LoopInfo.cpp revision 212904
1//===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the LoopInfo class that is used to identify natural loops
11// and determine the loop depth of various nodes of the CFG.  Note that the
12// loops identified may actually be several natural loops that share the same
13// header node... not just a single natural loop.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Analysis/LoopInfo.h"
18#include "llvm/Constants.h"
19#include "llvm/Instructions.h"
20#include "llvm/Analysis/Dominators.h"
21#include "llvm/Assembly/Writer.h"
22#include "llvm/Support/CFG.h"
23#include "llvm/Support/CommandLine.h"
24#include "llvm/Support/Debug.h"
25#include "llvm/ADT/DepthFirstIterator.h"
26#include "llvm/ADT/SmallPtrSet.h"
27#include <algorithm>
28using namespace llvm;
29
30// Always verify loopinfo if expensive checking is enabled.
31#ifdef XDEBUG
32static bool VerifyLoopInfo = true;
33#else
34static bool VerifyLoopInfo = false;
35#endif
36static cl::opt<bool,true>
37VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
38                cl::desc("Verify loop info (time consuming)"));
39
40char LoopInfo::ID = 0;
41INITIALIZE_PASS(LoopInfo, "loops", "Natural Loop Information", true, true);
42
43//===----------------------------------------------------------------------===//
44// Loop implementation
45//
46
47/// isLoopInvariant - Return true if the specified value is loop invariant
48///
49bool Loop::isLoopInvariant(Value *V) const {
50  if (Instruction *I = dyn_cast<Instruction>(V))
51    return isLoopInvariant(I);
52  return true;  // All non-instructions are loop invariant
53}
54
55/// isLoopInvariant - Return true if the specified instruction is
56/// loop-invariant.
57///
58bool Loop::isLoopInvariant(Instruction *I) const {
59  return !contains(I);
60}
61
62/// makeLoopInvariant - If the given value is an instruciton inside of the
63/// loop and it can be hoisted, do so to make it trivially loop-invariant.
64/// Return true if the value after any hoisting is loop invariant. This
65/// function can be used as a slightly more aggressive replacement for
66/// isLoopInvariant.
67///
68/// If InsertPt is specified, it is the point to hoist instructions to.
69/// If null, the terminator of the loop preheader is used.
70///
71bool Loop::makeLoopInvariant(Value *V, bool &Changed,
72                             Instruction *InsertPt) const {
73  if (Instruction *I = dyn_cast<Instruction>(V))
74    return makeLoopInvariant(I, Changed, InsertPt);
75  return true;  // All non-instructions are loop-invariant.
76}
77
78/// makeLoopInvariant - If the given instruction is inside of the
79/// loop and it can be hoisted, do so to make it trivially loop-invariant.
80/// Return true if the instruction after any hoisting is loop invariant. This
81/// function can be used as a slightly more aggressive replacement for
82/// isLoopInvariant.
83///
84/// If InsertPt is specified, it is the point to hoist instructions to.
85/// If null, the terminator of the loop preheader is used.
86///
87bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
88                             Instruction *InsertPt) const {
89  // Test if the value is already loop-invariant.
90  if (isLoopInvariant(I))
91    return true;
92  if (!I->isSafeToSpeculativelyExecute())
93    return false;
94  if (I->mayReadFromMemory())
95    return false;
96  // Determine the insertion point, unless one was given.
97  if (!InsertPt) {
98    BasicBlock *Preheader = getLoopPreheader();
99    // Without a preheader, hoisting is not feasible.
100    if (!Preheader)
101      return false;
102    InsertPt = Preheader->getTerminator();
103  }
104  // Don't hoist instructions with loop-variant operands.
105  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
106    if (!makeLoopInvariant(I->getOperand(i), Changed, InsertPt))
107      return false;
108  // Hoist.
109  I->moveBefore(InsertPt);
110  Changed = true;
111  return true;
112}
113
114/// getCanonicalInductionVariable - Check to see if the loop has a canonical
115/// induction variable: an integer recurrence that starts at 0 and increments
116/// by one each time through the loop.  If so, return the phi node that
117/// corresponds to it.
118///
119/// The IndVarSimplify pass transforms loops to have a canonical induction
120/// variable.
121///
122PHINode *Loop::getCanonicalInductionVariable() const {
123  BasicBlock *H = getHeader();
124
125  BasicBlock *Incoming = 0, *Backedge = 0;
126  pred_iterator PI = pred_begin(H);
127  assert(PI != pred_end(H) &&
128         "Loop must have at least one backedge!");
129  Backedge = *PI++;
130  if (PI == pred_end(H)) return 0;  // dead loop
131  Incoming = *PI++;
132  if (PI != pred_end(H)) return 0;  // multiple backedges?
133
134  if (contains(Incoming)) {
135    if (contains(Backedge))
136      return 0;
137    std::swap(Incoming, Backedge);
138  } else if (!contains(Backedge))
139    return 0;
140
141  // Loop over all of the PHI nodes, looking for a canonical indvar.
142  for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
143    PHINode *PN = cast<PHINode>(I);
144    if (ConstantInt *CI =
145        dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
146      if (CI->isNullValue())
147        if (Instruction *Inc =
148            dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
149          if (Inc->getOpcode() == Instruction::Add &&
150                Inc->getOperand(0) == PN)
151            if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
152              if (CI->equalsInt(1))
153                return PN;
154  }
155  return 0;
156}
157
158/// getTripCount - Return a loop-invariant LLVM value indicating the number of
159/// times the loop will be executed.  Note that this means that the backedge
160/// of the loop executes N-1 times.  If the trip-count cannot be determined,
161/// this returns null.
162///
163/// The IndVarSimplify pass transforms loops to have a form that this
164/// function easily understands.
165///
166Value *Loop::getTripCount() const {
167  // Canonical loops will end with a 'cmp ne I, V', where I is the incremented
168  // canonical induction variable and V is the trip count of the loop.
169  PHINode *IV = getCanonicalInductionVariable();
170  if (IV == 0 || IV->getNumIncomingValues() != 2) return 0;
171
172  bool P0InLoop = contains(IV->getIncomingBlock(0));
173  Value *Inc = IV->getIncomingValue(!P0InLoop);
174  BasicBlock *BackedgeBlock = IV->getIncomingBlock(!P0InLoop);
175
176  if (BranchInst *BI = dyn_cast<BranchInst>(BackedgeBlock->getTerminator()))
177    if (BI->isConditional()) {
178      if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
179        if (ICI->getOperand(0) == Inc) {
180          if (BI->getSuccessor(0) == getHeader()) {
181            if (ICI->getPredicate() == ICmpInst::ICMP_NE)
182              return ICI->getOperand(1);
183          } else if (ICI->getPredicate() == ICmpInst::ICMP_EQ) {
184            return ICI->getOperand(1);
185          }
186        }
187      }
188    }
189
190  return 0;
191}
192
193/// getSmallConstantTripCount - Returns the trip count of this loop as a
194/// normal unsigned value, if possible. Returns 0 if the trip count is unknown
195/// of not constant. Will also return 0 if the trip count is very large
196/// (>= 2^32)
197unsigned Loop::getSmallConstantTripCount() const {
198  Value* TripCount = this->getTripCount();
199  if (TripCount) {
200    if (ConstantInt *TripCountC = dyn_cast<ConstantInt>(TripCount)) {
201      // Guard against huge trip counts.
202      if (TripCountC->getValue().getActiveBits() <= 32) {
203        return (unsigned)TripCountC->getZExtValue();
204      }
205    }
206  }
207  return 0;
208}
209
210/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
211/// trip count of this loop as a normal unsigned value, if possible. This
212/// means that the actual trip count is always a multiple of the returned
213/// value (don't forget the trip count could very well be zero as well!).
214///
215/// Returns 1 if the trip count is unknown or not guaranteed to be the
216/// multiple of a constant (which is also the case if the trip count is simply
217/// constant, use getSmallConstantTripCount for that case), Will also return 1
218/// if the trip count is very large (>= 2^32).
219unsigned Loop::getSmallConstantTripMultiple() const {
220  Value* TripCount = this->getTripCount();
221  // This will hold the ConstantInt result, if any
222  ConstantInt *Result = NULL;
223  if (TripCount) {
224    // See if the trip count is constant itself
225    Result = dyn_cast<ConstantInt>(TripCount);
226    // if not, see if it is a multiplication
227    if (!Result)
228      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TripCount)) {
229        switch (BO->getOpcode()) {
230        case BinaryOperator::Mul:
231          Result = dyn_cast<ConstantInt>(BO->getOperand(1));
232          break;
233        case BinaryOperator::Shl:
234          if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1)))
235            if (CI->getValue().getActiveBits() <= 5)
236              return 1u << CI->getZExtValue();
237          break;
238        default:
239          break;
240        }
241      }
242  }
243  // Guard against huge trip counts.
244  if (Result && Result->getValue().getActiveBits() <= 32) {
245    return (unsigned)Result->getZExtValue();
246  } else {
247    return 1;
248  }
249}
250
251/// isLCSSAForm - Return true if the Loop is in LCSSA form
252bool Loop::isLCSSAForm(DominatorTree &DT) const {
253  // Sort the blocks vector so that we can use binary search to do quick
254  // lookups.
255  SmallPtrSet<BasicBlock*, 16> LoopBBs(block_begin(), block_end());
256
257  for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) {
258    BasicBlock *BB = *BI;
259    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;++I)
260      for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
261           ++UI) {
262        User *U = *UI;
263        BasicBlock *UserBB = cast<Instruction>(U)->getParent();
264        if (PHINode *P = dyn_cast<PHINode>(U))
265          UserBB = P->getIncomingBlock(UI);
266
267        // Check the current block, as a fast-path, before checking whether
268        // the use is anywhere in the loop.  Most values are used in the same
269        // block they are defined in.  Also, blocks not reachable from the
270        // entry are special; uses in them don't need to go through PHIs.
271        if (UserBB != BB &&
272            !LoopBBs.count(UserBB) &&
273            DT.isReachableFromEntry(UserBB))
274          return false;
275      }
276  }
277
278  return true;
279}
280
281/// isLoopSimplifyForm - Return true if the Loop is in the form that
282/// the LoopSimplify form transforms loops to, which is sometimes called
283/// normal form.
284bool Loop::isLoopSimplifyForm() const {
285  // Normal-form loops have a preheader, a single backedge, and all of their
286  // exits have all their predecessors inside the loop.
287  return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
288}
289
290/// hasDedicatedExits - Return true if no exit block for the loop
291/// has a predecessor that is outside the loop.
292bool Loop::hasDedicatedExits() const {
293  // Sort the blocks vector so that we can use binary search to do quick
294  // lookups.
295  SmallPtrSet<BasicBlock *, 16> LoopBBs(block_begin(), block_end());
296  // Each predecessor of each exit block of a normal loop is contained
297  // within the loop.
298  SmallVector<BasicBlock *, 4> ExitBlocks;
299  getExitBlocks(ExitBlocks);
300  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
301    for (pred_iterator PI = pred_begin(ExitBlocks[i]),
302         PE = pred_end(ExitBlocks[i]); PI != PE; ++PI)
303      if (!LoopBBs.count(*PI))
304        return false;
305  // All the requirements are met.
306  return true;
307}
308
309/// getUniqueExitBlocks - Return all unique successor blocks of this loop.
310/// These are the blocks _outside of the current loop_ which are branched to.
311/// This assumes that loop exits are in canonical form.
312///
313void
314Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const {
315  assert(hasDedicatedExits() &&
316         "getUniqueExitBlocks assumes the loop has canonical form exits!");
317
318  // Sort the blocks vector so that we can use binary search to do quick
319  // lookups.
320  SmallVector<BasicBlock *, 128> LoopBBs(block_begin(), block_end());
321  std::sort(LoopBBs.begin(), LoopBBs.end());
322
323  SmallVector<BasicBlock *, 32> switchExitBlocks;
324
325  for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) {
326
327    BasicBlock *current = *BI;
328    switchExitBlocks.clear();
329
330    for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I) {
331      // If block is inside the loop then it is not a exit block.
332      if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
333        continue;
334
335      pred_iterator PI = pred_begin(*I);
336      BasicBlock *firstPred = *PI;
337
338      // If current basic block is this exit block's first predecessor
339      // then only insert exit block in to the output ExitBlocks vector.
340      // This ensures that same exit block is not inserted twice into
341      // ExitBlocks vector.
342      if (current != firstPred)
343        continue;
344
345      // If a terminator has more then two successors, for example SwitchInst,
346      // then it is possible that there are multiple edges from current block
347      // to one exit block.
348      if (std::distance(succ_begin(current), succ_end(current)) <= 2) {
349        ExitBlocks.push_back(*I);
350        continue;
351      }
352
353      // In case of multiple edges from current block to exit block, collect
354      // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
355      // duplicate edges.
356      if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I)
357          == switchExitBlocks.end()) {
358        switchExitBlocks.push_back(*I);
359        ExitBlocks.push_back(*I);
360      }
361    }
362  }
363}
364
365/// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
366/// block, return that block. Otherwise return null.
367BasicBlock *Loop::getUniqueExitBlock() const {
368  SmallVector<BasicBlock *, 8> UniqueExitBlocks;
369  getUniqueExitBlocks(UniqueExitBlocks);
370  if (UniqueExitBlocks.size() == 1)
371    return UniqueExitBlocks[0];
372  return 0;
373}
374
375void Loop::dump() const {
376  print(dbgs());
377}
378
379//===----------------------------------------------------------------------===//
380// LoopInfo implementation
381//
382bool LoopInfo::runOnFunction(Function &) {
383  releaseMemory();
384  LI.Calculate(getAnalysis<DominatorTree>().getBase());    // Update
385  return false;
386}
387
388void LoopInfo::verifyAnalysis() const {
389  // LoopInfo is a FunctionPass, but verifying every loop in the function
390  // each time verifyAnalysis is called is very expensive. The
391  // -verify-loop-info option can enable this. In order to perform some
392  // checking by default, LoopPass has been taught to call verifyLoop
393  // manually during loop pass sequences.
394
395  if (!VerifyLoopInfo) return;
396
397  for (iterator I = begin(), E = end(); I != E; ++I) {
398    assert(!(*I)->getParentLoop() && "Top-level loop has a parent!");
399    (*I)->verifyLoopNest();
400  }
401
402  // TODO: check BBMap consistency.
403}
404
405void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const {
406  AU.setPreservesAll();
407  AU.addRequired<DominatorTree>();
408}
409
410void LoopInfo::print(raw_ostream &OS, const Module*) const {
411  LI.print(OS);
412}
413
414