  { // SETTYPE abbrev for CONSTANTS_BLOCK.
1309    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1310    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1311    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1312                              Log2_32_Ceil(VE.getTypes().size()+1)));
1313    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1314                                   Abbv) != CONSTANTS_SETTYPE_ABBREV)
1315      llvm_unreachable("Unexpected abbrev ordering!");
1316  }
1317
1318  { // INTEGER abbrev for CONSTANTS_BLOCK.
1319    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1320    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1321    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1322    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1323                                   Abbv) != CONSTANTS_INTEGER_ABBREV)
1324      llvm_unreachable("Unexpected abbrev ordering!");
1325  }
1326
1327  { // CE_CAST abbrev for CONSTANTS_BLOCK.
1328    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1329    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1330    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1331    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1332                              Log2_32_Ceil(VE.getTypes().size()+1)));
1333    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1334
1335    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1336                                   Abbv) != CONSTANTS_CE_CAST_Abbrev)
1337      llvm_unreachable("Unexpected abbrev ordering!");
1338  }
1339  { // NULL abbrev for CONSTANTS_BLOCK.
1340    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1341    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1342    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1343                                   Abbv) != CONSTANTS_NULL_Abbrev)
1344      llvm_unreachable("Unexpected abbrev ordering!");
1345  }
1346
1347  // FIXME: This should only use space for first class types!
1348
1349  { // INST_LOAD abbrev for FUNCTION_BLOCK.
1350    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1351    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1352    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1353    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1354    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1355    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1356                                   Abbv) != FUNCTION_INST_LOAD_ABBREV)
1357      llvm_unreachable("Unexpected abbrev ordering!");
1358  }
1359  { // INST_BINOP abbrev for FUNCTION_BLOCK.
1360    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1361    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1362    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1363    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1364    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1365    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1366                                   Abbv) != FUNCTION_INST_BINOP_ABBREV)
1367      llvm_unreachable("Unexpected abbrev ordering!");
1368  }
1369  { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
1370    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1371    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1372    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1373    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1374    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1375    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
1376    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1377                                   Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
1378      llvm_unreachable("Unexpected abbrev ordering!");
1379  }
1380  { // INST_CAST abbrev for FUNCTION_BLOCK.
1381    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1382    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1383    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
1384    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
1385                              Log2_32_Ceil(VE.getTypes().size()+1)));
1386    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
1387    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1388                                   Abbv) != FUNCTION_INST_CAST_ABBREV)
1389      llvm_unreachable("Unexpected abbrev ordering!");
1390  }
1391
1392  { // INST_RET abbrev for FUNCTION_BLOCK.
1393    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1394    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1395    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1396                                   Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1397      llvm_unreachable("Unexpected abbrev ordering!");
1398  }
1399  { // INST_RET abbrev for FUNCTION_BLOCK.
1400    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1401    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1402    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1403    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1404                                   Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1405      llvm_unreachable("Unexpected abbrev ordering!");
1406  }
1407  { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1408    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1409    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1410    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1411                                   Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1412      llvm_unreachable("Unexpected abbrev ordering!");
1413  }
1414
1415  Stream.ExitBlock();
1416}
1417
1418
1419/// WriteModule - Emit the specified module to the bitstream.
1420static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1421  Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1422
1423  // Emit the version number if it is non-zero.
1424  if (CurVersion) {
1425    SmallVector<unsigned, 1> Vals;
1426    Vals.push_back(CurVersion);
1427    Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1428  }
1429
1430  // Analyze the module, enumerating globals, functions, etc.
1431  ValueEnumerator VE(M);
1432
1433  // Emit blockinfo, which defines the standard abbreviations etc.
1434  WriteBlockInfo(VE, Stream);
1435
1436  // Emit information about parameter attributes.
1437  WriteAttributeTable(VE, Stream);
1438
1439  // Emit information describing all of the types in the module.
1440  WriteTypeTable(VE, Stream);
1441
1442  // Emit top-level description of module, including target triple, inline asm,
1443  // descriptors for global variables, and function prototype info.
1444  WriteModuleInfo(M, VE, Stream);
1445
1446  // Emit constants.
1447  WriteModuleConstants(VE, Stream);
1448
1449  // Emit metadata.
1450  WriteModuleMetadata(VE, Stream);
1451
1452  // Emit function bodies.
1453  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1454    if (!I->isDeclaration())
1455      WriteFunction(*I, VE, Stream);
1456
1457  // Emit metadata.
1458  WriteModuleMetadataStore(M, VE, Stream);
1459
1460  // Emit the type symbol table information.
1461  WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
1462
1463  // Emit names for globals/functions etc.
1464  WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1465
1466  Stream.ExitBlock();
1467}
1468
1469/// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1470/// header and trailer to make it compatible with the system archiver.  To do
1471/// this we emit the following header, and then emit a trailer that pads the
1472/// file out to be a multiple of 16 bytes.
1473///
1474/// struct bc_header {
1475///   uint32_t Magic;         // 0x0B17C0DE
1476///   uint32_t Version;       // Version, currently always 0.
1477///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1478///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
1479///   uint32_t CPUType;       // CPU specifier.
1480///   ... potentially more later ...
1481/// };
1482enum {
1483  DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
1484  DarwinBCHeaderSize = 5*4
1485};
1486
1487static void EmitDarwinBCHeader(BitstreamWriter &Stream,
1488                               const std::string &TT) {
1489  unsigned CPUType = ~0U;
1490
1491  // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*.  The CPUType is a
1492  // magic number from /usr/include/mach/machine.h.  It is ok to reproduce the
1493  // specific constants here because they are implicitly part of the Darwin ABI.
1494  enum {
1495    DARWIN_CPU_ARCH_ABI64      = 0x01000000,
1496    DARWIN_CPU_TYPE_X86        = 7,
1497    DARWIN_CPU_TYPE_POWERPC    = 18
1498  };
1499
1500  if (TT.find("x86_64-") == 0)
1501    CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
1502  else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' &&
1503           TT[4] == '-' && TT[1] - '3' < 6)
1504    CPUType = DARWIN_CPU_TYPE_X86;
1505  else if (TT.find("powerpc-") == 0)
1506    CPUType = DARWIN_CPU_TYPE_POWERPC;
1507  else if (TT.find("powerpc64-") == 0)
1508    CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
1509
1510  // Traditional Bitcode starts after header.
1511  unsigned BCOffset = DarwinBCHeaderSize;
1512
1513  Stream.Emit(0x0B17C0DE, 32);
1514  Stream.Emit(0         , 32);  // Version.
1515  Stream.Emit(BCOffset  , 32);
1516  Stream.Emit(0         , 32);  // Filled in later.
1517  Stream.Emit(CPUType   , 32);
1518}
1519
1520/// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and
1521/// finalize the header.
1522static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) {
1523  // Update the size field in the header.
1524  Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize);
1525
1526  // If the file is not a multiple of 16 bytes, insert dummy padding.
1527  while (BufferSize & 15) {
1528    Stream.Emit(0, 8);
1529    ++BufferSize;
1530  }
1531}
1532
1533
1534/// WriteBitcodeToFile - Write the specified module to the specified output
1535/// stream.
1536void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
1537  std::vector<unsigned char> Buffer;
1538  BitstreamWriter Stream(Buffer);
1539
1540  Buffer.reserve(256*1024);
1541
1542  WriteBitcodeToStream( M, Stream );
1543
1544  // If writing to stdout, set binary mode.
1545  if (&llvm::outs() == &Out)
1546    sys::Program::ChangeStdoutToBinary();
1547
1548  // Write the generated bitstream to "Out".
1549  Out.write((char*)&Buffer.front(), Buffer.size());
1550
1551  // Make sure it hits disk now.
1552  Out.flush();
1553}
1554
1555/// WriteBitcodeToStream - Write the specified module to the specified output
1556/// stream.
1557void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) {
1558  // If this is darwin, emit a file header and trailer if needed.
1559  bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos;
1560  if (isDarwin)
1561    EmitDarwinBCHeader(Stream, M->getTargetTriple());
1562
1563  // Emit the file header.
1564  Stream.Emit((unsigned)'B', 8);
1565  Stream.Emit((unsigned)'C', 8);
1566  Stream.Emit(0x0, 4);
1567  Stream.Emit(0xC, 4);
1568  Stream.Emit(0xE, 4);
1569  Stream.Emit(0xD, 4);
1570
1571  // Emit the module.
1572  WriteModule(M, Stream);
1573
1574  if (isDarwin)
1575    EmitDarwinBCTrailer(Stream, Stream.getBuffer().size());
1576}
1577