MemoryDependenceAnalysis.cpp revision 223017
1//===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation  --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements an analysis that determines, for a given memory
11// operation, what preceding memory operations it depends on.  It builds on
12// alias analysis information, and tries to provide a lazy, caching interface to
13// a common kind of alias information query.
14//
15//===----------------------------------------------------------------------===//
16
17#define DEBUG_TYPE "memdep"
18#include "llvm/Analysis/MemoryDependenceAnalysis.h"
19#include "llvm/Analysis/ValueTracking.h"
20#include "llvm/Instructions.h"
21#include "llvm/IntrinsicInst.h"
22#include "llvm/Function.h"
23#include "llvm/LLVMContext.h"
24#include "llvm/Analysis/AliasAnalysis.h"
25#include "llvm/Analysis/Dominators.h"
26#include "llvm/Analysis/InstructionSimplify.h"
27#include "llvm/Analysis/MemoryBuiltins.h"
28#include "llvm/Analysis/PHITransAddr.h"
29#include "llvm/Analysis/ValueTracking.h"
30#include "llvm/ADT/Statistic.h"
31#include "llvm/ADT/STLExtras.h"
32#include "llvm/Support/PredIteratorCache.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Target/TargetData.h"
35using namespace llvm;
36
37STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
38STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
39STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
40
41STATISTIC(NumCacheNonLocalPtr,
42          "Number of fully cached non-local ptr responses");
43STATISTIC(NumCacheDirtyNonLocalPtr,
44          "Number of cached, but dirty, non-local ptr responses");
45STATISTIC(NumUncacheNonLocalPtr,
46          "Number of uncached non-local ptr responses");
47STATISTIC(NumCacheCompleteNonLocalPtr,
48          "Number of block queries that were completely cached");
49
50char MemoryDependenceAnalysis::ID = 0;
51
52// Register this pass...
53INITIALIZE_PASS_BEGIN(MemoryDependenceAnalysis, "memdep",
54                "Memory Dependence Analysis", false, true)
55INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
56INITIALIZE_PASS_END(MemoryDependenceAnalysis, "memdep",
57                      "Memory Dependence Analysis", false, true)
58
59MemoryDependenceAnalysis::MemoryDependenceAnalysis()
60: FunctionPass(ID), PredCache(0) {
61  initializeMemoryDependenceAnalysisPass(*PassRegistry::getPassRegistry());
62}
63MemoryDependenceAnalysis::~MemoryDependenceAnalysis() {
64}
65
66/// Clean up memory in between runs
67void MemoryDependenceAnalysis::releaseMemory() {
68  LocalDeps.clear();
69  NonLocalDeps.clear();
70  NonLocalPointerDeps.clear();
71  ReverseLocalDeps.clear();
72  ReverseNonLocalDeps.clear();
73  ReverseNonLocalPtrDeps.clear();
74  PredCache->clear();
75}
76
77
78
79/// getAnalysisUsage - Does not modify anything.  It uses Alias Analysis.
80///
81void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
82  AU.setPreservesAll();
83  AU.addRequiredTransitive<AliasAnalysis>();
84}
85
86bool MemoryDependenceAnalysis::runOnFunction(Function &) {
87  AA = &getAnalysis<AliasAnalysis>();
88  TD = getAnalysisIfAvailable<TargetData>();
89  if (PredCache == 0)
90    PredCache.reset(new PredIteratorCache());
91  return false;
92}
93
94/// RemoveFromReverseMap - This is a helper function that removes Val from
95/// 'Inst's set in ReverseMap.  If the set becomes empty, remove Inst's entry.
96template <typename KeyTy>
97static void RemoveFromReverseMap(DenseMap<Instruction*,
98                                 SmallPtrSet<KeyTy, 4> > &ReverseMap,
99                                 Instruction *Inst, KeyTy Val) {
100  typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator
101  InstIt = ReverseMap.find(Inst);
102  assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
103  bool Found = InstIt->second.erase(Val);
104  assert(Found && "Invalid reverse map!"); (void)Found;
105  if (InstIt->second.empty())
106    ReverseMap.erase(InstIt);
107}
108
109/// GetLocation - If the given instruction references a specific memory
110/// location, fill in Loc with the details, otherwise set Loc.Ptr to null.
111/// Return a ModRefInfo value describing the general behavior of the
112/// instruction.
113static
114AliasAnalysis::ModRefResult GetLocation(const Instruction *Inst,
115                                        AliasAnalysis::Location &Loc,
116                                        AliasAnalysis *AA) {
117  if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
118    if (LI->isVolatile()) {
119      Loc = AliasAnalysis::Location();
120      return AliasAnalysis::ModRef;
121    }
122    Loc = AA->getLocation(LI);
123    return AliasAnalysis::Ref;
124  }
125
126  if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
127    if (SI->isVolatile()) {
128      Loc = AliasAnalysis::Location();
129      return AliasAnalysis::ModRef;
130    }
131    Loc = AA->getLocation(SI);
132    return AliasAnalysis::Mod;
133  }
134
135  if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
136    Loc = AA->getLocation(V);
137    return AliasAnalysis::ModRef;
138  }
139
140  if (const CallInst *CI = isFreeCall(Inst)) {
141    // calls to free() deallocate the entire structure
142    Loc = AliasAnalysis::Location(CI->getArgOperand(0));
143    return AliasAnalysis::Mod;
144  }
145
146  if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
147    switch (II->getIntrinsicID()) {
148    case Intrinsic::lifetime_start:
149    case Intrinsic::lifetime_end:
150    case Intrinsic::invariant_start:
151      Loc = AliasAnalysis::Location(II->getArgOperand(1),
152                                    cast<ConstantInt>(II->getArgOperand(0))
153                                      ->getZExtValue(),
154                                    II->getMetadata(LLVMContext::MD_tbaa));
155      // These intrinsics don't really modify the memory, but returning Mod
156      // will allow them to be handled conservatively.
157      return AliasAnalysis::Mod;
158    case Intrinsic::invariant_end:
159      Loc = AliasAnalysis::Location(II->getArgOperand(2),
160                                    cast<ConstantInt>(II->getArgOperand(1))
161                                      ->getZExtValue(),
162                                    II->getMetadata(LLVMContext::MD_tbaa));
163      // These intrinsics don't really modify the memory, but returning Mod
164      // will allow them to be handled conservatively.
165      return AliasAnalysis::Mod;
166    default:
167      break;
168    }
169
170  // Otherwise, just do the coarse-grained thing that always works.
171  if (Inst->mayWriteToMemory())
172    return AliasAnalysis::ModRef;
173  if (Inst->mayReadFromMemory())
174    return AliasAnalysis::Ref;
175  return AliasAnalysis::NoModRef;
176}
177
178/// getCallSiteDependencyFrom - Private helper for finding the local
179/// dependencies of a call site.
180MemDepResult MemoryDependenceAnalysis::
181getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall,
182                          BasicBlock::iterator ScanIt, BasicBlock *BB) {
183  // Walk backwards through the block, looking for dependencies
184  while (ScanIt != BB->begin()) {
185    Instruction *Inst = --ScanIt;
186
187    // If this inst is a memory op, get the pointer it accessed
188    AliasAnalysis::Location Loc;
189    AliasAnalysis::ModRefResult MR = GetLocation(Inst, Loc, AA);
190    if (Loc.Ptr) {
191      // A simple instruction.
192      if (AA->getModRefInfo(CS, Loc) != AliasAnalysis::NoModRef)
193        return MemDepResult::getClobber(Inst);
194      continue;
195    }
196
197    if (CallSite InstCS = cast<Value>(Inst)) {
198      // Debug intrinsics don't cause dependences.
199      if (isa<DbgInfoIntrinsic>(Inst)) continue;
200      // If these two calls do not interfere, look past it.
201      switch (AA->getModRefInfo(CS, InstCS)) {
202      case AliasAnalysis::NoModRef:
203        // If the two calls are the same, return InstCS as a Def, so that
204        // CS can be found redundant and eliminated.
205        if (isReadOnlyCall && !(MR & AliasAnalysis::Mod) &&
206            CS.getInstruction()->isIdenticalToWhenDefined(Inst))
207          return MemDepResult::getDef(Inst);
208
209        // Otherwise if the two calls don't interact (e.g. InstCS is readnone)
210        // keep scanning.
211        break;
212      default:
213        return MemDepResult::getClobber(Inst);
214      }
215    }
216  }
217
218  // No dependence found.  If this is the entry block of the function, it is a
219  // clobber, otherwise it is non-local.
220  if (BB != &BB->getParent()->getEntryBlock())
221    return MemDepResult::getNonLocal();
222  return MemDepResult::getClobber(ScanIt);
223}
224
225/// isLoadLoadClobberIfExtendedToFullWidth - Return true if LI is a load that
226/// would fully overlap MemLoc if done as a wider legal integer load.
227///
228/// MemLocBase, MemLocOffset are lazily computed here the first time the
229/// base/offs of memloc is needed.
230static bool
231isLoadLoadClobberIfExtendedToFullWidth(const AliasAnalysis::Location &MemLoc,
232                                       const Value *&MemLocBase,
233                                       int64_t &MemLocOffs,
234                                       const LoadInst *LI,
235                                       const TargetData *TD) {
236  // If we have no target data, we can't do this.
237  if (TD == 0) return false;
238
239  // If we haven't already computed the base/offset of MemLoc, do so now.
240  if (MemLocBase == 0)
241    MemLocBase = GetPointerBaseWithConstantOffset(MemLoc.Ptr, MemLocOffs, *TD);
242
243  unsigned Size = MemoryDependenceAnalysis::
244    getLoadLoadClobberFullWidthSize(MemLocBase, MemLocOffs, MemLoc.Size,
245                                    LI, *TD);
246  return Size != 0;
247}
248
249/// getLoadLoadClobberFullWidthSize - This is a little bit of analysis that
250/// looks at a memory location for a load (specified by MemLocBase, Offs,
251/// and Size) and compares it against a load.  If the specified load could
252/// be safely widened to a larger integer load that is 1) still efficient,
253/// 2) safe for the target, and 3) would provide the specified memory
254/// location value, then this function returns the size in bytes of the
255/// load width to use.  If not, this returns zero.
256unsigned MemoryDependenceAnalysis::
257getLoadLoadClobberFullWidthSize(const Value *MemLocBase, int64_t MemLocOffs,
258                                unsigned MemLocSize, const LoadInst *LI,
259                                const TargetData &TD) {
260  // We can only extend non-volatile integer loads.
261  if (!isa<IntegerType>(LI->getType()) || LI->isVolatile()) return 0;
262
263  // Get the base of this load.
264  int64_t LIOffs = 0;
265  const Value *LIBase =
266    GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, TD);
267
268  // If the two pointers are not based on the same pointer, we can't tell that
269  // they are related.
270  if (LIBase != MemLocBase) return 0;
271
272  // Okay, the two values are based on the same pointer, but returned as
273  // no-alias.  This happens when we have things like two byte loads at "P+1"
274  // and "P+3".  Check to see if increasing the size of the "LI" load up to its
275  // alignment (or the largest native integer type) will allow us to load all
276  // the bits required by MemLoc.
277
278  // If MemLoc is before LI, then no widening of LI will help us out.
279  if (MemLocOffs < LIOffs) return 0;
280
281  // Get the alignment of the load in bytes.  We assume that it is safe to load
282  // any legal integer up to this size without a problem.  For example, if we're
283  // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can
284  // widen it up to an i32 load.  If it is known 2-byte aligned, we can widen it
285  // to i16.
286  unsigned LoadAlign = LI->getAlignment();
287
288  int64_t MemLocEnd = MemLocOffs+MemLocSize;
289
290  // If no amount of rounding up will let MemLoc fit into LI, then bail out.
291  if (LIOffs+LoadAlign < MemLocEnd) return 0;
292
293  // This is the size of the load to try.  Start with the next larger power of
294  // two.
295  unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits()/8U;
296  NewLoadByteSize = NextPowerOf2(NewLoadByteSize);
297
298  while (1) {
299    // If this load size is bigger than our known alignment or would not fit
300    // into a native integer register, then we fail.
301    if (NewLoadByteSize > LoadAlign ||
302        !TD.fitsInLegalInteger(NewLoadByteSize*8))
303      return 0;
304
305    // If a load of this width would include all of MemLoc, then we succeed.
306    if (LIOffs+NewLoadByteSize >= MemLocEnd)
307      return NewLoadByteSize;
308
309    NewLoadByteSize <<= 1;
310  }
311
312  return 0;
313}
314
315/// getPointerDependencyFrom - Return the instruction on which a memory
316/// location depends.  If isLoad is true, this routine ignores may-aliases with
317/// read-only operations.  If isLoad is false, this routine ignores may-aliases
318/// with reads from read-only locations.
319MemDepResult MemoryDependenceAnalysis::
320getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad,
321                         BasicBlock::iterator ScanIt, BasicBlock *BB) {
322
323  const Value *MemLocBase = 0;
324  int64_t MemLocOffset = 0;
325
326  // Walk backwards through the basic block, looking for dependencies.
327  while (ScanIt != BB->begin()) {
328    Instruction *Inst = --ScanIt;
329
330    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
331      // Debug intrinsics don't (and can't) cause dependences.
332      if (isa<DbgInfoIntrinsic>(II)) continue;
333
334      // If we reach a lifetime begin or end marker, then the query ends here
335      // because the value is undefined.
336      if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
337        // FIXME: This only considers queries directly on the invariant-tagged
338        // pointer, not on query pointers that are indexed off of them.  It'd
339        // be nice to handle that at some point (the right approach is to use
340        // GetPointerBaseWithConstantOffset).
341        if (AA->isMustAlias(AliasAnalysis::Location(II->getArgOperand(1)),
342                            MemLoc))
343          return MemDepResult::getDef(II);
344        continue;
345      }
346    }
347
348    // Values depend on loads if the pointers are must aliased.  This means that
349    // a load depends on another must aliased load from the same value.
350    if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
351      AliasAnalysis::Location LoadLoc = AA->getLocation(LI);
352
353      // If we found a pointer, check if it could be the same as our pointer.
354      AliasAnalysis::AliasResult R = AA->alias(LoadLoc, MemLoc);
355
356      if (isLoad) {
357        if (R == AliasAnalysis::NoAlias) {
358          // If this is an over-aligned integer load (for example,
359          // "load i8* %P, align 4") see if it would obviously overlap with the
360          // queried location if widened to a larger load (e.g. if the queried
361          // location is 1 byte at P+1).  If so, return it as a load/load
362          // clobber result, allowing the client to decide to widen the load if
363          // it wants to.
364          if (const IntegerType *ITy = dyn_cast<IntegerType>(LI->getType()))
365            if (LI->getAlignment()*8 > ITy->getPrimitiveSizeInBits() &&
366                isLoadLoadClobberIfExtendedToFullWidth(MemLoc, MemLocBase,
367                                                       MemLocOffset, LI, TD))
368              return MemDepResult::getClobber(Inst);
369
370          continue;
371        }
372
373        // Must aliased loads are defs of each other.
374        if (R == AliasAnalysis::MustAlias)
375          return MemDepResult::getDef(Inst);
376
377#if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads
378      // in terms of clobbering loads, but since it does this by looking
379      // at the clobbering load directly, it doesn't know about any
380      // phi translation that may have happened along the way.
381
382        // If we have a partial alias, then return this as a clobber for the
383        // client to handle.
384        if (R == AliasAnalysis::PartialAlias)
385          return MemDepResult::getClobber(Inst);
386#endif
387
388        // Random may-alias loads don't depend on each other without a
389        // dependence.
390        continue;
391      }
392
393      // Stores don't depend on other no-aliased accesses.
394      if (R == AliasAnalysis::NoAlias)
395        continue;
396
397      // Stores don't alias loads from read-only memory.
398      if (AA->pointsToConstantMemory(LoadLoc))
399        continue;
400
401      // Stores depend on may/must aliased loads.
402      return MemDepResult::getDef(Inst);
403    }
404
405    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
406      // If alias analysis can tell that this store is guaranteed to not modify
407      // the query pointer, ignore it.  Use getModRefInfo to handle cases where
408      // the query pointer points to constant memory etc.
409      if (AA->getModRefInfo(SI, MemLoc) == AliasAnalysis::NoModRef)
410        continue;
411
412      // Ok, this store might clobber the query pointer.  Check to see if it is
413      // a must alias: in this case, we want to return this as a def.
414      AliasAnalysis::Location StoreLoc = AA->getLocation(SI);
415
416      // If we found a pointer, check if it could be the same as our pointer.
417      AliasAnalysis::AliasResult R = AA->alias(StoreLoc, MemLoc);
418
419      if (R == AliasAnalysis::NoAlias)
420        continue;
421      if (R == AliasAnalysis::MustAlias)
422        return MemDepResult::getDef(Inst);
423      return MemDepResult::getClobber(Inst);
424    }
425
426    // If this is an allocation, and if we know that the accessed pointer is to
427    // the allocation, return Def.  This means that there is no dependence and
428    // the access can be optimized based on that.  For example, a load could
429    // turn into undef.
430    // Note: Only determine this to be a malloc if Inst is the malloc call, not
431    // a subsequent bitcast of the malloc call result.  There can be stores to
432    // the malloced memory between the malloc call and its bitcast uses, and we
433    // need to continue scanning until the malloc call.
434    if (isa<AllocaInst>(Inst) ||
435        (isa<CallInst>(Inst) && extractMallocCall(Inst))) {
436      const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, TD);
437
438      if (AccessPtr == Inst || AA->isMustAlias(Inst, AccessPtr))
439        return MemDepResult::getDef(Inst);
440      continue;
441    }
442
443    // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
444    switch (AA->getModRefInfo(Inst, MemLoc)) {
445    case AliasAnalysis::NoModRef:
446      // If the call has no effect on the queried pointer, just ignore it.
447      continue;
448    case AliasAnalysis::Mod:
449      return MemDepResult::getClobber(Inst);
450    case AliasAnalysis::Ref:
451      // If the call is known to never store to the pointer, and if this is a
452      // load query, we can safely ignore it (scan past it).
453      if (isLoad)
454        continue;
455    default:
456      // Otherwise, there is a potential dependence.  Return a clobber.
457      return MemDepResult::getClobber(Inst);
458    }
459  }
460
461  // No dependence found.  If this is the entry block of the function, it is a
462  // clobber, otherwise it is non-local.
463  if (BB != &BB->getParent()->getEntryBlock())
464    return MemDepResult::getNonLocal();
465  return MemDepResult::getClobber(ScanIt);
466}
467
468/// getDependency - Return the instruction on which a memory operation
469/// depends.
470MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
471  Instruction *ScanPos = QueryInst;
472
473  // Check for a cached result
474  MemDepResult &LocalCache = LocalDeps[QueryInst];
475
476  // If the cached entry is non-dirty, just return it.  Note that this depends
477  // on MemDepResult's default constructing to 'dirty'.
478  if (!LocalCache.isDirty())
479    return LocalCache;
480
481  // Otherwise, if we have a dirty entry, we know we can start the scan at that
482  // instruction, which may save us some work.
483  if (Instruction *Inst = LocalCache.getInst()) {
484    ScanPos = Inst;
485
486    RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
487  }
488
489  BasicBlock *QueryParent = QueryInst->getParent();
490
491  // Do the scan.
492  if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
493    // No dependence found.  If this is the entry block of the function, it is a
494    // clobber, otherwise it is non-local.
495    if (QueryParent != &QueryParent->getParent()->getEntryBlock())
496      LocalCache = MemDepResult::getNonLocal();
497    else
498      LocalCache = MemDepResult::getClobber(QueryInst);
499  } else {
500    AliasAnalysis::Location MemLoc;
501    AliasAnalysis::ModRefResult MR = GetLocation(QueryInst, MemLoc, AA);
502    if (MemLoc.Ptr) {
503      // If we can do a pointer scan, make it happen.
504      bool isLoad = !(MR & AliasAnalysis::Mod);
505      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst))
506        isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start;
507
508      LocalCache = getPointerDependencyFrom(MemLoc, isLoad, ScanPos,
509                                            QueryParent);
510    } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) {
511      CallSite QueryCS(QueryInst);
512      bool isReadOnly = AA->onlyReadsMemory(QueryCS);
513      LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos,
514                                             QueryParent);
515    } else
516      // Non-memory instruction.
517      LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
518  }
519
520  // Remember the result!
521  if (Instruction *I = LocalCache.getInst())
522    ReverseLocalDeps[I].insert(QueryInst);
523
524  return LocalCache;
525}
526
527#ifndef NDEBUG
528/// AssertSorted - This method is used when -debug is specified to verify that
529/// cache arrays are properly kept sorted.
530static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
531                         int Count = -1) {
532  if (Count == -1) Count = Cache.size();
533  if (Count == 0) return;
534
535  for (unsigned i = 1; i != unsigned(Count); ++i)
536    assert(!(Cache[i] < Cache[i-1]) && "Cache isn't sorted!");
537}
538#endif
539
540/// getNonLocalCallDependency - Perform a full dependency query for the
541/// specified call, returning the set of blocks that the value is
542/// potentially live across.  The returned set of results will include a
543/// "NonLocal" result for all blocks where the value is live across.
544///
545/// This method assumes the instruction returns a "NonLocal" dependency
546/// within its own block.
547///
548/// This returns a reference to an internal data structure that may be
549/// invalidated on the next non-local query or when an instruction is
550/// removed.  Clients must copy this data if they want it around longer than
551/// that.
552const MemoryDependenceAnalysis::NonLocalDepInfo &
553MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) {
554  assert(getDependency(QueryCS.getInstruction()).isNonLocal() &&
555 "getNonLocalCallDependency should only be used on calls with non-local deps!");
556  PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()];
557  NonLocalDepInfo &Cache = CacheP.first;
558
559  /// DirtyBlocks - This is the set of blocks that need to be recomputed.  In
560  /// the cached case, this can happen due to instructions being deleted etc. In
561  /// the uncached case, this starts out as the set of predecessors we care
562  /// about.
563  SmallVector<BasicBlock*, 32> DirtyBlocks;
564
565  if (!Cache.empty()) {
566    // Okay, we have a cache entry.  If we know it is not dirty, just return it
567    // with no computation.
568    if (!CacheP.second) {
569      ++NumCacheNonLocal;
570      return Cache;
571    }
572
573    // If we already have a partially computed set of results, scan them to
574    // determine what is dirty, seeding our initial DirtyBlocks worklist.
575    for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end();
576       I != E; ++I)
577      if (I->getResult().isDirty())
578        DirtyBlocks.push_back(I->getBB());
579
580    // Sort the cache so that we can do fast binary search lookups below.
581    std::sort(Cache.begin(), Cache.end());
582
583    ++NumCacheDirtyNonLocal;
584    //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
585    //     << Cache.size() << " cached: " << *QueryInst;
586  } else {
587    // Seed DirtyBlocks with each of the preds of QueryInst's block.
588    BasicBlock *QueryBB = QueryCS.getInstruction()->getParent();
589    for (BasicBlock **PI = PredCache->GetPreds(QueryBB); *PI; ++PI)
590      DirtyBlocks.push_back(*PI);
591    ++NumUncacheNonLocal;
592  }
593
594  // isReadonlyCall - If this is a read-only call, we can be more aggressive.
595  bool isReadonlyCall = AA->onlyReadsMemory(QueryCS);
596
597  SmallPtrSet<BasicBlock*, 64> Visited;
598
599  unsigned NumSortedEntries = Cache.size();
600  DEBUG(AssertSorted(Cache));
601
602  // Iterate while we still have blocks to update.
603  while (!DirtyBlocks.empty()) {
604    BasicBlock *DirtyBB = DirtyBlocks.back();
605    DirtyBlocks.pop_back();
606
607    // Already processed this block?
608    if (!Visited.insert(DirtyBB))
609      continue;
610
611    // Do a binary search to see if we already have an entry for this block in
612    // the cache set.  If so, find it.
613    DEBUG(AssertSorted(Cache, NumSortedEntries));
614    NonLocalDepInfo::iterator Entry =
615      std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries,
616                       NonLocalDepEntry(DirtyBB));
617    if (Entry != Cache.begin() && prior(Entry)->getBB() == DirtyBB)
618      --Entry;
619
620    NonLocalDepEntry *ExistingResult = 0;
621    if (Entry != Cache.begin()+NumSortedEntries &&
622        Entry->getBB() == DirtyBB) {
623      // If we already have an entry, and if it isn't already dirty, the block
624      // is done.
625      if (!Entry->getResult().isDirty())
626        continue;
627
628      // Otherwise, remember this slot so we can update the value.
629      ExistingResult = &*Entry;
630    }
631
632    // If the dirty entry has a pointer, start scanning from it so we don't have
633    // to rescan the entire block.
634    BasicBlock::iterator ScanPos = DirtyBB->end();
635    if (ExistingResult) {
636      if (Instruction *Inst = ExistingResult->getResult().getInst()) {
637        ScanPos = Inst;
638        // We're removing QueryInst's use of Inst.
639        RemoveFromReverseMap(ReverseNonLocalDeps, Inst,
640                             QueryCS.getInstruction());
641      }
642    }
643
644    // Find out if this block has a local dependency for QueryInst.
645    MemDepResult Dep;
646
647    if (ScanPos != DirtyBB->begin()) {
648      Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB);
649    } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
650      // No dependence found.  If this is the entry block of the function, it is
651      // a clobber, otherwise it is non-local.
652      Dep = MemDepResult::getNonLocal();
653    } else {
654      Dep = MemDepResult::getClobber(ScanPos);
655    }
656
657    // If we had a dirty entry for the block, update it.  Otherwise, just add
658    // a new entry.
659    if (ExistingResult)
660      ExistingResult->setResult(Dep);
661    else
662      Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
663
664    // If the block has a dependency (i.e. it isn't completely transparent to
665    // the value), remember the association!
666    if (!Dep.isNonLocal()) {
667      // Keep the ReverseNonLocalDeps map up to date so we can efficiently
668      // update this when we remove instructions.
669      if (Instruction *Inst = Dep.getInst())
670        ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction());
671    } else {
672
673      // If the block *is* completely transparent to the load, we need to check
674      // the predecessors of this block.  Add them to our worklist.
675      for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI)
676        DirtyBlocks.push_back(*PI);
677    }
678  }
679
680  return Cache;
681}
682
683/// getNonLocalPointerDependency - Perform a full dependency query for an
684/// access to the specified (non-volatile) memory location, returning the
685/// set of instructions that either define or clobber the value.
686///
687/// This method assumes the pointer has a "NonLocal" dependency within its
688/// own block.
689///
690void MemoryDependenceAnalysis::
691getNonLocalPointerDependency(const AliasAnalysis::Location &Loc, bool isLoad,
692                             BasicBlock *FromBB,
693                             SmallVectorImpl<NonLocalDepResult> &Result) {
694  assert(Loc.Ptr->getType()->isPointerTy() &&
695         "Can't get pointer deps of a non-pointer!");
696  Result.clear();
697
698  PHITransAddr Address(const_cast<Value *>(Loc.Ptr), TD);
699
700  // This is the set of blocks we've inspected, and the pointer we consider in
701  // each block.  Because of critical edges, we currently bail out if querying
702  // a block with multiple different pointers.  This can happen during PHI
703  // translation.
704  DenseMap<BasicBlock*, Value*> Visited;
705  if (!getNonLocalPointerDepFromBB(Address, Loc, isLoad, FromBB,
706                                   Result, Visited, true))
707    return;
708  Result.clear();
709  Result.push_back(NonLocalDepResult(FromBB,
710                                     MemDepResult::getClobber(FromBB->begin()),
711                                     const_cast<Value *>(Loc.Ptr)));
712}
713
714/// GetNonLocalInfoForBlock - Compute the memdep value for BB with
715/// Pointer/PointeeSize using either cached information in Cache or by doing a
716/// lookup (which may use dirty cache info if available).  If we do a lookup,
717/// add the result to the cache.
718MemDepResult MemoryDependenceAnalysis::
719GetNonLocalInfoForBlock(const AliasAnalysis::Location &Loc,
720                        bool isLoad, BasicBlock *BB,
721                        NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
722
723  // Do a binary search to see if we already have an entry for this block in
724  // the cache set.  If so, find it.
725  NonLocalDepInfo::iterator Entry =
726    std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries,
727                     NonLocalDepEntry(BB));
728  if (Entry != Cache->begin() && (Entry-1)->getBB() == BB)
729    --Entry;
730
731  NonLocalDepEntry *ExistingResult = 0;
732  if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB)
733    ExistingResult = &*Entry;
734
735  // If we have a cached entry, and it is non-dirty, use it as the value for
736  // this dependency.
737  if (ExistingResult && !ExistingResult->getResult().isDirty()) {
738    ++NumCacheNonLocalPtr;
739    return ExistingResult->getResult();
740  }
741
742  // Otherwise, we have to scan for the value.  If we have a dirty cache
743  // entry, start scanning from its position, otherwise we scan from the end
744  // of the block.
745  BasicBlock::iterator ScanPos = BB->end();
746  if (ExistingResult && ExistingResult->getResult().getInst()) {
747    assert(ExistingResult->getResult().getInst()->getParent() == BB &&
748           "Instruction invalidated?");
749    ++NumCacheDirtyNonLocalPtr;
750    ScanPos = ExistingResult->getResult().getInst();
751
752    // Eliminating the dirty entry from 'Cache', so update the reverse info.
753    ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
754    RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey);
755  } else {
756    ++NumUncacheNonLocalPtr;
757  }
758
759  // Scan the block for the dependency.
760  MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB);
761
762  // If we had a dirty entry for the block, update it.  Otherwise, just add
763  // a new entry.
764  if (ExistingResult)
765    ExistingResult->setResult(Dep);
766  else
767    Cache->push_back(NonLocalDepEntry(BB, Dep));
768
769  // If the block has a dependency (i.e. it isn't completely transparent to
770  // the value), remember the reverse association because we just added it
771  // to Cache!
772  if (Dep.isNonLocal())
773    return Dep;
774
775  // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
776  // update MemDep when we remove instructions.
777  Instruction *Inst = Dep.getInst();
778  assert(Inst && "Didn't depend on anything?");
779  ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
780  ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
781  return Dep;
782}
783
784/// SortNonLocalDepInfoCache - Sort the a NonLocalDepInfo cache, given a certain
785/// number of elements in the array that are already properly ordered.  This is
786/// optimized for the case when only a few entries are added.
787static void
788SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
789                         unsigned NumSortedEntries) {
790  switch (Cache.size() - NumSortedEntries) {
791  case 0:
792    // done, no new entries.
793    break;
794  case 2: {
795    // Two new entries, insert the last one into place.
796    NonLocalDepEntry Val = Cache.back();
797    Cache.pop_back();
798    MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
799      std::upper_bound(Cache.begin(), Cache.end()-1, Val);
800    Cache.insert(Entry, Val);
801    // FALL THROUGH.
802  }
803  case 1:
804    // One new entry, Just insert the new value at the appropriate position.
805    if (Cache.size() != 1) {
806      NonLocalDepEntry Val = Cache.back();
807      Cache.pop_back();
808      MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
809        std::upper_bound(Cache.begin(), Cache.end(), Val);
810      Cache.insert(Entry, Val);
811    }
812    break;
813  default:
814    // Added many values, do a full scale sort.
815    std::sort(Cache.begin(), Cache.end());
816    break;
817  }
818}
819
820/// getNonLocalPointerDepFromBB - Perform a dependency query based on
821/// pointer/pointeesize starting at the end of StartBB.  Add any clobber/def
822/// results to the results vector and keep track of which blocks are visited in
823/// 'Visited'.
824///
825/// This has special behavior for the first block queries (when SkipFirstBlock
826/// is true).  In this special case, it ignores the contents of the specified
827/// block and starts returning dependence info for its predecessors.
828///
829/// This function returns false on success, or true to indicate that it could
830/// not compute dependence information for some reason.  This should be treated
831/// as a clobber dependence on the first instruction in the predecessor block.
832bool MemoryDependenceAnalysis::
833getNonLocalPointerDepFromBB(const PHITransAddr &Pointer,
834                            const AliasAnalysis::Location &Loc,
835                            bool isLoad, BasicBlock *StartBB,
836                            SmallVectorImpl<NonLocalDepResult> &Result,
837                            DenseMap<BasicBlock*, Value*> &Visited,
838                            bool SkipFirstBlock) {
839
840  // Look up the cached info for Pointer.
841  ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
842
843  // Set up a temporary NLPI value. If the map doesn't yet have an entry for
844  // CacheKey, this value will be inserted as the associated value. Otherwise,
845  // it'll be ignored, and we'll have to check to see if the cached size and
846  // tbaa tag are consistent with the current query.
847  NonLocalPointerInfo InitialNLPI;
848  InitialNLPI.Size = Loc.Size;
849  InitialNLPI.TBAATag = Loc.TBAATag;
850
851  // Get the NLPI for CacheKey, inserting one into the map if it doesn't
852  // already have one.
853  std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair =
854    NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI));
855  NonLocalPointerInfo *CacheInfo = &Pair.first->second;
856
857  // If we already have a cache entry for this CacheKey, we may need to do some
858  // work to reconcile the cache entry and the current query.
859  if (!Pair.second) {
860    if (CacheInfo->Size < Loc.Size) {
861      // The query's Size is greater than the cached one. Throw out the
862      // cached data and procede with the query at the greater size.
863      CacheInfo->Pair = BBSkipFirstBlockPair();
864      CacheInfo->Size = Loc.Size;
865      for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
866           DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
867        if (Instruction *Inst = DI->getResult().getInst())
868          RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
869      CacheInfo->NonLocalDeps.clear();
870    } else if (CacheInfo->Size > Loc.Size) {
871      // This query's Size is less than the cached one. Conservatively restart
872      // the query using the greater size.
873      return getNonLocalPointerDepFromBB(Pointer,
874                                         Loc.getWithNewSize(CacheInfo->Size),
875                                         isLoad, StartBB, Result, Visited,
876                                         SkipFirstBlock);
877    }
878
879    // If the query's TBAATag is inconsistent with the cached one,
880    // conservatively throw out the cached data and restart the query with
881    // no tag if needed.
882    if (CacheInfo->TBAATag != Loc.TBAATag) {
883      if (CacheInfo->TBAATag) {
884        CacheInfo->Pair = BBSkipFirstBlockPair();
885        CacheInfo->TBAATag = 0;
886        for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
887             DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
888          if (Instruction *Inst = DI->getResult().getInst())
889            RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
890        CacheInfo->NonLocalDeps.clear();
891      }
892      if (Loc.TBAATag)
893        return getNonLocalPointerDepFromBB(Pointer, Loc.getWithoutTBAATag(),
894                                           isLoad, StartBB, Result, Visited,
895                                           SkipFirstBlock);
896    }
897  }
898
899  NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps;
900
901  // If we have valid cached information for exactly the block we are
902  // investigating, just return it with no recomputation.
903  if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
904    // We have a fully cached result for this query then we can just return the
905    // cached results and populate the visited set.  However, we have to verify
906    // that we don't already have conflicting results for these blocks.  Check
907    // to ensure that if a block in the results set is in the visited set that
908    // it was for the same pointer query.
909    if (!Visited.empty()) {
910      for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
911           I != E; ++I) {
912        DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB());
913        if (VI == Visited.end() || VI->second == Pointer.getAddr())
914          continue;
915
916        // We have a pointer mismatch in a block.  Just return clobber, saying
917        // that something was clobbered in this result.  We could also do a
918        // non-fully cached query, but there is little point in doing this.
919        return true;
920      }
921    }
922
923    Value *Addr = Pointer.getAddr();
924    for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
925         I != E; ++I) {
926      Visited.insert(std::make_pair(I->getBB(), Addr));
927      if (!I->getResult().isNonLocal())
928        Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), Addr));
929    }
930    ++NumCacheCompleteNonLocalPtr;
931    return false;
932  }
933
934  // Otherwise, either this is a new block, a block with an invalid cache
935  // pointer or one that we're about to invalidate by putting more info into it
936  // than its valid cache info.  If empty, the result will be valid cache info,
937  // otherwise it isn't.
938  if (Cache->empty())
939    CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
940  else
941    CacheInfo->Pair = BBSkipFirstBlockPair();
942
943  SmallVector<BasicBlock*, 32> Worklist;
944  Worklist.push_back(StartBB);
945
946  // PredList used inside loop.
947  SmallVector<std::pair<BasicBlock*, PHITransAddr>, 16> PredList;
948
949  // Keep track of the entries that we know are sorted.  Previously cached
950  // entries will all be sorted.  The entries we add we only sort on demand (we
951  // don't insert every element into its sorted position).  We know that we
952  // won't get any reuse from currently inserted values, because we don't
953  // revisit blocks after we insert info for them.
954  unsigned NumSortedEntries = Cache->size();
955  DEBUG(AssertSorted(*Cache));
956
957  while (!Worklist.empty()) {
958    BasicBlock *BB = Worklist.pop_back_val();
959
960    // Skip the first block if we have it.
961    if (!SkipFirstBlock) {
962      // Analyze the dependency of *Pointer in FromBB.  See if we already have
963      // been here.
964      assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
965
966      // Get the dependency info for Pointer in BB.  If we have cached
967      // information, we will use it, otherwise we compute it.
968      DEBUG(AssertSorted(*Cache, NumSortedEntries));
969      MemDepResult Dep = GetNonLocalInfoForBlock(Loc, isLoad, BB, Cache,
970                                                 NumSortedEntries);
971
972      // If we got a Def or Clobber, add this to the list of results.
973      if (!Dep.isNonLocal()) {
974        Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
975        continue;
976      }
977    }
978
979    // If 'Pointer' is an instruction defined in this block, then we need to do
980    // phi translation to change it into a value live in the predecessor block.
981    // If not, we just add the predecessors to the worklist and scan them with
982    // the same Pointer.
983    if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
984      SkipFirstBlock = false;
985      SmallVector<BasicBlock*, 16> NewBlocks;
986      for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
987        // Verify that we haven't looked at this block yet.
988        std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
989          InsertRes = Visited.insert(std::make_pair(*PI, Pointer.getAddr()));
990        if (InsertRes.second) {
991          // First time we've looked at *PI.
992          NewBlocks.push_back(*PI);
993          continue;
994        }
995
996        // If we have seen this block before, but it was with a different
997        // pointer then we have a phi translation failure and we have to treat
998        // this as a clobber.
999        if (InsertRes.first->second != Pointer.getAddr()) {
1000          // Make sure to clean up the Visited map before continuing on to
1001          // PredTranslationFailure.
1002          for (unsigned i = 0; i < NewBlocks.size(); i++)
1003            Visited.erase(NewBlocks[i]);
1004          goto PredTranslationFailure;
1005        }
1006      }
1007      Worklist.append(NewBlocks.begin(), NewBlocks.end());
1008      continue;
1009    }
1010
1011    // We do need to do phi translation, if we know ahead of time we can't phi
1012    // translate this value, don't even try.
1013    if (!Pointer.IsPotentiallyPHITranslatable())
1014      goto PredTranslationFailure;
1015
1016    // We may have added values to the cache list before this PHI translation.
1017    // If so, we haven't done anything to ensure that the cache remains sorted.
1018    // Sort it now (if needed) so that recursive invocations of
1019    // getNonLocalPointerDepFromBB and other routines that could reuse the cache
1020    // value will only see properly sorted cache arrays.
1021    if (Cache && NumSortedEntries != Cache->size()) {
1022      SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1023      NumSortedEntries = Cache->size();
1024    }
1025    Cache = 0;
1026
1027    PredList.clear();
1028    for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
1029      BasicBlock *Pred = *PI;
1030      PredList.push_back(std::make_pair(Pred, Pointer));
1031
1032      // Get the PHI translated pointer in this predecessor.  This can fail if
1033      // not translatable, in which case the getAddr() returns null.
1034      PHITransAddr &PredPointer = PredList.back().second;
1035      PredPointer.PHITranslateValue(BB, Pred, 0);
1036
1037      Value *PredPtrVal = PredPointer.getAddr();
1038
1039      // Check to see if we have already visited this pred block with another
1040      // pointer.  If so, we can't do this lookup.  This failure can occur
1041      // with PHI translation when a critical edge exists and the PHI node in
1042      // the successor translates to a pointer value different than the
1043      // pointer the block was first analyzed with.
1044      std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
1045        InsertRes = Visited.insert(std::make_pair(Pred, PredPtrVal));
1046
1047      if (!InsertRes.second) {
1048        // We found the pred; take it off the list of preds to visit.
1049        PredList.pop_back();
1050
1051        // If the predecessor was visited with PredPtr, then we already did
1052        // the analysis and can ignore it.
1053        if (InsertRes.first->second == PredPtrVal)
1054          continue;
1055
1056        // Otherwise, the block was previously analyzed with a different
1057        // pointer.  We can't represent the result of this case, so we just
1058        // treat this as a phi translation failure.
1059
1060        // Make sure to clean up the Visited map before continuing on to
1061        // PredTranslationFailure.
1062        for (unsigned i = 0; i < PredList.size(); i++)
1063          Visited.erase(PredList[i].first);
1064
1065        goto PredTranslationFailure;
1066      }
1067    }
1068
1069    // Actually process results here; this need to be a separate loop to avoid
1070    // calling getNonLocalPointerDepFromBB for blocks we don't want to return
1071    // any results for.  (getNonLocalPointerDepFromBB will modify our
1072    // datastructures in ways the code after the PredTranslationFailure label
1073    // doesn't expect.)
1074    for (unsigned i = 0; i < PredList.size(); i++) {
1075      BasicBlock *Pred = PredList[i].first;
1076      PHITransAddr &PredPointer = PredList[i].second;
1077      Value *PredPtrVal = PredPointer.getAddr();
1078
1079      bool CanTranslate = true;
1080      // If PHI translation was unable to find an available pointer in this
1081      // predecessor, then we have to assume that the pointer is clobbered in
1082      // that predecessor.  We can still do PRE of the load, which would insert
1083      // a computation of the pointer in this predecessor.
1084      if (PredPtrVal == 0)
1085        CanTranslate = false;
1086
1087      // FIXME: it is entirely possible that PHI translating will end up with
1088      // the same value.  Consider PHI translating something like:
1089      // X = phi [x, bb1], [y, bb2].  PHI translating for bb1 doesn't *need*
1090      // to recurse here, pedantically speaking.
1091
1092      // If getNonLocalPointerDepFromBB fails here, that means the cached
1093      // result conflicted with the Visited list; we have to conservatively
1094      // assume a clobber, but this also does not block PRE of the load.
1095      if (!CanTranslate ||
1096          getNonLocalPointerDepFromBB(PredPointer,
1097                                      Loc.getWithNewPtr(PredPtrVal),
1098                                      isLoad, Pred,
1099                                      Result, Visited)) {
1100        // Add the entry to the Result list.
1101        NonLocalDepResult Entry(Pred,
1102                                MemDepResult::getClobber(Pred->getTerminator()),
1103                                PredPtrVal);
1104        Result.push_back(Entry);
1105
1106        // Since we had a phi translation failure, the cache for CacheKey won't
1107        // include all of the entries that we need to immediately satisfy future
1108        // queries.  Mark this in NonLocalPointerDeps by setting the
1109        // BBSkipFirstBlockPair pointer to null.  This requires reuse of the
1110        // cached value to do more work but not miss the phi trans failure.
1111        NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey];
1112        NLPI.Pair = BBSkipFirstBlockPair();
1113        continue;
1114      }
1115    }
1116
1117    // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
1118    CacheInfo = &NonLocalPointerDeps[CacheKey];
1119    Cache = &CacheInfo->NonLocalDeps;
1120    NumSortedEntries = Cache->size();
1121
1122    // Since we did phi translation, the "Cache" set won't contain all of the
1123    // results for the query.  This is ok (we can still use it to accelerate
1124    // specific block queries) but we can't do the fastpath "return all
1125    // results from the set"  Clear out the indicator for this.
1126    CacheInfo->Pair = BBSkipFirstBlockPair();
1127    SkipFirstBlock = false;
1128    continue;
1129
1130  PredTranslationFailure:
1131    // The following code is "failure"; we can't produce a sane translation
1132    // for the given block.  It assumes that we haven't modified any of
1133    // our datastructures while processing the current block.
1134
1135    if (Cache == 0) {
1136      // Refresh the CacheInfo/Cache pointer if it got invalidated.
1137      CacheInfo = &NonLocalPointerDeps[CacheKey];
1138      Cache = &CacheInfo->NonLocalDeps;
1139      NumSortedEntries = Cache->size();
1140    }
1141
1142    // Since we failed phi translation, the "Cache" set won't contain all of the
1143    // results for the query.  This is ok (we can still use it to accelerate
1144    // specific block queries) but we can't do the fastpath "return all
1145    // results from the set".  Clear out the indicator for this.
1146    CacheInfo->Pair = BBSkipFirstBlockPair();
1147
1148    // If *nothing* works, mark the pointer as being clobbered by the first
1149    // instruction in this block.
1150    //
1151    // If this is the magic first block, return this as a clobber of the whole
1152    // incoming value.  Since we can't phi translate to one of the predecessors,
1153    // we have to bail out.
1154    if (SkipFirstBlock)
1155      return true;
1156
1157    for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) {
1158      assert(I != Cache->rend() && "Didn't find current block??");
1159      if (I->getBB() != BB)
1160        continue;
1161
1162      assert(I->getResult().isNonLocal() &&
1163             "Should only be here with transparent block");
1164      I->setResult(MemDepResult::getClobber(BB->getTerminator()));
1165      ReverseNonLocalPtrDeps[BB->getTerminator()].insert(CacheKey);
1166      Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(),
1167                                         Pointer.getAddr()));
1168      break;
1169    }
1170  }
1171
1172  // Okay, we're done now.  If we added new values to the cache, re-sort it.
1173  SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1174  DEBUG(AssertSorted(*Cache));
1175  return false;
1176}
1177
1178/// RemoveCachedNonLocalPointerDependencies - If P exists in
1179/// CachedNonLocalPointerInfo, remove it.
1180void MemoryDependenceAnalysis::
1181RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) {
1182  CachedNonLocalPointerInfo::iterator It =
1183    NonLocalPointerDeps.find(P);
1184  if (It == NonLocalPointerDeps.end()) return;
1185
1186  // Remove all of the entries in the BB->val map.  This involves removing
1187  // instructions from the reverse map.
1188  NonLocalDepInfo &PInfo = It->second.NonLocalDeps;
1189
1190  for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
1191    Instruction *Target = PInfo[i].getResult().getInst();
1192    if (Target == 0) continue;  // Ignore non-local dep results.
1193    assert(Target->getParent() == PInfo[i].getBB());
1194
1195    // Eliminating the dirty entry from 'Cache', so update the reverse info.
1196    RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
1197  }
1198
1199  // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
1200  NonLocalPointerDeps.erase(It);
1201}
1202
1203
1204/// invalidateCachedPointerInfo - This method is used to invalidate cached
1205/// information about the specified pointer, because it may be too
1206/// conservative in memdep.  This is an optional call that can be used when
1207/// the client detects an equivalence between the pointer and some other
1208/// value and replaces the other value with ptr. This can make Ptr available
1209/// in more places that cached info does not necessarily keep.
1210void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) {
1211  // If Ptr isn't really a pointer, just ignore it.
1212  if (!Ptr->getType()->isPointerTy()) return;
1213  // Flush store info for the pointer.
1214  RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
1215  // Flush load info for the pointer.
1216  RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
1217}
1218
1219/// invalidateCachedPredecessors - Clear the PredIteratorCache info.
1220/// This needs to be done when the CFG changes, e.g., due to splitting
1221/// critical edges.
1222void MemoryDependenceAnalysis::invalidateCachedPredecessors() {
1223  PredCache->clear();
1224}
1225
1226/// removeInstruction - Remove an instruction from the dependence analysis,
1227/// updating the dependence of instructions that previously depended on it.
1228/// This method attempts to keep the cache coherent using the reverse map.
1229void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
1230  // Walk through the Non-local dependencies, removing this one as the value
1231  // for any cached queries.
1232  NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
1233  if (NLDI != NonLocalDeps.end()) {
1234    NonLocalDepInfo &BlockMap = NLDI->second.first;
1235    for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end();
1236         DI != DE; ++DI)
1237      if (Instruction *Inst = DI->getResult().getInst())
1238        RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
1239    NonLocalDeps.erase(NLDI);
1240  }
1241
1242  // If we have a cached local dependence query for this instruction, remove it.
1243  //
1244  LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
1245  if (LocalDepEntry != LocalDeps.end()) {
1246    // Remove us from DepInst's reverse set now that the local dep info is gone.
1247    if (Instruction *Inst = LocalDepEntry->second.getInst())
1248      RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
1249
1250    // Remove this local dependency info.
1251    LocalDeps.erase(LocalDepEntry);
1252  }
1253
1254  // If we have any cached pointer dependencies on this instruction, remove
1255  // them.  If the instruction has non-pointer type, then it can't be a pointer
1256  // base.
1257
1258  // Remove it from both the load info and the store info.  The instruction
1259  // can't be in either of these maps if it is non-pointer.
1260  if (RemInst->getType()->isPointerTy()) {
1261    RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
1262    RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
1263  }
1264
1265  // Loop over all of the things that depend on the instruction we're removing.
1266  //
1267  SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd;
1268
1269  // If we find RemInst as a clobber or Def in any of the maps for other values,
1270  // we need to replace its entry with a dirty version of the instruction after
1271  // it.  If RemInst is a terminator, we use a null dirty value.
1272  //
1273  // Using a dirty version of the instruction after RemInst saves having to scan
1274  // the entire block to get to this point.
1275  MemDepResult NewDirtyVal;
1276  if (!RemInst->isTerminator())
1277    NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst));
1278
1279  ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
1280  if (ReverseDepIt != ReverseLocalDeps.end()) {
1281    SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second;
1282    // RemInst can't be the terminator if it has local stuff depending on it.
1283    assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) &&
1284           "Nothing can locally depend on a terminator");
1285
1286    for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(),
1287         E = ReverseDeps.end(); I != E; ++I) {
1288      Instruction *InstDependingOnRemInst = *I;
1289      assert(InstDependingOnRemInst != RemInst &&
1290             "Already removed our local dep info");
1291
1292      LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
1293
1294      // Make sure to remember that new things depend on NewDepInst.
1295      assert(NewDirtyVal.getInst() && "There is no way something else can have "
1296             "a local dep on this if it is a terminator!");
1297      ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(),
1298                                                InstDependingOnRemInst));
1299    }
1300
1301    ReverseLocalDeps.erase(ReverseDepIt);
1302
1303    // Add new reverse deps after scanning the set, to avoid invalidating the
1304    // 'ReverseDeps' reference.
1305    while (!ReverseDepsToAdd.empty()) {
1306      ReverseLocalDeps[ReverseDepsToAdd.back().first]
1307        .insert(ReverseDepsToAdd.back().second);
1308      ReverseDepsToAdd.pop_back();
1309    }
1310  }
1311
1312  ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
1313  if (ReverseDepIt != ReverseNonLocalDeps.end()) {
1314    SmallPtrSet<Instruction*, 4> &Set = ReverseDepIt->second;
1315    for (SmallPtrSet<Instruction*, 4>::iterator I = Set.begin(), E = Set.end();
1316         I != E; ++I) {
1317      assert(*I != RemInst && "Already removed NonLocalDep info for RemInst");
1318
1319      PerInstNLInfo &INLD = NonLocalDeps[*I];
1320      // The information is now dirty!
1321      INLD.second = true;
1322
1323      for (NonLocalDepInfo::iterator DI = INLD.first.begin(),
1324           DE = INLD.first.end(); DI != DE; ++DI) {
1325        if (DI->getResult().getInst() != RemInst) continue;
1326
1327        // Convert to a dirty entry for the subsequent instruction.
1328        DI->setResult(NewDirtyVal);
1329
1330        if (Instruction *NextI = NewDirtyVal.getInst())
1331          ReverseDepsToAdd.push_back(std::make_pair(NextI, *I));
1332      }
1333    }
1334
1335    ReverseNonLocalDeps.erase(ReverseDepIt);
1336
1337    // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1338    while (!ReverseDepsToAdd.empty()) {
1339      ReverseNonLocalDeps[ReverseDepsToAdd.back().first]
1340        .insert(ReverseDepsToAdd.back().second);
1341      ReverseDepsToAdd.pop_back();
1342    }
1343  }
1344
1345  // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1346  // value in the NonLocalPointerDeps info.
1347  ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
1348    ReverseNonLocalPtrDeps.find(RemInst);
1349  if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
1350    SmallPtrSet<ValueIsLoadPair, 4> &Set = ReversePtrDepIt->second;
1351    SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd;
1352
1353    for (SmallPtrSet<ValueIsLoadPair, 4>::iterator I = Set.begin(),
1354         E = Set.end(); I != E; ++I) {
1355      ValueIsLoadPair P = *I;
1356      assert(P.getPointer() != RemInst &&
1357             "Already removed NonLocalPointerDeps info for RemInst");
1358
1359      NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps;
1360
1361      // The cache is not valid for any specific block anymore.
1362      NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair();
1363
1364      // Update any entries for RemInst to use the instruction after it.
1365      for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end();
1366           DI != DE; ++DI) {
1367        if (DI->getResult().getInst() != RemInst) continue;
1368
1369        // Convert to a dirty entry for the subsequent instruction.
1370        DI->setResult(NewDirtyVal);
1371
1372        if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
1373          ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
1374      }
1375
1376      // Re-sort the NonLocalDepInfo.  Changing the dirty entry to its
1377      // subsequent value may invalidate the sortedness.
1378      std::sort(NLPDI.begin(), NLPDI.end());
1379    }
1380
1381    ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
1382
1383    while (!ReversePtrDepsToAdd.empty()) {
1384      ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first]
1385        .insert(ReversePtrDepsToAdd.back().second);
1386      ReversePtrDepsToAdd.pop_back();
1387    }
1388  }
1389
1390
1391  assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
1392  AA->deleteValue(RemInst);
1393  DEBUG(verifyRemoved(RemInst));
1394}
1395/// verifyRemoved - Verify that the specified instruction does not occur
1396/// in our internal data structures.
1397void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
1398  for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
1399       E = LocalDeps.end(); I != E; ++I) {
1400    assert(I->first != D && "Inst occurs in data structures");
1401    assert(I->second.getInst() != D &&
1402           "Inst occurs in data structures");
1403  }
1404
1405  for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(),
1406       E = NonLocalPointerDeps.end(); I != E; ++I) {
1407    assert(I->first.getPointer() != D && "Inst occurs in NLPD map key");
1408    const NonLocalDepInfo &Val = I->second.NonLocalDeps;
1409    for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end();
1410         II != E; ++II)
1411      assert(II->getResult().getInst() != D && "Inst occurs as NLPD value");
1412  }
1413
1414  for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
1415       E = NonLocalDeps.end(); I != E; ++I) {
1416    assert(I->first != D && "Inst occurs in data structures");
1417    const PerInstNLInfo &INLD = I->second;
1418    for (NonLocalDepInfo::const_iterator II = INLD.first.begin(),
1419         EE = INLD.first.end(); II  != EE; ++II)
1420      assert(II->getResult().getInst() != D && "Inst occurs in data structures");
1421  }
1422
1423  for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
1424       E = ReverseLocalDeps.end(); I != E; ++I) {
1425    assert(I->first != D && "Inst occurs in data structures");
1426    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
1427         EE = I->second.end(); II != EE; ++II)
1428      assert(*II != D && "Inst occurs in data structures");
1429  }
1430
1431  for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
1432       E = ReverseNonLocalDeps.end();
1433       I != E; ++I) {
1434    assert(I->first != D && "Inst occurs in data structures");
1435    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
1436         EE = I->second.end(); II != EE; ++II)
1437      assert(*II != D && "Inst occurs in data structures");
1438  }
1439
1440  for (ReverseNonLocalPtrDepTy::const_iterator
1441       I = ReverseNonLocalPtrDeps.begin(),
1442       E = ReverseNonLocalPtrDeps.end(); I != E; ++I) {
1443    assert(I->first != D && "Inst occurs in rev NLPD map");
1444
1445    for (SmallPtrSet<ValueIsLoadPair, 4>::const_iterator II = I->second.begin(),
1446         E = I->second.end(); II != E; ++II)
1447      assert(*II != ValueIsLoadPair(D, false) &&
1448             *II != ValueIsLoadPair(D, true) &&
1449             "Inst occurs in ReverseNonLocalPtrDeps map");
1450  }
1451
1452}
1453