LoopInfo.cpp revision 245431
1//===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the LoopInfo class that is used to identify natural loops
11// and determine the loop depth of various nodes of the CFG.  Note that the
12// loops identified may actually be several natural loops that share the same
13// header node... not just a single natural loop.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Analysis/LoopInfo.h"
18#include "llvm/Constants.h"
19#include "llvm/Instructions.h"
20#include "llvm/Analysis/Dominators.h"
21#include "llvm/Analysis/LoopInfoImpl.h"
22#include "llvm/Analysis/LoopIterator.h"
23#include "llvm/Analysis/ValueTracking.h"
24#include "llvm/Assembly/Writer.h"
25#include "llvm/Support/CFG.h"
26#include "llvm/Support/CommandLine.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/ADT/DepthFirstIterator.h"
29#include "llvm/ADT/SmallPtrSet.h"
30#include <algorithm>
31using namespace llvm;
32
33// Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops.
34template class llvm::LoopBase<BasicBlock, Loop>;
35template class llvm::LoopInfoBase<BasicBlock, Loop>;
36
37// Always verify loopinfo if expensive checking is enabled.
38#ifdef XDEBUG
39static bool VerifyLoopInfo = true;
40#else
41static bool VerifyLoopInfo = false;
42#endif
43static cl::opt<bool,true>
44VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
45                cl::desc("Verify loop info (time consuming)"));
46
47char LoopInfo::ID = 0;
48INITIALIZE_PASS_BEGIN(LoopInfo, "loops", "Natural Loop Information", true, true)
49INITIALIZE_PASS_DEPENDENCY(DominatorTree)
50INITIALIZE_PASS_END(LoopInfo, "loops", "Natural Loop Information", true, true)
51
52//===----------------------------------------------------------------------===//
53// Loop implementation
54//
55
56/// isLoopInvariant - Return true if the specified value is loop invariant
57///
58bool Loop::isLoopInvariant(Value *V) const {
59  if (Instruction *I = dyn_cast<Instruction>(V))
60    return !contains(I);
61  return true;  // All non-instructions are loop invariant
62}
63
64/// hasLoopInvariantOperands - Return true if all the operands of the
65/// specified instruction are loop invariant.
66bool Loop::hasLoopInvariantOperands(Instruction *I) const {
67  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
68    if (!isLoopInvariant(I->getOperand(i)))
69      return false;
70
71  return true;
72}
73
74/// makeLoopInvariant - If the given value is an instruciton inside of the
75/// loop and it can be hoisted, do so to make it trivially loop-invariant.
76/// Return true if the value after any hoisting is loop invariant. This
77/// function can be used as a slightly more aggressive replacement for
78/// isLoopInvariant.
79///
80/// If InsertPt is specified, it is the point to hoist instructions to.
81/// If null, the terminator of the loop preheader is used.
82///
83bool Loop::makeLoopInvariant(Value *V, bool &Changed,
84                             Instruction *InsertPt) const {
85  if (Instruction *I = dyn_cast<Instruction>(V))
86    return makeLoopInvariant(I, Changed, InsertPt);
87  return true;  // All non-instructions are loop-invariant.
88}
89
90/// makeLoopInvariant - If the given instruction is inside of the
91/// loop and it can be hoisted, do so to make it trivially loop-invariant.
92/// Return true if the instruction after any hoisting is loop invariant. This
93/// function can be used as a slightly more aggressive replacement for
94/// isLoopInvariant.
95///
96/// If InsertPt is specified, it is the point to hoist instructions to.
97/// If null, the terminator of the loop preheader is used.
98///
99bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
100                             Instruction *InsertPt) const {
101  // Test if the value is already loop-invariant.
102  if (isLoopInvariant(I))
103    return true;
104  if (!isSafeToSpeculativelyExecute(I))
105    return false;
106  if (I->mayReadFromMemory())
107    return false;
108  // The landingpad instruction is immobile.
109  if (isa<LandingPadInst>(I))
110    return false;
111  // Determine the insertion point, unless one was given.
112  if (!InsertPt) {
113    BasicBlock *Preheader = getLoopPreheader();
114    // Without a preheader, hoisting is not feasible.
115    if (!Preheader)
116      return false;
117    InsertPt = Preheader->getTerminator();
118  }
119  // Don't hoist instructions with loop-variant operands.
120  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
121    if (!makeLoopInvariant(I->getOperand(i), Changed, InsertPt))
122      return false;
123
124  // Hoist.
125  I->moveBefore(InsertPt);
126  Changed = true;
127  return true;
128}
129
130/// getCanonicalInductionVariable - Check to see if the loop has a canonical
131/// induction variable: an integer recurrence that starts at 0 and increments
132/// by one each time through the loop.  If so, return the phi node that
133/// corresponds to it.
134///
135/// The IndVarSimplify pass transforms loops to have a canonical induction
136/// variable.
137///
138PHINode *Loop::getCanonicalInductionVariable() const {
139  BasicBlock *H = getHeader();
140
141  BasicBlock *Incoming = 0, *Backedge = 0;
142  pred_iterator PI = pred_begin(H);
143  assert(PI != pred_end(H) &&
144         "Loop must have at least one backedge!");
145  Backedge = *PI++;
146  if (PI == pred_end(H)) return 0;  // dead loop
147  Incoming = *PI++;
148  if (PI != pred_end(H)) return 0;  // multiple backedges?
149
150  if (contains(Incoming)) {
151    if (contains(Backedge))
152      return 0;
153    std::swap(Incoming, Backedge);
154  } else if (!contains(Backedge))
155    return 0;
156
157  // Loop over all of the PHI nodes, looking for a canonical indvar.
158  for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
159    PHINode *PN = cast<PHINode>(I);
160    if (ConstantInt *CI =
161        dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
162      if (CI->isNullValue())
163        if (Instruction *Inc =
164            dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
165          if (Inc->getOpcode() == Instruction::Add &&
166                Inc->getOperand(0) == PN)
167            if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
168              if (CI->equalsInt(1))
169                return PN;
170  }
171  return 0;
172}
173
174/// isLCSSAForm - Return true if the Loop is in LCSSA form
175bool Loop::isLCSSAForm(DominatorTree &DT) const {
176  // Sort the blocks vector so that we can use binary search to do quick
177  // lookups.
178  SmallPtrSet<BasicBlock*, 16> LoopBBs(block_begin(), block_end());
179
180  for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) {
181    BasicBlock *BB = *BI;
182    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;++I)
183      for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
184           ++UI) {
185        User *U = *UI;
186        BasicBlock *UserBB = cast<Instruction>(U)->getParent();
187        if (PHINode *P = dyn_cast<PHINode>(U))
188          UserBB = P->getIncomingBlock(UI);
189
190        // Check the current block, as a fast-path, before checking whether
191        // the use is anywhere in the loop.  Most values are used in the same
192        // block they are defined in.  Also, blocks not reachable from the
193        // entry are special; uses in them don't need to go through PHIs.
194        if (UserBB != BB &&
195            !LoopBBs.count(UserBB) &&
196            DT.isReachableFromEntry(UserBB))
197          return false;
198      }
199  }
200
201  return true;
202}
203
204/// isLoopSimplifyForm - Return true if the Loop is in the form that
205/// the LoopSimplify form transforms loops to, which is sometimes called
206/// normal form.
207bool Loop::isLoopSimplifyForm() const {
208  // Normal-form loops have a preheader, a single backedge, and all of their
209  // exits have all their predecessors inside the loop.
210  return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
211}
212
213/// isSafeToClone - Return true if the loop body is safe to clone in practice.
214/// Routines that reform the loop CFG and split edges often fail on indirectbr.
215bool Loop::isSafeToClone() const {
216  // Return false if any loop blocks contain indirectbrs.
217  for (Loop::block_iterator I = block_begin(), E = block_end(); I != E; ++I) {
218    if (isa<IndirectBrInst>((*I)->getTerminator()))
219      return false;
220  }
221  return true;
222}
223
224/// hasDedicatedExits - Return true if no exit block for the loop
225/// has a predecessor that is outside the loop.
226bool Loop::hasDedicatedExits() const {
227  // Sort the blocks vector so that we can use binary search to do quick
228  // lookups.
229  SmallPtrSet<BasicBlock *, 16> LoopBBs(block_begin(), block_end());
230  // Each predecessor of each exit block of a normal loop is contained
231  // within the loop.
232  SmallVector<BasicBlock *, 4> ExitBlocks;
233  getExitBlocks(ExitBlocks);
234  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
235    for (pred_iterator PI = pred_begin(ExitBlocks[i]),
236         PE = pred_end(ExitBlocks[i]); PI != PE; ++PI)
237      if (!LoopBBs.count(*PI))
238        return false;
239  // All the requirements are met.
240  return true;
241}
242
243/// getUniqueExitBlocks - Return all unique successor blocks of this loop.
244/// These are the blocks _outside of the current loop_ which are branched to.
245/// This assumes that loop exits are in canonical form.
246///
247void
248Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const {
249  assert(hasDedicatedExits() &&
250         "getUniqueExitBlocks assumes the loop has canonical form exits!");
251
252  // Sort the blocks vector so that we can use binary search to do quick
253  // lookups.
254  SmallVector<BasicBlock *, 128> LoopBBs(block_begin(), block_end());
255  std::sort(LoopBBs.begin(), LoopBBs.end());
256
257  SmallVector<BasicBlock *, 32> switchExitBlocks;
258
259  for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) {
260
261    BasicBlock *current = *BI;
262    switchExitBlocks.clear();
263
264    for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I) {
265      // If block is inside the loop then it is not a exit block.
266      if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
267        continue;
268
269      pred_iterator PI = pred_begin(*I);
270      BasicBlock *firstPred = *PI;
271
272      // If current basic block is this exit block's first predecessor
273      // then only insert exit block in to the output ExitBlocks vector.
274      // This ensures that same exit block is not inserted twice into
275      // ExitBlocks vector.
276      if (current != firstPred)
277        continue;
278
279      // If a terminator has more then two successors, for example SwitchInst,
280      // then it is possible that there are multiple edges from current block
281      // to one exit block.
282      if (std::distance(succ_begin(current), succ_end(current)) <= 2) {
283        ExitBlocks.push_back(*I);
284        continue;
285      }
286
287      // In case of multiple edges from current block to exit block, collect
288      // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
289      // duplicate edges.
290      if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I)
291          == switchExitBlocks.end()) {
292        switchExitBlocks.push_back(*I);
293        ExitBlocks.push_back(*I);
294      }
295    }
296  }
297}
298
299/// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
300/// block, return that block. Otherwise return null.
301BasicBlock *Loop::getUniqueExitBlock() const {
302  SmallVector<BasicBlock *, 8> UniqueExitBlocks;
303  getUniqueExitBlocks(UniqueExitBlocks);
304  if (UniqueExitBlocks.size() == 1)
305    return UniqueExitBlocks[0];
306  return 0;
307}
308
309#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
310void Loop::dump() const {
311  print(dbgs());
312}
313#endif
314
315//===----------------------------------------------------------------------===//
316// UnloopUpdater implementation
317//
318
319namespace {
320/// Find the new parent loop for all blocks within the "unloop" whose last
321/// backedges has just been removed.
322class UnloopUpdater {
323  Loop *Unloop;
324  LoopInfo *LI;
325
326  LoopBlocksDFS DFS;
327
328  // Map unloop's immediate subloops to their nearest reachable parents. Nested
329  // loops within these subloops will not change parents. However, an immediate
330  // subloop's new parent will be the nearest loop reachable from either its own
331  // exits *or* any of its nested loop's exits.
332  DenseMap<Loop*, Loop*> SubloopParents;
333
334  // Flag the presence of an irreducible backedge whose destination is a block
335  // directly contained by the original unloop.
336  bool FoundIB;
337
338public:
339  UnloopUpdater(Loop *UL, LoopInfo *LInfo) :
340    Unloop(UL), LI(LInfo), DFS(UL), FoundIB(false) {}
341
342  void updateBlockParents();
343
344  void removeBlocksFromAncestors();
345
346  void updateSubloopParents();
347
348protected:
349  Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop);
350};
351} // end anonymous namespace
352
353/// updateBlockParents - Update the parent loop for all blocks that are directly
354/// contained within the original "unloop".
355void UnloopUpdater::updateBlockParents() {
356  if (Unloop->getNumBlocks()) {
357    // Perform a post order CFG traversal of all blocks within this loop,
358    // propagating the nearest loop from sucessors to predecessors.
359    LoopBlocksTraversal Traversal(DFS, LI);
360    for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
361           POE = Traversal.end(); POI != POE; ++POI) {
362
363      Loop *L = LI->getLoopFor(*POI);
364      Loop *NL = getNearestLoop(*POI, L);
365
366      if (NL != L) {
367        // For reducible loops, NL is now an ancestor of Unloop.
368        assert((NL != Unloop && (!NL || NL->contains(Unloop))) &&
369               "uninitialized successor");
370        LI->changeLoopFor(*POI, NL);
371      }
372      else {
373        // Or the current block is part of a subloop, in which case its parent
374        // is unchanged.
375        assert((FoundIB || Unloop->contains(L)) && "uninitialized successor");
376      }
377    }
378  }
379  // Each irreducible loop within the unloop induces a round of iteration using
380  // the DFS result cached by Traversal.
381  bool Changed = FoundIB;
382  for (unsigned NIters = 0; Changed; ++NIters) {
383    assert(NIters < Unloop->getNumBlocks() && "runaway iterative algorithm");
384
385    // Iterate over the postorder list of blocks, propagating the nearest loop
386    // from successors to predecessors as before.
387    Changed = false;
388    for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(),
389           POE = DFS.endPostorder(); POI != POE; ++POI) {
390
391      Loop *L = LI->getLoopFor(*POI);
392      Loop *NL = getNearestLoop(*POI, L);
393      if (NL != L) {
394        assert(NL != Unloop && (!NL || NL->contains(Unloop)) &&
395               "uninitialized successor");
396        LI->changeLoopFor(*POI, NL);
397        Changed = true;
398      }
399    }
400  }
401}
402
403/// removeBlocksFromAncestors - Remove unloop's blocks from all ancestors below
404/// their new parents.
405void UnloopUpdater::removeBlocksFromAncestors() {
406  // Remove all unloop's blocks (including those in nested subloops) from
407  // ancestors below the new parent loop.
408  for (Loop::block_iterator BI = Unloop->block_begin(),
409         BE = Unloop->block_end(); BI != BE; ++BI) {
410    Loop *OuterParent = LI->getLoopFor(*BI);
411    if (Unloop->contains(OuterParent)) {
412      while (OuterParent->getParentLoop() != Unloop)
413        OuterParent = OuterParent->getParentLoop();
414      OuterParent = SubloopParents[OuterParent];
415    }
416    // Remove blocks from former Ancestors except Unloop itself which will be
417    // deleted.
418    for (Loop *OldParent = Unloop->getParentLoop(); OldParent != OuterParent;
419         OldParent = OldParent->getParentLoop()) {
420      assert(OldParent && "new loop is not an ancestor of the original");
421      OldParent->removeBlockFromLoop(*BI);
422    }
423  }
424}
425
426/// updateSubloopParents - Update the parent loop for all subloops directly
427/// nested within unloop.
428void UnloopUpdater::updateSubloopParents() {
429  while (!Unloop->empty()) {
430    Loop *Subloop = *llvm::prior(Unloop->end());
431    Unloop->removeChildLoop(llvm::prior(Unloop->end()));
432
433    assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop");
434    if (Loop *Parent = SubloopParents[Subloop])
435      Parent->addChildLoop(Subloop);
436    else
437      LI->addTopLevelLoop(Subloop);
438  }
439}
440
441/// getNearestLoop - Return the nearest parent loop among this block's
442/// successors. If a successor is a subloop header, consider its parent to be
443/// the nearest parent of the subloop's exits.
444///
445/// For subloop blocks, simply update SubloopParents and return NULL.
446Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) {
447
448  // Initially for blocks directly contained by Unloop, NearLoop == Unloop and
449  // is considered uninitialized.
450  Loop *NearLoop = BBLoop;
451
452  Loop *Subloop = 0;
453  if (NearLoop != Unloop && Unloop->contains(NearLoop)) {
454    Subloop = NearLoop;
455    // Find the subloop ancestor that is directly contained within Unloop.
456    while (Subloop->getParentLoop() != Unloop) {
457      Subloop = Subloop->getParentLoop();
458      assert(Subloop && "subloop is not an ancestor of the original loop");
459    }
460    // Get the current nearest parent of the Subloop exits, initially Unloop.
461    NearLoop =
462      SubloopParents.insert(std::make_pair(Subloop, Unloop)).first->second;
463  }
464
465  succ_iterator I = succ_begin(BB), E = succ_end(BB);
466  if (I == E) {
467    assert(!Subloop && "subloop blocks must have a successor");
468    NearLoop = 0; // unloop blocks may now exit the function.
469  }
470  for (; I != E; ++I) {
471    if (*I == BB)
472      continue; // self loops are uninteresting
473
474    Loop *L = LI->getLoopFor(*I);
475    if (L == Unloop) {
476      // This successor has not been processed. This path must lead to an
477      // irreducible backedge.
478      assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB");
479      FoundIB = true;
480    }
481    if (L != Unloop && Unloop->contains(L)) {
482      // Successor is in a subloop.
483      if (Subloop)
484        continue; // Branching within subloops. Ignore it.
485
486      // BB branches from the original into a subloop header.
487      assert(L->getParentLoop() == Unloop && "cannot skip into nested loops");
488
489      // Get the current nearest parent of the Subloop's exits.
490      L = SubloopParents[L];
491      // L could be Unloop if the only exit was an irreducible backedge.
492    }
493    if (L == Unloop) {
494      continue;
495    }
496    // Handle critical edges from Unloop into a sibling loop.
497    if (L && !L->contains(Unloop)) {
498      L = L->getParentLoop();
499    }
500    // Remember the nearest parent loop among successors or subloop exits.
501    if (NearLoop == Unloop || !NearLoop || NearLoop->contains(L))
502      NearLoop = L;
503  }
504  if (Subloop) {
505    SubloopParents[Subloop] = NearLoop;
506    return BBLoop;
507  }
508  return NearLoop;
509}
510
511//===----------------------------------------------------------------------===//
512// LoopInfo implementation
513//
514bool LoopInfo::runOnFunction(Function &) {
515  releaseMemory();
516  LI.Analyze(getAnalysis<DominatorTree>().getBase());
517  return false;
518}
519
520/// updateUnloop - The last backedge has been removed from a loop--now the
521/// "unloop". Find a new parent for the blocks contained within unloop and
522/// update the loop tree. We don't necessarily have valid dominators at this
523/// point, but LoopInfo is still valid except for the removal of this loop.
524///
525/// Note that Unloop may now be an empty loop. Calling Loop::getHeader without
526/// checking first is illegal.
527void LoopInfo::updateUnloop(Loop *Unloop) {
528
529  // First handle the special case of no parent loop to simplify the algorithm.
530  if (!Unloop->getParentLoop()) {
531    // Since BBLoop had no parent, Unloop blocks are no longer in a loop.
532    for (Loop::block_iterator I = Unloop->block_begin(),
533         E = Unloop->block_end(); I != E; ++I) {
534
535      // Don't reparent blocks in subloops.
536      if (getLoopFor(*I) != Unloop)
537        continue;
538
539      // Blocks no longer have a parent but are still referenced by Unloop until
540      // the Unloop object is deleted.
541      LI.changeLoopFor(*I, 0);
542    }
543
544    // Remove the loop from the top-level LoopInfo object.
545    for (LoopInfo::iterator I = LI.begin();; ++I) {
546      assert(I != LI.end() && "Couldn't find loop");
547      if (*I == Unloop) {
548        LI.removeLoop(I);
549        break;
550      }
551    }
552
553    // Move all of the subloops to the top-level.
554    while (!Unloop->empty())
555      LI.addTopLevelLoop(Unloop->removeChildLoop(llvm::prior(Unloop->end())));
556
557    return;
558  }
559
560  // Update the parent loop for all blocks within the loop. Blocks within
561  // subloops will not change parents.
562  UnloopUpdater Updater(Unloop, this);
563  Updater.updateBlockParents();
564
565  // Remove blocks from former ancestor loops.
566  Updater.removeBlocksFromAncestors();
567
568  // Add direct subloops as children in their new parent loop.
569  Updater.updateSubloopParents();
570
571  // Remove unloop from its parent loop.
572  Loop *ParentLoop = Unloop->getParentLoop();
573  for (Loop::iterator I = ParentLoop->begin();; ++I) {
574    assert(I != ParentLoop->end() && "Couldn't find loop");
575    if (*I == Unloop) {
576      ParentLoop->removeChildLoop(I);
577      break;
578    }
579  }
580}
581
582void LoopInfo::verifyAnalysis() const {
583  // LoopInfo is a FunctionPass, but verifying every loop in the function
584  // each time verifyAnalysis is called is very expensive. The
585  // -verify-loop-info option can enable this. In order to perform some
586  // checking by default, LoopPass has been taught to call verifyLoop
587  // manually during loop pass sequences.
588
589  if (!VerifyLoopInfo) return;
590
591  DenseSet<const Loop*> Loops;
592  for (iterator I = begin(), E = end(); I != E; ++I) {
593    assert(!(*I)->getParentLoop() && "Top-level loop has a parent!");
594    (*I)->verifyLoopNest(&Loops);
595  }
596
597  // Verify that blocks are mapped to valid loops.
598  for (DenseMap<BasicBlock*, Loop*>::const_iterator I = LI.BBMap.begin(),
599         E = LI.BBMap.end(); I != E; ++I) {
600    assert(Loops.count(I->second) && "orphaned loop");
601    assert(I->second->contains(I->first) && "orphaned block");
602  }
603}
604
605void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const {
606  AU.setPreservesAll();
607  AU.addRequired<DominatorTree>();
608}
609
610void LoopInfo::print(raw_ostream &OS, const Module*) const {
611  LI.print(OS);
612}
613
614//===----------------------------------------------------------------------===//
615// LoopBlocksDFS implementation
616//
617
618/// Traverse the loop blocks and store the DFS result.
619/// Useful for clients that just want the final DFS result and don't need to
620/// visit blocks during the initial traversal.
621void LoopBlocksDFS::perform(LoopInfo *LI) {
622  LoopBlocksTraversal Traversal(*this, LI);
623  for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
624         POE = Traversal.end(); POI != POE; ++POI) ;
625}
626