LoopInfo.cpp revision 226890
1//===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the LoopInfo class that is used to identify natural loops
11// and determine the loop depth of various nodes of the CFG.  Note that the
12// loops identified may actually be several natural loops that share the same
13// header node... not just a single natural loop.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Analysis/LoopInfo.h"
18#include "llvm/Constants.h"
19#include "llvm/Instructions.h"
20#include "llvm/Analysis/Dominators.h"
21#include "llvm/Analysis/LoopIterator.h"
22#include "llvm/Assembly/Writer.h"
23#include "llvm/Support/CFG.h"
24#include "llvm/Support/CommandLine.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/ADT/DepthFirstIterator.h"
27#include "llvm/ADT/SmallPtrSet.h"
28#include <algorithm>
29using namespace llvm;
30
31// Always verify loopinfo if expensive checking is enabled.
32#ifdef XDEBUG
33static bool VerifyLoopInfo = true;
34#else
35static bool VerifyLoopInfo = false;
36#endif
37static cl::opt<bool,true>
38VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
39                cl::desc("Verify loop info (time consuming)"));
40
41char LoopInfo::ID = 0;
42INITIALIZE_PASS_BEGIN(LoopInfo, "loops", "Natural Loop Information", true, true)
43INITIALIZE_PASS_DEPENDENCY(DominatorTree)
44INITIALIZE_PASS_END(LoopInfo, "loops", "Natural Loop Information", true, true)
45
46//===----------------------------------------------------------------------===//
47// Loop implementation
48//
49
50/// isLoopInvariant - Return true if the specified value is loop invariant
51///
52bool Loop::isLoopInvariant(Value *V) const {
53  if (Instruction *I = dyn_cast<Instruction>(V))
54    return !contains(I);
55  return true;  // All non-instructions are loop invariant
56}
57
58/// hasLoopInvariantOperands - Return true if all the operands of the
59/// specified instruction are loop invariant.
60bool Loop::hasLoopInvariantOperands(Instruction *I) const {
61  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
62    if (!isLoopInvariant(I->getOperand(i)))
63      return false;
64
65  return true;
66}
67
68/// makeLoopInvariant - If the given value is an instruciton inside of the
69/// loop and it can be hoisted, do so to make it trivially loop-invariant.
70/// Return true if the value after any hoisting is loop invariant. This
71/// function can be used as a slightly more aggressive replacement for
72/// isLoopInvariant.
73///
74/// If InsertPt is specified, it is the point to hoist instructions to.
75/// If null, the terminator of the loop preheader is used.
76///
77bool Loop::makeLoopInvariant(Value *V, bool &Changed,
78                             Instruction *InsertPt) const {
79  if (Instruction *I = dyn_cast<Instruction>(V))
80    return makeLoopInvariant(I, Changed, InsertPt);
81  return true;  // All non-instructions are loop-invariant.
82}
83
84/// makeLoopInvariant - If the given instruction is inside of the
85/// loop and it can be hoisted, do so to make it trivially loop-invariant.
86/// Return true if the instruction after any hoisting is loop invariant. This
87/// function can be used as a slightly more aggressive replacement for
88/// isLoopInvariant.
89///
90/// If InsertPt is specified, it is the point to hoist instructions to.
91/// If null, the terminator of the loop preheader is used.
92///
93bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
94                             Instruction *InsertPt) const {
95  // Test if the value is already loop-invariant.
96  if (isLoopInvariant(I))
97    return true;
98  if (!I->isSafeToSpeculativelyExecute())
99    return false;
100  if (I->mayReadFromMemory())
101    return false;
102  // The landingpad instruction is immobile.
103  if (isa<LandingPadInst>(I))
104    return false;
105  // Determine the insertion point, unless one was given.
106  if (!InsertPt) {
107    BasicBlock *Preheader = getLoopPreheader();
108    // Without a preheader, hoisting is not feasible.
109    if (!Preheader)
110      return false;
111    InsertPt = Preheader->getTerminator();
112  }
113  // Don't hoist instructions with loop-variant operands.
114  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
115    if (!makeLoopInvariant(I->getOperand(i), Changed, InsertPt))
116      return false;
117
118  // Hoist.
119  I->moveBefore(InsertPt);
120  Changed = true;
121  return true;
122}
123
124/// getCanonicalInductionVariable - Check to see if the loop has a canonical
125/// induction variable: an integer recurrence that starts at 0 and increments
126/// by one each time through the loop.  If so, return the phi node that
127/// corresponds to it.
128///
129/// The IndVarSimplify pass transforms loops to have a canonical induction
130/// variable.
131///
132PHINode *Loop::getCanonicalInductionVariable() const {
133  BasicBlock *H = getHeader();
134
135  BasicBlock *Incoming = 0, *Backedge = 0;
136  pred_iterator PI = pred_begin(H);
137  assert(PI != pred_end(H) &&
138         "Loop must have at least one backedge!");
139  Backedge = *PI++;
140  if (PI == pred_end(H)) return 0;  // dead loop
141  Incoming = *PI++;
142  if (PI != pred_end(H)) return 0;  // multiple backedges?
143
144  if (contains(Incoming)) {
145    if (contains(Backedge))
146      return 0;
147    std::swap(Incoming, Backedge);
148  } else if (!contains(Backedge))
149    return 0;
150
151  // Loop over all of the PHI nodes, looking for a canonical indvar.
152  for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
153    PHINode *PN = cast<PHINode>(I);
154    if (ConstantInt *CI =
155        dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
156      if (CI->isNullValue())
157        if (Instruction *Inc =
158            dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
159          if (Inc->getOpcode() == Instruction::Add &&
160                Inc->getOperand(0) == PN)
161            if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
162              if (CI->equalsInt(1))
163                return PN;
164  }
165  return 0;
166}
167
168/// getTripCount - Return a loop-invariant LLVM value indicating the number of
169/// times the loop will be executed.  Note that this means that the backedge
170/// of the loop executes N-1 times.  If the trip-count cannot be determined,
171/// this returns null.
172///
173/// The IndVarSimplify pass transforms loops to have a form that this
174/// function easily understands.
175///
176Value *Loop::getTripCount() const {
177  // Canonical loops will end with a 'cmp ne I, V', where I is the incremented
178  // canonical induction variable and V is the trip count of the loop.
179  PHINode *IV = getCanonicalInductionVariable();
180  if (IV == 0 || IV->getNumIncomingValues() != 2) return 0;
181
182  bool P0InLoop = contains(IV->getIncomingBlock(0));
183  Value *Inc = IV->getIncomingValue(!P0InLoop);
184  BasicBlock *BackedgeBlock = IV->getIncomingBlock(!P0InLoop);
185
186  if (BranchInst *BI = dyn_cast<BranchInst>(BackedgeBlock->getTerminator()))
187    if (BI->isConditional()) {
188      if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
189        if (ICI->getOperand(0) == Inc) {
190          if (BI->getSuccessor(0) == getHeader()) {
191            if (ICI->getPredicate() == ICmpInst::ICMP_NE)
192              return ICI->getOperand(1);
193          } else if (ICI->getPredicate() == ICmpInst::ICMP_EQ) {
194            return ICI->getOperand(1);
195          }
196        }
197      }
198    }
199
200  return 0;
201}
202
203/// getSmallConstantTripCount - Returns the trip count of this loop as a
204/// normal unsigned value, if possible. Returns 0 if the trip count is unknown
205/// or not constant. Will also return 0 if the trip count is very large
206/// (>= 2^32)
207unsigned Loop::getSmallConstantTripCount() const {
208  Value* TripCount = this->getTripCount();
209  if (TripCount) {
210    if (ConstantInt *TripCountC = dyn_cast<ConstantInt>(TripCount)) {
211      // Guard against huge trip counts.
212      if (TripCountC->getValue().getActiveBits() <= 32) {
213        return (unsigned)TripCountC->getZExtValue();
214      }
215    }
216  }
217  return 0;
218}
219
220/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
221/// trip count of this loop as a normal unsigned value, if possible. This
222/// means that the actual trip count is always a multiple of the returned
223/// value (don't forget the trip count could very well be zero as well!).
224///
225/// Returns 1 if the trip count is unknown or not guaranteed to be the
226/// multiple of a constant (which is also the case if the trip count is simply
227/// constant, use getSmallConstantTripCount for that case), Will also return 1
228/// if the trip count is very large (>= 2^32).
229unsigned Loop::getSmallConstantTripMultiple() const {
230  Value* TripCount = this->getTripCount();
231  // This will hold the ConstantInt result, if any
232  ConstantInt *Result = NULL;
233  if (TripCount) {
234    // See if the trip count is constant itself
235    Result = dyn_cast<ConstantInt>(TripCount);
236    // if not, see if it is a multiplication
237    if (!Result)
238      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TripCount)) {
239        switch (BO->getOpcode()) {
240        case BinaryOperator::Mul:
241          Result = dyn_cast<ConstantInt>(BO->getOperand(1));
242          break;
243        case BinaryOperator::Shl:
244          if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1)))
245            if (CI->getValue().getActiveBits() <= 5)
246              return 1u << CI->getZExtValue();
247          break;
248        default:
249          break;
250        }
251      }
252  }
253  // Guard against huge trip counts.
254  if (Result && Result->getValue().getActiveBits() <= 32) {
255    return (unsigned)Result->getZExtValue();
256  } else {
257    return 1;
258  }
259}
260
261/// isLCSSAForm - Return true if the Loop is in LCSSA form
262bool Loop::isLCSSAForm(DominatorTree &DT) const {
263  // Sort the blocks vector so that we can use binary search to do quick
264  // lookups.
265  SmallPtrSet<BasicBlock*, 16> LoopBBs(block_begin(), block_end());
266
267  for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) {
268    BasicBlock *BB = *BI;
269    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;++I)
270      for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
271           ++UI) {
272        User *U = *UI;
273        BasicBlock *UserBB = cast<Instruction>(U)->getParent();
274        if (PHINode *P = dyn_cast<PHINode>(U))
275          UserBB = P->getIncomingBlock(UI);
276
277        // Check the current block, as a fast-path, before checking whether
278        // the use is anywhere in the loop.  Most values are used in the same
279        // block they are defined in.  Also, blocks not reachable from the
280        // entry are special; uses in them don't need to go through PHIs.
281        if (UserBB != BB &&
282            !LoopBBs.count(UserBB) &&
283            DT.isReachableFromEntry(UserBB))
284          return false;
285      }
286  }
287
288  return true;
289}
290
291/// isLoopSimplifyForm - Return true if the Loop is in the form that
292/// the LoopSimplify form transforms loops to, which is sometimes called
293/// normal form.
294bool Loop::isLoopSimplifyForm() const {
295  // Normal-form loops have a preheader, a single backedge, and all of their
296  // exits have all their predecessors inside the loop.
297  return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
298}
299
300/// hasDedicatedExits - Return true if no exit block for the loop
301/// has a predecessor that is outside the loop.
302bool Loop::hasDedicatedExits() const {
303  // Sort the blocks vector so that we can use binary search to do quick
304  // lookups.
305  SmallPtrSet<BasicBlock *, 16> LoopBBs(block_begin(), block_end());
306  // Each predecessor of each exit block of a normal loop is contained
307  // within the loop.
308  SmallVector<BasicBlock *, 4> ExitBlocks;
309  getExitBlocks(ExitBlocks);
310  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
311    for (pred_iterator PI = pred_begin(ExitBlocks[i]),
312         PE = pred_end(ExitBlocks[i]); PI != PE; ++PI)
313      if (!LoopBBs.count(*PI))
314        return false;
315  // All the requirements are met.
316  return true;
317}
318
319/// getUniqueExitBlocks - Return all unique successor blocks of this loop.
320/// These are the blocks _outside of the current loop_ which are branched to.
321/// This assumes that loop exits are in canonical form.
322///
323void
324Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const {
325  assert(hasDedicatedExits() &&
326         "getUniqueExitBlocks assumes the loop has canonical form exits!");
327
328  // Sort the blocks vector so that we can use binary search to do quick
329  // lookups.
330  SmallVector<BasicBlock *, 128> LoopBBs(block_begin(), block_end());
331  std::sort(LoopBBs.begin(), LoopBBs.end());
332
333  SmallVector<BasicBlock *, 32> switchExitBlocks;
334
335  for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) {
336
337    BasicBlock *current = *BI;
338    switchExitBlocks.clear();
339
340    for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I) {
341      // If block is inside the loop then it is not a exit block.
342      if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
343        continue;
344
345      pred_iterator PI = pred_begin(*I);
346      BasicBlock *firstPred = *PI;
347
348      // If current basic block is this exit block's first predecessor
349      // then only insert exit block in to the output ExitBlocks vector.
350      // This ensures that same exit block is not inserted twice into
351      // ExitBlocks vector.
352      if (current != firstPred)
353        continue;
354
355      // If a terminator has more then two successors, for example SwitchInst,
356      // then it is possible that there are multiple edges from current block
357      // to one exit block.
358      if (std::distance(succ_begin(current), succ_end(current)) <= 2) {
359        ExitBlocks.push_back(*I);
360        continue;
361      }
362
363      // In case of multiple edges from current block to exit block, collect
364      // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
365      // duplicate edges.
366      if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I)
367          == switchExitBlocks.end()) {
368        switchExitBlocks.push_back(*I);
369        ExitBlocks.push_back(*I);
370      }
371    }
372  }
373}
374
375/// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
376/// block, return that block. Otherwise return null.
377BasicBlock *Loop::getUniqueExitBlock() const {
378  SmallVector<BasicBlock *, 8> UniqueExitBlocks;
379  getUniqueExitBlocks(UniqueExitBlocks);
380  if (UniqueExitBlocks.size() == 1)
381    return UniqueExitBlocks[0];
382  return 0;
383}
384
385void Loop::dump() const {
386  print(dbgs());
387}
388
389//===----------------------------------------------------------------------===//
390// UnloopUpdater implementation
391//
392
393namespace {
394/// Find the new parent loop for all blocks within the "unloop" whose last
395/// backedges has just been removed.
396class UnloopUpdater {
397  Loop *Unloop;
398  LoopInfo *LI;
399
400  LoopBlocksDFS DFS;
401
402  // Map unloop's immediate subloops to their nearest reachable parents. Nested
403  // loops within these subloops will not change parents. However, an immediate
404  // subloop's new parent will be the nearest loop reachable from either its own
405  // exits *or* any of its nested loop's exits.
406  DenseMap<Loop*, Loop*> SubloopParents;
407
408  // Flag the presence of an irreducible backedge whose destination is a block
409  // directly contained by the original unloop.
410  bool FoundIB;
411
412public:
413  UnloopUpdater(Loop *UL, LoopInfo *LInfo) :
414    Unloop(UL), LI(LInfo), DFS(UL), FoundIB(false) {}
415
416  void updateBlockParents();
417
418  void removeBlocksFromAncestors();
419
420  void updateSubloopParents();
421
422protected:
423  Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop);
424};
425} // end anonymous namespace
426
427/// updateBlockParents - Update the parent loop for all blocks that are directly
428/// contained within the original "unloop".
429void UnloopUpdater::updateBlockParents() {
430  if (Unloop->getNumBlocks()) {
431    // Perform a post order CFG traversal of all blocks within this loop,
432    // propagating the nearest loop from sucessors to predecessors.
433    LoopBlocksTraversal Traversal(DFS, LI);
434    for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
435           POE = Traversal.end(); POI != POE; ++POI) {
436
437      Loop *L = LI->getLoopFor(*POI);
438      Loop *NL = getNearestLoop(*POI, L);
439
440      if (NL != L) {
441        // For reducible loops, NL is now an ancestor of Unloop.
442        assert((NL != Unloop && (!NL || NL->contains(Unloop))) &&
443               "uninitialized successor");
444        LI->changeLoopFor(*POI, NL);
445      }
446      else {
447        // Or the current block is part of a subloop, in which case its parent
448        // is unchanged.
449        assert((FoundIB || Unloop->contains(L)) && "uninitialized successor");
450      }
451    }
452  }
453  // Each irreducible loop within the unloop induces a round of iteration using
454  // the DFS result cached by Traversal.
455  bool Changed = FoundIB;
456  for (unsigned NIters = 0; Changed; ++NIters) {
457    assert(NIters < Unloop->getNumBlocks() && "runaway iterative algorithm");
458
459    // Iterate over the postorder list of blocks, propagating the nearest loop
460    // from successors to predecessors as before.
461    Changed = false;
462    for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(),
463           POE = DFS.endPostorder(); POI != POE; ++POI) {
464
465      Loop *L = LI->getLoopFor(*POI);
466      Loop *NL = getNearestLoop(*POI, L);
467      if (NL != L) {
468        assert(NL != Unloop && (!NL || NL->contains(Unloop)) &&
469               "uninitialized successor");
470        LI->changeLoopFor(*POI, NL);
471        Changed = true;
472      }
473    }
474  }
475}
476
477/// removeBlocksFromAncestors - Remove unloop's blocks from all ancestors below
478/// their new parents.
479void UnloopUpdater::removeBlocksFromAncestors() {
480  // Remove unloop's blocks from all ancestors below their new parents.
481  for (Loop::block_iterator BI = Unloop->block_begin(),
482         BE = Unloop->block_end(); BI != BE; ++BI) {
483    Loop *NewParent = LI->getLoopFor(*BI);
484    // If this block is an immediate subloop, remove all blocks (including
485    // nested subloops) from ancestors below the new parent loop.
486    // Otherwise, if this block is in a nested subloop, skip it.
487    if (SubloopParents.count(NewParent))
488      NewParent = SubloopParents[NewParent];
489    else if (Unloop->contains(NewParent))
490      continue;
491
492    // Remove blocks from former Ancestors except Unloop itself which will be
493    // deleted.
494    for (Loop *OldParent = Unloop->getParentLoop(); OldParent != NewParent;
495         OldParent = OldParent->getParentLoop()) {
496      assert(OldParent && "new loop is not an ancestor of the original");
497      OldParent->removeBlockFromLoop(*BI);
498    }
499  }
500}
501
502/// updateSubloopParents - Update the parent loop for all subloops directly
503/// nested within unloop.
504void UnloopUpdater::updateSubloopParents() {
505  while (!Unloop->empty()) {
506    Loop *Subloop = *llvm::prior(Unloop->end());
507    Unloop->removeChildLoop(llvm::prior(Unloop->end()));
508
509    assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop");
510    if (SubloopParents[Subloop])
511      SubloopParents[Subloop]->addChildLoop(Subloop);
512    else
513      LI->addTopLevelLoop(Subloop);
514  }
515}
516
517/// getNearestLoop - Return the nearest parent loop among this block's
518/// successors. If a successor is a subloop header, consider its parent to be
519/// the nearest parent of the subloop's exits.
520///
521/// For subloop blocks, simply update SubloopParents and return NULL.
522Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) {
523
524  // Initially for blocks directly contained by Unloop, NearLoop == Unloop and
525  // is considered uninitialized.
526  Loop *NearLoop = BBLoop;
527
528  Loop *Subloop = 0;
529  if (NearLoop != Unloop && Unloop->contains(NearLoop)) {
530    Subloop = NearLoop;
531    // Find the subloop ancestor that is directly contained within Unloop.
532    while (Subloop->getParentLoop() != Unloop) {
533      Subloop = Subloop->getParentLoop();
534      assert(Subloop && "subloop is not an ancestor of the original loop");
535    }
536    // Get the current nearest parent of the Subloop exits, initially Unloop.
537    if (!SubloopParents.count(Subloop))
538      SubloopParents[Subloop] = Unloop;
539    NearLoop = SubloopParents[Subloop];
540  }
541
542  succ_iterator I = succ_begin(BB), E = succ_end(BB);
543  if (I == E) {
544    assert(!Subloop && "subloop blocks must have a successor");
545    NearLoop = 0; // unloop blocks may now exit the function.
546  }
547  for (; I != E; ++I) {
548    if (*I == BB)
549      continue; // self loops are uninteresting
550
551    Loop *L = LI->getLoopFor(*I);
552    if (L == Unloop) {
553      // This successor has not been processed. This path must lead to an
554      // irreducible backedge.
555      assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB");
556      FoundIB = true;
557    }
558    if (L != Unloop && Unloop->contains(L)) {
559      // Successor is in a subloop.
560      if (Subloop)
561        continue; // Branching within subloops. Ignore it.
562
563      // BB branches from the original into a subloop header.
564      assert(L->getParentLoop() == Unloop && "cannot skip into nested loops");
565
566      // Get the current nearest parent of the Subloop's exits.
567      L = SubloopParents[L];
568      // L could be Unloop if the only exit was an irreducible backedge.
569    }
570    if (L == Unloop) {
571      continue;
572    }
573    // Handle critical edges from Unloop into a sibling loop.
574    if (L && !L->contains(Unloop)) {
575      L = L->getParentLoop();
576    }
577    // Remember the nearest parent loop among successors or subloop exits.
578    if (NearLoop == Unloop || !NearLoop || NearLoop->contains(L))
579      NearLoop = L;
580  }
581  if (Subloop) {
582    SubloopParents[Subloop] = NearLoop;
583    return BBLoop;
584  }
585  return NearLoop;
586}
587
588//===----------------------------------------------------------------------===//
589// LoopInfo implementation
590//
591bool LoopInfo::runOnFunction(Function &) {
592  releaseMemory();
593  LI.Calculate(getAnalysis<DominatorTree>().getBase());    // Update
594  return false;
595}
596
597/// updateUnloop - The last backedge has been removed from a loop--now the
598/// "unloop". Find a new parent for the blocks contained within unloop and
599/// update the loop tree. We don't necessarily have valid dominators at this
600/// point, but LoopInfo is still valid except for the removal of this loop.
601///
602/// Note that Unloop may now be an empty loop. Calling Loop::getHeader without
603/// checking first is illegal.
604void LoopInfo::updateUnloop(Loop *Unloop) {
605
606  // First handle the special case of no parent loop to simplify the algorithm.
607  if (!Unloop->getParentLoop()) {
608    // Since BBLoop had no parent, Unloop blocks are no longer in a loop.
609    for (Loop::block_iterator I = Unloop->block_begin(),
610         E = Unloop->block_end(); I != E; ++I) {
611
612      // Don't reparent blocks in subloops.
613      if (getLoopFor(*I) != Unloop)
614        continue;
615
616      // Blocks no longer have a parent but are still referenced by Unloop until
617      // the Unloop object is deleted.
618      LI.changeLoopFor(*I, 0);
619    }
620
621    // Remove the loop from the top-level LoopInfo object.
622    for (LoopInfo::iterator I = LI.begin();; ++I) {
623      assert(I != LI.end() && "Couldn't find loop");
624      if (*I == Unloop) {
625        LI.removeLoop(I);
626        break;
627      }
628    }
629
630    // Move all of the subloops to the top-level.
631    while (!Unloop->empty())
632      LI.addTopLevelLoop(Unloop->removeChildLoop(llvm::prior(Unloop->end())));
633
634    return;
635  }
636
637  // Update the parent loop for all blocks within the loop. Blocks within
638  // subloops will not change parents.
639  UnloopUpdater Updater(Unloop, this);
640  Updater.updateBlockParents();
641
642  // Remove blocks from former ancestor loops.
643  Updater.removeBlocksFromAncestors();
644
645  // Add direct subloops as children in their new parent loop.
646  Updater.updateSubloopParents();
647
648  // Remove unloop from its parent loop.
649  Loop *ParentLoop = Unloop->getParentLoop();
650  for (Loop::iterator I = ParentLoop->begin();; ++I) {
651    assert(I != ParentLoop->end() && "Couldn't find loop");
652    if (*I == Unloop) {
653      ParentLoop->removeChildLoop(I);
654      break;
655    }
656  }
657}
658
659void LoopInfo::verifyAnalysis() const {
660  // LoopInfo is a FunctionPass, but verifying every loop in the function
661  // each time verifyAnalysis is called is very expensive. The
662  // -verify-loop-info option can enable this. In order to perform some
663  // checking by default, LoopPass has been taught to call verifyLoop
664  // manually during loop pass sequences.
665
666  if (!VerifyLoopInfo) return;
667
668  DenseSet<const Loop*> Loops;
669  for (iterator I = begin(), E = end(); I != E; ++I) {
670    assert(!(*I)->getParentLoop() && "Top-level loop has a parent!");
671    (*I)->verifyLoopNest(&Loops);
672  }
673
674  // Verify that blocks are mapped to valid loops.
675  //
676  // FIXME: With an up-to-date DFS (see LoopIterator.h) and DominatorTree, we
677  // could also verify that the blocks are still in the correct loops.
678  for (DenseMap<BasicBlock*, Loop*>::const_iterator I = LI.BBMap.begin(),
679         E = LI.BBMap.end(); I != E; ++I) {
680    assert(Loops.count(I->second) && "orphaned loop");
681    assert(I->second->contains(I->first) && "orphaned block");
682  }
683}
684
685void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const {
686  AU.setPreservesAll();
687  AU.addRequired<DominatorTree>();
688}
689
690void LoopInfo::print(raw_ostream &OS, const Module*) const {
691  LI.print(OS);
692}
693
694//===----------------------------------------------------------------------===//
695// LoopBlocksDFS implementation
696//
697
698/// Traverse the loop blocks and store the DFS result.
699/// Useful for clients that just want the final DFS result and don't need to
700/// visit blocks during the initial traversal.
701void LoopBlocksDFS::perform(LoopInfo *LI) {
702  LoopBlocksTraversal Traversal(*this, LI);
703  for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
704         POE = Traversal.end(); POI != POE; ++POI) ;
705}
706