1193323Sed//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2193323Sed//
3193323Sed//                     The LLVM Compiler Infrastructure
4193323Sed//
5193323Sed// This file is distributed under the University of Illinois Open Source
6193323Sed// License. See LICENSE.TXT for details.
7193323Sed//
8193323Sed//===----------------------------------------------------------------------===//
9193323Sed//
10193323Sed// This file contains routines that help analyze properties that chains of
11193323Sed// computations have.
12193323Sed//
13193323Sed//===----------------------------------------------------------------------===//
14193323Sed
15193323Sed#include "llvm/Analysis/ValueTracking.h"
16252723Sdim#include "llvm/ADT/SmallPtrSet.h"
17218893Sdim#include "llvm/Analysis/InstructionSimplify.h"
18263509Sdim#include "llvm/Analysis/MemoryBuiltins.h"
19252723Sdim#include "llvm/IR/Constants.h"
20252723Sdim#include "llvm/IR/DataLayout.h"
21252723Sdim#include "llvm/IR/GlobalAlias.h"
22252723Sdim#include "llvm/IR/GlobalVariable.h"
23252723Sdim#include "llvm/IR/Instructions.h"
24252723Sdim#include "llvm/IR/IntrinsicInst.h"
25252723Sdim#include "llvm/IR/LLVMContext.h"
26252723Sdim#include "llvm/IR/Metadata.h"
27252723Sdim#include "llvm/IR/Operator.h"
28235633Sdim#include "llvm/Support/ConstantRange.h"
29193323Sed#include "llvm/Support/GetElementPtrTypeIterator.h"
30193323Sed#include "llvm/Support/MathExtras.h"
31218893Sdim#include "llvm/Support/PatternMatch.h"
32193323Sed#include <cstring>
33193323Sedusing namespace llvm;
34218893Sdimusing namespace llvm::PatternMatch;
35193323Sed
36218893Sdimconst unsigned MaxDepth = 6;
37218893Sdim
38218893Sdim/// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if
39218893Sdim/// unknown returns 0).  For vector types, returns the element type's bitwidth.
40245431Sdimstatic unsigned getBitWidth(Type *Ty, const DataLayout *TD) {
41218893Sdim  if (unsigned BitWidth = Ty->getScalarSizeInBits())
42218893Sdim    return BitWidth;
43263509Sdim
44263509Sdim  return TD ? TD->getPointerTypeSizeInBits(Ty) : 0;
45218893Sdim}
46218893Sdim
47235633Sdimstatic void ComputeMaskedBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
48235633Sdim                                    APInt &KnownZero, APInt &KnownOne,
49235633Sdim                                    APInt &KnownZero2, APInt &KnownOne2,
50245431Sdim                                    const DataLayout *TD, unsigned Depth) {
51235633Sdim  if (!Add) {
52235633Sdim    if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
53235633Sdim      // We know that the top bits of C-X are clear if X contains less bits
54235633Sdim      // than C (i.e. no wrap-around can happen).  For example, 20-X is
55235633Sdim      // positive if we can prove that X is >= 0 and < 16.
56235633Sdim      if (!CLHS->getValue().isNegative()) {
57235633Sdim        unsigned BitWidth = KnownZero.getBitWidth();
58235633Sdim        unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
59235633Sdim        // NLZ can't be BitWidth with no sign bit
60235633Sdim        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
61235633Sdim        llvm::ComputeMaskedBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
62252723Sdim
63235633Sdim        // If all of the MaskV bits are known to be zero, then we know the
64235633Sdim        // output top bits are zero, because we now know that the output is
65235633Sdim        // from [0-C].
66235633Sdim        if ((KnownZero2 & MaskV) == MaskV) {
67235633Sdim          unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
68235633Sdim          // Top bits known zero.
69235633Sdim          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
70235633Sdim        }
71235633Sdim      }
72235633Sdim    }
73235633Sdim  }
74235633Sdim
75235633Sdim  unsigned BitWidth = KnownZero.getBitWidth();
76235633Sdim
77235633Sdim  // If one of the operands has trailing zeros, then the bits that the
78235633Sdim  // other operand has in those bit positions will be preserved in the
79235633Sdim  // result. For an add, this works with either operand. For a subtract,
80235633Sdim  // this only works if the known zeros are in the right operand.
81235633Sdim  APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
82235633Sdim  llvm::ComputeMaskedBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1);
83235633Sdim  assert((LHSKnownZero & LHSKnownOne) == 0 &&
84235633Sdim         "Bits known to be one AND zero?");
85235633Sdim  unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes();
86235633Sdim
87235633Sdim  llvm::ComputeMaskedBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
88252723Sdim  assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
89235633Sdim  unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes();
90235633Sdim
91235633Sdim  // Determine which operand has more trailing zeros, and use that
92235633Sdim  // many bits from the other operand.
93235633Sdim  if (LHSKnownZeroOut > RHSKnownZeroOut) {
94235633Sdim    if (Add) {
95235633Sdim      APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut);
96235633Sdim      KnownZero |= KnownZero2 & Mask;
97235633Sdim      KnownOne  |= KnownOne2 & Mask;
98235633Sdim    } else {
99235633Sdim      // If the known zeros are in the left operand for a subtract,
100235633Sdim      // fall back to the minimum known zeros in both operands.
101235633Sdim      KnownZero |= APInt::getLowBitsSet(BitWidth,
102235633Sdim                                        std::min(LHSKnownZeroOut,
103235633Sdim                                                 RHSKnownZeroOut));
104235633Sdim    }
105235633Sdim  } else if (RHSKnownZeroOut >= LHSKnownZeroOut) {
106235633Sdim    APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut);
107235633Sdim    KnownZero |= LHSKnownZero & Mask;
108235633Sdim    KnownOne  |= LHSKnownOne & Mask;
109235633Sdim  }
110235633Sdim
111235633Sdim  // Are we still trying to solve for the sign bit?
112235633Sdim  if (!KnownZero.isNegative() && !KnownOne.isNegative()) {
113235633Sdim    if (NSW) {
114235633Sdim      if (Add) {
115235633Sdim        // Adding two positive numbers can't wrap into negative
116235633Sdim        if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
117235633Sdim          KnownZero |= APInt::getSignBit(BitWidth);
118235633Sdim        // and adding two negative numbers can't wrap into positive.
119235633Sdim        else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
120235633Sdim          KnownOne |= APInt::getSignBit(BitWidth);
121235633Sdim      } else {
122235633Sdim        // Subtracting a negative number from a positive one can't wrap
123235633Sdim        if (LHSKnownZero.isNegative() && KnownOne2.isNegative())
124235633Sdim          KnownZero |= APInt::getSignBit(BitWidth);
125235633Sdim        // neither can subtracting a positive number from a negative one.
126235633Sdim        else if (LHSKnownOne.isNegative() && KnownZero2.isNegative())
127235633Sdim          KnownOne |= APInt::getSignBit(BitWidth);
128235633Sdim      }
129235633Sdim    }
130235633Sdim  }
131235633Sdim}
132235633Sdim
133235633Sdimstatic void ComputeMaskedBitsMul(Value *Op0, Value *Op1, bool NSW,
134235633Sdim                                 APInt &KnownZero, APInt &KnownOne,
135235633Sdim                                 APInt &KnownZero2, APInt &KnownOne2,
136245431Sdim                                 const DataLayout *TD, unsigned Depth) {
137235633Sdim  unsigned BitWidth = KnownZero.getBitWidth();
138235633Sdim  ComputeMaskedBits(Op1, KnownZero, KnownOne, TD, Depth+1);
139235633Sdim  ComputeMaskedBits(Op0, KnownZero2, KnownOne2, TD, Depth+1);
140235633Sdim  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
141235633Sdim  assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
142235633Sdim
143235633Sdim  bool isKnownNegative = false;
144235633Sdim  bool isKnownNonNegative = false;
145235633Sdim  // If the multiplication is known not to overflow, compute the sign bit.
146235633Sdim  if (NSW) {
147235633Sdim    if (Op0 == Op1) {
148235633Sdim      // The product of a number with itself is non-negative.
149235633Sdim      isKnownNonNegative = true;
150235633Sdim    } else {
151235633Sdim      bool isKnownNonNegativeOp1 = KnownZero.isNegative();
152235633Sdim      bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
153235633Sdim      bool isKnownNegativeOp1 = KnownOne.isNegative();
154235633Sdim      bool isKnownNegativeOp0 = KnownOne2.isNegative();
155235633Sdim      // The product of two numbers with the same sign is non-negative.
156235633Sdim      isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
157235633Sdim        (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
158235633Sdim      // The product of a negative number and a non-negative number is either
159235633Sdim      // negative or zero.
160235633Sdim      if (!isKnownNonNegative)
161235633Sdim        isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
162235633Sdim                           isKnownNonZero(Op0, TD, Depth)) ||
163235633Sdim                          (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
164235633Sdim                           isKnownNonZero(Op1, TD, Depth));
165235633Sdim    }
166235633Sdim  }
167235633Sdim
168235633Sdim  // If low bits are zero in either operand, output low known-0 bits.
169235633Sdim  // Also compute a conserative estimate for high known-0 bits.
170235633Sdim  // More trickiness is possible, but this is sufficient for the
171235633Sdim  // interesting case of alignment computation.
172235633Sdim  KnownOne.clearAllBits();
173235633Sdim  unsigned TrailZ = KnownZero.countTrailingOnes() +
174235633Sdim                    KnownZero2.countTrailingOnes();
175235633Sdim  unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
176235633Sdim                             KnownZero2.countLeadingOnes(),
177235633Sdim                             BitWidth) - BitWidth;
178235633Sdim
179235633Sdim  TrailZ = std::min(TrailZ, BitWidth);
180235633Sdim  LeadZ = std::min(LeadZ, BitWidth);
181235633Sdim  KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
182235633Sdim              APInt::getHighBitsSet(BitWidth, LeadZ);
183235633Sdim
184235633Sdim  // Only make use of no-wrap flags if we failed to compute the sign bit
185235633Sdim  // directly.  This matters if the multiplication always overflows, in
186235633Sdim  // which case we prefer to follow the result of the direct computation,
187235633Sdim  // though as the program is invoking undefined behaviour we can choose
188235633Sdim  // whatever we like here.
189235633Sdim  if (isKnownNonNegative && !KnownOne.isNegative())
190235633Sdim    KnownZero.setBit(BitWidth - 1);
191235633Sdim  else if (isKnownNegative && !KnownZero.isNegative())
192235633Sdim    KnownOne.setBit(BitWidth - 1);
193235633Sdim}
194235633Sdim
195235633Sdimvoid llvm::computeMaskedBitsLoad(const MDNode &Ranges, APInt &KnownZero) {
196235633Sdim  unsigned BitWidth = KnownZero.getBitWidth();
197235633Sdim  unsigned NumRanges = Ranges.getNumOperands() / 2;
198235633Sdim  assert(NumRanges >= 1);
199235633Sdim
200235633Sdim  // Use the high end of the ranges to find leading zeros.
201235633Sdim  unsigned MinLeadingZeros = BitWidth;
202235633Sdim  for (unsigned i = 0; i < NumRanges; ++i) {
203235633Sdim    ConstantInt *Lower = cast<ConstantInt>(Ranges.getOperand(2*i + 0));
204235633Sdim    ConstantInt *Upper = cast<ConstantInt>(Ranges.getOperand(2*i + 1));
205235633Sdim    ConstantRange Range(Lower->getValue(), Upper->getValue());
206235633Sdim    if (Range.isWrappedSet())
207235633Sdim      MinLeadingZeros = 0; // -1 has no zeros
208235633Sdim    unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros();
209235633Sdim    MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros);
210235633Sdim  }
211235633Sdim
212235633Sdim  KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros);
213235633Sdim}
214235633Sdim/// ComputeMaskedBits - Determine which of the bits are known to be either zero
215235633Sdim/// or one and return them in the KnownZero/KnownOne bit sets.
216235633Sdim///
217193323Sed/// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
218193323Sed/// we cannot optimize based on the assumption that it is zero without changing
219193323Sed/// it to be an explicit zero.  If we don't change it to zero, other code could
220193323Sed/// optimized based on the contradictory assumption that it is non-zero.
221193323Sed/// Because instcombine aggressively folds operations with undef args anyway,
222193323Sed/// this won't lose us code quality.
223198090Srdivacky///
224198090Srdivacky/// This function is defined on values with integer type, values with pointer
225198090Srdivacky/// type (but only if TD is non-null), and vectors of integers.  In the case
226235633Sdim/// where V is a vector, known zero, and known one values are the
227198090Srdivacky/// same width as the vector element, and the bit is set only if it is true
228198090Srdivacky/// for all of the elements in the vector.
229235633Sdimvoid llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
230245431Sdim                             const DataLayout *TD, unsigned Depth) {
231193323Sed  assert(V && "No Value?");
232193323Sed  assert(Depth <= MaxDepth && "Limit Search Depth");
233235633Sdim  unsigned BitWidth = KnownZero.getBitWidth();
234235633Sdim
235235633Sdim  assert((V->getType()->isIntOrIntVectorTy() ||
236235633Sdim          V->getType()->getScalarType()->isPointerTy()) &&
237235633Sdim         "Not integer or pointer type!");
238194612Sed  assert((!TD ||
239194612Sed          TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
240203954Srdivacky         (!V->getType()->isIntOrIntVectorTy() ||
241194612Sed          V->getType()->getScalarSizeInBits() == BitWidth) &&
242235633Sdim         KnownZero.getBitWidth() == BitWidth &&
243193323Sed         KnownOne.getBitWidth() == BitWidth &&
244193323Sed         "V, Mask, KnownOne and KnownZero should have same BitWidth");
245193323Sed
246193323Sed  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
247193323Sed    // We know all of the bits for a constant!
248235633Sdim    KnownOne = CI->getValue();
249235633Sdim    KnownZero = ~KnownOne;
250193323Sed    return;
251193323Sed  }
252194612Sed  // Null and aggregate-zero are all-zeros.
253194612Sed  if (isa<ConstantPointerNull>(V) ||
254194612Sed      isa<ConstantAggregateZero>(V)) {
255218893Sdim    KnownOne.clearAllBits();
256235633Sdim    KnownZero = APInt::getAllOnesValue(BitWidth);
257193323Sed    return;
258193323Sed  }
259194612Sed  // Handle a constant vector by taking the intersection of the known bits of
260235633Sdim  // each element.  There is no real need to handle ConstantVector here, because
261235633Sdim  // we don't handle undef in any particularly useful way.
262235633Sdim  if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
263235633Sdim    // We know that CDS must be a vector of integers. Take the intersection of
264235633Sdim    // each element.
265218893Sdim    KnownZero.setAllBits(); KnownOne.setAllBits();
266235633Sdim    APInt Elt(KnownZero.getBitWidth(), 0);
267235633Sdim    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
268235633Sdim      Elt = CDS->getElementAsInteger(i);
269235633Sdim      KnownZero &= ~Elt;
270252723Sdim      KnownOne &= Elt;
271194612Sed    }
272194612Sed    return;
273194612Sed  }
274252723Sdim
275193323Sed  // The address of an aligned GlobalValue has trailing zeros.
276193323Sed  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
277193323Sed    unsigned Align = GV->getAlignment();
278235633Sdim    if (Align == 0 && TD) {
279235633Sdim      if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
280235633Sdim        Type *ObjectType = GVar->getType()->getElementType();
281235633Sdim        if (ObjectType->isSized()) {
282235633Sdim          // If the object is defined in the current Module, we'll be giving
283235633Sdim          // it the preferred alignment. Otherwise, we have to assume that it
284235633Sdim          // may only have the minimum ABI alignment.
285235633Sdim          if (!GVar->isDeclaration() && !GVar->isWeakForLinker())
286235633Sdim            Align = TD->getPreferredAlignment(GVar);
287235633Sdim          else
288235633Sdim            Align = TD->getABITypeAlignment(ObjectType);
289235633Sdim        }
290235633Sdim      }
291198090Srdivacky    }
292193323Sed    if (Align > 0)
293235633Sdim      KnownZero = APInt::getLowBitsSet(BitWidth,
294263509Sdim                                       countTrailingZeros(Align));
295193323Sed    else
296218893Sdim      KnownZero.clearAllBits();
297218893Sdim    KnownOne.clearAllBits();
298193323Sed    return;
299193323Sed  }
300198090Srdivacky  // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
301198090Srdivacky  // the bits of its aliasee.
302198090Srdivacky  if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
303198090Srdivacky    if (GA->mayBeOverridden()) {
304218893Sdim      KnownZero.clearAllBits(); KnownOne.clearAllBits();
305198090Srdivacky    } else {
306235633Sdim      ComputeMaskedBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth+1);
307198090Srdivacky    }
308198090Srdivacky    return;
309198090Srdivacky  }
310252723Sdim
311223017Sdim  if (Argument *A = dyn_cast<Argument>(V)) {
312245431Sdim    unsigned Align = 0;
313245431Sdim
314245431Sdim    if (A->hasByValAttr()) {
315245431Sdim      // Get alignment information off byval arguments if specified in the IR.
316245431Sdim      Align = A->getParamAlignment();
317245431Sdim    } else if (TD && A->hasStructRetAttr()) {
318245431Sdim      // An sret parameter has at least the ABI alignment of the return type.
319245431Sdim      Type *EltTy = cast<PointerType>(A->getType())->getElementType();
320245431Sdim      if (EltTy->isSized())
321245431Sdim        Align = TD->getABITypeAlignment(EltTy);
322245431Sdim    }
323245431Sdim
324245431Sdim    if (Align)
325263509Sdim      KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
326223017Sdim    return;
327223017Sdim  }
328193323Sed
329223017Sdim  // Start out not knowing anything.
330223017Sdim  KnownZero.clearAllBits(); KnownOne.clearAllBits();
331193323Sed
332235633Sdim  if (Depth == MaxDepth)
333193323Sed    return;  // Limit search depth.
334193323Sed
335198090Srdivacky  Operator *I = dyn_cast<Operator>(V);
336193323Sed  if (!I) return;
337193323Sed
338193323Sed  APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
339198090Srdivacky  switch (I->getOpcode()) {
340193323Sed  default: break;
341235633Sdim  case Instruction::Load:
342235633Sdim    if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
343235633Sdim      computeMaskedBitsLoad(*MD, KnownZero);
344235633Sdim    return;
345193323Sed  case Instruction::And: {
346193323Sed    // If either the LHS or the RHS are Zero, the result is zero.
347235633Sdim    ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
348235633Sdim    ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
349252723Sdim    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
350252723Sdim    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
351252723Sdim
352193323Sed    // Output known-1 bits are only known if set in both the LHS & RHS.
353193323Sed    KnownOne &= KnownOne2;
354193323Sed    // Output known-0 are known to be clear if zero in either the LHS | RHS.
355193323Sed    KnownZero |= KnownZero2;
356193323Sed    return;
357193323Sed  }
358193323Sed  case Instruction::Or: {
359235633Sdim    ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
360235633Sdim    ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
361252723Sdim    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
362252723Sdim    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
363252723Sdim
364193323Sed    // Output known-0 bits are only known if clear in both the LHS & RHS.
365193323Sed    KnownZero &= KnownZero2;
366193323Sed    // Output known-1 are known to be set if set in either the LHS | RHS.
367193323Sed    KnownOne |= KnownOne2;
368193323Sed    return;
369193323Sed  }
370193323Sed  case Instruction::Xor: {
371235633Sdim    ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
372235633Sdim    ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
373252723Sdim    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
374252723Sdim    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
375252723Sdim
376193323Sed    // Output known-0 bits are known if clear or set in both the LHS & RHS.
377193323Sed    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
378193323Sed    // Output known-1 are known to be set if set in only one of the LHS, RHS.
379193323Sed    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
380193323Sed    KnownZero = KnownZeroOut;
381193323Sed    return;
382193323Sed  }
383193323Sed  case Instruction::Mul: {
384235633Sdim    bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
385235633Sdim    ComputeMaskedBitsMul(I->getOperand(0), I->getOperand(1), NSW,
386235633Sdim                         KnownZero, KnownOne, KnownZero2, KnownOne2, TD, Depth);
387235633Sdim    break;
388193323Sed  }
389193323Sed  case Instruction::UDiv: {
390193323Sed    // For the purposes of computing leading zeros we can conservatively
391193323Sed    // treat a udiv as a logical right shift by the power of 2 known to
392193323Sed    // be less than the denominator.
393235633Sdim    ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
394193323Sed    unsigned LeadZ = KnownZero2.countLeadingOnes();
395193323Sed
396218893Sdim    KnownOne2.clearAllBits();
397218893Sdim    KnownZero2.clearAllBits();
398235633Sdim    ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
399193323Sed    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
400193323Sed    if (RHSUnknownLeadingOnes != BitWidth)
401193323Sed      LeadZ = std::min(BitWidth,
402193323Sed                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
403193323Sed
404235633Sdim    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
405193323Sed    return;
406193323Sed  }
407193323Sed  case Instruction::Select:
408235633Sdim    ComputeMaskedBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1);
409235633Sdim    ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD,
410193323Sed                      Depth+1);
411252723Sdim    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
412252723Sdim    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
413193323Sed
414193323Sed    // Only known if known in both the LHS and RHS.
415193323Sed    KnownOne &= KnownOne2;
416193323Sed    KnownZero &= KnownZero2;
417193323Sed    return;
418193323Sed  case Instruction::FPTrunc:
419193323Sed  case Instruction::FPExt:
420193323Sed  case Instruction::FPToUI:
421193323Sed  case Instruction::FPToSI:
422193323Sed  case Instruction::SIToFP:
423193323Sed  case Instruction::UIToFP:
424193323Sed    return; // Can't work with floating point.
425193323Sed  case Instruction::PtrToInt:
426193323Sed  case Instruction::IntToPtr:
427193323Sed    // We can't handle these if we don't know the pointer size.
428193323Sed    if (!TD) return;
429193323Sed    // FALL THROUGH and handle them the same as zext/trunc.
430193323Sed  case Instruction::ZExt:
431193323Sed  case Instruction::Trunc: {
432226890Sdim    Type *SrcTy = I->getOperand(0)->getType();
433245431Sdim
434198090Srdivacky    unsigned SrcBitWidth;
435193323Sed    // Note that we handle pointer operands here because of inttoptr/ptrtoint
436193323Sed    // which fall through here.
437252723Sdim    if(TD) {
438252723Sdim      SrcBitWidth = TD->getTypeSizeInBits(SrcTy->getScalarType());
439252723Sdim    } else {
440252723Sdim      SrcBitWidth = SrcTy->getScalarSizeInBits();
441252723Sdim      if (!SrcBitWidth) return;
442252723Sdim    }
443245431Sdim
444245431Sdim    assert(SrcBitWidth && "SrcBitWidth can't be zero");
445218893Sdim    KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
446218893Sdim    KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
447235633Sdim    ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
448218893Sdim    KnownZero = KnownZero.zextOrTrunc(BitWidth);
449218893Sdim    KnownOne = KnownOne.zextOrTrunc(BitWidth);
450193323Sed    // Any top bits are known to be zero.
451193323Sed    if (BitWidth > SrcBitWidth)
452193323Sed      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
453193323Sed    return;
454193323Sed  }
455193323Sed  case Instruction::BitCast: {
456226890Sdim    Type *SrcTy = I->getOperand(0)->getType();
457204642Srdivacky    if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
458195340Sed        // TODO: For now, not handling conversions like:
459195340Sed        // (bitcast i64 %x to <2 x i32>)
460204642Srdivacky        !I->getType()->isVectorTy()) {
461235633Sdim      ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
462193323Sed      return;
463193323Sed    }
464193323Sed    break;
465193323Sed  }
466193323Sed  case Instruction::SExt: {
467193323Sed    // Compute the bits in the result that are not present in the input.
468198090Srdivacky    unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
469252723Sdim
470218893Sdim    KnownZero = KnownZero.trunc(SrcBitWidth);
471218893Sdim    KnownOne = KnownOne.trunc(SrcBitWidth);
472235633Sdim    ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
473252723Sdim    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
474218893Sdim    KnownZero = KnownZero.zext(BitWidth);
475218893Sdim    KnownOne = KnownOne.zext(BitWidth);
476193323Sed
477193323Sed    // If the sign bit of the input is known set or clear, then we know the
478193323Sed    // top bits of the result.
479193323Sed    if (KnownZero[SrcBitWidth-1])             // Input sign bit known zero
480193323Sed      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
481193323Sed    else if (KnownOne[SrcBitWidth-1])           // Input sign bit known set
482193323Sed      KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
483193323Sed    return;
484193323Sed  }
485193323Sed  case Instruction::Shl:
486193323Sed    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
487193323Sed    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
488193323Sed      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
489235633Sdim      ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
490252723Sdim      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
491193323Sed      KnownZero <<= ShiftAmt;
492193323Sed      KnownOne  <<= ShiftAmt;
493193323Sed      KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
494193323Sed      return;
495193323Sed    }
496193323Sed    break;
497193323Sed  case Instruction::LShr:
498193323Sed    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
499193323Sed    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
500193323Sed      // Compute the new bits that are at the top now.
501193323Sed      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
502252723Sdim
503193323Sed      // Unsigned shift right.
504235633Sdim      ComputeMaskedBits(I->getOperand(0), KnownZero,KnownOne, TD, Depth+1);
505252723Sdim      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
506193323Sed      KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
507193323Sed      KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
508193323Sed      // high bits known zero.
509193323Sed      KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
510193323Sed      return;
511193323Sed    }
512193323Sed    break;
513193323Sed  case Instruction::AShr:
514193323Sed    // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
515193323Sed    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
516193323Sed      // Compute the new bits that are at the top now.
517218893Sdim      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
518252723Sdim
519193323Sed      // Signed shift right.
520235633Sdim      ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
521252723Sdim      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
522193323Sed      KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
523193323Sed      KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
524252723Sdim
525193323Sed      APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
526193323Sed      if (KnownZero[BitWidth-ShiftAmt-1])    // New bits are known zero.
527193323Sed        KnownZero |= HighBits;
528193323Sed      else if (KnownOne[BitWidth-ShiftAmt-1])  // New bits are known one.
529193323Sed        KnownOne |= HighBits;
530193323Sed      return;
531193323Sed    }
532193323Sed    break;
533193323Sed  case Instruction::Sub: {
534235633Sdim    bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
535235633Sdim    ComputeMaskedBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
536235633Sdim                            KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
537235633Sdim                            Depth);
538235633Sdim    break;
539193323Sed  }
540193323Sed  case Instruction::Add: {
541235633Sdim    bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
542235633Sdim    ComputeMaskedBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
543235633Sdim                            KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
544235633Sdim                            Depth);
545235633Sdim    break;
546193323Sed  }
547193323Sed  case Instruction::SRem:
548193323Sed    if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
549203954Srdivacky      APInt RA = Rem->getValue().abs();
550203954Srdivacky      if (RA.isPowerOf2()) {
551203954Srdivacky        APInt LowBits = RA - 1;
552235633Sdim        ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
553193323Sed
554203954Srdivacky        // The low bits of the first operand are unchanged by the srem.
555203954Srdivacky        KnownZero = KnownZero2 & LowBits;
556203954Srdivacky        KnownOne = KnownOne2 & LowBits;
557203954Srdivacky
558203954Srdivacky        // If the first operand is non-negative or has all low bits zero, then
559203954Srdivacky        // the upper bits are all zero.
560193323Sed        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
561203954Srdivacky          KnownZero |= ~LowBits;
562193323Sed
563203954Srdivacky        // If the first operand is negative and not all low bits are zero, then
564203954Srdivacky        // the upper bits are all one.
565203954Srdivacky        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
566203954Srdivacky          KnownOne |= ~LowBits;
567193323Sed
568252723Sdim        assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
569193323Sed      }
570193323Sed    }
571221345Sdim
572221345Sdim    // The sign bit is the LHS's sign bit, except when the result of the
573221345Sdim    // remainder is zero.
574235633Sdim    if (KnownZero.isNonNegative()) {
575221345Sdim      APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
576235633Sdim      ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, TD,
577221345Sdim                        Depth+1);
578221345Sdim      // If it's known zero, our sign bit is also zero.
579221345Sdim      if (LHSKnownZero.isNegative())
580235633Sdim        KnownZero.setBit(BitWidth - 1);
581221345Sdim    }
582221345Sdim
583193323Sed    break;
584193323Sed  case Instruction::URem: {
585193323Sed    if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
586193323Sed      APInt RA = Rem->getValue();
587193323Sed      if (RA.isPowerOf2()) {
588193323Sed        APInt LowBits = (RA - 1);
589235633Sdim        ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD,
590193323Sed                          Depth+1);
591199989Srdivacky        assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
592235633Sdim        KnownZero |= ~LowBits;
593235633Sdim        KnownOne &= LowBits;
594193323Sed        break;
595193323Sed      }
596193323Sed    }
597193323Sed
598193323Sed    // Since the result is less than or equal to either operand, any leading
599193323Sed    // zero bits in either operand must also exist in the result.
600235633Sdim    ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
601235633Sdim    ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
602193323Sed
603193323Sed    unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
604193323Sed                                KnownZero2.countLeadingOnes());
605218893Sdim    KnownOne.clearAllBits();
606235633Sdim    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
607193323Sed    break;
608193323Sed  }
609193323Sed
610198396Srdivacky  case Instruction::Alloca: {
611198892Srdivacky    AllocaInst *AI = cast<AllocaInst>(V);
612193323Sed    unsigned Align = AI->getAlignment();
613198396Srdivacky    if (Align == 0 && TD)
614198396Srdivacky      Align = TD->getABITypeAlignment(AI->getType()->getElementType());
615252723Sdim
616193323Sed    if (Align > 0)
617263509Sdim      KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
618193323Sed    break;
619193323Sed  }
620193323Sed  case Instruction::GetElementPtr: {
621193323Sed    // Analyze all of the subscripts of this getelementptr instruction
622193323Sed    // to determine if we can prove known low zero bits.
623193323Sed    APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
624235633Sdim    ComputeMaskedBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, TD,
625235633Sdim                      Depth+1);
626193323Sed    unsigned TrailZ = LocalKnownZero.countTrailingOnes();
627193323Sed
628193323Sed    gep_type_iterator GTI = gep_type_begin(I);
629193323Sed    for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
630193323Sed      Value *Index = I->getOperand(i);
631226890Sdim      if (StructType *STy = dyn_cast<StructType>(*GTI)) {
632193323Sed        // Handle struct member offset arithmetic.
633263509Sdim        if (!TD)
634263509Sdim          return;
635263509Sdim
636263509Sdim        // Handle case when index is vector zeroinitializer
637263509Sdim        Constant *CIndex = cast<Constant>(Index);
638263509Sdim        if (CIndex->isZeroValue())
639263509Sdim          continue;
640263509Sdim
641263509Sdim        if (CIndex->getType()->isVectorTy())
642263509Sdim          Index = CIndex->getSplatValue();
643263509Sdim
644263509Sdim        unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
645193323Sed        const StructLayout *SL = TD->getStructLayout(STy);
646193323Sed        uint64_t Offset = SL->getElementOffset(Idx);
647263509Sdim        TrailZ = std::min<unsigned>(TrailZ,
648263509Sdim                                    countTrailingZeros(Offset));
649193323Sed      } else {
650193323Sed        // Handle array index arithmetic.
651226890Sdim        Type *IndexedTy = GTI.getIndexedType();
652193323Sed        if (!IndexedTy->isSized()) return;
653194612Sed        unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
654193323Sed        uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
655193323Sed        LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
656235633Sdim        ComputeMaskedBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1);
657193323Sed        TrailZ = std::min(TrailZ,
658263509Sdim                          unsigned(countTrailingZeros(TypeSize) +
659193323Sed                                   LocalKnownZero.countTrailingOnes()));
660193323Sed      }
661193323Sed    }
662252723Sdim
663235633Sdim    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
664193323Sed    break;
665193323Sed  }
666193323Sed  case Instruction::PHI: {
667193323Sed    PHINode *P = cast<PHINode>(I);
668193323Sed    // Handle the case of a simple two-predecessor recurrence PHI.
669193323Sed    // There's a lot more that could theoretically be done here, but
670193323Sed    // this is sufficient to catch some interesting cases.
671193323Sed    if (P->getNumIncomingValues() == 2) {
672193323Sed      for (unsigned i = 0; i != 2; ++i) {
673193323Sed        Value *L = P->getIncomingValue(i);
674193323Sed        Value *R = P->getIncomingValue(!i);
675198090Srdivacky        Operator *LU = dyn_cast<Operator>(L);
676193323Sed        if (!LU)
677193323Sed          continue;
678198090Srdivacky        unsigned Opcode = LU->getOpcode();
679193323Sed        // Check for operations that have the property that if
680193323Sed        // both their operands have low zero bits, the result
681193323Sed        // will have low zero bits.
682193323Sed        if (Opcode == Instruction::Add ||
683193323Sed            Opcode == Instruction::Sub ||
684193323Sed            Opcode == Instruction::And ||
685193323Sed            Opcode == Instruction::Or ||
686193323Sed            Opcode == Instruction::Mul) {
687193323Sed          Value *LL = LU->getOperand(0);
688193323Sed          Value *LR = LU->getOperand(1);
689193323Sed          // Find a recurrence.
690193323Sed          if (LL == I)
691193323Sed            L = LR;
692193323Sed          else if (LR == I)
693193323Sed            L = LL;
694193323Sed          else
695193323Sed            break;
696193323Sed          // Ok, we have a PHI of the form L op= R. Check for low
697193323Sed          // zero bits.
698235633Sdim          ComputeMaskedBits(R, KnownZero2, KnownOne2, TD, Depth+1);
699193323Sed
700193323Sed          // We need to take the minimum number of known bits
701193323Sed          APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
702235633Sdim          ComputeMaskedBits(L, KnownZero3, KnownOne3, TD, Depth+1);
703193323Sed
704235633Sdim          KnownZero = APInt::getLowBitsSet(BitWidth,
705193323Sed                                           std::min(KnownZero2.countTrailingOnes(),
706193323Sed                                                    KnownZero3.countTrailingOnes()));
707193323Sed          break;
708193323Sed        }
709193323Sed      }
710193323Sed    }
711193323Sed
712218893Sdim    // Unreachable blocks may have zero-operand PHI nodes.
713218893Sdim    if (P->getNumIncomingValues() == 0)
714218893Sdim      return;
715218893Sdim
716193323Sed    // Otherwise take the unions of the known bit sets of the operands,
717193323Sed    // taking conservative care to avoid excessive recursion.
718193323Sed    if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
719221345Sdim      // Skip if every incoming value references to ourself.
720245431Sdim      if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
721221345Sdim        break;
722221345Sdim
723193323Sed      KnownZero = APInt::getAllOnesValue(BitWidth);
724193323Sed      KnownOne = APInt::getAllOnesValue(BitWidth);
725193323Sed      for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
726193323Sed        // Skip direct self references.
727193323Sed        if (P->getIncomingValue(i) == P) continue;
728193323Sed
729193323Sed        KnownZero2 = APInt(BitWidth, 0);
730193323Sed        KnownOne2 = APInt(BitWidth, 0);
731193323Sed        // Recurse, but cap the recursion to one level, because we don't
732193323Sed        // want to waste time spinning around in loops.
733235633Sdim        ComputeMaskedBits(P->getIncomingValue(i), KnownZero2, KnownOne2, TD,
734235633Sdim                          MaxDepth-1);
735193323Sed        KnownZero &= KnownZero2;
736193323Sed        KnownOne &= KnownOne2;
737193323Sed        // If all bits have been ruled out, there's no need to check
738193323Sed        // more operands.
739193323Sed        if (!KnownZero && !KnownOne)
740193323Sed          break;
741193323Sed      }
742193323Sed    }
743193323Sed    break;
744193323Sed  }
745193323Sed  case Instruction::Call:
746193323Sed    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
747193323Sed      switch (II->getIntrinsicID()) {
748193323Sed      default: break;
749193323Sed      case Intrinsic::ctlz:
750193323Sed      case Intrinsic::cttz: {
751193323Sed        unsigned LowBits = Log2_32(BitWidth)+1;
752235633Sdim        // If this call is undefined for 0, the result will be less than 2^n.
753235633Sdim        if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
754235633Sdim          LowBits -= 1;
755193323Sed        KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
756193323Sed        break;
757193323Sed      }
758235633Sdim      case Intrinsic::ctpop: {
759235633Sdim        unsigned LowBits = Log2_32(BitWidth)+1;
760235633Sdim        KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
761235633Sdim        break;
762235633Sdim      }
763223017Sdim      case Intrinsic::x86_sse42_crc32_64_64:
764223017Sdim        KnownZero = APInt::getHighBitsSet(64, 32);
765223017Sdim        break;
766193323Sed      }
767193323Sed    }
768193323Sed    break;
769235633Sdim  case Instruction::ExtractValue:
770235633Sdim    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
771235633Sdim      ExtractValueInst *EVI = cast<ExtractValueInst>(I);
772235633Sdim      if (EVI->getNumIndices() != 1) break;
773235633Sdim      if (EVI->getIndices()[0] == 0) {
774235633Sdim        switch (II->getIntrinsicID()) {
775235633Sdim        default: break;
776235633Sdim        case Intrinsic::uadd_with_overflow:
777235633Sdim        case Intrinsic::sadd_with_overflow:
778235633Sdim          ComputeMaskedBitsAddSub(true, II->getArgOperand(0),
779235633Sdim                                  II->getArgOperand(1), false, KnownZero,
780235633Sdim                                  KnownOne, KnownZero2, KnownOne2, TD, Depth);
781235633Sdim          break;
782235633Sdim        case Intrinsic::usub_with_overflow:
783235633Sdim        case Intrinsic::ssub_with_overflow:
784235633Sdim          ComputeMaskedBitsAddSub(false, II->getArgOperand(0),
785235633Sdim                                  II->getArgOperand(1), false, KnownZero,
786235633Sdim                                  KnownOne, KnownZero2, KnownOne2, TD, Depth);
787235633Sdim          break;
788235633Sdim        case Intrinsic::umul_with_overflow:
789235633Sdim        case Intrinsic::smul_with_overflow:
790235633Sdim          ComputeMaskedBitsMul(II->getArgOperand(0), II->getArgOperand(1),
791235633Sdim                               false, KnownZero, KnownOne,
792235633Sdim                               KnownZero2, KnownOne2, TD, Depth);
793235633Sdim          break;
794235633Sdim        }
795235633Sdim      }
796235633Sdim    }
797193323Sed  }
798193323Sed}
799193323Sed
800218893Sdim/// ComputeSignBit - Determine whether the sign bit is known to be zero or
801218893Sdim/// one.  Convenience wrapper around ComputeMaskedBits.
802218893Sdimvoid llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
803245431Sdim                          const DataLayout *TD, unsigned Depth) {
804218893Sdim  unsigned BitWidth = getBitWidth(V->getType(), TD);
805218893Sdim  if (!BitWidth) {
806218893Sdim    KnownZero = false;
807218893Sdim    KnownOne = false;
808218893Sdim    return;
809218893Sdim  }
810218893Sdim  APInt ZeroBits(BitWidth, 0);
811218893Sdim  APInt OneBits(BitWidth, 0);
812235633Sdim  ComputeMaskedBits(V, ZeroBits, OneBits, TD, Depth);
813218893Sdim  KnownOne = OneBits[BitWidth - 1];
814218893Sdim  KnownZero = ZeroBits[BitWidth - 1];
815218893Sdim}
816218893Sdim
817252723Sdim/// isKnownToBeAPowerOfTwo - Return true if the given value is known to have exactly one
818218893Sdim/// bit set when defined. For vectors return true if every element is known to
819218893Sdim/// be a power of two when defined.  Supports values with integer or pointer
820218893Sdim/// types and vectors of integers.
821252723Sdimbool llvm::isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth) {
822235633Sdim  if (Constant *C = dyn_cast<Constant>(V)) {
823235633Sdim    if (C->isNullValue())
824235633Sdim      return OrZero;
825235633Sdim    if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
826235633Sdim      return CI->getValue().isPowerOf2();
827235633Sdim    // TODO: Handle vector constants.
828235633Sdim  }
829218893Sdim
830218893Sdim  // 1 << X is clearly a power of two if the one is not shifted off the end.  If
831218893Sdim  // it is shifted off the end then the result is undefined.
832218893Sdim  if (match(V, m_Shl(m_One(), m_Value())))
833218893Sdim    return true;
834218893Sdim
835218893Sdim  // (signbit) >>l X is clearly a power of two if the one is not shifted off the
836218893Sdim  // bottom.  If it is shifted off the bottom then the result is undefined.
837218893Sdim  if (match(V, m_LShr(m_SignBit(), m_Value())))
838218893Sdim    return true;
839218893Sdim
840218893Sdim  // The remaining tests are all recursive, so bail out if we hit the limit.
841218893Sdim  if (Depth++ == MaxDepth)
842218893Sdim    return false;
843218893Sdim
844235633Sdim  Value *X = 0, *Y = 0;
845235633Sdim  // A shift of a power of two is a power of two or zero.
846235633Sdim  if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
847235633Sdim                 match(V, m_Shr(m_Value(X), m_Value()))))
848252723Sdim    return isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth);
849235633Sdim
850218893Sdim  if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
851252723Sdim    return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth);
852218893Sdim
853218893Sdim  if (SelectInst *SI = dyn_cast<SelectInst>(V))
854252723Sdim    return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth) &&
855252723Sdim      isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth);
856218893Sdim
857235633Sdim  if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
858235633Sdim    // A power of two and'd with anything is a power of two or zero.
859252723Sdim    if (isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth) ||
860252723Sdim        isKnownToBeAPowerOfTwo(Y, /*OrZero*/true, Depth))
861235633Sdim      return true;
862235633Sdim    // X & (-X) is always a power of two or zero.
863235633Sdim    if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
864235633Sdim      return true;
865235633Sdim    return false;
866235633Sdim  }
867235633Sdim
868263509Sdim  // Adding a power-of-two or zero to the same power-of-two or zero yields
869263509Sdim  // either the original power-of-two, a larger power-of-two or zero.
870263509Sdim  if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
871263509Sdim    OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
872263509Sdim    if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
873263509Sdim      if (match(X, m_And(m_Specific(Y), m_Value())) ||
874263509Sdim          match(X, m_And(m_Value(), m_Specific(Y))))
875263509Sdim        if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth))
876263509Sdim          return true;
877263509Sdim      if (match(Y, m_And(m_Specific(X), m_Value())) ||
878263509Sdim          match(Y, m_And(m_Value(), m_Specific(X))))
879263509Sdim        if (isKnownToBeAPowerOfTwo(X, OrZero, Depth))
880263509Sdim          return true;
881263509Sdim
882263509Sdim      unsigned BitWidth = V->getType()->getScalarSizeInBits();
883263509Sdim      APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
884263509Sdim      ComputeMaskedBits(X, LHSZeroBits, LHSOneBits, 0, Depth);
885263509Sdim
886263509Sdim      APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
887263509Sdim      ComputeMaskedBits(Y, RHSZeroBits, RHSOneBits, 0, Depth);
888263509Sdim      // If i8 V is a power of two or zero:
889263509Sdim      //  ZeroBits: 1 1 1 0 1 1 1 1
890263509Sdim      // ~ZeroBits: 0 0 0 1 0 0 0 0
891263509Sdim      if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
892263509Sdim        // If OrZero isn't set, we cannot give back a zero result.
893263509Sdim        // Make sure either the LHS or RHS has a bit set.
894263509Sdim        if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
895263509Sdim          return true;
896263509Sdim    }
897263509Sdim  }
898263509Sdim
899221345Sdim  // An exact divide or right shift can only shift off zero bits, so the result
900221345Sdim  // is a power of two only if the first operand is a power of two and not
901221345Sdim  // copying a sign bit (sdiv int_min, 2).
902235633Sdim  if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
903235633Sdim      match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
904252723Sdim    return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, Depth);
905221345Sdim  }
906221345Sdim
907218893Sdim  return false;
908218893Sdim}
909218893Sdim
910252723Sdim/// \brief Test whether a GEP's result is known to be non-null.
911252723Sdim///
912252723Sdim/// Uses properties inherent in a GEP to try to determine whether it is known
913252723Sdim/// to be non-null.
914252723Sdim///
915252723Sdim/// Currently this routine does not support vector GEPs.
916252723Sdimstatic bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout *DL,
917252723Sdim                              unsigned Depth) {
918252723Sdim  if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
919252723Sdim    return false;
920252723Sdim
921252723Sdim  // FIXME: Support vector-GEPs.
922252723Sdim  assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
923252723Sdim
924252723Sdim  // If the base pointer is non-null, we cannot walk to a null address with an
925252723Sdim  // inbounds GEP in address space zero.
926252723Sdim  if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth))
927252723Sdim    return true;
928252723Sdim
929252723Sdim  // Past this, if we don't have DataLayout, we can't do much.
930252723Sdim  if (!DL)
931252723Sdim    return false;
932252723Sdim
933252723Sdim  // Walk the GEP operands and see if any operand introduces a non-zero offset.
934252723Sdim  // If so, then the GEP cannot produce a null pointer, as doing so would
935252723Sdim  // inherently violate the inbounds contract within address space zero.
936252723Sdim  for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
937252723Sdim       GTI != GTE; ++GTI) {
938252723Sdim    // Struct types are easy -- they must always be indexed by a constant.
939252723Sdim    if (StructType *STy = dyn_cast<StructType>(*GTI)) {
940252723Sdim      ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
941252723Sdim      unsigned ElementIdx = OpC->getZExtValue();
942252723Sdim      const StructLayout *SL = DL->getStructLayout(STy);
943252723Sdim      uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
944252723Sdim      if (ElementOffset > 0)
945252723Sdim        return true;
946252723Sdim      continue;
947252723Sdim    }
948252723Sdim
949252723Sdim    // If we have a zero-sized type, the index doesn't matter. Keep looping.
950252723Sdim    if (DL->getTypeAllocSize(GTI.getIndexedType()) == 0)
951252723Sdim      continue;
952252723Sdim
953252723Sdim    // Fast path the constant operand case both for efficiency and so we don't
954252723Sdim    // increment Depth when just zipping down an all-constant GEP.
955252723Sdim    if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
956252723Sdim      if (!OpC->isZero())
957252723Sdim        return true;
958252723Sdim      continue;
959252723Sdim    }
960252723Sdim
961252723Sdim    // We post-increment Depth here because while isKnownNonZero increments it
962252723Sdim    // as well, when we pop back up that increment won't persist. We don't want
963252723Sdim    // to recurse 10k times just because we have 10k GEP operands. We don't
964252723Sdim    // bail completely out because we want to handle constant GEPs regardless
965252723Sdim    // of depth.
966252723Sdim    if (Depth++ >= MaxDepth)
967252723Sdim      continue;
968252723Sdim
969252723Sdim    if (isKnownNonZero(GTI.getOperand(), DL, Depth))
970252723Sdim      return true;
971252723Sdim  }
972252723Sdim
973252723Sdim  return false;
974252723Sdim}
975252723Sdim
976218893Sdim/// isKnownNonZero - Return true if the given value is known to be non-zero
977218893Sdim/// when defined.  For vectors return true if every element is known to be
978218893Sdim/// non-zero when defined.  Supports values with integer or pointer type and
979218893Sdim/// vectors of integers.
980245431Sdimbool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) {
981218893Sdim  if (Constant *C = dyn_cast<Constant>(V)) {
982218893Sdim    if (C->isNullValue())
983218893Sdim      return false;
984218893Sdim    if (isa<ConstantInt>(C))
985218893Sdim      // Must be non-zero due to null test above.
986218893Sdim      return true;
987218893Sdim    // TODO: Handle vectors
988218893Sdim    return false;
989218893Sdim  }
990218893Sdim
991218893Sdim  // The remaining tests are all recursive, so bail out if we hit the limit.
992235633Sdim  if (Depth++ >= MaxDepth)
993218893Sdim    return false;
994218893Sdim
995252723Sdim  // Check for pointer simplifications.
996252723Sdim  if (V->getType()->isPointerTy()) {
997252723Sdim    if (isKnownNonNull(V))
998252723Sdim      return true;
999252723Sdim    if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
1000252723Sdim      if (isGEPKnownNonNull(GEP, TD, Depth))
1001252723Sdim        return true;
1002252723Sdim  }
1003218893Sdim
1004252723Sdim  unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), TD);
1005252723Sdim
1006218893Sdim  // X | Y != 0 if X != 0 or Y != 0.
1007218893Sdim  Value *X = 0, *Y = 0;
1008218893Sdim  if (match(V, m_Or(m_Value(X), m_Value(Y))))
1009218893Sdim    return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth);
1010218893Sdim
1011218893Sdim  // ext X != 0 if X != 0.
1012218893Sdim  if (isa<SExtInst>(V) || isa<ZExtInst>(V))
1013218893Sdim    return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth);
1014218893Sdim
1015218893Sdim  // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
1016218893Sdim  // if the lowest bit is shifted off the end.
1017218893Sdim  if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
1018221345Sdim    // shl nuw can't remove any non-zero bits.
1019235633Sdim    OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1020221345Sdim    if (BO->hasNoUnsignedWrap())
1021221345Sdim      return isKnownNonZero(X, TD, Depth);
1022221345Sdim
1023218893Sdim    APInt KnownZero(BitWidth, 0);
1024218893Sdim    APInt KnownOne(BitWidth, 0);
1025235633Sdim    ComputeMaskedBits(X, KnownZero, KnownOne, TD, Depth);
1026218893Sdim    if (KnownOne[0])
1027218893Sdim      return true;
1028218893Sdim  }
1029218893Sdim  // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
1030218893Sdim  // defined if the sign bit is shifted off the end.
1031218893Sdim  else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
1032221345Sdim    // shr exact can only shift out zero bits.
1033235633Sdim    PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
1034221345Sdim    if (BO->isExact())
1035221345Sdim      return isKnownNonZero(X, TD, Depth);
1036221345Sdim
1037218893Sdim    bool XKnownNonNegative, XKnownNegative;
1038218893Sdim    ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
1039218893Sdim    if (XKnownNegative)
1040218893Sdim      return true;
1041218893Sdim  }
1042221345Sdim  // div exact can only produce a zero if the dividend is zero.
1043235633Sdim  else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
1044235633Sdim    return isKnownNonZero(X, TD, Depth);
1045221345Sdim  }
1046218893Sdim  // X + Y.
1047218893Sdim  else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1048218893Sdim    bool XKnownNonNegative, XKnownNegative;
1049218893Sdim    bool YKnownNonNegative, YKnownNegative;
1050218893Sdim    ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
1051218893Sdim    ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth);
1052218893Sdim
1053218893Sdim    // If X and Y are both non-negative (as signed values) then their sum is not
1054218893Sdim    // zero unless both X and Y are zero.
1055218893Sdim    if (XKnownNonNegative && YKnownNonNegative)
1056218893Sdim      if (isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth))
1057218893Sdim        return true;
1058218893Sdim
1059218893Sdim    // If X and Y are both negative (as signed values) then their sum is not
1060218893Sdim    // zero unless both X and Y equal INT_MIN.
1061218893Sdim    if (BitWidth && XKnownNegative && YKnownNegative) {
1062218893Sdim      APInt KnownZero(BitWidth, 0);
1063218893Sdim      APInt KnownOne(BitWidth, 0);
1064218893Sdim      APInt Mask = APInt::getSignedMaxValue(BitWidth);
1065218893Sdim      // The sign bit of X is set.  If some other bit is set then X is not equal
1066218893Sdim      // to INT_MIN.
1067235633Sdim      ComputeMaskedBits(X, KnownZero, KnownOne, TD, Depth);
1068218893Sdim      if ((KnownOne & Mask) != 0)
1069218893Sdim        return true;
1070218893Sdim      // The sign bit of Y is set.  If some other bit is set then Y is not equal
1071218893Sdim      // to INT_MIN.
1072235633Sdim      ComputeMaskedBits(Y, KnownZero, KnownOne, TD, Depth);
1073218893Sdim      if ((KnownOne & Mask) != 0)
1074218893Sdim        return true;
1075218893Sdim    }
1076218893Sdim
1077218893Sdim    // The sum of a non-negative number and a power of two is not zero.
1078252723Sdim    if (XKnownNonNegative && isKnownToBeAPowerOfTwo(Y, /*OrZero*/false, Depth))
1079218893Sdim      return true;
1080252723Sdim    if (YKnownNonNegative && isKnownToBeAPowerOfTwo(X, /*OrZero*/false, Depth))
1081218893Sdim      return true;
1082218893Sdim  }
1083235633Sdim  // X * Y.
1084235633Sdim  else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
1085235633Sdim    OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1086235633Sdim    // If X and Y are non-zero then so is X * Y as long as the multiplication
1087235633Sdim    // does not overflow.
1088235633Sdim    if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
1089235633Sdim        isKnownNonZero(X, TD, Depth) && isKnownNonZero(Y, TD, Depth))
1090235633Sdim      return true;
1091235633Sdim  }
1092218893Sdim  // (C ? X : Y) != 0 if X != 0 and Y != 0.
1093218893Sdim  else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
1094218893Sdim    if (isKnownNonZero(SI->getTrueValue(), TD, Depth) &&
1095218893Sdim        isKnownNonZero(SI->getFalseValue(), TD, Depth))
1096218893Sdim      return true;
1097218893Sdim  }
1098218893Sdim
1099218893Sdim  if (!BitWidth) return false;
1100218893Sdim  APInt KnownZero(BitWidth, 0);
1101218893Sdim  APInt KnownOne(BitWidth, 0);
1102235633Sdim  ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
1103218893Sdim  return KnownOne != 0;
1104218893Sdim}
1105218893Sdim
1106193323Sed/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1107193323Sed/// this predicate to simplify operations downstream.  Mask is known to be zero
1108193323Sed/// for bits that V cannot have.
1109198090Srdivacky///
1110198090Srdivacky/// This function is defined on values with integer type, values with pointer
1111198090Srdivacky/// type (but only if TD is non-null), and vectors of integers.  In the case
1112198090Srdivacky/// where V is a vector, the mask, known zero, and known one values are the
1113198090Srdivacky/// same width as the vector element, and the bit is set only if it is true
1114198090Srdivacky/// for all of the elements in the vector.
1115193323Sedbool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
1116245431Sdim                             const DataLayout *TD, unsigned Depth) {
1117193323Sed  APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
1118235633Sdim  ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
1119252723Sdim  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1120193323Sed  return (KnownZero & Mask) == Mask;
1121193323Sed}
1122193323Sed
1123193323Sed
1124193323Sed
1125193323Sed/// ComputeNumSignBits - Return the number of times the sign bit of the
1126193323Sed/// register is replicated into the other bits.  We know that at least 1 bit
1127193323Sed/// is always equal to the sign bit (itself), but other cases can give us
1128193323Sed/// information.  For example, immediately after an "ashr X, 2", we know that
1129193323Sed/// the top 3 bits are all equal to each other, so we return 3.
1130193323Sed///
1131193323Sed/// 'Op' must have a scalar integer type.
1132193323Sed///
1133245431Sdimunsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD,
1134198090Srdivacky                                  unsigned Depth) {
1135203954Srdivacky  assert((TD || V->getType()->isIntOrIntVectorTy()) &&
1136245431Sdim         "ComputeNumSignBits requires a DataLayout object to operate "
1137194710Sed         "on non-integer values!");
1138226890Sdim  Type *Ty = V->getType();
1139194710Sed  unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
1140194710Sed                         Ty->getScalarSizeInBits();
1141193323Sed  unsigned Tmp, Tmp2;
1142193323Sed  unsigned FirstAnswer = 1;
1143193323Sed
1144193323Sed  // Note that ConstantInt is handled by the general ComputeMaskedBits case
1145193323Sed  // below.
1146193323Sed
1147193323Sed  if (Depth == 6)
1148193323Sed    return 1;  // Limit search depth.
1149252723Sdim
1150198090Srdivacky  Operator *U = dyn_cast<Operator>(V);
1151198090Srdivacky  switch (Operator::getOpcode(V)) {
1152193323Sed  default: break;
1153193323Sed  case Instruction::SExt:
1154200581Srdivacky    Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
1155193323Sed    return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp;
1156252723Sdim
1157235633Sdim  case Instruction::AShr: {
1158193323Sed    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1159235633Sdim    // ashr X, C   -> adds C sign bits.  Vectors too.
1160235633Sdim    const APInt *ShAmt;
1161235633Sdim    if (match(U->getOperand(1), m_APInt(ShAmt))) {
1162235633Sdim      Tmp += ShAmt->getZExtValue();
1163193323Sed      if (Tmp > TyBits) Tmp = TyBits;
1164193323Sed    }
1165193323Sed    return Tmp;
1166235633Sdim  }
1167235633Sdim  case Instruction::Shl: {
1168235633Sdim    const APInt *ShAmt;
1169235633Sdim    if (match(U->getOperand(1), m_APInt(ShAmt))) {
1170193323Sed      // shl destroys sign bits.
1171193323Sed      Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1172235633Sdim      Tmp2 = ShAmt->getZExtValue();
1173235633Sdim      if (Tmp2 >= TyBits ||      // Bad shift.
1174235633Sdim          Tmp2 >= Tmp) break;    // Shifted all sign bits out.
1175235633Sdim      return Tmp - Tmp2;
1176193323Sed    }
1177193323Sed    break;
1178235633Sdim  }
1179193323Sed  case Instruction::And:
1180193323Sed  case Instruction::Or:
1181193323Sed  case Instruction::Xor:    // NOT is handled here.
1182193323Sed    // Logical binary ops preserve the number of sign bits at the worst.
1183193323Sed    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1184193323Sed    if (Tmp != 1) {
1185193323Sed      Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1186193323Sed      FirstAnswer = std::min(Tmp, Tmp2);
1187193323Sed      // We computed what we know about the sign bits as our first
1188193323Sed      // answer. Now proceed to the generic code that uses
1189193323Sed      // ComputeMaskedBits, and pick whichever answer is better.
1190193323Sed    }
1191193323Sed    break;
1192193323Sed
1193193323Sed  case Instruction::Select:
1194193323Sed    Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1195193323Sed    if (Tmp == 1) return 1;  // Early out.
1196193323Sed    Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1);
1197193323Sed    return std::min(Tmp, Tmp2);
1198252723Sdim
1199193323Sed  case Instruction::Add:
1200193323Sed    // Add can have at most one carry bit.  Thus we know that the output
1201193323Sed    // is, at worst, one more bit than the inputs.
1202193323Sed    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1203193323Sed    if (Tmp == 1) return 1;  // Early out.
1204252723Sdim
1205193323Sed    // Special case decrementing a value (ADD X, -1):
1206193323Sed    if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
1207193323Sed      if (CRHS->isAllOnesValue()) {
1208193323Sed        APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
1209235633Sdim        ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
1210252723Sdim
1211193323Sed        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1212193323Sed        // sign bits set.
1213235633Sdim        if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
1214193323Sed          return TyBits;
1215252723Sdim
1216193323Sed        // If we are subtracting one from a positive number, there is no carry
1217193323Sed        // out of the result.
1218193323Sed        if (KnownZero.isNegative())
1219193323Sed          return Tmp;
1220193323Sed      }
1221252723Sdim
1222193323Sed    Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1223193323Sed    if (Tmp2 == 1) return 1;
1224202375Srdivacky    return std::min(Tmp, Tmp2)-1;
1225252723Sdim
1226193323Sed  case Instruction::Sub:
1227193323Sed    Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1228193323Sed    if (Tmp2 == 1) return 1;
1229252723Sdim
1230193323Sed    // Handle NEG.
1231193323Sed    if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
1232193323Sed      if (CLHS->isNullValue()) {
1233193323Sed        APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
1234235633Sdim        ComputeMaskedBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
1235193323Sed        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1236193323Sed        // sign bits set.
1237235633Sdim        if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
1238193323Sed          return TyBits;
1239252723Sdim
1240193323Sed        // If the input is known to be positive (the sign bit is known clear),
1241193323Sed        // the output of the NEG has the same number of sign bits as the input.
1242193323Sed        if (KnownZero.isNegative())
1243193323Sed          return Tmp2;
1244252723Sdim
1245193323Sed        // Otherwise, we treat this like a SUB.
1246193323Sed      }
1247252723Sdim
1248193323Sed    // Sub can have at most one carry bit.  Thus we know that the output
1249193323Sed    // is, at worst, one more bit than the inputs.
1250193323Sed    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1251193323Sed    if (Tmp == 1) return 1;  // Early out.
1252202375Srdivacky    return std::min(Tmp, Tmp2)-1;
1253252723Sdim
1254202375Srdivacky  case Instruction::PHI: {
1255202375Srdivacky    PHINode *PN = cast<PHINode>(U);
1256202375Srdivacky    // Don't analyze large in-degree PHIs.
1257202375Srdivacky    if (PN->getNumIncomingValues() > 4) break;
1258252723Sdim
1259202375Srdivacky    // Take the minimum of all incoming values.  This can't infinitely loop
1260202375Srdivacky    // because of our depth threshold.
1261202375Srdivacky    Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1);
1262202375Srdivacky    for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
1263202375Srdivacky      if (Tmp == 1) return Tmp;
1264202375Srdivacky      Tmp = std::min(Tmp,
1265205218Srdivacky                     ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1));
1266202375Srdivacky    }
1267202375Srdivacky    return Tmp;
1268202375Srdivacky  }
1269202375Srdivacky
1270193323Sed  case Instruction::Trunc:
1271193323Sed    // FIXME: it's tricky to do anything useful for this, but it is an important
1272193323Sed    // case for targets like X86.
1273193323Sed    break;
1274193323Sed  }
1275252723Sdim
1276193323Sed  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1277193323Sed  // use this information.
1278193323Sed  APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
1279235633Sdim  APInt Mask;
1280235633Sdim  ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
1281252723Sdim
1282193323Sed  if (KnownZero.isNegative()) {        // sign bit is 0
1283193323Sed    Mask = KnownZero;
1284193323Sed  } else if (KnownOne.isNegative()) {  // sign bit is 1;
1285193323Sed    Mask = KnownOne;
1286193323Sed  } else {
1287193323Sed    // Nothing known.
1288193323Sed    return FirstAnswer;
1289193323Sed  }
1290252723Sdim
1291193323Sed  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1292193323Sed  // the number of identical bits in the top of the input value.
1293193323Sed  Mask = ~Mask;
1294193323Sed  Mask <<= Mask.getBitWidth()-TyBits;
1295193323Sed  // Return # leading zeros.  We use 'min' here in case Val was zero before
1296193323Sed  // shifting.  We don't want to return '64' as for an i32 "0".
1297193323Sed  return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
1298193323Sed}
1299193323Sed
1300199481Srdivacky/// ComputeMultiple - This function computes the integer multiple of Base that
1301199481Srdivacky/// equals V.  If successful, it returns true and returns the multiple in
1302199481Srdivacky/// Multiple.  If unsuccessful, it returns false. It looks
1303199481Srdivacky/// through SExt instructions only if LookThroughSExt is true.
1304199481Srdivackybool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
1305199481Srdivacky                           bool LookThroughSExt, unsigned Depth) {
1306199481Srdivacky  const unsigned MaxDepth = 6;
1307199481Srdivacky
1308199481Srdivacky  assert(V && "No Value?");
1309199481Srdivacky  assert(Depth <= MaxDepth && "Limit Search Depth");
1310203954Srdivacky  assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
1311199481Srdivacky
1312226890Sdim  Type *T = V->getType();
1313199481Srdivacky
1314199481Srdivacky  ConstantInt *CI = dyn_cast<ConstantInt>(V);
1315199481Srdivacky
1316199481Srdivacky  if (Base == 0)
1317199481Srdivacky    return false;
1318252723Sdim
1319199481Srdivacky  if (Base == 1) {
1320199481Srdivacky    Multiple = V;
1321199481Srdivacky    return true;
1322199481Srdivacky  }
1323199481Srdivacky
1324199481Srdivacky  ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
1325199481Srdivacky  Constant *BaseVal = ConstantInt::get(T, Base);
1326199481Srdivacky  if (CO && CO == BaseVal) {
1327199481Srdivacky    // Multiple is 1.
1328199481Srdivacky    Multiple = ConstantInt::get(T, 1);
1329199481Srdivacky    return true;
1330199481Srdivacky  }
1331199481Srdivacky
1332199481Srdivacky  if (CI && CI->getZExtValue() % Base == 0) {
1333199481Srdivacky    Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
1334252723Sdim    return true;
1335199481Srdivacky  }
1336252723Sdim
1337199481Srdivacky  if (Depth == MaxDepth) return false;  // Limit search depth.
1338252723Sdim
1339199481Srdivacky  Operator *I = dyn_cast<Operator>(V);
1340199481Srdivacky  if (!I) return false;
1341199481Srdivacky
1342199481Srdivacky  switch (I->getOpcode()) {
1343199481Srdivacky  default: break;
1344199989Srdivacky  case Instruction::SExt:
1345199481Srdivacky    if (!LookThroughSExt) return false;
1346199481Srdivacky    // otherwise fall through to ZExt
1347199989Srdivacky  case Instruction::ZExt:
1348199481Srdivacky    return ComputeMultiple(I->getOperand(0), Base, Multiple,
1349199481Srdivacky                           LookThroughSExt, Depth+1);
1350199481Srdivacky  case Instruction::Shl:
1351199481Srdivacky  case Instruction::Mul: {
1352199481Srdivacky    Value *Op0 = I->getOperand(0);
1353199481Srdivacky    Value *Op1 = I->getOperand(1);
1354199481Srdivacky
1355199481Srdivacky    if (I->getOpcode() == Instruction::Shl) {
1356199481Srdivacky      ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
1357199481Srdivacky      if (!Op1CI) return false;
1358199481Srdivacky      // Turn Op0 << Op1 into Op0 * 2^Op1
1359199481Srdivacky      APInt Op1Int = Op1CI->getValue();
1360199481Srdivacky      uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
1361218893Sdim      APInt API(Op1Int.getBitWidth(), 0);
1362218893Sdim      API.setBit(BitToSet);
1363218893Sdim      Op1 = ConstantInt::get(V->getContext(), API);
1364199481Srdivacky    }
1365199481Srdivacky
1366199481Srdivacky    Value *Mul0 = NULL;
1367212904Sdim    if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
1368212904Sdim      if (Constant *Op1C = dyn_cast<Constant>(Op1))
1369212904Sdim        if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
1370252723Sdim          if (Op1C->getType()->getPrimitiveSizeInBits() <
1371212904Sdim              MulC->getType()->getPrimitiveSizeInBits())
1372212904Sdim            Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
1373252723Sdim          if (Op1C->getType()->getPrimitiveSizeInBits() >
1374212904Sdim              MulC->getType()->getPrimitiveSizeInBits())
1375212904Sdim            MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
1376252723Sdim
1377212904Sdim          // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
1378212904Sdim          Multiple = ConstantExpr::getMul(MulC, Op1C);
1379212904Sdim          return true;
1380212904Sdim        }
1381199481Srdivacky
1382199481Srdivacky      if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
1383199481Srdivacky        if (Mul0CI->getValue() == 1) {
1384199481Srdivacky          // V == Base * Op1, so return Op1
1385199481Srdivacky          Multiple = Op1;
1386199481Srdivacky          return true;
1387199481Srdivacky        }
1388199481Srdivacky    }
1389199481Srdivacky
1390212904Sdim    Value *Mul1 = NULL;
1391212904Sdim    if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
1392212904Sdim      if (Constant *Op0C = dyn_cast<Constant>(Op0))
1393212904Sdim        if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
1394252723Sdim          if (Op0C->getType()->getPrimitiveSizeInBits() <
1395212904Sdim              MulC->getType()->getPrimitiveSizeInBits())
1396212904Sdim            Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
1397252723Sdim          if (Op0C->getType()->getPrimitiveSizeInBits() >
1398212904Sdim              MulC->getType()->getPrimitiveSizeInBits())
1399212904Sdim            MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
1400252723Sdim
1401212904Sdim          // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
1402212904Sdim          Multiple = ConstantExpr::getMul(MulC, Op0C);
1403212904Sdim          return true;
1404212904Sdim        }
1405199481Srdivacky
1406199481Srdivacky      if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
1407199481Srdivacky        if (Mul1CI->getValue() == 1) {
1408199481Srdivacky          // V == Base * Op0, so return Op0
1409199481Srdivacky          Multiple = Op0;
1410199481Srdivacky          return true;
1411199481Srdivacky        }
1412199481Srdivacky    }
1413199481Srdivacky  }
1414199481Srdivacky  }
1415199481Srdivacky
1416199481Srdivacky  // We could not determine if V is a multiple of Base.
1417199481Srdivacky  return false;
1418199481Srdivacky}
1419199481Srdivacky
1420252723Sdim/// CannotBeNegativeZero - Return true if we can prove that the specified FP
1421193323Sed/// value is never equal to -0.0.
1422193323Sed///
1423193323Sed/// NOTE: this function will need to be revisited when we support non-default
1424193323Sed/// rounding modes!
1425193323Sed///
1426193323Sedbool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
1427193323Sed  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
1428193323Sed    return !CFP->getValueAPF().isNegZero();
1429252723Sdim
1430193323Sed  if (Depth == 6)
1431193323Sed    return 1;  // Limit search depth.
1432193323Sed
1433198090Srdivacky  const Operator *I = dyn_cast<Operator>(V);
1434193323Sed  if (I == 0) return false;
1435252723Sdim
1436252723Sdim  // Check if the nsz fast-math flag is set
1437252723Sdim  if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
1438252723Sdim    if (FPO->hasNoSignedZeros())
1439252723Sdim      return true;
1440252723Sdim
1441193323Sed  // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
1442252723Sdim  if (I->getOpcode() == Instruction::FAdd)
1443252723Sdim    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
1444252723Sdim      if (CFP->isNullValue())
1445252723Sdim        return true;
1446252723Sdim
1447193323Sed  // sitofp and uitofp turn into +0.0 for zero.
1448193323Sed  if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
1449193323Sed    return true;
1450252723Sdim
1451193323Sed  if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1452193323Sed    // sqrt(-0.0) = -0.0, no other negative results are possible.
1453193323Sed    if (II->getIntrinsicID() == Intrinsic::sqrt)
1454210299Sed      return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
1455252723Sdim
1456193323Sed  if (const CallInst *CI = dyn_cast<CallInst>(I))
1457193323Sed    if (const Function *F = CI->getCalledFunction()) {
1458193323Sed      if (F->isDeclaration()) {
1459198090Srdivacky        // abs(x) != -0.0
1460198090Srdivacky        if (F->getName() == "abs") return true;
1461198090Srdivacky        // fabs[lf](x) != -0.0
1462198090Srdivacky        if (F->getName() == "fabs") return true;
1463198090Srdivacky        if (F->getName() == "fabsf") return true;
1464198090Srdivacky        if (F->getName() == "fabsl") return true;
1465198090Srdivacky        if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
1466198090Srdivacky            F->getName() == "sqrtl")
1467210299Sed          return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
1468193323Sed      }
1469193323Sed    }
1470252723Sdim
1471193323Sed  return false;
1472193323Sed}
1473193323Sed
1474218893Sdim/// isBytewiseValue - If the specified value can be set by repeating the same
1475218893Sdim/// byte in memory, return the i8 value that it is represented with.  This is
1476218893Sdim/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
1477218893Sdim/// i16 0xF0F0, double 0.0 etc.  If the value can't be handled with a repeated
1478218893Sdim/// byte store (e.g. i16 0x1234), return null.
1479218893SdimValue *llvm::isBytewiseValue(Value *V) {
1480218893Sdim  // All byte-wide stores are splatable, even of arbitrary variables.
1481218893Sdim  if (V->getType()->isIntegerTy(8)) return V;
1482218893Sdim
1483218893Sdim  // Handle 'null' ConstantArrayZero etc.
1484218893Sdim  if (Constant *C = dyn_cast<Constant>(V))
1485218893Sdim    if (C->isNullValue())
1486218893Sdim      return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
1487252723Sdim
1488218893Sdim  // Constant float and double values can be handled as integer values if the
1489252723Sdim  // corresponding integer value is "byteable".  An important case is 0.0.
1490218893Sdim  if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
1491218893Sdim    if (CFP->getType()->isFloatTy())
1492218893Sdim      V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
1493218893Sdim    if (CFP->getType()->isDoubleTy())
1494218893Sdim      V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
1495218893Sdim    // Don't handle long double formats, which have strange constraints.
1496218893Sdim  }
1497252723Sdim
1498252723Sdim  // We can handle constant integers that are power of two in size and a
1499218893Sdim  // multiple of 8 bits.
1500218893Sdim  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1501218893Sdim    unsigned Width = CI->getBitWidth();
1502218893Sdim    if (isPowerOf2_32(Width) && Width > 8) {
1503218893Sdim      // We can handle this value if the recursive binary decomposition is the
1504218893Sdim      // same at all levels.
1505218893Sdim      APInt Val = CI->getValue();
1506218893Sdim      APInt Val2;
1507218893Sdim      while (Val.getBitWidth() != 8) {
1508218893Sdim        unsigned NextWidth = Val.getBitWidth()/2;
1509218893Sdim        Val2  = Val.lshr(NextWidth);
1510218893Sdim        Val2 = Val2.trunc(Val.getBitWidth()/2);
1511218893Sdim        Val = Val.trunc(Val.getBitWidth()/2);
1512252723Sdim
1513218893Sdim        // If the top/bottom halves aren't the same, reject it.
1514218893Sdim        if (Val != Val2)
1515218893Sdim          return 0;
1516218893Sdim      }
1517218893Sdim      return ConstantInt::get(V->getContext(), Val);
1518218893Sdim    }
1519218893Sdim  }
1520252723Sdim
1521235633Sdim  // A ConstantDataArray/Vector is splatable if all its members are equal and
1522235633Sdim  // also splatable.
1523235633Sdim  if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
1524235633Sdim    Value *Elt = CA->getElementAsConstant(0);
1525235633Sdim    Value *Val = isBytewiseValue(Elt);
1526218893Sdim    if (!Val)
1527218893Sdim      return 0;
1528252723Sdim
1529235633Sdim    for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
1530235633Sdim      if (CA->getElementAsConstant(I) != Elt)
1531218893Sdim        return 0;
1532252723Sdim
1533218893Sdim    return Val;
1534218893Sdim  }
1535235633Sdim
1536218893Sdim  // Conceptually, we could handle things like:
1537218893Sdim  //   %a = zext i8 %X to i16
1538218893Sdim  //   %b = shl i16 %a, 8
1539218893Sdim  //   %c = or i16 %a, %b
1540218893Sdim  // but until there is an example that actually needs this, it doesn't seem
1541218893Sdim  // worth worrying about.
1542218893Sdim  return 0;
1543218893Sdim}
1544218893Sdim
1545218893Sdim
1546193323Sed// This is the recursive version of BuildSubAggregate. It takes a few different
1547193323Sed// arguments. Idxs is the index within the nested struct From that we are
1548193323Sed// looking at now (which is of type IndexedType). IdxSkip is the number of
1549193323Sed// indices from Idxs that should be left out when inserting into the resulting
1550193323Sed// struct. To is the result struct built so far, new insertvalue instructions
1551193323Sed// build on that.
1552226890Sdimstatic Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
1553263509Sdim                                SmallVectorImpl<unsigned> &Idxs,
1554198090Srdivacky                                unsigned IdxSkip,
1555198090Srdivacky                                Instruction *InsertBefore) {
1556252723Sdim  llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
1557193323Sed  if (STy) {
1558193323Sed    // Save the original To argument so we can modify it
1559193323Sed    Value *OrigTo = To;
1560193323Sed    // General case, the type indexed by Idxs is a struct
1561193323Sed    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1562193323Sed      // Process each struct element recursively
1563193323Sed      Idxs.push_back(i);
1564193323Sed      Value *PrevTo = To;
1565193323Sed      To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
1566199989Srdivacky                             InsertBefore);
1567193323Sed      Idxs.pop_back();
1568193323Sed      if (!To) {
1569193323Sed        // Couldn't find any inserted value for this index? Cleanup
1570193323Sed        while (PrevTo != OrigTo) {
1571193323Sed          InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
1572193323Sed          PrevTo = Del->getAggregateOperand();
1573193323Sed          Del->eraseFromParent();
1574193323Sed        }
1575193323Sed        // Stop processing elements
1576193323Sed        break;
1577193323Sed      }
1578193323Sed    }
1579221345Sdim    // If we successfully found a value for each of our subaggregates
1580193323Sed    if (To)
1581193323Sed      return To;
1582193323Sed  }
1583193323Sed  // Base case, the type indexed by SourceIdxs is not a struct, or not all of
1584193323Sed  // the struct's elements had a value that was inserted directly. In the latter
1585193323Sed  // case, perhaps we can't determine each of the subelements individually, but
1586193323Sed  // we might be able to find the complete struct somewhere.
1587252723Sdim
1588193323Sed  // Find the value that is at that particular spot
1589224145Sdim  Value *V = FindInsertedValue(From, Idxs);
1590193323Sed
1591193323Sed  if (!V)
1592193323Sed    return NULL;
1593193323Sed
1594193323Sed  // Insert the value in the new (sub) aggregrate
1595226890Sdim  return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
1596224145Sdim                                       "tmp", InsertBefore);
1597193323Sed}
1598193323Sed
1599193323Sed// This helper takes a nested struct and extracts a part of it (which is again a
1600193323Sed// struct) into a new value. For example, given the struct:
1601193323Sed// { a, { b, { c, d }, e } }
1602193323Sed// and the indices "1, 1" this returns
1603193323Sed// { c, d }.
1604193323Sed//
1605193323Sed// It does this by inserting an insertvalue for each element in the resulting
1606193323Sed// struct, as opposed to just inserting a single struct. This will only work if
1607193323Sed// each of the elements of the substruct are known (ie, inserted into From by an
1608193323Sed// insertvalue instruction somewhere).
1609193323Sed//
1610193323Sed// All inserted insertvalue instructions are inserted before InsertBefore
1611224145Sdimstatic Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
1612198090Srdivacky                                Instruction *InsertBefore) {
1613193323Sed  assert(InsertBefore && "Must have someplace to insert!");
1614226890Sdim  Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
1615224145Sdim                                                             idx_range);
1616193323Sed  Value *To = UndefValue::get(IndexedType);
1617224145Sdim  SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
1618193323Sed  unsigned IdxSkip = Idxs.size();
1619193323Sed
1620199989Srdivacky  return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
1621193323Sed}
1622193323Sed
1623193323Sed/// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
1624193323Sed/// the scalar value indexed is already around as a register, for example if it
1625193323Sed/// were inserted directly into the aggregrate.
1626193323Sed///
1627193323Sed/// If InsertBefore is not null, this function will duplicate (modified)
1628193323Sed/// insertvalues when a part of a nested struct is extracted.
1629224145SdimValue *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
1630224145Sdim                               Instruction *InsertBefore) {
1631193323Sed  // Nothing to index? Just return V then (this is useful at the end of our
1632235633Sdim  // recursion).
1633224145Sdim  if (idx_range.empty())
1634193323Sed    return V;
1635235633Sdim  // We have indices, so V should have an indexable type.
1636235633Sdim  assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
1637235633Sdim         "Not looking at a struct or array?");
1638235633Sdim  assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
1639235633Sdim         "Invalid indices for type?");
1640198090Srdivacky
1641235633Sdim  if (Constant *C = dyn_cast<Constant>(V)) {
1642235633Sdim    C = C->getAggregateElement(idx_range[0]);
1643235633Sdim    if (C == 0) return 0;
1644235633Sdim    return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
1645235633Sdim  }
1646252723Sdim
1647235633Sdim  if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
1648193323Sed    // Loop the indices for the insertvalue instruction in parallel with the
1649193323Sed    // requested indices
1650224145Sdim    const unsigned *req_idx = idx_range.begin();
1651193323Sed    for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
1652193323Sed         i != e; ++i, ++req_idx) {
1653224145Sdim      if (req_idx == idx_range.end()) {
1654235633Sdim        // We can't handle this without inserting insertvalues
1655235633Sdim        if (!InsertBefore)
1656193323Sed          return 0;
1657235633Sdim
1658235633Sdim        // The requested index identifies a part of a nested aggregate. Handle
1659235633Sdim        // this specially. For example,
1660235633Sdim        // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
1661235633Sdim        // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
1662235633Sdim        // %C = extractvalue {i32, { i32, i32 } } %B, 1
1663235633Sdim        // This can be changed into
1664235633Sdim        // %A = insertvalue {i32, i32 } undef, i32 10, 0
1665235633Sdim        // %C = insertvalue {i32, i32 } %A, i32 11, 1
1666235633Sdim        // which allows the unused 0,0 element from the nested struct to be
1667235633Sdim        // removed.
1668235633Sdim        return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
1669235633Sdim                                 InsertBefore);
1670193323Sed      }
1671252723Sdim
1672193323Sed      // This insert value inserts something else than what we are looking for.
1673193323Sed      // See if the (aggregrate) value inserted into has the value we are
1674193323Sed      // looking for, then.
1675193323Sed      if (*req_idx != *i)
1676224145Sdim        return FindInsertedValue(I->getAggregateOperand(), idx_range,
1677199989Srdivacky                                 InsertBefore);
1678193323Sed    }
1679193323Sed    // If we end up here, the indices of the insertvalue match with those
1680193323Sed    // requested (though possibly only partially). Now we recursively look at
1681193323Sed    // the inserted value, passing any remaining indices.
1682224145Sdim    return FindInsertedValue(I->getInsertedValueOperand(),
1683226890Sdim                             makeArrayRef(req_idx, idx_range.end()),
1684199989Srdivacky                             InsertBefore);
1685235633Sdim  }
1686252723Sdim
1687235633Sdim  if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
1688193323Sed    // If we're extracting a value from an aggregrate that was extracted from
1689193323Sed    // something else, we can extract from that something else directly instead.
1690193323Sed    // However, we will need to chain I's indices with the requested indices.
1691252723Sdim
1692252723Sdim    // Calculate the number of indices required
1693224145Sdim    unsigned size = I->getNumIndices() + idx_range.size();
1694193323Sed    // Allocate some space to put the new indices in
1695193323Sed    SmallVector<unsigned, 5> Idxs;
1696193323Sed    Idxs.reserve(size);
1697193323Sed    // Add indices from the extract value instruction
1698224145Sdim    Idxs.append(I->idx_begin(), I->idx_end());
1699252723Sdim
1700193323Sed    // Add requested indices
1701224145Sdim    Idxs.append(idx_range.begin(), idx_range.end());
1702193323Sed
1703252723Sdim    assert(Idxs.size() == size
1704193323Sed           && "Number of indices added not correct?");
1705252723Sdim
1706224145Sdim    return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
1707193323Sed  }
1708193323Sed  // Otherwise, we don't know (such as, extracting from a function return value
1709193323Sed  // or load instruction)
1710193323Sed  return 0;
1711193323Sed}
1712193323Sed
1713218893Sdim/// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if
1714218893Sdim/// it can be expressed as a base pointer plus a constant offset.  Return the
1715218893Sdim/// base and offset to the caller.
1716218893SdimValue *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
1717263509Sdim                                              const DataLayout *DL) {
1718252723Sdim  // Without DataLayout, conservatively assume 64-bit offsets, which is
1719252723Sdim  // the widest we support.
1720263509Sdim  unsigned BitWidth = DL ? DL->getPointerTypeSizeInBits(Ptr->getType()) : 64;
1721252723Sdim  APInt ByteOffset(BitWidth, 0);
1722252723Sdim  while (1) {
1723252723Sdim    if (Ptr->getType()->isVectorTy())
1724252723Sdim      break;
1725252723Sdim
1726252723Sdim    if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
1727263509Sdim      if (DL) {
1728263509Sdim        APInt GEPOffset(BitWidth, 0);
1729263509Sdim        if (!GEP->accumulateConstantOffset(*DL, GEPOffset))
1730263509Sdim          break;
1731263509Sdim
1732263509Sdim        ByteOffset += GEPOffset;
1733263509Sdim      }
1734263509Sdim
1735252723Sdim      Ptr = GEP->getPointerOperand();
1736252723Sdim    } else if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
1737252723Sdim      Ptr = cast<Operator>(Ptr)->getOperand(0);
1738252723Sdim    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
1739252723Sdim      if (GA->mayBeOverridden())
1740252723Sdim        break;
1741252723Sdim      Ptr = GA->getAliasee();
1742218893Sdim    } else {
1743252723Sdim      break;
1744218893Sdim    }
1745218893Sdim  }
1746252723Sdim  Offset = ByteOffset.getSExtValue();
1747252723Sdim  return Ptr;
1748218893Sdim}
1749218893Sdim
1750218893Sdim
1751235633Sdim/// getConstantStringInfo - This function computes the length of a
1752193323Sed/// null-terminated C string pointed to by V.  If successful, it returns true
1753193323Sed/// and returns the string in Str.  If unsuccessful, it returns false.
1754235633Sdimbool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
1755235633Sdim                                 uint64_t Offset, bool TrimAtNul) {
1756235633Sdim  assert(V);
1757193323Sed
1758235633Sdim  // Look through bitcast instructions and geps.
1759235633Sdim  V = V->stripPointerCasts();
1760252723Sdim
1761235633Sdim  // If the value is a GEP instructionor  constant expression, treat it as an
1762235633Sdim  // offset.
1763235633Sdim  if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
1764193323Sed    // Make sure the GEP has exactly three arguments.
1765193323Sed    if (GEP->getNumOperands() != 3)
1766193323Sed      return false;
1767252723Sdim
1768193323Sed    // Make sure the index-ee is a pointer to array of i8.
1769226890Sdim    PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
1770226890Sdim    ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
1771203954Srdivacky    if (AT == 0 || !AT->getElementType()->isIntegerTy(8))
1772193323Sed      return false;
1773252723Sdim
1774193323Sed    // Check to make sure that the first operand of the GEP is an integer and
1775193323Sed    // has value 0 so that we are sure we're indexing into the initializer.
1776207618Srdivacky    const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
1777193323Sed    if (FirstIdx == 0 || !FirstIdx->isZero())
1778193323Sed      return false;
1779252723Sdim
1780193323Sed    // If the second index isn't a ConstantInt, then this is a variable index
1781193323Sed    // into the array.  If this occurs, we can't say anything meaningful about
1782193323Sed    // the string.
1783193323Sed    uint64_t StartIdx = 0;
1784207618Srdivacky    if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
1785193323Sed      StartIdx = CI->getZExtValue();
1786193323Sed    else
1787193323Sed      return false;
1788235633Sdim    return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset);
1789193323Sed  }
1790235633Sdim
1791193323Sed  // The GEP instruction, constant or instruction, must reference a global
1792193323Sed  // variable that is a constant and is initialized. The referenced constant
1793193323Sed  // initializer is the array that we'll use for optimization.
1794235633Sdim  const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
1795198090Srdivacky  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
1796193323Sed    return false;
1797235633Sdim
1798235633Sdim  // Handle the all-zeros case
1799235633Sdim  if (GV->getInitializer()->isNullValue()) {
1800193323Sed    // This is a degenerate case. The initializer is constant zero so the
1801193323Sed    // length of the string must be zero.
1802235633Sdim    Str = "";
1803193323Sed    return true;
1804193323Sed  }
1805252723Sdim
1806193323Sed  // Must be a Constant Array
1807235633Sdim  const ConstantDataArray *Array =
1808235633Sdim    dyn_cast<ConstantDataArray>(GV->getInitializer());
1809235633Sdim  if (Array == 0 || !Array->isString())
1810193323Sed    return false;
1811252723Sdim
1812193323Sed  // Get the number of elements in the array
1813235633Sdim  uint64_t NumElts = Array->getType()->getArrayNumElements();
1814235633Sdim
1815235633Sdim  // Start out with the entire array in the StringRef.
1816235633Sdim  Str = Array->getAsString();
1817235633Sdim
1818193323Sed  if (Offset > NumElts)
1819193323Sed    return false;
1820252723Sdim
1821235633Sdim  // Skip over 'offset' bytes.
1822235633Sdim  Str = Str.substr(Offset);
1823252723Sdim
1824235633Sdim  if (TrimAtNul) {
1825235633Sdim    // Trim off the \0 and anything after it.  If the array is not nul
1826235633Sdim    // terminated, we just return the whole end of string.  The client may know
1827235633Sdim    // some other way that the string is length-bound.
1828235633Sdim    Str = Str.substr(0, Str.find('\0'));
1829193323Sed  }
1830193323Sed  return true;
1831193323Sed}
1832204792Srdivacky
1833204792Srdivacky// These next two are very similar to the above, but also look through PHI
1834204792Srdivacky// nodes.
1835204792Srdivacky// TODO: See if we can integrate these two together.
1836204792Srdivacky
1837204792Srdivacky/// GetStringLengthH - If we can compute the length of the string pointed to by
1838204792Srdivacky/// the specified pointer, return 'len+1'.  If we can't, return 0.
1839204792Srdivackystatic uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
1840204792Srdivacky  // Look through noop bitcast instructions.
1841235633Sdim  V = V->stripPointerCasts();
1842204792Srdivacky
1843204792Srdivacky  // If this is a PHI node, there are two cases: either we have already seen it
1844204792Srdivacky  // or we haven't.
1845204792Srdivacky  if (PHINode *PN = dyn_cast<PHINode>(V)) {
1846204792Srdivacky    if (!PHIs.insert(PN))
1847204792Srdivacky      return ~0ULL;  // already in the set.
1848204792Srdivacky
1849204792Srdivacky    // If it was new, see if all the input strings are the same length.
1850204792Srdivacky    uint64_t LenSoFar = ~0ULL;
1851204792Srdivacky    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1852204792Srdivacky      uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
1853204792Srdivacky      if (Len == 0) return 0; // Unknown length -> unknown.
1854204792Srdivacky
1855204792Srdivacky      if (Len == ~0ULL) continue;
1856204792Srdivacky
1857204792Srdivacky      if (Len != LenSoFar && LenSoFar != ~0ULL)
1858204792Srdivacky        return 0;    // Disagree -> unknown.
1859204792Srdivacky      LenSoFar = Len;
1860204792Srdivacky    }
1861204792Srdivacky
1862204792Srdivacky    // Success, all agree.
1863204792Srdivacky    return LenSoFar;
1864204792Srdivacky  }
1865204792Srdivacky
1866204792Srdivacky  // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
1867204792Srdivacky  if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
1868204792Srdivacky    uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
1869204792Srdivacky    if (Len1 == 0) return 0;
1870204792Srdivacky    uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
1871204792Srdivacky    if (Len2 == 0) return 0;
1872204792Srdivacky    if (Len1 == ~0ULL) return Len2;
1873204792Srdivacky    if (Len2 == ~0ULL) return Len1;
1874204792Srdivacky    if (Len1 != Len2) return 0;
1875204792Srdivacky    return Len1;
1876204792Srdivacky  }
1877252723Sdim
1878235633Sdim  // Otherwise, see if we can read the string.
1879235633Sdim  StringRef StrData;
1880235633Sdim  if (!getConstantStringInfo(V, StrData))
1881204792Srdivacky    return 0;
1882204792Srdivacky
1883235633Sdim  return StrData.size()+1;
1884204792Srdivacky}
1885204792Srdivacky
1886204792Srdivacky/// GetStringLength - If we can compute the length of the string pointed to by
1887204792Srdivacky/// the specified pointer, return 'len+1'.  If we can't, return 0.
1888204792Srdivackyuint64_t llvm::GetStringLength(Value *V) {
1889204792Srdivacky  if (!V->getType()->isPointerTy()) return 0;
1890204792Srdivacky
1891204792Srdivacky  SmallPtrSet<PHINode*, 32> PHIs;
1892204792Srdivacky  uint64_t Len = GetStringLengthH(V, PHIs);
1893204792Srdivacky  // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
1894204792Srdivacky  // an empty string as a length.
1895204792Srdivacky  return Len == ~0ULL ? 1 : Len;
1896204792Srdivacky}
1897218893Sdim
1898218893SdimValue *
1899245431Sdimllvm::GetUnderlyingObject(Value *V, const DataLayout *TD, unsigned MaxLookup) {
1900218893Sdim  if (!V->getType()->isPointerTy())
1901218893Sdim    return V;
1902218893Sdim  for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
1903218893Sdim    if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
1904218893Sdim      V = GEP->getPointerOperand();
1905218893Sdim    } else if (Operator::getOpcode(V) == Instruction::BitCast) {
1906218893Sdim      V = cast<Operator>(V)->getOperand(0);
1907218893Sdim    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1908218893Sdim      if (GA->mayBeOverridden())
1909218893Sdim        return V;
1910218893Sdim      V = GA->getAliasee();
1911218893Sdim    } else {
1912218893Sdim      // See if InstructionSimplify knows any relevant tricks.
1913218893Sdim      if (Instruction *I = dyn_cast<Instruction>(V))
1914221345Sdim        // TODO: Acquire a DominatorTree and use it.
1915218893Sdim        if (Value *Simplified = SimplifyInstruction(I, TD, 0)) {
1916218893Sdim          V = Simplified;
1917218893Sdim          continue;
1918218893Sdim        }
1919218893Sdim
1920218893Sdim      return V;
1921218893Sdim    }
1922218893Sdim    assert(V->getType()->isPointerTy() && "Unexpected operand type!");
1923218893Sdim  }
1924218893Sdim  return V;
1925218893Sdim}
1926224145Sdim
1927245431Sdimvoid
1928245431Sdimllvm::GetUnderlyingObjects(Value *V,
1929245431Sdim                           SmallVectorImpl<Value *> &Objects,
1930245431Sdim                           const DataLayout *TD,
1931245431Sdim                           unsigned MaxLookup) {
1932245431Sdim  SmallPtrSet<Value *, 4> Visited;
1933245431Sdim  SmallVector<Value *, 4> Worklist;
1934245431Sdim  Worklist.push_back(V);
1935245431Sdim  do {
1936245431Sdim    Value *P = Worklist.pop_back_val();
1937245431Sdim    P = GetUnderlyingObject(P, TD, MaxLookup);
1938245431Sdim
1939245431Sdim    if (!Visited.insert(P))
1940245431Sdim      continue;
1941245431Sdim
1942245431Sdim    if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
1943245431Sdim      Worklist.push_back(SI->getTrueValue());
1944245431Sdim      Worklist.push_back(SI->getFalseValue());
1945245431Sdim      continue;
1946245431Sdim    }
1947245431Sdim
1948245431Sdim    if (PHINode *PN = dyn_cast<PHINode>(P)) {
1949245431Sdim      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1950245431Sdim        Worklist.push_back(PN->getIncomingValue(i));
1951245431Sdim      continue;
1952245431Sdim    }
1953245431Sdim
1954245431Sdim    Objects.push_back(P);
1955245431Sdim  } while (!Worklist.empty());
1956245431Sdim}
1957245431Sdim
1958224145Sdim/// onlyUsedByLifetimeMarkers - Return true if the only users of this pointer
1959224145Sdim/// are lifetime markers.
1960224145Sdim///
1961224145Sdimbool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
1962224145Sdim  for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
1963224145Sdim       UI != UE; ++UI) {
1964224145Sdim    const IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI);
1965224145Sdim    if (!II) return false;
1966224145Sdim
1967224145Sdim    if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
1968224145Sdim        II->getIntrinsicID() != Intrinsic::lifetime_end)
1969224145Sdim      return false;
1970224145Sdim  }
1971224145Sdim  return true;
1972224145Sdim}
1973235633Sdim
1974235633Sdimbool llvm::isSafeToSpeculativelyExecute(const Value *V,
1975245431Sdim                                        const DataLayout *TD) {
1976235633Sdim  const Operator *Inst = dyn_cast<Operator>(V);
1977235633Sdim  if (!Inst)
1978235633Sdim    return false;
1979235633Sdim
1980235633Sdim  for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
1981235633Sdim    if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
1982235633Sdim      if (C->canTrap())
1983235633Sdim        return false;
1984235633Sdim
1985235633Sdim  switch (Inst->getOpcode()) {
1986235633Sdim  default:
1987235633Sdim    return true;
1988235633Sdim  case Instruction::UDiv:
1989235633Sdim  case Instruction::URem:
1990235633Sdim    // x / y is undefined if y == 0, but calcuations like x / 3 are safe.
1991235633Sdim    return isKnownNonZero(Inst->getOperand(1), TD);
1992235633Sdim  case Instruction::SDiv:
1993235633Sdim  case Instruction::SRem: {
1994235633Sdim    Value *Op = Inst->getOperand(1);
1995235633Sdim    // x / y is undefined if y == 0
1996235633Sdim    if (!isKnownNonZero(Op, TD))
1997235633Sdim      return false;
1998235633Sdim    // x / y might be undefined if y == -1
1999235633Sdim    unsigned BitWidth = getBitWidth(Op->getType(), TD);
2000235633Sdim    if (BitWidth == 0)
2001235633Sdim      return false;
2002235633Sdim    APInt KnownZero(BitWidth, 0);
2003235633Sdim    APInt KnownOne(BitWidth, 0);
2004235633Sdim    ComputeMaskedBits(Op, KnownZero, KnownOne, TD);
2005235633Sdim    return !!KnownZero;
2006235633Sdim  }
2007235633Sdim  case Instruction::Load: {
2008235633Sdim    const LoadInst *LI = cast<LoadInst>(Inst);
2009235633Sdim    if (!LI->isUnordered())
2010235633Sdim      return false;
2011235633Sdim    return LI->getPointerOperand()->isDereferenceablePointer();
2012235633Sdim  }
2013235633Sdim  case Instruction::Call: {
2014235633Sdim   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
2015235633Sdim     switch (II->getIntrinsicID()) {
2016235633Sdim       // These synthetic intrinsics have no side-effects, and just mark
2017235633Sdim       // information about their operands.
2018235633Sdim       // FIXME: There are other no-op synthetic instructions that potentially
2019235633Sdim       // should be considered at least *safe* to speculate...
2020235633Sdim       case Intrinsic::dbg_declare:
2021235633Sdim       case Intrinsic::dbg_value:
2022235633Sdim         return true;
2023235633Sdim
2024235633Sdim       case Intrinsic::bswap:
2025235633Sdim       case Intrinsic::ctlz:
2026235633Sdim       case Intrinsic::ctpop:
2027235633Sdim       case Intrinsic::cttz:
2028235633Sdim       case Intrinsic::objectsize:
2029235633Sdim       case Intrinsic::sadd_with_overflow:
2030235633Sdim       case Intrinsic::smul_with_overflow:
2031235633Sdim       case Intrinsic::ssub_with_overflow:
2032235633Sdim       case Intrinsic::uadd_with_overflow:
2033235633Sdim       case Intrinsic::umul_with_overflow:
2034235633Sdim       case Intrinsic::usub_with_overflow:
2035235633Sdim         return true;
2036235633Sdim       // TODO: some fp intrinsics are marked as having the same error handling
2037235633Sdim       // as libm. They're safe to speculate when they won't error.
2038235633Sdim       // TODO: are convert_{from,to}_fp16 safe?
2039235633Sdim       // TODO: can we list target-specific intrinsics here?
2040235633Sdim       default: break;
2041235633Sdim     }
2042235633Sdim   }
2043235633Sdim    return false; // The called function could have undefined behavior or
2044235633Sdim                  // side-effects, even if marked readnone nounwind.
2045235633Sdim  }
2046235633Sdim  case Instruction::VAArg:
2047235633Sdim  case Instruction::Alloca:
2048235633Sdim  case Instruction::Invoke:
2049235633Sdim  case Instruction::PHI:
2050235633Sdim  case Instruction::Store:
2051235633Sdim  case Instruction::Ret:
2052235633Sdim  case Instruction::Br:
2053235633Sdim  case Instruction::IndirectBr:
2054235633Sdim  case Instruction::Switch:
2055235633Sdim  case Instruction::Unreachable:
2056235633Sdim  case Instruction::Fence:
2057235633Sdim  case Instruction::LandingPad:
2058235633Sdim  case Instruction::AtomicRMW:
2059235633Sdim  case Instruction::AtomicCmpXchg:
2060235633Sdim  case Instruction::Resume:
2061235633Sdim    return false; // Misc instructions which have effects
2062235633Sdim  }
2063235633Sdim}
2064252723Sdim
2065252723Sdim/// isKnownNonNull - Return true if we know that the specified value is never
2066252723Sdim/// null.
2067263509Sdimbool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
2068252723Sdim  // Alloca never returns null, malloc might.
2069252723Sdim  if (isa<AllocaInst>(V)) return true;
2070252723Sdim
2071252723Sdim  // A byval argument is never null.
2072252723Sdim  if (const Argument *A = dyn_cast<Argument>(V))
2073252723Sdim    return A->hasByValAttr();
2074252723Sdim
2075252723Sdim  // Global values are not null unless extern weak.
2076252723Sdim  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2077252723Sdim    return !GV->hasExternalWeakLinkage();
2078263509Sdim
2079263509Sdim  // operator new never returns null.
2080263509Sdim  if (isOperatorNewLikeFn(V, TLI, /*LookThroughBitCast=*/true))
2081263509Sdim    return true;
2082263509Sdim
2083252723Sdim  return false;
2084252723Sdim}
2085