LoopInfo.cpp revision 225736
1//===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the LoopInfo class that is used to identify natural loops
11// and determine the loop depth of various nodes of the CFG.  Note that the
12// loops identified may actually be several natural loops that share the same
13// header node... not just a single natural loop.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Analysis/LoopInfo.h"
18#include "llvm/Constants.h"
19#include "llvm/Instructions.h"
20#include "llvm/Analysis/Dominators.h"
21#include "llvm/Assembly/Writer.h"
22#include "llvm/Support/CFG.h"
23#include "llvm/Support/CommandLine.h"
24#include "llvm/Support/Debug.h"
25#include "llvm/ADT/DepthFirstIterator.h"
26#include "llvm/ADT/SmallPtrSet.h"
27#include <algorithm>
28using namespace llvm;
29
30// Always verify loopinfo if expensive checking is enabled.
31#ifdef XDEBUG
32static bool VerifyLoopInfo = true;
33#else
34static bool VerifyLoopInfo = false;
35#endif
36static cl::opt<bool,true>
37VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
38                cl::desc("Verify loop info (time consuming)"));
39
40char LoopInfo::ID = 0;
41INITIALIZE_PASS_BEGIN(LoopInfo, "loops", "Natural Loop Information", true, true)
42INITIALIZE_PASS_DEPENDENCY(DominatorTree)
43INITIALIZE_PASS_END(LoopInfo, "loops", "Natural Loop Information", true, true)
44
45//===----------------------------------------------------------------------===//
46// Loop implementation
47//
48
49/// isLoopInvariant - Return true if the specified value is loop invariant
50///
51bool Loop::isLoopInvariant(Value *V) const {
52  if (Instruction *I = dyn_cast<Instruction>(V))
53    return !contains(I);
54  return true;  // All non-instructions are loop invariant
55}
56
57/// hasLoopInvariantOperands - Return true if all the operands of the
58/// specified instruction are loop invariant.
59bool Loop::hasLoopInvariantOperands(Instruction *I) const {
60  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
61    if (!isLoopInvariant(I->getOperand(i)))
62      return false;
63
64  return true;
65}
66
67/// makeLoopInvariant - If the given value is an instruciton inside of the
68/// loop and it can be hoisted, do so to make it trivially loop-invariant.
69/// Return true if the value after any hoisting is loop invariant. This
70/// function can be used as a slightly more aggressive replacement for
71/// isLoopInvariant.
72///
73/// If InsertPt is specified, it is the point to hoist instructions to.
74/// If null, the terminator of the loop preheader is used.
75///
76bool Loop::makeLoopInvariant(Value *V, bool &Changed,
77                             Instruction *InsertPt) const {
78  if (Instruction *I = dyn_cast<Instruction>(V))
79    return makeLoopInvariant(I, Changed, InsertPt);
80  return true;  // All non-instructions are loop-invariant.
81}
82
83/// makeLoopInvariant - If the given instruction is inside of the
84/// loop and it can be hoisted, do so to make it trivially loop-invariant.
85/// Return true if the instruction after any hoisting is loop invariant. This
86/// function can be used as a slightly more aggressive replacement for
87/// isLoopInvariant.
88///
89/// If InsertPt is specified, it is the point to hoist instructions to.
90/// If null, the terminator of the loop preheader is used.
91///
92bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
93                             Instruction *InsertPt) const {
94  // Test if the value is already loop-invariant.
95  if (isLoopInvariant(I))
96    return true;
97  if (!I->isSafeToSpeculativelyExecute())
98    return false;
99  if (I->mayReadFromMemory())
100    return false;
101  // Determine the insertion point, unless one was given.
102  if (!InsertPt) {
103    BasicBlock *Preheader = getLoopPreheader();
104    // Without a preheader, hoisting is not feasible.
105    if (!Preheader)
106      return false;
107    InsertPt = Preheader->getTerminator();
108  }
109  // Don't hoist instructions with loop-variant operands.
110  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
111    if (!makeLoopInvariant(I->getOperand(i), Changed, InsertPt))
112      return false;
113
114  // Hoist.
115  I->moveBefore(InsertPt);
116  Changed = true;
117  return true;
118}
119
120/// getCanonicalInductionVariable - Check to see if the loop has a canonical
121/// induction variable: an integer recurrence that starts at 0 and increments
122/// by one each time through the loop.  If so, return the phi node that
123/// corresponds to it.
124///
125/// The IndVarSimplify pass transforms loops to have a canonical induction
126/// variable.
127///
128PHINode *Loop::getCanonicalInductionVariable() const {
129  BasicBlock *H = getHeader();
130
131  BasicBlock *Incoming = 0, *Backedge = 0;
132  pred_iterator PI = pred_begin(H);
133  assert(PI != pred_end(H) &&
134         "Loop must have at least one backedge!");
135  Backedge = *PI++;
136  if (PI == pred_end(H)) return 0;  // dead loop
137  Incoming = *PI++;
138  if (PI != pred_end(H)) return 0;  // multiple backedges?
139
140  if (contains(Incoming)) {
141    if (contains(Backedge))
142      return 0;
143    std::swap(Incoming, Backedge);
144  } else if (!contains(Backedge))
145    return 0;
146
147  // Loop over all of the PHI nodes, looking for a canonical indvar.
148  for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
149    PHINode *PN = cast<PHINode>(I);
150    if (ConstantInt *CI =
151        dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
152      if (CI->isNullValue())
153        if (Instruction *Inc =
154            dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
155          if (Inc->getOpcode() == Instruction::Add &&
156                Inc->getOperand(0) == PN)
157            if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
158              if (CI->equalsInt(1))
159                return PN;
160  }
161  return 0;
162}
163
164/// getTripCount - Return a loop-invariant LLVM value indicating the number of
165/// times the loop will be executed.  Note that this means that the backedge
166/// of the loop executes N-1 times.  If the trip-count cannot be determined,
167/// this returns null.
168///
169/// The IndVarSimplify pass transforms loops to have a form that this
170/// function easily understands.
171///
172Value *Loop::getTripCount() const {
173  // Canonical loops will end with a 'cmp ne I, V', where I is the incremented
174  // canonical induction variable and V is the trip count of the loop.
175  PHINode *IV = getCanonicalInductionVariable();
176  if (IV == 0 || IV->getNumIncomingValues() != 2) return 0;
177
178  bool P0InLoop = contains(IV->getIncomingBlock(0));
179  Value *Inc = IV->getIncomingValue(!P0InLoop);
180  BasicBlock *BackedgeBlock = IV->getIncomingBlock(!P0InLoop);
181
182  if (BranchInst *BI = dyn_cast<BranchInst>(BackedgeBlock->getTerminator()))
183    if (BI->isConditional()) {
184      if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
185        if (ICI->getOperand(0) == Inc) {
186          if (BI->getSuccessor(0) == getHeader()) {
187            if (ICI->getPredicate() == ICmpInst::ICMP_NE)
188              return ICI->getOperand(1);
189          } else if (ICI->getPredicate() == ICmpInst::ICMP_EQ) {
190            return ICI->getOperand(1);
191          }
192        }
193      }
194    }
195
196  return 0;
197}
198
199/// getSmallConstantTripCount - Returns the trip count of this loop as a
200/// normal unsigned value, if possible. Returns 0 if the trip count is unknown
201/// or not constant. Will also return 0 if the trip count is very large
202/// (>= 2^32)
203unsigned Loop::getSmallConstantTripCount() const {
204  Value* TripCount = this->getTripCount();
205  if (TripCount) {
206    if (ConstantInt *TripCountC = dyn_cast<ConstantInt>(TripCount)) {
207      // Guard against huge trip counts.
208      if (TripCountC->getValue().getActiveBits() <= 32) {
209        return (unsigned)TripCountC->getZExtValue();
210      }
211    }
212  }
213  return 0;
214}
215
216/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
217/// trip count of this loop as a normal unsigned value, if possible. This
218/// means that the actual trip count is always a multiple of the returned
219/// value (don't forget the trip count could very well be zero as well!).
220///
221/// Returns 1 if the trip count is unknown or not guaranteed to be the
222/// multiple of a constant (which is also the case if the trip count is simply
223/// constant, use getSmallConstantTripCount for that case), Will also return 1
224/// if the trip count is very large (>= 2^32).
225unsigned Loop::getSmallConstantTripMultiple() const {
226  Value* TripCount = this->getTripCount();
227  // This will hold the ConstantInt result, if any
228  ConstantInt *Result = NULL;
229  if (TripCount) {
230    // See if the trip count is constant itself
231    Result = dyn_cast<ConstantInt>(TripCount);
232    // if not, see if it is a multiplication
233    if (!Result)
234      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TripCount)) {
235        switch (BO->getOpcode()) {
236        case BinaryOperator::Mul:
237          Result = dyn_cast<ConstantInt>(BO->getOperand(1));
238          break;
239        case BinaryOperator::Shl:
240          if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1)))
241            if (CI->getValue().getActiveBits() <= 5)
242              return 1u << CI->getZExtValue();
243          break;
244        default:
245          break;
246        }
247      }
248  }
249  // Guard against huge trip counts.
250  if (Result && Result->getValue().getActiveBits() <= 32) {
251    return (unsigned)Result->getZExtValue();
252  } else {
253    return 1;
254  }
255}
256
257/// isLCSSAForm - Return true if the Loop is in LCSSA form
258bool Loop::isLCSSAForm(DominatorTree &DT) const {
259  // Sort the blocks vector so that we can use binary search to do quick
260  // lookups.
261  SmallPtrSet<BasicBlock*, 16> LoopBBs(block_begin(), block_end());
262
263  for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) {
264    BasicBlock *BB = *BI;
265    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;++I)
266      for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
267           ++UI) {
268        User *U = *UI;
269        BasicBlock *UserBB = cast<Instruction>(U)->getParent();
270        if (PHINode *P = dyn_cast<PHINode>(U))
271          UserBB = P->getIncomingBlock(UI);
272
273        // Check the current block, as a fast-path, before checking whether
274        // the use is anywhere in the loop.  Most values are used in the same
275        // block they are defined in.  Also, blocks not reachable from the
276        // entry are special; uses in them don't need to go through PHIs.
277        if (UserBB != BB &&
278            !LoopBBs.count(UserBB) &&
279            DT.isReachableFromEntry(UserBB))
280          return false;
281      }
282  }
283
284  return true;
285}
286
287/// isLoopSimplifyForm - Return true if the Loop is in the form that
288/// the LoopSimplify form transforms loops to, which is sometimes called
289/// normal form.
290bool Loop::isLoopSimplifyForm() const {
291  // Normal-form loops have a preheader, a single backedge, and all of their
292  // exits have all their predecessors inside the loop.
293  return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
294}
295
296/// hasDedicatedExits - Return true if no exit block for the loop
297/// has a predecessor that is outside the loop.
298bool Loop::hasDedicatedExits() const {
299  // Sort the blocks vector so that we can use binary search to do quick
300  // lookups.
301  SmallPtrSet<BasicBlock *, 16> LoopBBs(block_begin(), block_end());
302  // Each predecessor of each exit block of a normal loop is contained
303  // within the loop.
304  SmallVector<BasicBlock *, 4> ExitBlocks;
305  getExitBlocks(ExitBlocks);
306  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
307    for (pred_iterator PI = pred_begin(ExitBlocks[i]),
308         PE = pred_end(ExitBlocks[i]); PI != PE; ++PI)
309      if (!LoopBBs.count(*PI))
310        return false;
311  // All the requirements are met.
312  return true;
313}
314
315/// getUniqueExitBlocks - Return all unique successor blocks of this loop.
316/// These are the blocks _outside of the current loop_ which are branched to.
317/// This assumes that loop exits are in canonical form.
318///
319void
320Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const {
321  assert(hasDedicatedExits() &&
322         "getUniqueExitBlocks assumes the loop has canonical form exits!");
323
324  // Sort the blocks vector so that we can use binary search to do quick
325  // lookups.
326  SmallVector<BasicBlock *, 128> LoopBBs(block_begin(), block_end());
327  std::sort(LoopBBs.begin(), LoopBBs.end());
328
329  SmallVector<BasicBlock *, 32> switchExitBlocks;
330
331  for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) {
332
333    BasicBlock *current = *BI;
334    switchExitBlocks.clear();
335
336    for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I) {
337      // If block is inside the loop then it is not a exit block.
338      if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
339        continue;
340
341      pred_iterator PI = pred_begin(*I);
342      BasicBlock *firstPred = *PI;
343
344      // If current basic block is this exit block's first predecessor
345      // then only insert exit block in to the output ExitBlocks vector.
346      // This ensures that same exit block is not inserted twice into
347      // ExitBlocks vector.
348      if (current != firstPred)
349        continue;
350
351      // If a terminator has more then two successors, for example SwitchInst,
352      // then it is possible that there are multiple edges from current block
353      // to one exit block.
354      if (std::distance(succ_begin(current), succ_end(current)) <= 2) {
355        ExitBlocks.push_back(*I);
356        continue;
357      }
358
359      // In case of multiple edges from current block to exit block, collect
360      // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
361      // duplicate edges.
362      if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I)
363          == switchExitBlocks.end()) {
364        switchExitBlocks.push_back(*I);
365        ExitBlocks.push_back(*I);
366      }
367    }
368  }
369}
370
371/// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
372/// block, return that block. Otherwise return null.
373BasicBlock *Loop::getUniqueExitBlock() const {
374  SmallVector<BasicBlock *, 8> UniqueExitBlocks;
375  getUniqueExitBlocks(UniqueExitBlocks);
376  if (UniqueExitBlocks.size() == 1)
377    return UniqueExitBlocks[0];
378  return 0;
379}
380
381void Loop::dump() const {
382  print(dbgs());
383}
384
385//===----------------------------------------------------------------------===//
386// LoopInfo implementation
387//
388bool LoopInfo::runOnFunction(Function &) {
389  releaseMemory();
390  LI.Calculate(getAnalysis<DominatorTree>().getBase());    // Update
391  return false;
392}
393
394void LoopInfo::verifyAnalysis() const {
395  // LoopInfo is a FunctionPass, but verifying every loop in the function
396  // each time verifyAnalysis is called is very expensive. The
397  // -verify-loop-info option can enable this. In order to perform some
398  // checking by default, LoopPass has been taught to call verifyLoop
399  // manually during loop pass sequences.
400
401  if (!VerifyLoopInfo) return;
402
403  for (iterator I = begin(), E = end(); I != E; ++I) {
404    assert(!(*I)->getParentLoop() && "Top-level loop has a parent!");
405    (*I)->verifyLoopNest();
406  }
407
408  // TODO: check BBMap consistency.
409}
410
411void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const {
412  AU.setPreservesAll();
413  AU.addRequired<DominatorTree>();
414}
415
416void LoopInfo::print(raw_ostream &OS, const Module*) const {
417  LI.print(OS);
418}
419
420