AliasAnalysis.cpp revision 218893
1//===- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation -==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the generic AliasAnalysis interface which is used as the
11// common interface used by all clients and implementations of alias analysis.
12//
13// This file also implements the default version of the AliasAnalysis interface
14// that is to be used when no other implementation is specified.  This does some
15// simple tests that detect obvious cases: two different global pointers cannot
16// alias, a global cannot alias a malloc, two different mallocs cannot alias,
17// etc.
18//
19// This alias analysis implementation really isn't very good for anything, but
20// it is very fast, and makes a nice clean default implementation.  Because it
21// handles lots of little corner cases, other, more complex, alias analysis
22// implementations may choose to rely on this pass to resolve these simple and
23// easy cases.
24//
25//===----------------------------------------------------------------------===//
26
27#include "llvm/Analysis/AliasAnalysis.h"
28#include "llvm/Pass.h"
29#include "llvm/BasicBlock.h"
30#include "llvm/Function.h"
31#include "llvm/IntrinsicInst.h"
32#include "llvm/Instructions.h"
33#include "llvm/LLVMContext.h"
34#include "llvm/Type.h"
35#include "llvm/Target/TargetData.h"
36using namespace llvm;
37
38// Register the AliasAnalysis interface, providing a nice name to refer to.
39INITIALIZE_ANALYSIS_GROUP(AliasAnalysis, "Alias Analysis", NoAA)
40char AliasAnalysis::ID = 0;
41
42//===----------------------------------------------------------------------===//
43// Default chaining methods
44//===----------------------------------------------------------------------===//
45
46AliasAnalysis::AliasResult
47AliasAnalysis::alias(const Location &LocA, const Location &LocB) {
48  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
49  return AA->alias(LocA, LocB);
50}
51
52bool AliasAnalysis::pointsToConstantMemory(const Location &Loc,
53                                           bool OrLocal) {
54  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
55  return AA->pointsToConstantMemory(Loc, OrLocal);
56}
57
58void AliasAnalysis::deleteValue(Value *V) {
59  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
60  AA->deleteValue(V);
61}
62
63void AliasAnalysis::copyValue(Value *From, Value *To) {
64  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
65  AA->copyValue(From, To);
66}
67
68void AliasAnalysis::addEscapingUse(Use &U) {
69  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
70  AA->addEscapingUse(U);
71}
72
73
74AliasAnalysis::ModRefResult
75AliasAnalysis::getModRefInfo(ImmutableCallSite CS,
76                             const Location &Loc) {
77  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
78
79  ModRefBehavior MRB = getModRefBehavior(CS);
80  if (MRB == DoesNotAccessMemory)
81    return NoModRef;
82
83  ModRefResult Mask = ModRef;
84  if (onlyReadsMemory(MRB))
85    Mask = Ref;
86
87  if (onlyAccessesArgPointees(MRB)) {
88    bool doesAlias = false;
89    if (doesAccessArgPointees(MRB))
90      for (ImmutableCallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
91           AI != AE; ++AI)
92        if (!isNoAlias(Location(*AI), Loc)) {
93          doesAlias = true;
94          break;
95        }
96
97    if (!doesAlias)
98      return NoModRef;
99  }
100
101  // If Loc is a constant memory location, the call definitely could not
102  // modify the memory location.
103  if ((Mask & Mod) && pointsToConstantMemory(Loc))
104    Mask = ModRefResult(Mask & ~Mod);
105
106  // If this is the end of the chain, don't forward.
107  if (!AA) return Mask;
108
109  // Otherwise, fall back to the next AA in the chain. But we can merge
110  // in any mask we've managed to compute.
111  return ModRefResult(AA->getModRefInfo(CS, Loc) & Mask);
112}
113
114AliasAnalysis::ModRefResult
115AliasAnalysis::getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2) {
116  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
117
118  // If CS1 or CS2 are readnone, they don't interact.
119  ModRefBehavior CS1B = getModRefBehavior(CS1);
120  if (CS1B == DoesNotAccessMemory) return NoModRef;
121
122  ModRefBehavior CS2B = getModRefBehavior(CS2);
123  if (CS2B == DoesNotAccessMemory) return NoModRef;
124
125  // If they both only read from memory, there is no dependence.
126  if (onlyReadsMemory(CS1B) && onlyReadsMemory(CS2B))
127    return NoModRef;
128
129  AliasAnalysis::ModRefResult Mask = ModRef;
130
131  // If CS1 only reads memory, the only dependence on CS2 can be
132  // from CS1 reading memory written by CS2.
133  if (onlyReadsMemory(CS1B))
134    Mask = ModRefResult(Mask & Ref);
135
136  // If CS2 only access memory through arguments, accumulate the mod/ref
137  // information from CS1's references to the memory referenced by
138  // CS2's arguments.
139  if (onlyAccessesArgPointees(CS2B)) {
140    AliasAnalysis::ModRefResult R = NoModRef;
141    if (doesAccessArgPointees(CS2B))
142      for (ImmutableCallSite::arg_iterator
143           I = CS2.arg_begin(), E = CS2.arg_end(); I != E; ++I) {
144        R = ModRefResult((R | getModRefInfo(CS1, *I, UnknownSize)) & Mask);
145        if (R == Mask)
146          break;
147      }
148    return R;
149  }
150
151  // If CS1 only accesses memory through arguments, check if CS2 references
152  // any of the memory referenced by CS1's arguments. If not, return NoModRef.
153  if (onlyAccessesArgPointees(CS1B)) {
154    AliasAnalysis::ModRefResult R = NoModRef;
155    if (doesAccessArgPointees(CS1B))
156      for (ImmutableCallSite::arg_iterator
157           I = CS1.arg_begin(), E = CS1.arg_end(); I != E; ++I)
158        if (getModRefInfo(CS2, *I, UnknownSize) != NoModRef) {
159          R = Mask;
160          break;
161        }
162    if (R == NoModRef)
163      return R;
164  }
165
166  // If this is the end of the chain, don't forward.
167  if (!AA) return Mask;
168
169  // Otherwise, fall back to the next AA in the chain. But we can merge
170  // in any mask we've managed to compute.
171  return ModRefResult(AA->getModRefInfo(CS1, CS2) & Mask);
172}
173
174AliasAnalysis::ModRefBehavior
175AliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
176  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
177
178  ModRefBehavior Min = UnknownModRefBehavior;
179
180  // Call back into the alias analysis with the other form of getModRefBehavior
181  // to see if it can give a better response.
182  if (const Function *F = CS.getCalledFunction())
183    Min = getModRefBehavior(F);
184
185  // If this is the end of the chain, don't forward.
186  if (!AA) return Min;
187
188  // Otherwise, fall back to the next AA in the chain. But we can merge
189  // in any result we've managed to compute.
190  return ModRefBehavior(AA->getModRefBehavior(CS) & Min);
191}
192
193AliasAnalysis::ModRefBehavior
194AliasAnalysis::getModRefBehavior(const Function *F) {
195  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
196  return AA->getModRefBehavior(F);
197}
198
199//===----------------------------------------------------------------------===//
200// AliasAnalysis non-virtual helper method implementation
201//===----------------------------------------------------------------------===//
202
203AliasAnalysis::Location AliasAnalysis::getLocation(const LoadInst *LI) {
204  return Location(LI->getPointerOperand(),
205                  getTypeStoreSize(LI->getType()),
206                  LI->getMetadata(LLVMContext::MD_tbaa));
207}
208
209AliasAnalysis::Location AliasAnalysis::getLocation(const StoreInst *SI) {
210  return Location(SI->getPointerOperand(),
211                  getTypeStoreSize(SI->getValueOperand()->getType()),
212                  SI->getMetadata(LLVMContext::MD_tbaa));
213}
214
215AliasAnalysis::Location AliasAnalysis::getLocation(const VAArgInst *VI) {
216  return Location(VI->getPointerOperand(),
217                  UnknownSize,
218                  VI->getMetadata(LLVMContext::MD_tbaa));
219}
220
221
222AliasAnalysis::Location
223AliasAnalysis::getLocationForSource(const MemTransferInst *MTI) {
224  uint64_t Size = UnknownSize;
225  if (ConstantInt *C = dyn_cast<ConstantInt>(MTI->getLength()))
226    Size = C->getValue().getZExtValue();
227
228  // memcpy/memmove can have TBAA tags. For memcpy, they apply
229  // to both the source and the destination.
230  MDNode *TBAATag = MTI->getMetadata(LLVMContext::MD_tbaa);
231
232  return Location(MTI->getRawSource(), Size, TBAATag);
233}
234
235AliasAnalysis::Location
236AliasAnalysis::getLocationForDest(const MemIntrinsic *MTI) {
237  uint64_t Size = UnknownSize;
238  if (ConstantInt *C = dyn_cast<ConstantInt>(MTI->getLength()))
239    Size = C->getValue().getZExtValue();
240
241  // memcpy/memmove can have TBAA tags. For memcpy, they apply
242  // to both the source and the destination.
243  MDNode *TBAATag = MTI->getMetadata(LLVMContext::MD_tbaa);
244
245  return Location(MTI->getRawDest(), Size, TBAATag);
246}
247
248
249
250AliasAnalysis::ModRefResult
251AliasAnalysis::getModRefInfo(const LoadInst *L, const Location &Loc) {
252  // Be conservative in the face of volatile.
253  if (L->isVolatile())
254    return ModRef;
255
256  // If the load address doesn't alias the given address, it doesn't read
257  // or write the specified memory.
258  if (!alias(getLocation(L), Loc))
259    return NoModRef;
260
261  // Otherwise, a load just reads.
262  return Ref;
263}
264
265AliasAnalysis::ModRefResult
266AliasAnalysis::getModRefInfo(const StoreInst *S, const Location &Loc) {
267  // Be conservative in the face of volatile.
268  if (S->isVolatile())
269    return ModRef;
270
271  // If the store address cannot alias the pointer in question, then the
272  // specified memory cannot be modified by the store.
273  if (!alias(getLocation(S), Loc))
274    return NoModRef;
275
276  // If the pointer is a pointer to constant memory, then it could not have been
277  // modified by this store.
278  if (pointsToConstantMemory(Loc))
279    return NoModRef;
280
281  // Otherwise, a store just writes.
282  return Mod;
283}
284
285AliasAnalysis::ModRefResult
286AliasAnalysis::getModRefInfo(const VAArgInst *V, const Location &Loc) {
287  // If the va_arg address cannot alias the pointer in question, then the
288  // specified memory cannot be accessed by the va_arg.
289  if (!alias(getLocation(V), Loc))
290    return NoModRef;
291
292  // If the pointer is a pointer to constant memory, then it could not have been
293  // modified by this va_arg.
294  if (pointsToConstantMemory(Loc))
295    return NoModRef;
296
297  // Otherwise, a va_arg reads and writes.
298  return ModRef;
299}
300
301// AliasAnalysis destructor: DO NOT move this to the header file for
302// AliasAnalysis or else clients of the AliasAnalysis class may not depend on
303// the AliasAnalysis.o file in the current .a file, causing alias analysis
304// support to not be included in the tool correctly!
305//
306AliasAnalysis::~AliasAnalysis() {}
307
308/// InitializeAliasAnalysis - Subclasses must call this method to initialize the
309/// AliasAnalysis interface before any other methods are called.
310///
311void AliasAnalysis::InitializeAliasAnalysis(Pass *P) {
312  TD = P->getAnalysisIfAvailable<TargetData>();
313  AA = &P->getAnalysis<AliasAnalysis>();
314}
315
316// getAnalysisUsage - All alias analysis implementations should invoke this
317// directly (using AliasAnalysis::getAnalysisUsage(AU)).
318void AliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
319  AU.addRequired<AliasAnalysis>();         // All AA's chain
320}
321
322/// getTypeStoreSize - Return the TargetData store size for the given type,
323/// if known, or a conservative value otherwise.
324///
325uint64_t AliasAnalysis::getTypeStoreSize(const Type *Ty) {
326  return TD ? TD->getTypeStoreSize(Ty) : UnknownSize;
327}
328
329/// canBasicBlockModify - Return true if it is possible for execution of the
330/// specified basic block to modify the value pointed to by Ptr.
331///
332bool AliasAnalysis::canBasicBlockModify(const BasicBlock &BB,
333                                        const Location &Loc) {
334  return canInstructionRangeModify(BB.front(), BB.back(), Loc);
335}
336
337/// canInstructionRangeModify - Return true if it is possible for the execution
338/// of the specified instructions to modify the value pointed to by Ptr.  The
339/// instructions to consider are all of the instructions in the range of [I1,I2]
340/// INCLUSIVE.  I1 and I2 must be in the same basic block.
341///
342bool AliasAnalysis::canInstructionRangeModify(const Instruction &I1,
343                                              const Instruction &I2,
344                                              const Location &Loc) {
345  assert(I1.getParent() == I2.getParent() &&
346         "Instructions not in same basic block!");
347  BasicBlock::const_iterator I = &I1;
348  BasicBlock::const_iterator E = &I2;
349  ++E;  // Convert from inclusive to exclusive range.
350
351  for (; I != E; ++I) // Check every instruction in range
352    if (getModRefInfo(I, Loc) & Mod)
353      return true;
354  return false;
355}
356
357/// isNoAliasCall - Return true if this pointer is returned by a noalias
358/// function.
359bool llvm::isNoAliasCall(const Value *V) {
360  if (isa<CallInst>(V) || isa<InvokeInst>(V))
361    return ImmutableCallSite(cast<Instruction>(V))
362      .paramHasAttr(0, Attribute::NoAlias);
363  return false;
364}
365
366/// isIdentifiedObject - Return true if this pointer refers to a distinct and
367/// identifiable object.  This returns true for:
368///    Global Variables and Functions (but not Global Aliases)
369///    Allocas and Mallocs
370///    ByVal and NoAlias Arguments
371///    NoAlias returns
372///
373bool llvm::isIdentifiedObject(const Value *V) {
374  if (isa<AllocaInst>(V))
375    return true;
376  if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V))
377    return true;
378  if (isNoAliasCall(V))
379    return true;
380  if (const Argument *A = dyn_cast<Argument>(V))
381    return A->hasNoAliasAttr() || A->hasByValAttr();
382  return false;
383}
384